WO1998012731A1 - Tube a image radiologique et son procede de fabrication - Google Patents

Tube a image radiologique et son procede de fabrication Download PDF

Info

Publication number
WO1998012731A1
WO1998012731A1 PCT/JP1997/003298 JP9703298W WO9812731A1 WO 1998012731 A1 WO1998012731 A1 WO 1998012731A1 JP 9703298 W JP9703298 W JP 9703298W WO 9812731 A1 WO9812731 A1 WO 9812731A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
substrate
image tube
ray image
input substrate
Prior art date
Application number
PCT/JP1997/003298
Other languages
English (en)
French (fr)
Inventor
Kazutoshi Tanno
Yoshinobu Sekijima
Hitoshi Yamada
Takashi Noji
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Electronic Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24642496A external-priority patent/JP2000048744A/ja
Application filed by Kabushiki Kaisha Toshiba, Toshiba Electronic Engineering Corporation filed Critical Kabushiki Kaisha Toshiba
Priority to JP51451398A priority Critical patent/JP3970937B2/ja
Priority to DE69726252T priority patent/DE69726252T2/de
Priority to US09/068,453 priority patent/US6169360B1/en
Priority to EP97940412A priority patent/EP0869533B1/en
Publication of WO1998012731A1 publication Critical patent/WO1998012731A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • H01J29/385Photocathodes comprising a layer which modified the wave length of impinging radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/12Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50057Imaging and conversion tubes characterised by form of output stage
    • H01J2231/50063Optical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/505Imaging and conversion tubes with non-scanning optics
    • H01J2231/5053Imaging and conversion tubes with non-scanning optics electrostatic

Definitions

  • This invention relates to X-ray image tube and a manufacturing method thereof, in particular its inlet cask; about input substrate and a manufacturing method thereof over emissions are formed.
  • Landscape technology X-ray image tube and a manufacturing method thereof, in particular its inlet cask; about input substrate and a manufacturing method thereof over emissions are formed.
  • An X-ray image tube is an electron tube that converts an X-ray image into a visible light image signal and an electric image signal, and is used in various fields such as medical and industrial use.
  • such an X-ray image tube has a spherical input substrate 12 that also forms the-part of the vacuum envelope]] and also serves as an X-ray input window, and the inner surface of the input substrate.
  • An input screen 13 that converts the X-ray image formed on it to a electron image, and a plurality of focusing electrodes 4a, 4b, 14c that constitute an electron lens, an anode 14d, and an electron
  • An output screen 15 for converting an image into a visual light image is provided.
  • the human-powered substrate 12 is usually made of aluminum or aluminum alloy (hereinafter simply referred to as aluminum) having good X-ray transmittance.
  • the input screen 13 is composed of a light-reflective film 16 deposited on the input substrate surface, a phosphor layer 17 composed of dyed columnar crystals deposited thereon, and a translucent Intermediate layer 18 and a photoelectric surface 9 formed thereon.
  • the X-ray image incident from the outside through the input substrate] 2 is emitted and converted into an electron image on the human-powered screen 13, collected by the electron lens system, and then visible on the output screen 15 or electrically Is converted into an image signal.
  • the output visible light image is transmitted to an X-ray television camera, a spot camera, or the like through an optical lens (not shown) disposed on the rear side, and is displayed on a CRT monitor or the like by electrical image processing.
  • the main problem of the occurrence of such image noise is that a slit formed at the time of rolling of the input substrate material or an etching pitch generated by etching for cleaning. And so on. That is, when the input substrate surface immediately before forming the input screen is observed with a microscope, as shown schematically in FIG. 21, the parallel direction seen as that of the streaks during rolling of the substrate material is observed. And U1 convex 12a such as countless irregularities on the S-plate material itself and countless irregular
  • FIG. 1 is a block diagram showing a manufacturing process of an embodiment of the present invention.
  • Figure 2 is a press Ding. Extent the ⁇ be vertical sectional view of the input substrate of the present invention c
  • FIG. 3 is a longitudinal sectional view showing a state where the pressed input substrate of the present invention is joined to a support ring.
  • FIG. 4 is a schematic side view showing a processing apparatus used in the burnishing step of the present invention.
  • C FIG. 5 is an enlarged cross-sectional view of a main part schematically showing the configuration of the input screen part of the present invention and the light reflection state. It is.
  • m 6 is a diagram showing a micrograph of the input substrate material of the present invention and the surface state after pressing.
  • FIG. 7 is a micrograph showing the surface state of an example of the input substrate of the present invention after etching and burnishing.
  • FIG. 8 is a diagram illustrating a surface state after burnishing of another example of the input substrate of the present invention by a microscope.
  • FIG. 9 is a graph showing the input substrate material of the present invention and the surface unevenness profile after etching.
  • FIG. 10 shows a surface unevenness profile of the input substrate of the present invention after panning and after forming the light reflecting film.
  • FIG. 1 is a graph showing the surface unevenness profile after panning of another example of the human-powered substrate of the present invention and after etching of still another example.
  • FIG. 12 is a graph showing the surface i! Convex profiles of the central part and the middle part of the input substrate of the present invention after the panning.
  • FIG. 13 is a rough drawing showing the surface unevenness profiles of the peripheral region after panning of the input substrate of the present invention and the central region of still another substrate.
  • FIG. J4 is a graph showing the surface [H] convex profile of the intermediate part and the peripheral part of the human-powered substrate according to the present invention after panning.
  • m15 is a graph showing the surface unevenness profile of the central portion and the peripheral region after bushing of still another example of the human-powered substrate of the present invention.
  • FIG. 16 is a graph for explaining a method of measuring and calculating the ⁇ method of unevenness from the unevenness profile on the surface of a human-powered substrate according to the present invention.
  • FIG. 17 is a graph illustrating the leg: degree distribution on the output screen according to the present invention and the conventional method.
  • FIG. 18 is an enlarged cross-sectional view of a main part in a panning step according to another embodiment of the present invention.
  • FIG. 9 is an enlarged sectional view of a main part of a burnishing air according to still another embodiment of the present invention.
  • FIG. 20 is a schematic vertical cross-sectional view showing the configuration of a general X-ray image tube with the-part enlarged.
  • FIG. 21 is an enlarged view of a main part schematically showing a conventional input board and input screen and their operations.
  • the present invention eliminates or reduces fine irregularities on the surface of a human-powered substrate that forms a human-powered screen in order to ensure sufficient adhesion strength of an input screen, high resolution of an output image, and, if necessary, uniformity of luminance.
  • It is an X-ray image T characterized by being composed of a surface having a moderate size and a moderate size.
  • This human power ⁇ The gentle projection of the plate surface 1
  • the convex is a human fluorescent light consisting of a collection of columnar crystals.
  • the pitch is more than several times the average crystal diameter of Regularly formed undulations are preferred.
  • a concave curved surface on which an input screen of an input substrate made of aluminum or an aluminum alloy which is press-formed into a substantially spherical shape is formed has almost no directionality as generated by the press-forming.
  • the gradual unevenness of the concave surface such as that generated by fressing of the input substrate is caused by the average distance between adjacent valley bottoms (Lavt, in units of ⁇ ), and
  • the ratio (Lave / Rc) to the radius of curvature (Rc, where the unit is mm) of the curved surface in the central region is in the range of 0.5 to 1.2 ;
  • Still another object of the present invention is to provide an X-ray image tube in which a concave curved surface of an input board on which an input screen is formed has a higher diffuse reflectance in a peripheral region than in a central region.
  • Still another object of the present invention is to provide a press forming step of forming an input substrate material made of aluminum or an aluminum alloy into a substantially spherical shape by pressing, and a burnishing device for crushing minute projections on the concave curved surface of the input substrate after the press forming. Then, an input screen forming step for attaching and forming an X-ray-excited phosphor layer composed of a collection of columnar crystals and a photovoltaic cell directly or through another coating on the concave curved surface of the Uii input substrate.
  • the concave curved surface of the input substrate on which the human-powered screen is formed has a small number of fine sharp irregularities and fine irregularities such as rolled rolls, light scattering on the input substrate surface is suppressed. Resolution is improved. Furthermore, image noise caused by these fine irregularities is reduced.
  • the relatively smooth and gradual unevenness generated during press molding maintains sufficient adhesion strength of the phosphor layer to the substrate, and since this concave surface acts like a concave mirror, it is located close to the same concave surface. Reflected light is more likely to collect within the columnar crystal population. For this reason, the conversion transfer coefficient (MTF) in the spatial frequency domain corresponding to the pitch of the gradual unevenness is improved.
  • MTF conversion transfer coefficient
  • the conversion transfer coefficient of 20 lines m is 2 ()% or more than that of the conventional technology. 30% improvement.
  • an input substrate for forming a human-powered screen of an X-ray image tube is used.
  • the strength of the substrate itself does not need to be very high.
  • Pure aluminum with a purity of more than 99% can be used.
  • C As an example, a JIS No. 150 plate material with a purity of more than 99.5% is suitable,
  • X-ray image tubes with a structure in which a human-powered substrate also serves as an X-ray entrance window, which is a part of a vacuum envelope have been widely used in terms of conversion efficiency and high resolution characteristics.
  • the human-powered substrate must not only sufficiently withstand the atmospheric pressure, but also, since the inner surface of the input substrate serves as a substantial cathode of the electron lens system, it can be formed into a concave curved surface shape suitable for it and undesirably. A necessary condition is that they do not deform.
  • a high-strength aluminum alloy is suitable.
  • aluminum alloys of JIS (500) or 6000 series are suitable.
  • II—Si—Mg alloy material which is a-species JIS—6061 aluminum alloy, is particularly suitable. This is an aluminum alloy containing about 1.0% by mass, about 0.6% by mass of Si, about 0.6% by mass of Cu, about (25)% by mass of Cu, and about 0.25% by mass of Cr.
  • the material type code is "O"
  • the annealed, rolled rolled material having a thickness of about 0.5 mm is mainly used in the examples described below.
  • aluminum alloy material can also be used as a human-powered substrate placed inside a vacuum vessel without the presence of atmospheric fl- :.
  • the aluminum alloy plate material as described above is made smaller than the outer diameter of the X-ray projection window so that it also serves as the X-ray projection window that is a part of the vacuum vessel of the X-ray image tube. It was cut into a perfect circular disk with a slightly larger diameter, that is, for example, for a 9-inch X-ray image tube, a diameter of about 265 () mrn, for a 12-inch ffl, a diameter of about 350 mm, Cut to about 44 O mm in diameter for 16 inch type
  • the human-powered base ⁇ made of aluminum or aluminum alloy of the flat plate thus prepared It is manufactured from a sheet material through the steps shown in Fig. 1. That is, the substrate material is cut into a disk shape having a diameter slightly larger than the diameter of the input window or the input screen formation region of the X-ray image tube. Then, it is formed into a concave curved surface with a predetermined radius of curvature by press molding. Thereafter, it is washed and etched. Thereafter, the periphery of the human-powered board is hermetically bonded to a high-strength support ring. Then, the input screen forming surface of the input substrate is subjected to a panning process. Thereafter, an input screen such as a phosphor layer is formed on the input substrate surface, and the inside thereof is evacuated as a vacuum vessel to complete the X-ray image tube.
  • the substrate material is cut into a disk shape having a diameter slightly larger than the diameter of the input window or the input screen formation region of the X
  • the disc 21 is placed on the lower die 22 of the press device as shown in FIG.
  • the upper bonnet 24 is pressed down at a predetermined pressure and press-formed at a normal temperature to form a concave curved surface.
  • the input substrate 21 was obtained:
  • the press surface 22a of the lower die 22 and the breath surface 24a of the upper punch 24 had a predetermined radius of curvature and a surface close to a mirror surface. It is.
  • the input board 21 thus formed is degreased and cleaned.
  • the region from the central axis O of the input substrate 21 to the outer periphery ⁇ E of the arc-shaped K is substantially equally divided into three in the radial direction, the innermost region is defined as a central region, and The region m and the outermost region are classified as a peripheral region p, and the radius of curvature of the central region c is defined as Rc.
  • the input substrate 21 is fixed to the panitizing device 31 and the input substrate 2 is formed by inserting a large number of minute balls 32 into the [U1 curved inner surface of the substrate 21]. It was continuously rotated for a predetermined time to perform a panitizing process.
  • this panitizing is the addition of a substrate to [
  • this method is not a method of shaving and removing protrusions on the surface to be processed of the substrate, and according to this method, almost no cutting dust of the substrate material is generated.
  • the panitizing device 31 includes a base 33 serving also as a vibrator, an inclination angle adjusting arm 35 having teeth 34 continuous with an arc-shaped portion, a driving gear 36 thereof, and an input board 21 fixed thereto.
  • the human-powered substrate 21 is fixed to the mounted substrate holder: 37, and a predetermined amount of the minute balls 32 are moved inside the substrate 21 as described above. Then, the rotating cover 41 integrated with the motor 39 is placed over the human-powered board 21 and fixed to the board holder 37, and the motor 39 is driven to drive the motor 39 at, for example, the speed per second as shown by the arrow S. Turn the input board 2] in about 1 rotation.
  • the minute balls 32 are made of a metal material such as stainless steel or a material such as alumina ceramics having Vickers hardness twice or more that of the material of the input plate 21.
  • the average diameter of the minute balls 32 is 0.3 m rr! 33. O mm, for example, a nearly perfect sphere of 1.0 mm.
  • a plurality of micro-balls 32 each having a weight tt of about 500 g were put and the human-powered substrate was rotated for about 60 minutes.
  • the fine projections on the inner surface of the input substrate are gradually formed by the rolling micro-poles, and many of the etch bits are gradually closed by the small poles.
  • a method of rotating a substrate by using a small ball is preferable: the shape and curvature of the substrate to be processed hardly change, and this method is suitable.
  • the method is not limited to this method.
  • Deformation of the substrate 4 Touching the plate with just enough to avoid f Means may be used to move at least one of the substrate and the contact while fixing the substrate and to resent the minute protrusion on the substrate surface.
  • the burnishing device 31 adjusts the inclination angle adjusting arm 35 as needed to change the inclination of the rotation center axis of the substrate 21 continuously or stepwise, if necessary.
  • the degree of burnishing of the central region, the intermediate region, or the peripheral region of the input substrate can be changed by appropriately giving vibrations by the shaker.
  • the speed at which the tilt angle adjusting arm 35 is tilted is not constant, for example, the tilting speed is reduced as the tilt increases, or the tilt angle is increased to concentrate the microballs mainly in the peripheral region.
  • the contact time between the substrate surface and the ball per unit area can be changed according to a desired condition for each processing area on the substrate surface, for example, by lowering the rotation speed of the substrate by the motor 39.
  • it can be configured to give an arbitrary motion as long as the microball rotates, moves, or rubs on the input substrate surface.
  • an aluminum vapor-deposited film serving as the light reflection film 16 is formed on the concave inner curved surface of the input substrate 2 ⁇ by, for example, about 300 angstrom (A). It is formed to a thickness.
  • A angstrom
  • the input screen 13 is formed on the substrate surface. That is, for example, cesium iodide activated with sodium (Na) is formed on the light reflecting film 16 of the human-powered substrate ffi.
  • the phosphor layer 17 of (C s 1) is formed by a known vapor deposition method so as to have a columnar crystal structure with a thickness of, for example, 400 to 500 ⁇ m.
  • the average of the diameter d of each columnar crystal P of the phosphor layer # 7 is in the range of about 6 to 10 m, for example, about 8.
  • a light-transmitting intermediate layer 18 is formed in order to make the ends of each crystal continuous, and the supporting ring of the human-powered substrate is connected to another part of the vacuum vessel. After airtight welding with this part, it is attached to an exhaust device and the inside is evacuated to vacuum, and a photocathode 19 is formed to complete the input screen 3: 3.
  • the light reflection film 6 may be omitted, but it is useful for eliminating defects such as partial spots over the entire surface of the input substrate.
  • the surface of the input substrate 21 on which the input screen is formed by the panitizing process has smooth irregularities 21c generated by press molding. It remains almost as it is, and the fine concavities and convexities (the sign ⁇ 12a phase in Fig. 2) that have been remarkably recognized in the past have almost disappeared. Light that travels in the direction of the light-reflecting film on the input substrate surface or the ffi is reflected within the same columnar crystal, and reaches the photocathode. As a result, improved resolution characteristics are obtained.
  • (b) of the figure is a photomicrograph of the same magnification showing the surface state after press-molding the plate material (a). This includes a large number of streaks and irregularities extending parallel to the horizontal direction, which are considered to be those of rolled streaks, and irregular fine irregularities, as well as irregular shading with a relatively large area. Irregular shading is shown later [! When compared with the convex profile, it is recognized that it is due to unevenness such as a gentle undulation caused by breath molding.
  • the surface state of the breath-formed input surface after subjecting the plate surface to a 5-minute etching process is as shown in (c) of FIG.
  • This is a micrograph at the same magnification as above. This is not easy to identify, but it includes a number of small black areas, which appear to be from an etch pit, as well as irregularities and irregular fines in the rolls running parallel to the lateral direction. r the state is observed.
  • the substrate surface after the burnishing treatment for 60 minutes was as shown in a micrograph of the same magnification in (d) of FIG. From now on, the unevenness of the mouth streaks is almost indistinguishable, has been resolved to a certain extent, and irregular fine projections have been almost completely eliminated and smoothed. You can see that. On the other hand, most of the etch pits are closed, but some of the etch pits that cannot be completely closed remain and appear as black dots. In addition, slight shading due to irregularities such as gentle undulations caused by breath forming is observed.
  • FIG. 8 (e) is a micrograph of the same magnification of the substrate surface of another sample after the same process as above and after the same 60-minute panitizing treatment. There is a little unevenness seen.
  • FIG. 8 is a micrograph of the same magnification of the substrate surface after performing the panitizing process for about 180 minutes. According to this, the shading due to the gradual unevenness remains as it is, and the etching pit is caused. It is recognized that the number of black spots is smaller than in the case of Fig. 7 (d) or Fig. 8 (e). From this, it was confirmed that the longer the time during the panicing process, the more gradual unevenness caused by press forming remained, and the unevenness of the roll streaks and many irregular fine protrusions were crushed, further blocking the etch pit. Was.
  • the ⁇ convex profile of the input substrate was measured according to the stylus type surface roughness measurement determined by j ⁇ s, and the results shown in FIGS. 9 to 15 were obtained.
  • the measurement of the uneven profile is obtained by measuring a range ffl of approximately 24 mm at an arbitrary position in the central region c of the substrate in an arbitrary -linear direction.
  • the measurement of the unevenness in the central region c of the input substrate is an actual measurement, assuming that the measurement is performed in a region avoiding the central axis portion where the material hardly flows in the press molding.
  • (YA-a) in Fig. 9 is an unevenness profile measured in a direction substantially perpendicular to the longitudinal direction of the mouth-bar streaks of the flat material before fressing for a 9-inch human-powered board.
  • the horizontal axis is the substrate surface. Is the horizontal position or distance along the axis (50x magnification), the vertical axis is the vertical or vertical change (10,000x magnification), and the same applies to other ⁇ convex broilers. is there.
  • the concavo-convex profile in this figure corresponds to the substrate surface shown in the microphotograph in (a) of FIG. Yes, it is. This [W convex profile, the input substrate surface in this state, the presence of innumerable fine irregularities including those rolls muscle is observed c
  • FIG. 9 is an unevenness profile of the central region of the input substrate after being formed as a flat plate for a 9-inch die and subjected to etching for about 15 minutes. This corresponds to the substrate surface whose micrograph is shown in FIG. 7 (c). From the concave-convex profile, the input substrate surface in this state has countless fine irregularities with a larger drop and a large number of etch bits.
  • FIG. 1 shows the unevenness profile of the central region of the same 9-inch human-powered board after burnishing for about 60 minutes. This corresponds to the S plate surface shown in the photomicrograph in (d) of Fig. 7. From this uneven profile, it is clear that the input substrate surface in this state has gradual unevenness that is considered to have occurred during breath molding, and that the myriad of fine unevennesses and most of the etch bits that were present before the processing had disappeared. Understand. In some cases, downward pulse-like changes were observed, and this was due to the small number of remaining etch pits.
  • FIG. 9A-d shows the same 9-inch type, after a 300-angstrom-thick aluminum light-reflective film was deposited on the surface of a human-powered substrate that had been subjected to upper panning. From the uneven profile in the central region of this film surface, the gradual unevenness generated during press molding on the input substrate surface in this state becomes a smooth surface state, and the shape and unevenness are almost the same. It can be seen that the etch bit is almost completely buried, and that the unevenness profile shows that the aluminum has a thickness of about 300 angstroms on the surface of the substrate that has been nicked. It can be seen that even if a medium light reflecting film is deposited, the gradual irregularities and fine irregularities appear almost as they are.
  • FIG. 1 (9 13 60 —) shows that another input board for 9-inch type was burnished for about 60 minutes after etching, but ⁇ ⁇ 1 [ ⁇ ⁇ This is a profile that is coarser than the gradual unevenness of the ⁇ "
  • IZ Is uneven profiles of the central region of the input substrate surface which is the Etsuchingu processing min Q: input substrate surface in this state, a large number of fine irregularities and etch pits larger than the case of (9 A- b) of FIG. 9 Is recognized ,,
  • the unevenness profile in the middle region of the same human-powered board as described above is (12 A30-cm) in FIG. 12, and that in the peripheral region is (12 A30-cp) in FIG. ). Comparing the unevenness profiles of the central, intermediate, and peripheral regions, no remarkable difference in unevenness is observed between them.
  • (16A60-cc) in FIG. 15 shows that the input substrate for the 16-inch type, that is, for the X-ray image tube having a larger diameter than any of the above-mentioned ones, is subjected to press molding and etching processing, and thereafter, is obtained.
  • the uneven profile of the central area of the substrate surface subjected to the burnishing process for 60 minutes the uneven profile of the peripheral area of the same input substrate is (16 660-cp) in Fig. 15 It became like. These are also generally in a state of unevenness such as ⁇ , and a small amount of fine unevenness remains in the peripheral region:
  • the size of the gradual unevenness of the input substrate surface which is caused by the resin molding and cannot be eliminated by the burnishing process was measured from the unevenness profile shown above.
  • the measurement and calculation of (12 A3 (.) — Cc) in Fig. 12 which is a concave / convex file in the center area of the input substrate for a 12-inch type, resulted in the following table. .
  • 1 2 inch type human-powered board Loose irregularities in the central area after burnishing Order of valley bottom distance Distance of valley bottom distance (/ 'm) Peak power> Head to valley bottom H (m)
  • the number of valleys 18 18 The method for measuring the gradual unevenness from such unevenness profile files is as follows. In other words, with respect to the uneven profile obtained by measuring 2.0 mm to 4.0 mm in an arbitrary direction in the central region on the concave curved surface of the above-mentioned human-powered substrate, FIG. The distance between the valley floor and the valley floor immediately to the right, in the horizontal direction, that is, 1 sideways, and the head H from the summit to the bottom of the valley (take the larger head from the peak to the valleys on either side) ) Were measured in order up to the measurement end point on the right. Then, the average of the distance between the adjacent valley bottoms (this is the average distance and a V e) and the average of the head II (this is the average head H. a V e) were calculated.
  • the ultra-fine unevenness that generally satisfies the following condition was excluded : that is, the minute unevenness pitch that exists in various places on the gently uneven surface is
  • 1 convex valley bottoms of less than 2 () m and a head H of less than 0.2 ⁇ m Irregularities with a horizontal distance L of 5 / m or less were excluded, regardless of the height of the head and the size of the head.
  • the emission wavelength of the phosphor layer composed of CsI is about ⁇ .41 ⁇
  • the distance or the unevenness of the drop smaller than the half wavelength of about 0.2 / m is caused by the emission light. The fact that they hardly cause diffuse reflection and can be ignored was also considered in the determination of these exclusion conditions.
  • Table 2 shows the results of measuring the distance between the valley bottoms and the head from the uneven profile file of the input board of each diameter shown above and shown in the drawings, and calculating the average value.
  • the diameter of the input board ie, the diameter of the area formed in the curve of the human-powered S-plate, and the radius of curvature of the central area are usually 9 inches, 12 inches, and 16 inches. The dimensions are larger in this order.
  • the size of the gradual ⁇ convexity generated by press forming of the input 3 ⁇ 4 plate surface is not so markedly different between the central part, the middle part and the peripheral part, but the caliber size In other words, it depends on the diameter of the territory formed in the curve tii of the input board, name : or the magnitude of the radius of curvature of the central area, respectively. It is presumed that this is because it depends on the amount of deformation.
  • Table 3 shows the ratio of each diameter size, curvature ⁇ diameter and ⁇ average distance between adjacent valley bottoms (L.av ').
  • the gradual unevenness 21c generated by press forming the input board is as follows:
  • the average of the distance L between adjacent valley bottoms of the unevenness profile is 100 to 220m, and the head from the top to the bottom is The average of H is around 0.6-2.2 / m.
  • Such gradual unevenness 2 1 c on the input substrate surface forming the input screen helps to increase the attachment strength of the input screen, and the valley or concave portion of the 0U convex profile has a concave mirror.
  • the average diameter d of the columnar crystals P configuring the manpower phosphor layer is from about 1/6 0 / for c that is in the range of zm, adjacent valley of gentle irregularities caused by press forming input substrate
  • the average distance ave is at least several times the average diameter of the columnar crystals P of the phosphor layer.
  • the average diameter of the columnar crystals P constituting the human-powered phosphor layer is, for example, about ⁇ 0 ⁇ m, and the pitch of the rugged irregularities on the input substrate surface, that is, the valley bottom distance is about 10 () ⁇ m. ⁇ Approximately 100 columnar crystals P are formed as a group on one concave surface of this gentle unevenness.
  • each concave portion of the gradual irregularities of the human-powered substrate works like a concave mirror, the light reflected by each concave portion is within the same group of columnar crystals formed on the common concave portion. Enter and return.
  • the conversion transfer coefficient (MTV) in the spatial frequency domain corresponding to the distance between the valley bottoms of the rugged irregularities on the input substrate surface, that is, the irregularity pitch is more than c .
  • the input screen forming surface of the input board when measured from the uneven profile under the following measurement conditions, is the average from the bottom of the adjacent K convex to the bottom of the valley.
  • the average distance between adjacent valley bottoms is in the range of 8 () ⁇ m to 250 ⁇ m, and the average head-to-valley bottom is 0.4 ⁇ ! 3.3.0 ⁇ m.
  • D) is preferably in the range of 0.35 to 0.65 ( :
  • the ratio (Lave ZR ') between the valley bottom average distance ave ( ⁇ is m) and the radius of curvature R c (unit: mm) is in the range 0.7 to 1.1 [
  • the rolling of the minute ball per unit is performed in the order of the bridging portion area and the peripheral area rather than the central area of the substrate.
  • the degree of elimination of microprojections or etch pits is reduced in the order of the central area, middle area, and peripheral area.
  • output of an X-ray image tube Hi-image brightness-The image quality can be improved.
  • the brightness ranging from the center to the periphery of the normal output of the X-ray image tube "I holidays light image, D drawing that is that there is a relationship as shown in FIG.
  • the horizontal axis of is the radial distance from the center axis O of the output image corresponding to the center axis of the input board, and the vertical axis is the relative luminance (1 ⁇ 2) when the center O is 1 () ().
  • Curve ⁇ shows the output luminance distribution of a conventional X-ray image tube with a 3 ⁇ 4 plate with a diffuse reflectance of about 20% and a regular reflectance of about 35% in the peripheral area.
  • Curve H shows the X-ray image tube having a substrate surface close to the embodiment of the present invention in which the irregular reflectance in the peripheral region is approximately 30 ° / 0 and the regular reflectance is approximately 95%.
  • the output luminance distribution is shown. Note that the irregular reflectance and the regular reflectance of the curves ⁇ and B are relative values when the central axis of the input substrate is set to 100: The luminous efficiency of the output screen is uniform over the entire area. Assuming there is t:
  • the diffuse reflectance is the ratio of light that is directly incident on the surface of the S plate reflected perpendicularly to the point of reflection (at least 2.5 ° away from the normal). 1 () () Defined as a relative value when (%) The specular reflectance is the ratio of the reflection point: the ratio of reflection from a straight line to less than 2.5, and the mirror surface is 100%. ( ) Therefore, if the input substrate surface is a fine uneven surface, the input screen formed on it has a low reflectance. The brightness of the output screen obtained from is higher.
  • the burnishing process is performed for a sufficient time from the center of the input substrate surface to the entire peripheral region by the pannishing device described above, the regular reflection rate of the input substrate surface is increased as a whole, and the resolution is improved. Be improved. Also, the contact time between the substrate surface and the micro-ball per unit area is made relatively shorter in the peripheral region than in the central region of the input substrate. Alternatively, the input substrate tilt angle during rotation is adjusted so that the amount of panicing in the peripheral region is smaller than that in the central region. With these, it is possible to suppress the lowering of the diffuse reflectance by leaving a small amount of the concave / convex u in the peripheral area to a certain extent, thereby suppressing the lowering of the luminance of the peripheral area. As a result, although the resolution is less improved in the peripheral area than in the central area, the effect of improving the luminance can be increased, and the excellent resolution and uniformity of the luminance of the output screen can be improved.
  • the embodiment shown in Fig. 8 is a method in which a small amount of aluminum or magnesium fine particles 32a is mixed with stainless steel micro-balls 32 and subjected to a panitizing treatment.
  • the fine particles 32a adhere to the surface of the human-powered substrate 21 and the substrate surface is smoothed in a relatively short time. This is thought to be due to the fact that some of the attached fine particles are gradually crushed and extended, and the fine protrusions on the input substrate surface are crushed, and the recesses including the etch pits are filled with the fine particles. Therefore, when the burnishing process is performed at an appropriate time, the regular reflectance of the substrate surface can be increased and the diffuse reflectance can be reduced ( :
  • the processing time can be made shorter than that of the above-mentioned embodiment: If fine particles which can be easily removed from the substrate surface after the processing remain, they are removed by clearing.
  • the embodiment shown in FIG. 19 is a method of performing a panting process using stainless steel micro-balls 3 on which a thin film 32 b of aluminum or magnesium is evaporated. According to this method, the coating 32b of the microballs rubs against the substrate surface, and is gradually smoothed in the same manner as in the embodiment of FIG. 18 to obtain the same operation and effect. In this case, a sufficient effect can be obtained if the thickness of the film is 50 () ⁇ or more.
  • small balls made of metal such as stainless steel can be easily obtained with a small surface roughness, but small balls made of ceramics generally have slightly large surface irregularities.
  • the substrate surface is slightly ground on the surface of the ball, and aluminum particles adhere to the ball surface. It adheres to a beating and helps smoothing. Therefore, micro balls made of ceramics can be used as needed to provide an arbitrary uneven surface.
  • the surface of the micro-balls has irregularities of 5 m or more, it is difficult to reduce or eliminate the minute irregularities of the human-powered board. Therefore, the surface irregularities of the minute poles are preferably 5 / im or less, particularly 3 / m or less. .
  • a method may be used in which the entire input substrate surface is first treated with minute balls made of stainless steel, and thereafter, for example, the center region is mainly treated instead of the minute balls made of ceramics.
  • a plurality of types of micro-balls having various degrees of surface irregularities may be combined or used in various manners to perform a panitizing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

明細書
X線ィメージ管及びその製造方法 技術分野 この発明は、 X線イメージ管及びその製造方法に係わり、 とくにその入カスク ; ーンが形成される入力基板及びその製造方法に関する。 景技術
X線イメージ管は、 X線像を可視光像乂は電気的画像信号に変換する電子管であ り、 医療用や工業用など t、ろいろな分野に利用されている。 このような X線ィメ一 ジ管は、 図 2 ()に示すように、 真空外囲器 ] ]の -部をなし X線入力窓を兼ねる球 面状の入力基板 1 2と、その内面上に形成された X線像を ¾子像に変換する入カス クリーン 1 3と、 電子レンズを構成する複数の集束電極〗 4 a, 4 b , 1 4 c、 陽極 1 4 dと、 さらに電子像を Ρί視光像に変換する出力スク リーン 1 5とを備えて いる。
人力基板 1 2には、 通常、 X線透過率の良いアルミニウム又はアルミニウム合金 (以下、 単にアルミニウムと記す) が使用されている。 入力スクリーン 1 3は、 入 力基板面上に蒸着された光反射膜 1 6、その上に蒸着された柱状結晶の染合からな る蛍光体層 1 7、 その上」こ付着された透光性の中間層 1 8、 及びその上に形成され た光電面] 9を備えている。
外部から入力基板] 2を通して入射された X線の像は、 人力スクリーン 1 3で発 光及び ¾子像に変換され、電子レンズ系で集朿されて出力スクリーン 1 5で可視光 像又は電気的な画像信号に変換される。 なお、 出力可視光像は、 その後方に配置さ れる図示しない光学レンズを通して X線テレビカメラやスポッ 卜カメラ等に伝達 され、 電気的画像処理により C R Tモニタ等に 示されろ。
ところで、 近年の X線幽像撮影技術においては、 ますます高解像度や輝度一様性 の向上が切望されている。 すなわち、 この分野においては、 画像積分処理などによ つて画像コン卜ラス卜を強調する処理が行われるようになってきており、例えば人 力 ¾板面上にある微細な傷やしみ、ェツチング処理による多数のェツチピッ卜すな わち微細な穴等による出力画像上の欠陥が不所望に強調され、無視できない画像ノ ィズになってしまう。
このような画像ノィズ発生の主な要困は、 本発明者らの考察によれば、 入力基板 材料の圧延時に形成される口一ル筋や、清净化のためのェツチングなどで生じるェ ツチピッ 卜等の微細な凹凸にあるものと推定される。 すなわち、 入力スクリーンを 形成する直前の入力基板面を顕微鏡観察すると、 図 2 1に模式的に^すように、 基 板材料の圧延時の口一ル筋のものと見られる平行な方向性を持った凹凸や、 S板材 料自身にある無数の不規則な微細凹凸、 びにエッチピッ 卜等の無数の |U1凸 1 2 a が認められた
そしてこのような従来の微細 [Ϊ]凸を^する人 芘板面及びこの面ヒに形成した 入力スクリーンにおいては、入射された X線により励起され蛍光体層 1 7で発光し た光の一部は、 入力基板 1 2の方向へ進み、 この某板面又は図示しない光反射膜面 上の無数の凹凸 1 2 aにより、 矢印 Yのように、 不規則な方向に乱反射される。 このような反射光は、 その一部は発光した同じ柱状結晶 Pの內部に戻るが、 他の 一部は横方向に隣接する他の柱状結晶 Pに人射してしまう。 したがって、 人力某板 の表面状態が粗れている程、 反射光が同 -の柱状結晶内に戻る確率は低ドし、 出力 像の解像度を低下させ且つ画像ノイズとして現れてしまう。 また、 エッチング処理 により入力基板面に多数のエッチピッ 卜が生じた場合は、極く小さいビッ トは光反 射膜で覆われるが、 比較的大きいピッ 卜は出力画像に点状のノイズとして現れ、 画 質を劣化させる。
なお、 入力基板面に凹凸を形成し、 或いは某板而を研磨して鏡 iii状態にしその面 上に柱状結 ¾の蛍光体層を形成することは、 例えば、 特公昭 5 2 - 2 0 8 1 8 公 報、 その対応特許としての Li S ー: 3 4 7 :] 0 6 6 '「明細書、 し' S P -:5 8 5 2 1 3号明細 Ϊ 特開昭 5 5— 1 5 0 5 3 5せ公報、 特 | 昭 5 7— 8 2 9 4 ()兮公報、 特開平 4一 1 5 4 0 3 2号公報、 W O— 9 4 / 1 6 1 ' 公報等に開 されてレ、 る Z しかしこれらの多くは、 基板面に規則的な凹凸を形成しそれに依存させて蛍光体 の結晶を成長させようとする技術である。 或いはまた、 基板面を平坦で §.つ鏡面に して発光光の乱反射を抑制し解像度を高めようとする技術である。 ところ力 基板 面が平坦で且つ鏡面である場合には、 解像度は改善されるものの、 入力スクリーン の付着強度が不十分になりやすレ、など、上記の技術で実用に供されているのは必ず しも多くなレ、。
本発明は、 以上のような事情に鑑みてなされたものであり、 入力スク リ一ンの十 分な付着強度が得られるとともに出力画像ノィズを低減し且つすぐれた解像度特 性を有する X線ィメ一ジ管及びその製造方法を提供することを目的とする 図面の簡単な説明 図 1は、 本発明の一実施例の製造工程を示すプロック図である。
図 2は、 本発明の入力基板のプレス丁.程を^す縦断面図である c
図 3は、本発明のプレス後の入力基板を支持リングに接合した状態を示す縦断面 図である。
図 4は、 本発明のバニッシング工程で使用する処理装置を示す概略側面図である c 図 5は、 本-発明の入力スクリーン部の構成及び光反射状態を模式的に示す要部拡 大断面図である。
m 6は、 本発明の入力基板材料及びプレス後の表面状態を顕微鏡写真により表し た図である
図 7は、 本発明の入力基板の一例のエッチング後及びバニッシング後の表面状態 を顕微鏡写真により表した図である。
図 8は、 本発明の入力基板の他の例のバニッシング後の表面状態を顕微鏡^真に より表した図である。
図 9は、 本発明の入力基板材料及びそれのェツチング後の表面凹凸プロファイル を表したグラフである。
図 1 0は、 本発明の入力基板のパニツシング後及び光反射膜形成後の表面凹凸プ 図 ] 1は、 本発明の人力基板の他の例のパニツシング後並びにさらに別の例のェ ツチング後の表面凹凸プロファイルを表したグラフである
図 1 2は、 本発明の入力基板のパニツシング後の中心部及び中^部領域の表面 i ! 凸プロファイルを表したグラフである。
図 1 3は、 本発明の入力基板のパニツシング後の周辺部領域及びさらに別の基板 の中心部領域の表面凹凸プロファイルを表したダラフである。
図 J 4は、 本発明の人力基板のパニツシング後の中間部及び周辺部領域の表面 [H] 凸プロファイルを表したグラフである
m 1 5は、 本発明の人力基板のさらに別の例のバュッシング後の中心部及び周辺 部領域の表面凹凸プロファイルを表したグラフである。
図 1 6は、 本発明の人力基板面の凹凸プロファイルから凹凸の Φ法を計測、 算出 する方法を説明するグラフである。
図 1 7は、 本発明及び従来の出力画面上の脚:度分布を説明するグラフである。 図 1 8は、 本発明の他の実施例のパニツシング工程における要部拡大断面図であ る。
図〗 9は、 本発明のさらに他の実施例のバニッシングエ^における要部拡大断面 図である。
図 2 0は、 一般的な X線ィメージ管の構成を -部を拡大して示す概略縦断面図で める。
図 2 1は、従来の入力基板及び入力スク リーンとその動作を模式的に^す要部拡 大図である。
発明の詳細な説明
本発明は、 入力スク リーンの十分な付着強度、 出力画像の高い解像度及び必要に より輝度の一様性を保証するため、人力スクリーンを形成する人力基板面として微 細な凹凸が解消又は少なくされ且つ適当なサイズのゆるやかな を有する面で 構成したことを特徴とする X線ィメ一ジ Tである,. この人力 ¾板面のゆるやかな出1 凸は、柱状結晶の集合からなる人力蛍光体屑の平均結晶径の数倍以上のピツチで不 規則に形成された起伏が好適である。
したがって、 本発明の一つの 的は、 略球面状にプレス成形されたアルミニウム 又はアルミユウム合金からなる入力基板の入力スク リーンが形成される凹曲面が、 上記プレス成形で生じるような方向性がほとんどないゆるやかな回凸を有し、 この ゆるやかな凹凸の隣接する谷底間の平均距離が 5 0 μ m〜 3 0 0 μ mの範面であ り、 且つ山頂から谷底までの平均落差が 0 . 3 m〜4 . の範囲である X線 ィメージ管を提供することである。
本発明の他の B的は、入力基板のフレス成形で生じるような凹曲面のゆるやかな 凹凸が、 隣接する谷底間の平均距離 (Lavt、 但し、 単位は μ πι) の、 と記人力基板 の中心部領域の囬曲面の曲率半径 ( R c , 但し、 単位は m m ) に対する比率 ( Lave / R c ) 力 0 . 5 ~ 1 . 2の範囲である X線イメージ管を提供することである ;: 本発明のさらに他の目的は、入力基板の入力スクリーンが形成される凹曲面が、 中心部領域よりも周辺部領域の乱反射率が高くなつている X線ィメージ管を提供 することである。
本発明のさらに他の目的は、アルミニウム又はアルミニウム合金からなる入力基 板材料を略球面状にブレス成形するプレス成形工程と、上記プレス成形後の入力基 板の凹曲面の微細突起を潰すバニッシングェ程と、 その後、 Uii入力基板の凹曲面 上に直接又は他の被膜を介して柱状結晶の集合からなる X線励起蛍光体層及び光 電 ώίを付着形成する入力スク リ一ン形成丁-程とを備える X線ィメ一ジ管の製造方 法を提供することである
本発明によれば、人力スク リーンが形成される入力基板の凹曲面には微細な鋭い 凹凸や圧延ロール筋などの微細凹凸が少なくなつているため、入力基板表面におけ る光の散乱が抑えられ、 解像度が向上する。 さらにこれらの微細な凹凸が原因で生 じる画像ノイズも減少する。 また、 プレス成形時に生じた比較的滑らかでゆるやか な凹凸は蛍光体層の基板への十分な付着強度を維持し、 さらにこの凹面が凹面鏡の ように作用するため、同じ凹面上に位置する近接した柱状結晶の集団内に反射光が 集まり易くなる。 このため、 ゆるやかな凹凸のピッチに相当する空間周波数領域の 変換伝達係数 (M T F ) が向上する 例えば、 2 0ラインズし' mの変換伝達係数で は、 従来技術の場合よりも 2 () %〜 3 0 %向上している。 以下、 図面を参照して本発明の実施例を望ましい製造工程にしたがって説明する„ なお、 同一部分は同一符号であらわす.: まず、 X線イメージ管の人力スク リーン を形成するための入力基板の材料として、アルミニウム又はアルミニウム合金の展 伸材を用意する。
X線ィメ一ジ管の真空容器の内部に大気圧が直接加わらない状態で配置する入 力基板の材料としては、 基板自身の強度があまり高くなくてもよいため、 J I Sの 1 0 0 0番台の純度 9 9 %以上の純アルミニウムを使用できる cその一例としては、 純度 9 9 . 5 %以上である J I Sの 1 0 5 0番の板材が適する,,
-方近来は、 人力基板が真空外囲器の一部である X線入射窓を兼ねる構造の X線 イメージ管が、 変換効率や高解像特性の点で広く実用されてきている. _ その場合の 人力基板は、 大気圧に十分耐える必要があるばかりでなく、 この入力基板の内面が 電子レンズ系の実質的な陰極になるため、それに適合した凹曲面形状に成形できる とともに、 不所望に変形しないことが必要条件となる。
このような真空外囲器の X線入射窓を兼ねる人力基板の材料としては、 卨強度の アルミニウム合金が適する。 その例としては、 j i Sの 5 0 0 ()番台、 又は 6 0 0 0番台のアルミニウム合金が適する。その中の例えば Λ I — S i — M g合金材の - 種である J I S— 6 0 6 1番のアルミニウム合金がとくに適する。 これは、 M g力; 約 1 . 0質量%、 S iが約 0 . 6質量%、 C uが約() . 2 5質量%、 C rが約 0 . 2 5質量%含まれるアルミニウム合金である. そして、 材料の質別記号が " O " 、 すなわち烧きなましをした、 約 ϋ . 5 m mの厚さにロール圧延した展伸材を以 に 説明する実施例では主として使用した, 勿論、 このようなアルミ二ゥム合金材料は、 真空容器の内部に、大気 fl-:が加わらない状態で配置する人力基板としても使用でき る。
そこでまず、 上記のようなアルミニゥム合金の平板材料を、 X線ィメ一ジ管の 真空容器の一部となる X線人射窓を兼ねるように、 X線人射窓の外径寸法よりも わずか大きい直径の真円の円板に^断した, すなわち、 例えば 9ィンチ型 X線ィメ ージ管用では直径約 2 65 () m rn、 1 2ィンチ型 fflでは直径約 3 5 0 m m、 1 6イン チ型用では直径約 4 4 O m mに、 それぞれ切断する
このように用意した平板のアルミニウム又はアルミニゥム合金からなる人力基 β 板材料から、 図 1に示すような工程を経て製作する。 すなわち、 基板材料を X線ィ メ一ジ管の入力窓又は入力スク リーン形成領域の直径よりもやや大きい直径の円 板状に切断する。 その後、 プレス成形により所定の曲率半径の凹曲面状に成形する ^ その後これを洗浄、 ェツチング処理する。 その後この人力基板の周辺部を高強度の 支持リングに気密接合する。 そしてその後、 この入力基板の入力スクリーン形成面 をパニツシング処理する。 しかる後、 この入力基板面に蛍光体層等の入力スクリー ンを形成するとともに真空容器としてその内部を排気し、 X線イメージ管を完成す る。
以下、 各工程について説明する 平板材料を円板状に切断した後、 図 2の (a ) に示すように、 この円板 2 1 をプレス装置の下ダイ 2 2の上に載せ、 周辺部 2 1 a を拘束用ダイ 2 3で挟んで強く拘 しつつ、 図 2の (b ) に示すように、 常温にて、 上ボンチ 2 4を所定の圧力で押し下げてプレス成形し、凹曲面状の入力基板 2 1を 得た:: なお、 下ダイ 2 2のプレス面 2 2 aと、 上ボンチ 2 4のブレス面 2 4 aとは、 所定の曲率半径で、 且つ鏡面に近い表面仕上げをしてある。 このようにブレス成形 した入力基板 2 1を、 脱脂洗浄する。
そして、 酸化膜等の除去のために、 入力基板 2 1の全面を硝酸等に短時間浸すェ ツチング処理を行った。 その後、 図 3に示すように、 人力基板のフランジ部 2 1 a の被接合面を、 厚肉のステンレス鋼製支持リング 2 5の被接合面 2 5 aに、 局部熱 圧接法等により気密接合した (
なお、 本明細書においては、 入力基板 2 1の中心軸 Oから円弧状 Kの外周緣 Eま での領域を、 半径方向にほぼ 3等分し、 最内側を中心部領域し'、 中間部領域 m、 最 外側を周辺部領域 pとして区分し、 また、 中心部領域 cの曲率半径を R cと定義し て説明する。
このような入力基板 2 1の少なくとも内 ffiには、 ¾ 2 1に示したような、 ロール 筋やエッチング等による多数の微細凹凸が存在している。 そこで、 次に、 ¾ 4に すように、 パニツシング装置 3 1に入力基板 2 1を固定し、 この基板 2 1 の [U1曲内 面に多数の微小ボール 3 2を入れて入力基板 2 ] を所定時間にわたって連続的に 回転させ、 パニツシング処理をした。
なお、 このパニツシング ( b u r n i s h i n g ) とは、 基板の被加:に [ήίに例え
Ί ば微小ボールを転がしたり又は他の工具を押し付けてすべらせたりして、表面の小 さい突起を潰し且つそれで みを埋めて表面を平滑化する加工方法である。 したが つて、この方法は基板の被加工面の突起を削り取って除去する方法ではないので、 この方法によると基板材料の切削屑はほとんど発生しなレ、。
パニツシング装置 3 1は、 加振器を兼ねる基台 3 3、 円弧状部に連続した歯 3 4 を有する傾斜角度調整アーム 3 5、 その駆動用歯車 3 6、 入力基板 2 1を固定する ための基板ホルダ 3 7、 これを回転可能に支持するベアリング 3 8、 基板ホルダを 回転させる回転駆動モータ 3 9、 及びその回転シャフ ト 4 0、 これに結合されて回 転力を伝達するとともに基板の蓋となる回 カバ-- 4 〗 、モータ支持用アーム 4 2 を備えている:; なお、 これに類する装置は、 ドイツ公開特許 2 4 3 5 6 2 9号公報 に開示されており、 そのような装置を使用することもできる,
パニツシング処理に際しては、 人力基板 2 1 を装^の基板ホルダ: 3 7に固定する とともに、 上述のように、 基板 2 1の内側に所定量の微小ボール 3 2を人れる。 そ して、モ一タ 3 9と一体化されている回転カバー 4 1を人力基板 2 1にかぶせると ともに基板ホルダ 3 7に固定し、モータ 3 9を駆動して矢印 Sのように例えば秒速 約 1回転で入力基板 2 ]回転させる。
微小ボール 3 2は、 入力 Λ¾板 2 1の材料よりもビッカース硬度が 2倍以上の硬さ を有する、 例えばステンレス鋼のような金属材料、 或いはアルミナセラミックスの ような材料で構成する。 また、 この微小ボール 3 2の平均直径は、 0 . 3 m rr!〜 3 . O m mの範圖、 例えば 1 . 0 m mのほぼ真円球である。 例えば】 2インチ型用の人 力基板の処理においては、重 ttが全体で 5 0 0 g程度になる複数の微小ボール 3 2 を入れて約 6 0分間にわたり人力基板を回転させた。 これによつて、 入力基板内面 の微細な突起は転動する微小ポールで徐々に潢されるとともに、ェツチビッ 卜の多 くがそれにより次第に塞がれ、上述のプレス成形で生じる方向性のないゆるやかな 囬凸は、 後述のように、 ¾らかにしてほぼそのままの形状及び寸法で残すことがで さる
なお、 パニツシングにおいて、 微小ボールを所^!:使用して基板を问転させる方 法力 被処理基板の形状や曲率' 径の変化がほとんど起こらず好適である,: しかし、 この方法に限らず、基板の変形を 4:じない程度で ¾板而に接触 fを適当な圧力で押 し付けながら基板又はこの接触子の少なくとも一方を移動させて基板面の微小突 起を憤す手段であってもよい。
なお、 このバニッシング装置 3 1により、 必要に応じて、 傾斜角度調整ァ一ム 3 5を適宜調整して基板 2 1の回転中心軸の傾きを連続的又は段階的に変化させた り、 或いは加振器により適宜に振動を与えて、 入力基板の中心部領域、 中問部領域、 又は周辺部領域のバニッシング処理の程度を変化させることができる。或いはまた、 傾斜角度調整アーム 3 5を傾ける速度を一定でなく、 例えば、 傾きが大きくなるに つれて傾ける速度を遅く したり、或いは傾斜角度を大きく して主として周辺部領域 に微小ボールを集中させる際にはモータ 3 9による基板の回転速度を低くするな ど、基板面の被処理領域ごとに単位面積当たりの基板面とボールとの接触時問を所 望に応じて変化させることができる なおまた、 入力基板面を微小ボールが回転、 移動、 又は擦れるよ ')な動きであれば、 任意の運動を与えるように構成することが できる
このようにバニッシング処理した後、 図 5に示すように、 入力基板 2 \ の内側凹 曲面上に、光反射膜 1 6となるアルミニウム蒸着膜を例えば約 3 0 0 0オングス 卜 ローム ( A ) の厚さに形成する。 なお、 上記のパニツシング処理では微細突起は ほとんど削られないので、 不所望な微粉末は生じない。 したがって、 その除去のた めの洗浄は不要である., ただし、 例えば後述の実施例のように若干の微粉末等が生 じる場合には、 乾式又は湿式の洗浄を行う。
しかる後、 基板面上に入力スク リーン 1 3の形成を行う。 すなわち、 人力基板 ffi の光反射膜 1 6の上に、 例えばナトリウム (N a ) で活性化されたヨウ化セシウム
( C s 1 ) からなる蛍光体層 1 7を、厚さが例えば 4 0 0〜5 0 0 μ mの柱状結晶 構造となるように公知の蒸着方法で形成する。 この蛍光体層〗 7の各柱状結晶 Pの 直径 dの平均は、 およそ 6〜 1 0 mの範囲、 例えば約 8 である。 この柱状結 品の集合からなる蛍光体層の上に、 各結晶の先端を連続させるため、 透光性の中問 層 1 8を形成する: そして、 この人力基板の支持リングを真空容器の他の部分と気 密溶接したうえ、排気装置に装着して内部を真空に排気し、 光電面 1 9を形成して 入力スクリーン〗 :3を完成する。 なお、 光反射膜] 6はなくてもよし、が、 入力基板 而の全面にわたり、 部分的なしみ等の欠陥を解消するためには有用である。 さて、 この発明によれば、 図 5に示したように、 パニツシング処理により入力基 板 2 1の入力スク リーンを形成する面は、プレス成形で生じたゆるやかな凹凸 2 1 cが滑らかになってほぼそのままの形で残っており、従来顕著に認められた微細な 凹凸 (図 2 の符^ 1 2 a相 ) は、 ほとんど無くなっている そのため、 蛍光体 層で発光した光のうち、各柱状結晶内を入力基板面又はその ffi上の光反射膜の方向 に進んで反射する光は、 概ね同じ柱状結晶内に戾り、 光電面に達する。 その結果、 解像度特性の改善が得られる
このような特性改¾が認められた本発明実施例の人力基板面の状態について、 従 来のものと比較して観察したところ、次のような事実が確認された。すなわち、種々 の入力基板面の状態の顕微鏡写真を、 図 6〜図 8の (a ) から (〖) に示す t. 図 6の ( a ) は、 9インチ '.!用のアルミニウム合金 ( li J I Sの 6 () 6 1番) の板材そのものの表面状態を^す約 I ( ) 0倍の拡大率の顕微鏡写真である,: これに は、 口ール筋のものと認められる横方向に、 jに延びる多数の筋状凹凸、 及び不規 則な微細凹凸のものと認められる濃淡がある。
また、 同図の (b ) は、 (a ) と间稱の板材をプレス成形した後の面状態を示す 同倍率の顕微鏡写真である。 これには、 ロール筋のものと見られる横方向に平行に 延びる多数の筋状凹凸及び不規則な微細凹凸とともに、面積が比較的大きい不規則 な濃淡が認められる なお、 この面積が比較的大きい不規則な濃淡は、 後に示す [!リ 凸プロファイルと対/ させてみると、ブレス成形によつて z じたゆるやかなうねり のような凹凸によるものと認められる。
次に、 ブレス成形した入力莱:板面を ] 5分問ェツチング処理した後の面状態は、 図 7の (c ) のようになった。 これは、 上記と同倍率の顕微鏡写真である。 これに は、 識別が容易ではないが、 横方向に平行に延びるロール筋の凹凸及び不規則な微 細 ΠίΙΛとともに、エッチピッ 卜のものと見られる多数の小 ιίΐ積の黒い部分が混在し ている状態が認められる r.
次に、 エッチング処理した後の人力 板を、 上述のパニツシング装匱により、 約
6 0分間にわたってバニッシング処理した後の基板面は、 7の (d ) に同倍率の 顕微鏡写真で示す状態になつた。 これから、 口一ル筋の凹凸はほとんど識別できな レ、程度に解消され、且つ不規則な微細な突起がほとんど されて 滑化されている ことがわかる。 その一方で、 エッチピッ 卜の多くは塞がれているが、 少なからず塞 がれ切れないエッチピッ 卜が残って黒点状に表れている。 また、 ブレス成形によつ て生じたゆるやかなうねりのような凹凸によるわずかな濃淡が認められる。
なお、 図 8 ( e ) は、 上記と同様の工程を経て同じく約 6 0分間のパニツシング 処理をした後の別のサンプルの基板面の同倍率の顕微鏡写真である このサンブル は、 ロール筋のものと見られる凹凸が少し残っている。
さらに図 8の ( f ) は、 パニツシング処理を約 1 8 0分問にわたって行った後の 基板面の同倍率の顕微鏡写真である これによれば、 ゆるやかな凹凸による濃淡は そのまま残り、 エッチピットによる黒点は図 7の (d ) 又は図 8 ( e ) の場合より も少ない状態になっていることが認められる。 このことから、 パニツシング処理時 問が長いほど、 プレス成形によって生じたゆるやかな凹凸はそのまま残り ロール 筋の凹凸や多数の不規則な微細突起が潰され、エッチピッ トがさらに塞がれること が確認された。
このような表 ώί状態の入力基板面上に形成した蛍光体屑での発光光の一部は、 図 5に模式的に示したように、微細 凸がほとんどない基板面でほとんど散乱するこ となく元の同じ結晶柱内に反射して戻り、 光電面方向に進む。 その結果として、 良 好な解像度が得られる。 そして、 プレス成形によって生じたゆるやかな凹凸により、 蛍光体層の良好な付着強度が維持される。
さて、 入力基板【 の ω凸プロファイルは、 j 〖 sで定める触針式表面粗さ測定に したがって測定した結果、 図 9〜図 1 5の結果が得られた。 この凹凸プロファイル の測定は、基板の中心部領域 cの任意位置のおよそ 2 4 m mの範 fflを任意の -直 線方向に測定したものである。 なお、 入力基板の中心部領域 cにおける凹凸の測定 は、上記プレス成形で素材がほとんど流動しない中心軸部分を避けた領域について 測定するものとし、 実測したものである。
図 9の ( y A— a ) は、 9インチ型人力基板用のフレス成形前の平板材料の口 -ー ル筋の長手方向にほぼ直角方向に測定した凹凸プロファイルである なお 横軸は 基板面に沿う横方向の位置すなわち距離であり (5 0倍の拡大率) 、 縦軸は縦すな わち上下方向の変化であり ( 1万倍の拡大率) 、 他の μπ凸ブロフアイルでも同様で ある。 この図の凹凸プロファイルは、 図 6の (a ) に顕微鋭写真を示した基板面に 対応している。 この【W凸プロファイルから、 この状態の入力基板面には、 ロール筋 のものも含めて無数の微細凹凸の存在が認められる c
図 9の (9 A— b ) は、 じ 9インチ型用平板材としてブレス成形し、 ϋつ約 1 5分問のエッチング処理をした後の入力基板の中心部領域の凹凸プロファイルで ある。 これは、 図 7の ( c ) に顕微鏡写真を示した基板面に対応している。 この凹 凸プロファイルから、 この状態の入力基板面には、 さらに落差の大きい無数の微細 な凹凸、 及び多数のエッチピッ 卜が認められる
図 1 ()の (9 A 6 0 — C ) は、 同じ 9インチ型州の人力基板について、 その後約 6 0分間にわたりバニッシング処理をしたものの中心部領域の凹凸プロファイル である。 これは、 図 7の (d ) に顕微鏡写真を示した S板面に対応している。 この 凹凸プロフアイルから、 この状態の入力基板面には、 ブレス成形時に生じたものと 認められるゆるやかな凹凸があり、処理前にあった無数の微細凹凸とエッチビッ 卜 のほとんどが消えていることがわかる。 なお、 所々に下方へのパルス状変化が認め られ、 これは残存しているわずかな数のェッチピッ トによるものである。
図] ( の (9 A— d ) は、 同じ 9インチ型用の上 パニツシング処理をした人力 基板面に、約 3 ϋ 0 0オングストロ一ムの厚さのアルミニウムの光反射膜を蒸着し た後のこの膜面の中心部領域の凹凸プロファイルである この凹凸プロファイルか ら、 この状態の入力基板面には、 プレス成形時に生じたゆるやかな凹凸が滑らかな 表面状態になってほぼそのままの形及び凹凸サイズで現われ、ェツチビッ 卜がほぼ 完全に埋まっている状態が確認できる。 なおまた、 この凹凸プロファイルから、 ノく ニッシング処理をした基板面上に約 3 0 0 0オングス 卜ローム程度の厚さのアル ミ二ゥムの光反射膜を蒸着しても、ゆるやかな凹凸や微細凹凸はほぼそのままの形 で現れることがわかる
図 1 】の (9 13 6 0 —し、) は、 別の 9インチ型用の入力基板について、 エツチン グ処理後に約 6 0分間のバニッシング処理をしたものの中心部領域の Ι¥1【ηιプロフ アイルである これは、 図 1 ()の ( 9 Λ 6 0 —し') に示した Γ"|凸ァロファイルのゆ るやかな凹凸よりも粗くなっているとともに、少し微細凹 が残っていろ状態であ る。
また、 図 1 ]の ( 1 2 Λ— b ) は、 】 2インチ -!用のブレス成形した後に約】
I Z 分問のェツチング処理をした入力基板面の中心部領域の凹凸プロフアイルである: この状態の入力基板面は、 図9の (9 A— b ) の場合よりも大きい多数の微細凹凸 及びエッチピットが認められる ,,
この基板にっレ、て、 約 3 0分間のバニッシング処理を行った後の中心部領域の凹 凸プロファイルは、 図 1 2の (] 2 A 3 0— c c ) である。 この入力基板面は、 プ レス成形時に生じたゆるやかな凹凸がほぼそのまま現われ、微細凹凸がやや残つて いる力 ほとんどのエッチピッ卜が塞がっている。
なお、 上記と同一の人力基板の中間部領域の凹凸プロファイルは、 図 1 2の (1 2 A 3 0 - c m ) であり、 周辺部領域のそれは図 1 3の ( 1 2 A 3 0 — c p ) であ る。 これら中心部、 中間部、 周辺部領域の各凹凸プロファイルを対比すると、 それ らの問に凹凸状態の顕著な相違は認められない。
さらに、 別の 1 2インチ型用のプレス成形、 エッチング処理济みの入力基板につ いて、 約 6 0分間のパニツシング処理をした基板面は、 その中心部領域の凹凸プロ フアイルが図 1 3の (1 2 B 6 () — e c ) 、 中間部領域のそれが図 1 4の U 2 B 6 0 - c m) 、 周辺部領域のそれが図 ] 4の (1 2 B 6 0— c p ) のようになった。 これらを対比すると、 いずれの領域も概ね同等の凹凸状態であるが、 周辺部領域に 微細な凹凸が少し残っていることが確認できる。 これは、 パニツシング処理におけ る某板面の^位面積当たりの微小ボールとの接触時間が、中心部領域よりも周辺部 領域が短いためであると考えられる しカゝし、 この程度の微細凹 Λの存在は、 J 辺 部領域の解像度の顕著な低下をもたらさないことを確認できた。
さらにまた、 図 1 5の ( 1 6 A 6 0— c c ) は、 1 6ィンチ型用すなわち前述の いずれよりも大口径の X線イメージ管用の入力基板について、プレス成形及びエツ チング処理した後に約 6 0分間のバニッシング処理をした基板面の中心部領域の 凹凸プロファイルである = また、 同じ入力基板のよ周辺部領域の凹凸プロフアイル は、 同図 1 5の (1 6 Λ 6 0— c p ) のようになった。 これらは、 やはり概ね问等 の凹凸状態であって、 周辺部領域に微細な凹凸が少し残っている:,
以上の事実を比較すると、 バニッシング処理時間が長いほど、 微細な凹凸は解消 され、それに対してプレス成形で発生したゆるやかな凹凸はほとんどそのまま残つ ていることが明らかである。 このように本発明の製造方法によると、 fめアルミ二 ゥム又はアルミ二ゥム合金からなる板材の圧延時に生じた口一ル筋のような方向 性のある凹凸や方向性のない微細な凹凸と、 この後のプレス成形時に生じた方向性 のないゆるやかな凹凸と、 さらにその後のエツチング処理時に生じた微細な囬凸と がー度は形成されているが、 、 バニッシング処理によつて入力 ¾板而の微細な凹凸 はほとんど解消されてプレス加工時に生じた方向性のない滑らかでゆるやかな凹 凸だけがほぼそのまま残された面状態となる。
なお、 種々比較検討したところ、 人力基板のプレス成形で生じるこのようなゆる やかな凹凸は、 基板材料の結晶構造に起因し、 凹凸ブロファイルの各谷底部分が各 結晶粒界部分に対応し、山頂部分が各結晶粒の中心部分に対応しているものと推定 される。 そのため、 このようなゆるやかな凹凸は、 上記バニッシング処理では解消 されず且つほとんど変化しないで残されるものと考えられる。
そこで、 この発明の実施例において、 ァレス成形によって生じバニッシング処理 でも解消されない入力基板面のゆるやかな凹凸の大きさを、以上に示した凹凸プロ ファイルから計測した。 例えば、 1 2インチ型用の入力基板の中心部領域の凹凸ブ 口ファイルである図 1 2の ( 1 2 A 3 (.) — c c ) について計測、 算出したところ、 表]のようになった。
【表 1】
1 2インチ型用人力基板:バニッシング後の中心部領域のゆるやかな凹凸 谷底問の順番 谷底問の距離し(/' m ) 山頂力 >ら谷底までの落差 H ( m )
1 220 3. 30
2 60 0. 85
140 0. 80
4 1 10 0. 50
5 1 70 1 . 0
6 200 2. 60
7 160 2. 05
8 320 1. 90
9 140 (). 65
10 160 0. «0
1 1 () 2. 60
12 1 ?0 0. H5
1 180 2. 05
14 200 1. 50
1 5 】00 0. !5
16 100 1 . ?.() 17 220 0.50
18 140 1. 0
¾ i¾HHS5gf 差の合計長( tl 3000 24.80
m)
谷底間の平均距離 ve( μ 167 1. 8
m)、 落差の平均長
m 1 n ( ' m) 60 ().2δ
m a x ί m ) 320 3· 30
谷底間の数 18 18 なお、 このような凹凸ブロフアイルからのゆるやかな凹凸の計測方法は、 次の通 りである。 すなわち、 上記人力基板の凹曲面上の中心部領域で任意方向の 2. 0 m m〜 4. 0 m mについて測定して得た凹凸ブロファイルに関し、 左側の測 ^開始点 から、 図 1 6に示すように、 谷底とそのすぐ右隣の谷底との間の水平方向すなわち 横方 1 の距離し、 及び山頂から谷底までの落差 H (山項から両側の谷底までのうち の大きい方の落差を採る) を、 右側の測定終点まで順に測定した。 そして、 隣接す る谷底間の距離しの平均 (これを、 平均距離し a V eとする) 、 及び落差 IIの平 均 (これを、 平均落差 H. a V eとする) を計算した。
但し、 このゆるやかな凹凸の計測及び計算からは、 概ね次の条件に合う超微細凹 凸を除外した = すなわち、 ゆるやかな凹凸面上の所々に存在する微細な凹凸ゃェッ チピッ 卜の分は、 概ね無視してよいため、 同図示のように、 隣接する | 1凸の谷底間 の横方向の距離 Lが 2 () m未満で且つ落差 Hが 0. 2 μ m未満の超微小 凸、 及 び落差の大きさに関係なく横方向の距離 Lが 5 / m以下の凹凸は、いずれも除外し た。 なお、 C s Iからなる蛍光体層の発光波長は、 およそ ϋ. 4 1 μ ηιであるので、 その半波長である約 0. 2 / mよりも小さい距離又は落差の凹凸は、 この発光光の 乱反射等をほとんどもたらさず、無視することができることもこれらの除外条件の 決定に考慮した。
そして、 上述及び図面に示した各口径サイズの入力基板の凹凸ブロフアイルから 谷底間距離及び落差を計測し、 平均値を計算した結果は、 表 2のようになった。
【表 2】
サンプル 型 測定長 凹凸数 谷底間の距離 山 ffiと谷底間の落差
1- ( / HI) M ( μ in) (イン (mm) (個) 平均 m l n m a x 平均 m i n m a x チ) L . ave 11. ave
1, (9Α) 9 3.6 35 103 BO 210 ().58 0.15 1. 5
2 , (9Β) 9 2.9 19 ]53 60 9,80 2.20 0.50 .30
3, (12A) 1 2 3.0 18 167 60 320 1.38 0.25 3.30
4, (12B) 1 2 3.0 15 200 80 290 1.74 0.25 3.30
5, (16A) 1 6 2.9 12 215 70 550 1.97 0.50 4.30
なお、入力基板の口径サイズすなわち人力 S板の曲而に形成された領域の :径、 及び中心部領域の曲率半径は、 通常いずれも、 9インチ型、 1 2インチ型、 1 6ィ ンチ型の順に大きい寸法になっている。
以上のことから、入力 ¾板面のプレス成形により発生するゆるやかな囬凸の大き さは、 中心部、 中問部又は周辺部領域の間であまり顕著な相違が認められないもの の、 口径サイズすなわち入力基板の曲 tiiに形成された領城の直径、 名 :しくは中心部 領域の曲率半径の大きさにそれぞれ依存している... それは、 ブレス成形による人力 !:·板材料の塑性変形量に依存しているためであると推定される。
そこで、 各口径サイズ、 曲率^径と、 隣接する谷底問の^均距離 (L.avし') との 比を計算すると、 表 3のようになった。
【表 3】
サンプル 型 谷底間 口径 D 中心部領域の 平均距離 Z 径 平均距離 Z曲率半径 の 平 曲率半径 Rc
均距離
(イン L ave L;ive( it HI) /D (mm) l.ave ( μ m) /Rc (mm) チ:) in)
1, (9A) 9 103 250 140 0.4】 0.74
1 , (9B) 9 153 ϋ 140 0.61 1.09
3, (12Λ) 1 2 167 330 200 0.51 0.84
4, (12B) 1 200 330 200 0.61 1.00 5, ( 16A) 1 6 215 420 210 0. 51 1. 02
以上のことから、 入力基板のプレス成形で生じるゆるやかな凹凸 2 1 cは、 凹凸 プロファイルの隣接する谷底間の距離 Lの平均が 1 0 0〜 2 2 0 mであり、山頂 から谷底までの落差 Hの平均がおよそ 0 . 6〜2 . 2 / mである。 入力スク リーン を形成する入力基板面のこのようなゆるやかな凹凸 2 1 cは、入力スク リーンの付 着強度を高めるのに役立つとともに、 0U凸ブロファイルの谷部分すなわち凹面部が 凹面鏡のように作用する。
前述のように、 人力蛍光体層を構成する柱状結晶 Pの直径 dの平均は、 約 6〜1 0 /z mの範囲にある c そのため、 入力基板のプレス成形で生じるゆるやかな凹凸の 隣接する谷底間の平均距離し ave は、 蛍光体層の柱状結晶 Pの平均直径の数倍以 上を有している
そこで、 人力蛍光体層を構成する柱状結晶 Pの平均直径が例えば約〗 0 μ mであ り、入力基板面のゆるやかな凹凸のピッチすなわち谷底問距離が約 1 0 () μ mであ れぱ、 このゆるやかな凹凸の 1つの凹面部にはおよそ 1 0 0本の柱状結晶 Pが集団 として構成されていることになる。
このような構成の X線イメージ管の人力部に X線が入射すると、 X線は入力基板 を透過し、 蛍光体層で光に変換される。 そして、 蛍光体層で変換された光の一部は 入力基板の方向へ進み、 基板面又はその面 hに蒸着された光反射層面で、 図 5に矢 印 Yで示すように、 反射する。 このとき入力基板面には微細な M凸がほとんどない ため、 入力基板面での不規則な方向への乱反射は少なく、 元の柱状結晶に戻る確立 が高くなり、 X線ィメージ管の解像度が向上する。
しかも、 人力基板のゆるやかな凹凸の 1つひとつの凹面部が凹面鏡のように作川 するため、各凹面部で反射した光は共通の凹面部上に形成された同一集団の柱状結 晶内に入射して戻る。 その結果、 入力基板面のゆるやかな凹凸の谷底間距離すなわ ち凹凸ピッチに相当する空間周波数領域での変換伝達係数 (M T V ) も^上する c 以上のことから、実用になっている種々の口径サイズの X線イメージ管を考慮す ると、 入力基板の入力スク リ一ン形成面は、 下記の測定条件により凹凸プロフアイ ルから計測した場合に、隣接する K凸の谷底から谷底までの平均距離が 5 0 μ m〜 3 00 mの範囲であって且つ山頂と谷底との平均落差が 0. 3 / m〜4. 0 / m の範囲のゆるやかな回 を することが望ましい。 そして、 より好ましくは、 隣接 する谷底問の平均距離が 8 () μ m〜 2 50 μ mの範囲であり、 B.つ山頂から谷底ま での平均落差が 0. 4 π!〜 3. 0 μ mの範囲である。
また、 上記ゆるやかな凹凸の隣接する谷底間の平均距離 Lave (単位は、 / m) と、 入力基板の凹曲面に形成された領域の直径 Ο (単位は、 rnm) との比率 ( L ave / D) は、 0. 3 5〜0. 6 5の範囲が好適である (
そしてまた、 谷底間平均距離し ave (^位は、 m) と、 曲率半径 R c (単位は、 mm) との比率 ( Lave Z Rし') は、 0. 7〜 1. 1の範 [ |が好適である <;
ところで、既に述べたことから明らかなように、 入力 ¾板面のバニッシング処理 において、 例えば基板の中心部領域よりも屮問部領域、 さらに周辺部領域の順に単 位而稍当たりの微小ボールの転動接触時問を桕対的に短くすることにより、微小突 起又はエッチピッ 卜の解消程度を中心部領域、 中問部領域、 周辺部領域の順で少な く し、 例えば X線イメージ管の出力 Hi像の輝度 -様性を向上させることができる。 このことに関連し、 通常の X線イメージ管の出力《ί祝光像の中心部から周辺部に 至る輝度には、 図 1 7に示すような関係があることが確認されている D 同図の横軸 は、入力基板の中心軸に対応する出力画像の中心軸 Oからの半径方 の距離であり、 縦軸は中心 Oを 1 () ()とした場合の相対輝度 (½) である。 曲線 Λは、 周辺部領域 の乱反射率が約 20%、正反射率が約: 3 5%の従来の ¾板而を持つ X線ィメ一ジ管 の出力輝度分布を示している それに対して曲線 Hは、 ^じく周辺部領域の乱反射 率が約 30 °/0、正反射率が約 9 5 %の本発明 ¾施例に近レ、基板面を持つ X線ィメ一 ジ管の出力輝度分布を示している。 なお、 曲線 Λ及び Bの乱反射率、 正反射率は、 いずれも入力基板の中心軸部を 1 00とした場合の相対値である:: また、 出力スク リーンの発光効率は全領域で均一であると仮定している t:
ここで、 乱反射率とは、 S板面に翁直に入射した光が、 反射点に垂 ( な法線から 2. 5° 以上離れた方向に反射する比率で、 I'l色粉体を 1 () ()%とした時の相対値 で定義される。 また、 正反射率とは、 反射点に :直な線から 2. 5 未満に反射す る比率で、 鏡面を 1 00%とした時の相対値で定義される () したがって、 入力基板 面が微細凹凸面であれば、 乩反射率が く、 その而上に形成された入力スク リーン から得られる出力スク リーンの輝度は高くなる。 一方、 入力基板面が微細 00凸がな くて鏡面に近ければ、 正反射率が高く、 柱状結晶によるライ トガイ ド部分を通って 光電面に到達する光量の発光総量に対する割合が高くなり、 解像度が向上する。 図 1 7の曲線 Aと曲線 Bとを比較した場合、 乱反射率及び正反射率が低レ、従来の 曲線 Aの方が周辺部の輝度が低下し、 輝度の- -様性が悪くなつている。 それに対し て、 基板面全体の正反射率を高く し、 且つ周辺部の乱反射率の低下を抑えた本発明 の曲線 Bによれば、輝度の一様性及び解像度のいずれも改善することができること を;^してレ、る 3
そこで、 ヒ記したパニツシング装置によって、 入力基板面の中心部から周辺部の 全領域にわたってバニッシング処理を十分な時間かけて行えば、入力基板面の正反 射率が全体的に高くなり、 解像度が改善される。 また、 単位面積当たりの基板面と 微小ボールとの接触時間を、入力基板の中心部領域域よりも周辺部領域で相対的に 短くすろ。或いは中心部領域よりも周辺部領域のパニツシング量が少なくなるよう に、 回転中の入力基板傾斜角度を調節する。 それらによって、 周辺部領域の微小凹 凸 uをある程度残して乱反射率の低下を少なく抑えてこの周辺部の輝度の低下を抑 えることができる。 この結果、 周辺部領域では解像度が中心部よりも改善度合いが 少ないとは言え輝度の改善効果を大きくでき、出力画面の良好な解像度及び輝度の 一様性を改善することができる。
図】 8に示す実施例は、 ステンレス鋼製の微小ボール 3 2に、 少量のアルミニゥ ム又はマグネシウムの微粒子 3 2 aを混合し、パニツシング処理をする方法である この方法によれば、パニツシング処理で微粒子 3 2 aが人力基板 2 1の表面に付着 し、 基板面は比較的短時間に平滑化される。 これは、 付着した微粒子の一部が次第 に潰され延ばされ、入力基板面のは微細な突起が潰れるとともにェツチピットを含 めた凹み部分が微粒子で埋まることによると考えられる。 したがって、 適当な時問 このバニッシング処理をすることにより、 基板面の正反射率を高め、 乱反射率を低 めることができる (
そこで、 入力基板の主として中心部領域のパニツシング処理にこの方法を適用す れば、中心部領域の解像度を高める一方でこの中心部領域の輝度を少し抑えて画面 全体の輝度一様性を向上させることができる, なおこの方法によれば、 パニツ
ή グ処理時間を前述の実施例の場合よりも短くできる:: なおまた、 処理後に基板面に 容易に取れる状態の微粒子が残る場合は、 クリ一ユングにより除去する。
図 1 9に示す実施例は、アルミニウム又はマグネシウムの薄い被膜 3 2 bを表面 に蒸着したステンレス鋼製の微小ボール 3 を使用してパニツシング処理をする 方法である。 この方法によれば、微小ボールの被膜 3 2 bが基板表面と擦れ合い、 次第に上記図 1 8の実施例の場合と同様に平滑化され、 同様の作用、 効果が得られ る。 この場合、 被膜の厚さは 5 0 ()オングストローム以上あれば十分な効果が得ら れる。
なお、 例えばステンレス鋼のような金属製の微小ボールは、 その表面 Πり の少な いものが得やすいが、セラミックス製の微小ボールはやや表面凹凸の大きいものが 一般的である。 このようなセラミックス製の微小ボ- -ルを使用してバニッシング処 理をすると、初期にこのボールの表面に基板面が少し削られてアルミニゥム粒子が 付着し、その後は次第にそれが基板面の微小な叩みに付着して平滑化に役立つよう になる。 したがって、 任意の凹凸面にするために必要によりセラミックス製の微小 ボールを使用することができる。 但し、 この微小ボールの表面が 5 m以上の凹凸 を有すると、 人力基板 の微小凹凸の低減、 解消が困難になるため、 微小ポールの 表面凹凸は 5 /i m以下、 とくに 3 / m以下が望ましい。
なおまた、 パニツシング処理において、 最初、 ステンレス鋼製の微小ボールで入 力基板面の全体を処理し、 その後、 セラミックス製の微小ボールに変えて例えば中 心部領域を主に処理する方法でもよい。 また、 表面凹凸の程度に差があろ複数種の 微小ボールを、種々組み合わせたり或いは使い分けてパニツシング処理をしてもよ レ、。
さらにまた、 このようなバニッシング処理を長時間継続すると、 入力基板而の微 細凹凸が一旦解消される力 S、続いて次 に基板面に微小ボールの超微小な擦り傷が 無数に発生するようになる。 このような擦り傷が生じた 板而は、 っぽく且つビ 力ピカな表面状態を呈する:: このような而は、 乱反射が低く止反射率が^く、 した がってこのような入力基板によれば、 輝度が低く解像度が卨ぃ出力両面となる, こ のことを応用して、 中心部領域のパニツシング処理に I -分 い時問をかけ、 この中 心部領域よりも中問部領域、周辺部領域にかけてバニッシング時問を徐々に短くす
0 れば、 中心部から周辺部にかけて乱反射率が徐々に増カ卩し、 良好な輝度の一様性が 得られる:
以上述べたように、 本発明によれば、 入力蛍光体層の基板への十分な付着強度を 維持したまま、 解像度の低下を防止し、 さらに必要により輝度の一様性を改善し、 且つ基板の表 状態に起因する画像ノイズが低减された X線イメージ管を実現で きる。

Claims

請求の範囲
1 . 略球面状態にプレス成形されたアルミニウム又はアルミニウム合金からなる 入力基板と、この入力基板の凹曲面上に直接又は他の被膜を介して付着形成された 柱状結晶の集合からなる X線励起蛍光体層及び光電面を有する入力スク リーンと を具備する X線イメージ管において、
上記人力基板の凹曲面は方向性がほとんどないゆるやかな凹凸を有し、該ゆるや かな凹凸は下記により凹凸プロフアイルの測定及び 31-測をした場合に、隣接する谷 底間の平均距離が 5 0 m〜 3 0 0 μ mの範囲であり、且つ山顶から谷底までの平 均落差が 0 . 3 / n!〜 4 . 0 yu mの範囲であることを特徴とする X線イメージ管。
上記測定及び計測方法は、 h記人力基板の凹曲 上の中心部頟城で任意の方向 に直線で 2 . O m rr!〜 4 . 0 m mについて測定した凹凸プロファイルから、 隣接 する谷底間の横方向の平均距離、及び山頂から谷底までの平均落¾を計測する。 但し、隣接する谷底問の横方向の距離が 2 0 μ m未満で且つ山:! Ϊから谷底までの 落差が 0 . 2 / m未満の微小な凹凸、 及び落差の寸法に関係なく横方向の距離が 5 m以下の微小な凹凸は、 いずれも上記の山頂又は谷底に含めない。
2 . ヒ記 X線励起蛍光体層の柱状結晶は、 平均直径が 6 μ rr!〜 1 0 μ mの範囲で ある請求項 1記載の X線ィメージ管。
3 . 上記隣接する谷底問の平均距離は、 前記入力基板の中心部領域よりも周辺部 領域の方が小さくなつていることを特徴とする請求項 ]記載の X線ィメージ管。
4 . ヒ記入力基板面のゆるやかな凹凸面に、 隣接する'谷底問の距離が 4 0 / m以 下の微細凹凸が存在し、該微細凹凸は前記基板の中心部領域より 周辺部領域に多 く存在している請求項 1記載の X線ィメージ管,,
5 . 上記入力基板はアルミニウム合金からなるとともに :空容器の X線入力窓を 兼ねており、該入力基板の凹曲面上に上記入力フ、クリ一ンが形成されている請求項
1記載の X線イメージ管。
6 . 略球面状態にブレス成形されたアルミニゥム又はアルミニウム合金からなる 入力基板と、 この入力 S板の凹曲面上に ΐίϊ接又は他の被膜を介して付若形成された 柱状結晶からなる X線励起蛍光体) 及び光電面を有する人力スク リーンとを具備 する X線イメージ管において、 上記入力基板の凹曲面は、 方向性がほとんどないゆ るやかな凹凸を有し、該ゆるやかな凹凸は下記により四凸プロフアイルの測定及び 計測をした場合に、 上記ゆるやかな凹凸の隣接する谷底問の平均距離 Lave (単位 は、 /i m) と、 上記入力基板の凹曲面状に成形された領域の直径 D (単位は、 mm) との比率 ( Lave / D) は、 0. 3 5〜0. 6 5の範囲であることを特徴とする X線イメージ管。
上記測定及び計測方法は、上記入力基板の凹曲面上の中心部領域で任意の方向 に直線で 2. 0 mm〜4. () mmについて測定した凹凸プロファイルから、 隣接 する谷底問の横方向の平均距離、及び山頂から谷底までの平均落差を計測する 但し、隣接する谷底問の横方向の距離が 2 0 μ m未満で且つ山頂から谷底までの 落差が 0. 2 μ m未満の微小な凹凸、 及び落差の寸法に関係なく横方向の距離が 5 μ m以下の微小な凹凸は、 いずれも上記の山頂又は谷底に含めない。
7. 上記瞵接する谷底間の平均距離し ave (単位は、 i m) と、 上記人力基板の 中心部領域の凹曲面の曲率半径 R c (単位は、 mm) との比率
( L. ave / R c ) は、 0. 7〜 1 . 1の範囲である請求項 6記載の X線ィメ一 ジ管
8. 略球面状態にプレス成形されたアルミニウム又はアルミニウム合金からなる 人力基板と、 この入力基板の凹曲面上に直接又は他の被膜を介して付着形成された 柱状結晶の集合からなる X線励起蛍光体層及び光電面を有する入力スク リーンと を具備する X線イメージ管において、上記入力基板の上記入力スクリーンが形成さ れる凹曲面は、その中心部領域よりも周辺部領域の乱反射率が高くなつていること を特徴とする X線ィメ一ジ管。
9. アルミニウム又はアルミニウム合金からなる入力基板材料を略球 1¾状にプレ ス成形するプレス成形工程と、上記プレス成形後の入力基板の囬曲面の微細突起を 潰すバニッシング工程と、 その後、 上記入力基板の PQ曲面上に直接又は他の被膜を 介して柱状結晶の集合からなる X線励起蛍光体層及び光電面を付着形成する入力 スク リ一ン形成工程とを備えることを特徴とする X線ィメ --ジ1'の製造方法,,
1 0. 上記バニッシング工程は、 上記人力基板のブレス成形で生じる隣接谷底問 距離が 5 0 μ m以上のゆるやかな凹凸を残し、それよりも微細な突起を溃す請求 i 9記載の X線イメージ管の製造方法。
1 1 · 上記パニツシング工程は、 上記プレス成形後の入力基板の凹曲面上に無数 の微小ボールを載せて該入力基板面上を連続的に転がすことにより該入力基板面 の微細突起を潰す処理を含む請求項 9記載の X線ィメージ管の製造方法。
1 2 . 上記パニツシング工程で使用する微小ボールは、 上記入力基板のピツカ一 ス硬度の 2倍以上のピツカ一ス硬度を有する金属又はセラミ ックスからなる請求 項 1 1記載の X線ィメージ管の製造方法。
1 3 . 上記微小ボールの平均直径は、 (). 3 m m〜3 . O m mの範囲である請求 項 1 1記載の X線イメージ管の製造方法。
1 4 . 上記バニッシング工程は、 上記入力基板の中心部領域よりも周辺部領域の 単位面積当たりのバニッシング処理時間を短くする請求項 9記載の X線ィメ一ジ 管の製造方法。
1 5 . 上記パニツシング工程は、 上記微小ボールにアルミニウム又はマグネシゥ ムの微粒子を混入又は被膜として付着して処理する請求項 1 1記載の X線ィメ一 ジ管の製造方法。
2 4
訂正された用紙 (規則 91 )
PCT/JP1997/003298 1996-09-18 1997-09-18 Tube a image radiologique et son procede de fabrication WO1998012731A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51451398A JP3970937B2 (ja) 1997-02-05 1997-09-18 X線イメージ管及びその製造方法
DE69726252T DE69726252T2 (de) 1996-09-18 1997-09-18 Röntgenbildröhre und herstellungsverfahren für dieselbe
US09/068,453 US6169360B1 (en) 1996-09-18 1997-09-18 X-ray image intensifier and method for manufacturing thereof
EP97940412A EP0869533B1 (en) 1996-09-18 1997-09-18 X-ray image tube and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/246424 1996-09-18
JP24642496A JP2000048744A (ja) 1996-09-18 1996-09-18 X線イメージ管およびその製造方法
JP2257197 1997-02-05
JP9/22571 1997-02-05

Publications (1)

Publication Number Publication Date
WO1998012731A1 true WO1998012731A1 (fr) 1998-03-26

Family

ID=26359813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003298 WO1998012731A1 (fr) 1996-09-18 1997-09-18 Tube a image radiologique et son procede de fabrication

Country Status (5)

Country Link
US (1) US6169360B1 (ja)
EP (1) EP0869533B1 (ja)
CN (1) CN1104026C (ja)
DE (1) DE69726252T2 (ja)
WO (1) WO1998012731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182180A1 (ja) * 2014-05-29 2015-12-03 株式会社 東芝 イメージ管

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108407A (ja) * 2002-09-13 2004-04-08 Koyo Seiko Co Ltd 十字軸継手
JP2004233067A (ja) * 2003-01-28 2004-08-19 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
JP2005164534A (ja) * 2003-12-05 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及び放射線像変換パネルの製造方法
US20070075269A1 (en) * 2005-09-30 2007-04-05 Paul Leblans Radiation image storage panel suitable for use in mammographic applications provided with particular top-coat
US20070176160A1 (en) * 2006-01-27 2007-08-02 Hamamatsu Photonics K.K. Electron tube
JP2009258054A (ja) * 2008-04-21 2009-11-05 Hamamatsu Photonics Kk 放射線像変換パネル
JP2011137665A (ja) * 2009-12-26 2011-07-14 Canon Inc シンチレータパネル及び放射線撮像装置とその製造方法、ならびに放射線撮像システム
CN104235536B (zh) * 2014-09-24 2017-01-18 广东华液动力科技有限公司 接管、硬管接头结构以及用于接管加工的装置和方法
JP6523803B2 (ja) * 2015-06-10 2019-06-05 キヤノン電子管デバイス株式会社 アレイ基板、および放射線検出器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104857A (ja) * 1974-01-21 1975-08-19
JPS5782940A (en) * 1980-11-12 1982-05-24 Toshiba Corp Input screen for radiant ray image intensifying tube
JPS5871536A (ja) * 1981-10-22 1983-04-28 Toshiba Corp X線像増倍管の入力面及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2307026C2 (de) * 1973-02-13 1983-01-20 Siemens AG, 1000 Berlin und 8000 München Röntgenbildverstärker-Eingangsschirm
FR2384349A1 (fr) * 1977-03-14 1978-10-13 Tokyo Shibaura Electric Co Intensificateur d'image
JPS55150535A (en) * 1979-05-11 1980-11-22 Shimadzu Corp Input fluorescent screen for x-ray image tube
JPS58131644A (ja) * 1981-12-26 1983-08-05 Toshiba Corp 放射線像増倍管及びその製造方法
JP2514952B2 (ja) * 1987-03-13 1996-07-10 株式会社東芝 X線イメ−ジ管
JP2758206B2 (ja) * 1989-05-23 1998-05-28 株式会社東芝 X線イメージ管
CN1059514C (zh) * 1993-03-17 2000-12-13 株式会社东芝 X射线图像增强器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104857A (ja) * 1974-01-21 1975-08-19
JPS5782940A (en) * 1980-11-12 1982-05-24 Toshiba Corp Input screen for radiant ray image intensifying tube
JPS5871536A (ja) * 1981-10-22 1983-04-28 Toshiba Corp X線像増倍管の入力面及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0869533A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182180A1 (ja) * 2014-05-29 2015-12-03 株式会社 東芝 イメージ管

Also Published As

Publication number Publication date
US6169360B1 (en) 2001-01-02
DE69726252D1 (de) 2003-12-24
EP0869533B1 (en) 2003-11-19
CN1104026C (zh) 2003-03-26
EP0869533A1 (en) 1998-10-07
CN1205113A (zh) 1999-01-13
DE69726252T2 (de) 2004-08-26
EP0869533A4 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
WO1998012731A1 (fr) Tube a image radiologique et son procede de fabrication
JP2661919B2 (ja) 表示装置及びその製造方法
JP4959841B2 (ja) 反射防止膜及び表示装置
EP0359345B1 (en) Projection TV tube system
JP3002571B2 (ja) 放射線検出器
WO2011125486A1 (ja) 型および型の製造方法ならびに反射防止膜の製造方法
JP2632884B2 (ja) 投影テレビジョン装置・投影テレビジョン表示管及びその製造方法
JPH0679468B2 (ja) 透明なビューイングスクリーンの反射率削減方法と反射率を削減したビューイングスクリーン
TWI400487B (zh) 導電性擴散反射膜及其製法
CN1113388C (zh) 阴极射线管
US3783297A (en) X-ray image intensifier input phosphor screen and method of manufacture thereof
US4935617A (en) X-ray image intensifier and method of manufacturing the same
EP0403802B1 (en) X-ray image intensifier and method of manufacturing input screen
JP3756681B2 (ja) 放射線イメージ管およびその製造方法
JP3970937B2 (ja) X線イメージ管及びその製造方法
JP5626667B2 (ja) 赤外線透過フィルム、及び、赤外線透過フィルムの製造方法
US3852133A (en) Method of manufacturing x-ray image intensifier input phosphor screen
CN1701273A (zh) 具有焦点的球面反射屏幕及其制造方法
US6045427A (en) X-ray image intensifier and manufacturing method of the same
JPH06119872A (ja) 光電子または2次電子放射用陰極
JP2000048744A (ja) X線イメージ管およびその製造方法
EP0644572B1 (en) X-ray image intensifier
EP0361575A1 (en) Method of vapour depositing an interference filter layer on the inside of a display window, a display window, a projection cathode ray tube and a projection television apparatus
JP2002506272A (ja) アルミニウムの入射窓を備えたx線イメージ増倍管
JP2015092239A (ja) 反射防止物品、及び画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191267.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1997940412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09068453

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997940412

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997940412

Country of ref document: EP