WO1998009042A1 - Structures fibrorenforcees de forme tubulaire et/ou en baguette - Google Patents

Structures fibrorenforcees de forme tubulaire et/ou en baguette Download PDF

Info

Publication number
WO1998009042A1
WO1998009042A1 PCT/CH1997/000267 CH9700267W WO9809042A1 WO 1998009042 A1 WO1998009042 A1 WO 1998009042A1 CH 9700267 W CH9700267 W CH 9700267W WO 9809042 A1 WO9809042 A1 WO 9809042A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcement
tubular
rod
shaped construction
lattice
Prior art date
Application number
PCT/CH1997/000267
Other languages
German (de)
English (en)
Inventor
Giovanni Pietro Terrasi
Hans Peter Felder
Original Assignee
Sacac Schleuderbetonwerk Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sacac Schleuderbetonwerk Ag filed Critical Sacac Schleuderbetonwerk Ag
Priority to AU33326/97A priority Critical patent/AU3332697A/en
Publication of WO1998009042A1 publication Critical patent/WO1998009042A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/12Structures made of specified materials of concrete or other stone-like material, with or without internal or external reinforcements, e.g. with metal coverings, with permanent form elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/08Rigid pipes of concrete, cement, or asbestos cement, with or without reinforcement

Definitions

  • the present invention relates to a tubular and / or rod-shaped construction, in particular for supports, masts, conduits and the like, a method for producing a tubular and / or rod-shaped construction and a method for producing a lattice or fabric-like reinforcement for a tubular and / or rod-shaped construction.
  • reinforced concrete structures e.g. Concrete masts, supports etc.
  • which have proven their worth in the past with regard to corrosion protection usually exceed their mass due to the required minimum concrete coverage of the steel reinforcement that of mechanically equivalent pure steel structures.
  • the object is achieved by means of a tubular construction or a full profile according to the wording, in particular according to claim 1.
  • Tubular or rod-shaped components made of carbon fiber and / or glass fiber reinforced high-performance concrete are corrosion-resistant and significantly lighter than previous reinforced concrete structures. This modern material has the great advantage over steel that it does not have to be periodically subjected to complex, environmentally harmful corrosion protection treatment.
  • tubular or rod-shaped components are, for example, in infrastructure buildings, such as masts for lighting, overhead lines, high-voltage lines, radio masts, etc.
  • the advantage of the tubular components proposed according to the invention lies in their lower weight and thus in the simpler assembly and in the absence of the need for maintenance .
  • Another application is in DC railway systems, for example for the replacement of steel poles as a result of leakage current damage.
  • railway systems that have a direct current network major damage to the steel poles occurs as a result of leakage currents.
  • Another area of application is in high-voltage lines, since the production of weakly conductive pylons has the advantage that simpler suspension systems are possible for fastening the conductor cables.
  • Another area of application is in building construction for the manufacture of prefabricated supports.
  • the advantage lies in better fire safety and the slenderness of the supports.
  • tubular structures proposed according to the invention for pipelines or for pipes, for example consisting of a material other than concrete.
  • a synthetic resin such as epoxy resin, polyurethane resin, polyester resin and the like, as the matrix instead of cement, which resin can be filled with any mineral or non-mineral fillers.
  • Pipes made of synthetic resin with fibrous reinforcement can also be produced using centrifugal technology.
  • the fiber-reinforced reinforcement or reinforcement can be, for example, reinforcing bars containing pultruded glass and / or carbon fibers, which are preferably arranged longitudinally in the tube or the tubular construction. These rods can be slack as well as pre-stressed in the tubular or rod-shaped construction.
  • the bars can at least along sections, preferential as at their ends or in the anchoring area, be surface-coated, preferably with aluminum oxide, quartz sand or other stable mineral or ceramic granules, which are applied, for example, with an epoxy resin-like material on the surface of the reinforcing bars.
  • the rods mentioned are preferably arranged largely uniformly along the pipe cross section and can be encased on the outside by means of additional reinforcement, such as a lattice-shaped or ring-shaped reinforcement, for deriving the shear forces and improving the crack distribution.
  • additional reinforcement such as a lattice-shaped or ring-shaped reinforcement
  • rods can be anchored end-to-end in conical anchor sleeves, pre-stressed in the tubular or rod-shaped construction, whether at times with the prestressed bed method or always with the tendon method.
  • the reinforcement or reinforcement can also be braided, woven or wound lattice baskets made of fiber strands, preferably so-called rovings.
  • a fiber spiral or endless spiral, which extends along the entire length of the tubular construction, is also suitable as reinforcement.
  • a method for producing a tubular or rod-shaped structure comprising the fibrous reinforcement or reinforcement, according to the wording, in particular according to claim 17.
  • Preferred embodiment variants of the method according to the invention are characterized in the dependent claims.
  • FIG. 1 shows a pipe cross section with a steel reinforcement according to the prior art.
  • Figure 2 shows a pipe cross section with a reinforcement consisting of fiber-reinforced plastic.
  • Fig. 4 in perspective, a braided lattice-like fiber-reinforced reinforcement
  • FIG. 5 shows a loosely braided fiber stocking for the Position of a reinforcement according to FIG. 4;
  • 6a shows schematically the production of a fiber-reinforced lattice tube to 6c from a braided stocking according to FIG. 4 for a tube reinforcement;
  • Fig. 7a different wound mesh tubes made of fiber reinforced to 7f reinforced plastic in a longitudinal view
  • Fig. 8 in longitudinal section, a conical anchoring sleeve for the terminal anchoring of a longitudinal reinforcement bar and
  • Fig. 9 a reinforcement bar coated with granules.
  • Fig. 1 shows a pipe cross section of a pipe 1 l with a steel reinforcement comprising longitudinally extending in the pipe steel rods 9 'and the rods enveloping shear reinforcement 11'.
  • the steel reinforcement is covered both inside and outside by a concrete cover 3 'or 5' as corrosion protection.
  • FIG. 2 shows a pipe cross section with a fiber-reinforced reinforcement, comprising, on the one hand, longitudinal bars 9 and a shear reinforcement 11 enveloping the bars.
  • the reinforcement is covered with high-performance concrete, it also being possible to dispense entirely with a concrete cover. With a minimal concrete cover, the reinforcement made of carbon fiber reinforced plastic is protected from dynamic influences.
  • 3a to 3d are common reinforcement patterns for reinforced concrete today. They are also suitable for carbon fiber reinforced plastic.
  • 3a shows the reinforcement according to FIG. 2, having the longitudinal bars 9 and a transverse Reinforcement 11.
  • This transverse reinforcement 11 can, for example, as shown in Fig. 3b, consist of simple cross brackets 11b, by means of which the longitudinal bars 9 are wrapped to connect the outside.
  • the transverse reinforcement may consist of a double-wound helix 11c, as shown in FIG. 3c.
  • FIG. 3d shows a coiled spiral or spiral lld running on one side, again encasing the longitudinal bars 9 on the outside.
  • the relatively expensive carbon fiber material must be used as sparingly as possible, i.e. the corresponding constructions must be optimally designed.
  • the diagonal reinforcement is both a longitudinal reinforcement and a transverse reinforcement, i.e. takes on bending tensile stresses and shear from lateral force and from torsion. For a pipe cross section with pure torsion, this is the most efficient reinforcement with an axis angle of ⁇ 45 °. With axial pressure, the concrete compressive strength increases with a striking increase in ductility as a result of the confining action.
  • Reinforcement cages according to Fig. 3c and Fig. 3d consist of longitudinal bars and cross bars.
  • the corrosion-resistant reinforcement made of carbon and / or glass fibers allows minimal concrete cover (both outside as well as inside) and thus enables the production of thin-walled pipe cross sections.
  • the minimal concrete cover is intended to protect the fiber-reinforced reinforcement from mechanical influences.
  • the minimum concrete cover must be larger than the largest aggregate grain, due to the compaction, for example, when spinning when manufacturing the tubular structure. Close-meshed reinforcement is preferred for thin-walled pipe cross sections for the above reasons.
  • the cross sections shown in FIGS. 1 to 3 and subsequent figures can of course also be full profiles or rod profiles, since the measures proposed according to the invention are not limited to pipes.
  • FIGS. 6a to 6c show a fiber-reinforced lattice tube 21 in a longitudinal perspective, consisting of diagonally braided so-called rovings 23. Of course, it can also be braided from several rovings, so-called strands.
  • the manufacture of fiber-reinforced lattice tubes of this type is referred to below with reference to FIGS. 6a to 6c.
  • the starting point for the production of such laminated lattice tubes from braided stockings is a stocking-like or tubular braided fabric, as shown in FIG. 5.
  • the individual strands consist of so-called rovings, for example comprising carbon fibers and / or glass fibers. In practice, it has been shown that it can make sense to tie several carbon fiber rovings with glass fiber threads in order to braid.
  • the stocking or hose shown in FIG. 5 is wound up on rolls after braiding.
  • a roll 27 comprising the braided endless hose or stocking 25, unrolls it with simultaneous slipping over a longitudinally shaped core shape 29 for shaping.
  • the tube is pushed over a rounded tip 31 of the cylindrical or conical core shape 29.
  • the core shape is usually made of wood, but it can also be made of metal or plastic.
  • the core form 29 is previously protected with a hose with a plastic film or is coated with a separating material that is usually used in plastics technology, so that the trellis tube can then be removed from the mold properly after its manufacture.
  • a "bottle-shaped" core shape for example, is also possible.
  • a great advantage in the case of complicated shapes is that the stocking adapts to the respective shape.
  • the hose 25 After being slipped on, the hose 25 opens into a loose, flexible lattice shape 33 and, due to the force of gravity, only falls downwards when it is pushed slightly upwards. Pulling the hose over the core shape does not work vertically or horizontally; the reason is probably that a constriction occurs immediately when pulling due to friction.
  • the mesh basket is now made by laminating the mesh 33 using a resin such as epoxy resin, polyurethane resin, polyester resin and the like. After curing of the resin, a rigid lattice tube is thus produced, having a lattice structure along the entire length, as shown, for example, in FIG. 6b and designated by the reference number 37. After curing, the core mold 29 is removed, and the fiber reinforcement for the production of an inventive The defined tubular construction is thus completed. The only thing left is to shorten the trellis tube to the desired length.
  • a resin such as epoxy resin, polyurethane resin, polyester resin and the like.
  • the tubular mesh When manufacturing the tubular mesh, it is important to include the final geometry of the pipe, the support or the mast to be created, since the geometry of the mesh basket must of course be based on this. For this reason it makes sense, for example, to design the core shape to be slightly conical, since, as is well known, masts are also designed to converge conically upwards. In contrast, in the manufacture of conduit pipes, the conical shape of the core shape must be avoided.
  • FIG. 7a to 7f show different design variants of wound, fiber-reinforced lattice tubes, which are produced, for example, by means of winding machines.
  • Resin-impregnated carbon and / or glass fibers are generally wound on a winding core, which in turn is preferably coated with a release agent.
  • the advantage of wrapping lies in the mechanical production and thus in the production of reproducibly exact shapes. Long fibers can be used.
  • the fiber use is also more optimal, since a targeted angle adjustment is possible depending on the static load.
  • the size or geometry of the grid opening can be influenced in a targeted manner. Ultimately, it is possible to make cutouts, cross-sectional considerations etc. directly in the winding process.
  • a coiled lattice tube is shown, having diagonal lattice strands with a pitch angle of 45 °.
  • the pitch angle is relatively flat, and in FIG. 7c the grating tube has grating strands that are steeply angled.
  • the lattice tube has a conical shape, while the lattice tube according to FIG. 7e has a constriction 43. 7f, finally, a recess 45 is provided.
  • the trellis tube is set, for example, by the resin which has penetrated into the individual strands curing at normal temperature. If it is a hot-curing binder, the lattice tube wound on the winding form must be re-annealed to trigger curing of the laminating resin. After the lamination resin or the binder resin has hardened, the lattice tube can in turn be removed from the winding core and shortened to the desired length.
  • thermoplastic fiber-reinforced strips consisting of a thermoplastic material, for example with a volume fraction of 30% to 40%, reinforced with, for example, 60 to 70% by volume of fibers, can be welded to one another by laying them together, pressing them on and heating them up selectively.
  • this spot welding technique can be used fiber-reinforced mesh baskets can also be produced.
  • Another possibility is to encapsulate flaccid or prestressed longitudinal bars with a helix or by means of a spiral, the helix being able to be produced with fiber-reinforced thermoplastic tapes, for example reinforced with carbon fibers, which are glued at points to the longitudinal reinforcement.
  • Mineral and ceramic granules which are glued to the carbon fiber wires by means of an epoxy resin, for example, have proven to be a suitable surface coating.
  • the end anchoring for the prestressing of the carbon fiber wires requires a special anchoring system, as shown for example in FIG. 8. Since the on Shear forces sensitive carbon fiber rods can not be held by clamping, the anchoring force is achieved with a wedge effect in a cylindrical sleeve 53.
  • Such anchoring sleeves are known from the prior art, as described, for example, in international patent application WO95 / 29308. A detailed description of such anchoring sleeves is omitted here and only reference is made to the international patent application mentioned above.
  • the tubular and / or rod-shaped construction defined according to the invention is now preferably produced using the so-called centrifugal process, a process which is also used for masts etc. with steel reinforcement and has proven itself to be very effective.
  • centrifugal process a process which is also used for masts etc. with steel reinforcement and has proven itself to be very effective.
  • the lower half of the formwork is made available, cleaned and treated with formwork oil or a separating material, for example.
  • the previously described and prepared reinforcement cage or reinforcement is then placed in this lower half of the formwork.
  • the liquid to soft plastic concrete is poured through the reinforcement into the provided lower half of the formwork.
  • another binder / filler mixture can be poured into this formwork half, such as a filled synthetic resin compound.
  • the upper half of the formwork is then attached, followed by screwing, wedging, etc. with the lower half of the formwork.
  • the pipe is manufactured with a centrifugal force of approx. 30g to 50g (30 to 50 times gravitational acceleration) in the area of the largest radius of the product. After curing, the tube produced in this way using a centrifugal process is removed from the formwork.
  • FIGS. 2 to 9 are of course only examples which serve to explain the present invention in more detail.
  • the invention has been largely described with reference to the production of reinforced concrete pipes, it goes without saying lent it possible to reinforce any material used for the manufacture of pipes or rods by means of fiber-reinforced reinforcement.
  • the present invention is not limited to round cross sections, but of course tubes or rods with angular or oval cross sections can also be reinforced according to the invention.
  • the material used for pipe or rod production can also be mineral binders, synthetic resins or partially crosslinking thermoplastic materials which are filled to a low or relatively high degree, again, for example, by means of mineral fillers.
  • the reinforcement is preferably one made of fibers. It is also possible, for example, to use metallic fibers for the reinforcement and / or to wipe with the materials carbon and glass mentioned.
  • thermosetting or partially cross-linking thermoplastic binders are used for the production of the braided or wound fabric-like baskets or tubular hoses
  • suitable choice of the preferably laminated binder also depends, of course, on the choice of the fiber material for the manufacture of the reinforcement mesh or tubular or tubular reinforcement mesh is used.
  • reinforcement or reinforcement made of fibers is used for the reinforcement of tubular or rod-shaped structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

La structure ou le profil plein en tube ou en baguette, selon l'invention, présente une armature et un renforcement (21) par fibres. Pour les constructions en béton, on utilisera de préférence une trame maillée (21) tressée, tissée ou rubanée, constituée de fibres de carbone, de verre, d'aramide, de polyéthylène étiré, de polypropylène, de bore, de polyester ou d'autres fibres plastiques.
PCT/CH1997/000267 1996-08-28 1997-07-15 Structures fibrorenforcees de forme tubulaire et/ou en baguette WO1998009042A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33326/97A AU3332697A (en) 1996-08-28 1997-07-15 Tubular and stick-shaped fiber reinforced structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2112/96 1996-08-28
CH211296A CH691608A5 (de) 1996-08-28 1996-08-28 Rohr- und/oder stabförmige faserverstärkte Konstruktionen.

Publications (1)

Publication Number Publication Date
WO1998009042A1 true WO1998009042A1 (fr) 1998-03-05

Family

ID=4226158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1997/000267 WO1998009042A1 (fr) 1996-08-28 1997-07-15 Structures fibrorenforcees de forme tubulaire et/ou en baguette

Country Status (3)

Country Link
AU (1) AU3332697A (fr)
CH (1) CH691608A5 (fr)
WO (1) WO1998009042A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500048A1 (de) * 2003-07-23 2005-10-15 Sacac Schleuderbetonwerk Ag Klemm- und spannhalterung für den temporären einsatz an cfk-verstärkungsstäben mit kreisrundem querschnitt sowie zugehörige cfk-verstärkungsstäbe
FR2869971A1 (fr) * 2004-05-05 2005-11-11 Freyssinet Internat Stup Soc P Procede de renforcement d'un tuyau cylindrique enterre
DE102005043386A1 (de) * 2005-09-10 2007-03-15 Beltec Industrietechnik Gmbh Bewehrungskörper aus faserverstärktem Kunststoff
DE202005019077U1 (de) * 2005-12-06 2007-04-19 nolasoft Ingenieurgemeinschaft Ozbolt Mayer GbR (vertretungsberechtigter Gesellschafter: Dr.-Ing. Utz Mayer, 70178 Stuttgart) Bewehrungselement für Tragwerke aus Stahlbeton, Spannbeton od.dgl.
EP1911912A2 (fr) * 2006-10-11 2008-04-16 Pfleiderer Europoles GmbH & Co. KG Dispositif de fixation pour un mât en matériau composite plastique fibreux
DE102007037951A1 (de) * 2007-08-11 2009-02-19 Nguyen, Viet Tue, Prof. Dr.-Ing. habil. Betonverbundstütze
FR2921394A1 (fr) * 2007-09-20 2009-03-27 Spiraltex Ind Sarl Composant de construction renforce
WO2012159046A3 (fr) * 2011-05-19 2013-08-29 C6 Industries Structures de support composites à matrice composite ouverte/espacée et procédés de fabrication et d'utilisation de ces dernières
DE102012017164A1 (de) * 2012-08-30 2014-03-06 Db Netz Ag Mastkonstruktion für gleisgebundene Oberleitungsanlagen des Schienenverkehrs
CN103669973A (zh) * 2013-12-03 2014-03-26 国网河南省电力公司商丘供电公司 高弯矩碳纤维混凝土线杆及制作方法
US20140157715A1 (en) * 2011-07-17 2014-06-12 Philipp Wagner Method and Sliding Form for Producing a Structure and Corresponding Structure
CN106639493A (zh) * 2016-12-09 2017-05-10 佛山科学技术学院 一种海上灯塔用不锈钢钢筋混凝土结构
US9757599B2 (en) 2014-09-10 2017-09-12 Dymat Construction Products, Inc. Systems and methods for fireproofing cables and other structural members
CN108798190A (zh) * 2018-08-09 2018-11-13 江西荣仁电力器材有限公司 电线杆、模具
DE102018102317A1 (de) 2018-02-01 2019-08-01 Reiner Lippacher Endverankerung von Bewehrungsfasern
CN110670938A (zh) * 2019-10-22 2020-01-10 国家电网有限公司 一种架空输电线路用螺旋混凝土预制管柱
DE102018117797A1 (de) * 2018-07-24 2020-01-30 Naturspeicher Gmbh Hochdruckrohr, Verfahren zum endseitigen Verschweißen von Hochdruckrohren und Rohranordnung von Hochdruckrohren
EP3705657A1 (fr) 2019-03-05 2020-09-09 CarboCon GmbH Structure de renfort textile pour un composant, procédé de fabrication pour une structure de renfort, composant et pièce semi-finie
DE102019105493A1 (de) * 2019-03-05 2020-09-10 CarboCon GmbH Textile Bewehrungsstruktur für ein Bauteil, Herstellungsverfahren für eine Bewehrungsstruktur, Bauteil und Halbfertigteil
DE102019126609A1 (de) * 2019-10-02 2021-04-08 Technische Universität Dresden Rohrförmiges Bewehrungselement, Verfahren zu dessen Herstellung, Verwendung, Globalbewehrung, Druckerbeschreibungsdatei und Betonbauteil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018407A1 (de) * 2006-04-20 2007-10-25 Kölsch, David Bewehrungselement für Betonbauteile aus gerichteten Fasern in einer mineralischen Bindemittelmatrix
EP2574705B1 (fr) * 2011-09-30 2015-08-26 Siemens Aktiengesellschaft Tour d'éolienne
US9567981B2 (en) 2011-09-30 2017-02-14 Siemens Aktiengesellschaft Wind turbine tower and method of production thereof
DE102015100386A1 (de) 2015-01-13 2016-07-14 Technische Universität Dresden Bewehrungsstab aus Filamentverbund und Verfahren zu dessen Herstellung
US11619047B2 (en) * 2019-08-19 2023-04-04 Raymond Alan Low Braided multi-axial sleeve system used as a structural reinforcement for concrete columns and method for constructing concrete columns
US11859386B2 (en) * 2019-08-19 2024-01-02 Raymond Alan Low Cable-supported structural assembly with flexible reinforced concrete structural element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169233A (en) * 1966-01-17 1969-10-29 Heinrich Pichler Process for the Production of Tubular Poles Made of Glass Fiber Reinforced Synthetic Resin and Tubular Pole and Device for the Production of the Same
US4049022A (en) * 1972-07-27 1977-09-20 Arc Concrete Limited Concrete pipes
NL8502032A (nl) * 1985-07-15 1987-02-02 Raymond Stuart Stuart Howie Langwerpig voorwerp van lichtgewicht met versterkingsfilamenten ingebed in een kunststof alsmede hieruit gevormde hengel of mast.
DE3616445C1 (en) * 1986-05-15 1987-08-20 Dyckerhoff & Widmann Ag Corrosion-resistant pipe consisting of concrete/polymer composite
EP0382181A2 (fr) * 1989-02-08 1990-08-16 FIBRONIT S.r.l. Tuyauterie en béton renforcée par des fibres de verre et treillis en matière plastique
WO1993004250A1 (fr) * 1991-08-15 1993-03-04 Amatek Limited Poteau electrique non conducteur
EP0621381A1 (fr) * 1993-04-22 1994-10-26 Horst Dr.-Ing. Kinkel Elément d'armature précontraint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169233A (en) * 1966-01-17 1969-10-29 Heinrich Pichler Process for the Production of Tubular Poles Made of Glass Fiber Reinforced Synthetic Resin and Tubular Pole and Device for the Production of the Same
US4049022A (en) * 1972-07-27 1977-09-20 Arc Concrete Limited Concrete pipes
NL8502032A (nl) * 1985-07-15 1987-02-02 Raymond Stuart Stuart Howie Langwerpig voorwerp van lichtgewicht met versterkingsfilamenten ingebed in een kunststof alsmede hieruit gevormde hengel of mast.
DE3616445C1 (en) * 1986-05-15 1987-08-20 Dyckerhoff & Widmann Ag Corrosion-resistant pipe consisting of concrete/polymer composite
EP0382181A2 (fr) * 1989-02-08 1990-08-16 FIBRONIT S.r.l. Tuyauterie en béton renforcée par des fibres de verre et treillis en matière plastique
WO1993004250A1 (fr) * 1991-08-15 1993-03-04 Amatek Limited Poteau electrique non conducteur
EP0621381A1 (fr) * 1993-04-22 1994-10-26 Horst Dr.-Ing. Kinkel Elément d'armature précontraint

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500048A1 (de) * 2003-07-23 2005-10-15 Sacac Schleuderbetonwerk Ag Klemm- und spannhalterung für den temporären einsatz an cfk-verstärkungsstäben mit kreisrundem querschnitt sowie zugehörige cfk-verstärkungsstäbe
AT500048B1 (de) * 2003-07-23 2006-09-15 Sacac Schleuderbetonwerk Ag Klemm- und spannhalterung für den temporären einsatz an cfk-verstärkungsstäben mit kreisrundem querschnitt sowie zugehörige cfk-verstärkungsstäbe
FR2869971A1 (fr) * 2004-05-05 2005-11-11 Freyssinet Internat Stup Soc P Procede de renforcement d'un tuyau cylindrique enterre
US7267507B2 (en) 2004-05-05 2007-09-11 Freyssinet International (Stup) Method of reinforcing an embedded cylindrical pipe
DE102005043386A1 (de) * 2005-09-10 2007-03-15 Beltec Industrietechnik Gmbh Bewehrungskörper aus faserverstärktem Kunststoff
DE202005019077U1 (de) * 2005-12-06 2007-04-19 nolasoft Ingenieurgemeinschaft Ozbolt Mayer GbR (vertretungsberechtigter Gesellschafter: Dr.-Ing. Utz Mayer, 70178 Stuttgart) Bewehrungselement für Tragwerke aus Stahlbeton, Spannbeton od.dgl.
EP1795667A2 (fr) * 2005-12-06 2007-06-13 nolasoft Ingenieurgemeinschaft Ozbolt Elément d'armature pour structures en béton armé, béton précontraint ou similaires
EP1795667A3 (fr) * 2005-12-06 2013-06-12 nolasoft Ingenieurgemeinschaft Ozbolt Elément d'armature pour structures en béton armé, béton précontraint ou similaires
EP1911912A2 (fr) * 2006-10-11 2008-04-16 Pfleiderer Europoles GmbH & Co. KG Dispositif de fixation pour un mât en matériau composite plastique fibreux
EP1911912A3 (fr) * 2006-10-11 2009-06-24 Pfleiderer Europoles GmbH & Co. KG Dispositif de fixation pour un mât en matériau composite plastique fibreux
DE102007037951A1 (de) * 2007-08-11 2009-02-19 Nguyen, Viet Tue, Prof. Dr.-Ing. habil. Betonverbundstütze
FR2921394A1 (fr) * 2007-09-20 2009-03-27 Spiraltex Ind Sarl Composant de construction renforce
CN104603379A (zh) * 2011-05-19 2015-05-06 C6工业公司 复合开放式/间隔式点阵复合支撑结构及其制造和使用方法
WO2012159046A3 (fr) * 2011-05-19 2013-08-29 C6 Industries Structures de support composites à matrice composite ouverte/espacée et procédés de fabrication et d'utilisation de ces dernières
US20140157715A1 (en) * 2011-07-17 2014-06-12 Philipp Wagner Method and Sliding Form for Producing a Structure and Corresponding Structure
US9657722B2 (en) * 2011-07-17 2017-05-23 X-Tower Consructions GmbH Method and sliding form for producing a structure and corresponding structure
DE102012017164A1 (de) * 2012-08-30 2014-03-06 Db Netz Ag Mastkonstruktion für gleisgebundene Oberleitungsanlagen des Schienenverkehrs
CN103669973A (zh) * 2013-12-03 2014-03-26 国网河南省电力公司商丘供电公司 高弯矩碳纤维混凝土线杆及制作方法
US11465002B2 (en) 2014-09-10 2022-10-11 Dymat Construction Products, Inc. Systems and methods for fireproofing cables and other structural members
US9757599B2 (en) 2014-09-10 2017-09-12 Dymat Construction Products, Inc. Systems and methods for fireproofing cables and other structural members
US10512803B2 (en) 2014-09-10 2019-12-24 Dymat Construction Products, Inc. Systems and methods for fireproofing cables and other structural members
CN106639493B (zh) * 2016-12-09 2019-03-19 佛山科学技术学院 一种海上灯塔用不锈钢钢筋混凝土结构
CN106639493A (zh) * 2016-12-09 2017-05-10 佛山科学技术学院 一种海上灯塔用不锈钢钢筋混凝土结构
DE102018102317A1 (de) 2018-02-01 2019-08-01 Reiner Lippacher Endverankerung von Bewehrungsfasern
DE102018117797A1 (de) * 2018-07-24 2020-01-30 Naturspeicher Gmbh Hochdruckrohr, Verfahren zum endseitigen Verschweißen von Hochdruckrohren und Rohranordnung von Hochdruckrohren
CN108798190A (zh) * 2018-08-09 2018-11-13 江西荣仁电力器材有限公司 电线杆、模具
CN108798190B (zh) * 2018-08-09 2023-12-05 江西荣仁电力器材有限公司 电线杆、模具
EP3705657A1 (fr) 2019-03-05 2020-09-09 CarboCon GmbH Structure de renfort textile pour un composant, procédé de fabrication pour une structure de renfort, composant et pièce semi-finie
DE102019105493A1 (de) * 2019-03-05 2020-09-10 CarboCon GmbH Textile Bewehrungsstruktur für ein Bauteil, Herstellungsverfahren für eine Bewehrungsstruktur, Bauteil und Halbfertigteil
DE102019126609A1 (de) * 2019-10-02 2021-04-08 Technische Universität Dresden Rohrförmiges Bewehrungselement, Verfahren zu dessen Herstellung, Verwendung, Globalbewehrung, Druckerbeschreibungsdatei und Betonbauteil
WO2021063453A1 (fr) 2019-10-02 2021-04-08 Technische Universität Dresden Élément d'armature tubulaire, procédé de fabrication d'un élément d'armature, armature globale, utilisation d'un élément d'armature, élément en béton et fichier de programme
CN110670938A (zh) * 2019-10-22 2020-01-10 国家电网有限公司 一种架空输电线路用螺旋混凝土预制管柱

Also Published As

Publication number Publication date
AU3332697A (en) 1998-03-19
CH691608A5 (de) 2001-08-31

Similar Documents

Publication Publication Date Title
WO1998009042A1 (fr) Structures fibrorenforcees de forme tubulaire et/ou en baguette
DE7617789U1 (de) Rohr aus kunststoff mit wenigstens einer verstaerkungsschicht
WO2007028652A1 (fr) Corps d'armature realise en plastique renforce par fibres
DE1936078A1 (de) Bewehrungsstaebe fuer Betonkonstruktionen
DE3145153A1 (de) Stranggezogner verankerungsstab aus aushaertbarem kunstharz
DE4433847C2 (de) Verfahren zum Einbringen einer Vergußmasse in einen Hohlraum
EP0505351B1 (fr) Faisceau de tension pour construction précontrainte en béton
DE2518513A1 (de) Druckrohr aus spannbeton
DE2743639A1 (de) Mit flexiblem stab armierte betonstuetze und verfahren zur herstellung derselben
CH712254B1 (de) Monolithisches Betonbauteil und Herstellungsverfahren mittels Gleitschalung.
DE102008009057A1 (de) Holzmastegründung
DE2425866A1 (de) Kabel fuer schraegkabelbruecken aus spannbeton
WO1985005394A1 (fr) Element d'armature a base de parties en acier pour des constructions en beton precontraintes et elements en beton precontraint prefabrique
DE19731946A1 (de) Befestigungseinrichtung für Rohre und andere Gegenstände sowie Verfahren zu deren Herstellung
EP4022145A1 (fr) Élément d'armature tubulaire, procédé de fabrication d'un élément d'armature, armature globale, utilisation d'un élément d'armature, élément en béton et fichier de programme
DE19634682C2 (de) Dichtung zur Begrenzung von mit einer Vergußmasse auszufüllenden Bereichen an einem Bündelzugglied für Spannbeton
EP3599320B1 (fr) Barre d'armature et son procédé de fabrication
DE1659131B2 (de) Spannglied verankerung für Betonbauteile und Verfahren zu ihrer Anwendung
WO2009049571A1 (fr) Élément de construction, notamment en forme de plaque, en béton et en granulats
EP3705657B1 (fr) Structure de renfort textile pour un composant, procédé de fabrication pour une structure de renfort, composant et pièce semi-finie
AT390027B (de) Verfahren zur herstellung von vorgespannten betonfertigteilen
DE1753801A1 (de) Verfahren zur herstellung von verbindungselementen an den enden eines verstaerkten kunststoffrohres
DE19654687A1 (de) Mastkopf zum Stützen von Leitern und dergleichen auf Masten für oberirdische Mittel- und Hochspannungsnetzleitungen
DE10259961A1 (de) Vorgefertigtes Bauelement, insbesondere Decken- oder Wandbauelement aus einem ausgehärteten Material sowie Verfahren zur Herstellung eines solchen Bauelements
DE2822519A1 (de) Profilkoerperverstaerkung mittels kunstharzgetraenkter glasfaserstraenge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998511131

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase