WO1998000235A1 - Catalyseur d'hydrocraquage pour distillat d'huile et procede de production correspondant - Google Patents

Catalyseur d'hydrocraquage pour distillat d'huile et procede de production correspondant Download PDF

Info

Publication number
WO1998000235A1
WO1998000235A1 PCT/CN1997/000063 CN9700063W WO9800235A1 WO 1998000235 A1 WO1998000235 A1 WO 1998000235A1 CN 9700063 W CN9700063 W CN 9700063W WO 9800235 A1 WO9800235 A1 WO 9800235A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
aluminum
catalyst
weight
hydrated
Prior art date
Application number
PCT/CN1997/000063
Other languages
English (en)
French (fr)
Inventor
Jianwen Shi
Hong Nie
Yahua Shi
Yulin Shi
Yanping Zhang
Dadong Li
Original Assignee
China Petrochemical Corporation
Research Institute Of Petroleum Processing Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Corporation, Research Institute Of Petroleum Processing Sinopec filed Critical China Petrochemical Corporation
Priority to AU32526/97A priority Critical patent/AU3252697A/en
Priority to CA002258558A priority patent/CA2258558C/en
Priority to EP97928100A priority patent/EP0913195B1/en
Priority to DK97928100T priority patent/DK0913195T3/da
Priority to JP50369998A priority patent/JP3782461B2/ja
Publication of WO1998000235A1 publication Critical patent/WO1998000235A1/zh
Priority to NO19986096A priority patent/NO317840B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium

Definitions

  • the invention relates to a cracking catalyst for oil separation and thorium cracking. More specifically, the present invention relates to an argon-cracking catalyst containing nickel, tungsten and zeolite.
  • the argon-cracking catalyst is a dual-functional catalyst, which has both cracking activity and argon-adding activity, that is, it contains both an acidic component and an argon-adding active component.
  • the acidic component is mainly a heat-resistant inorganic halide and / or various zeolites constituting the carrier, and the argon-added active component is generally selected from the gaseous compounds of the Group VIB and Group VIII metals in the periodic table.
  • hydrocracking catalysts should have excellent desulfurization and denitrification and aromatic hydrocarbon saturation hydrogenation performance.
  • Catalysts used in the production of middle distillate oil should also have high selectivity to middle distillate oil and nitrogen resistance .
  • the selectivity of the hydrocracking catalyst to the intermediate oil separation and the stability against nitrogen are improved.
  • Chinese patent application CN90102648.4 discloses an argon-added catalyst.
  • the catalyst contains 0.5 to 5.0% by weight of fluorine, 2.5 to 6.0% by weight of gasified nickel, 10 to 32% by weight of tungsten oxide, and a mordenite or silica to alumina ratio of 4.5 to 5.5.
  • Y-type zeolite as well as vaporized aluminum.
  • the aluminum halide is a hydrated aluminum halide made of an aluminum alkyl hydrolyzate method and having a boehmite content of more than 65% by weight after calcination.
  • the catalyst has high argon addition and cracking activity, the catalyst is only used for the production of steam cracking raw materials, it is not suitable for the process of producing oil in the middle hall, and the cost of the carrier is relatively high.
  • US 4894142 discloses an argon-cracking process for producing middle distillates.
  • the catalyst used in this process contains metal components of Group VIB and Group VIII of the Periodic Table of the Elements, and also contains heat-resistant inorganic vapors and a Y-type zeolite.
  • the size of the Y-type zeolite is 24.2 to 24.40 Angstroms, the ion exchange capacity is greater than 0.07, and the acidity value measured by the NH 3 -TPD method is less than 2.00.
  • US 4419271, US 4401556, and US 4517073 each disclose a hydrocarbon conversion or thorium cracking catalyst, which is characterized by using a Y-type zeolite modified by a certain method with a specific silicon-alumina ratio.
  • One of the objects of the present invention is to provide a hydrocracking catalyst suitable for the production of middle distillates and having a high resistance to nitrogen.
  • Another object of the present invention is to provide a method for preparing such a hydrocracking catalyst.
  • the selectivity of argon-cracking catalysts for middle distillates and the stability against nitrogen are often improved by adjusting the acidity of the catalyst.
  • the acidity of the catalyst is adjusted mainly by changing the kind of zeolite, the content of the zeolite, or the nature of the zeolite used in the catalyst support.
  • the inventors of the present invention have found that by selecting aluminum oxide and zeolite having a suitable acidity to prepare a carrier for an argon cracking catalyst, even if aluminum oxide having a specific acidity value is matched with zeolite having a specific acidity value, Argon-cracking catalyst with higher selectivity to middle distillates and better gas stability.
  • the catalyst provided by the present invention has a composition of 0.5 to 5.0% by weight of fluorine, 2.5 to 6.0% by weight of nickel halide, and 10 to 38% by weight of tungsten halide, and the rest are catalyst supports.
  • the carrier is composed of 20 to 90% by weight of aluminized aluminum and 10 to 80% by weight of zeolite.
  • the zeolite is a mesoporous or macroporous zeolite having an acidity value of 1.0 to 2.0 m mol / g, and the aluminate has an acidity value of 0.5. ⁇ 0.8m mol / g of gasified aluminum.
  • the acidity value of the gasified aluminum or zeolite refers to the acidity value measured by the NH 3 -TPD method.
  • the catalyst carrier is formed by molding, drying, and baking, and then the carrier is impregnated with a gas-containing aqueous solution and a nickel-tungsten-containing aqueous solution in sequence, and dried and calcined after each impregnation.
  • the precursor of the vaporized aluminum is a hydrated aluminum vaporized aluminum having an acidity value of 0.5 to 0.8 m mol / g as measured by the NH 3 -TPD method after being baked at 500 to 650 1C for 2 to 8 hours.
  • the zeolite is a mesoporous or macroporous zeolite having an acidity value of 1.0 to 2.0 m mo dish / g as determined by the NH 3 -TPD method; the ratio of the hydrated alumina and zeolite refers to 500 to 650 'C roasted 3 After ⁇ 5 hours, it can make the gasified aluminum in the catalyst carrier account for 20 ⁇ 9 () weight. When the zeolite accounts for 10 ⁇ 80% by weight, the ratio of hydrated aluminum halide to zeolite is required.
  • the composition of the catalyst composition provided by the present invention is: based on the weight of the entire catalyst, the gas is 0.5-5.0% by weight, 2.5-6.0% by weight of nickel halide, 10-38% by weight of tungsten gas, and the rest as catalyst support.
  • the catalyst support is composed of 20-90% by weight of aluminide and 10-80% by weight of zeolite.
  • the zeolite is NH 3 - Method TPD acidity measured value of 1.0-2.0mmol / g mesoporous or macroporous zeolites, aluminum vaporized NH 3 - Method TPD acidity measured value 0.5-0.8minol / g alumina .
  • the fluorine is preferably 1.0-4.0% by weight
  • the gasified nickel is preferably 2.6-5.0% by weight
  • the tungsten halide is preferably 19-25% by weight.
  • the aluminum vaporized aluminum is preferably 50 to 80% by weight
  • the zeolite is preferably 20 to 50% by weight.
  • the preparation method of the catalyst of the present invention is as follows:
  • the support of the catalyst of the present invention is made of hydrated alumina and zeolite.
  • the hydrated gasified aluminum used is a hydrated aluminum oxide that can be formed into a gasified aluminum having an acidity value of 0.5 to 0.8 mmol / g after calcination under certain conditions.
  • the firing temperature is 500-650, and the firing time is 2-8 hours or more.
  • the pore volume of the aluminized aluminum obtained by firing the alumina hydrate is preferably larger than
  • the specific surface area is preferably greater than 200m 2 / g.
  • degree value used in the present application refers to an acidity value measured by a temperature programmed desorption method (NH 3 -TPD).
  • NH 3 -TPD temperature programmed desorption method
  • thermogravimetric decanter can be, for example, the 951 thermogravimetric decanter in the 9900 thermogravimetric system from DuPont.
  • the hydrated aluminum halide used in the present invention can be prepared by a sodium metaaluminate-carbon dihalide method, an aluminum alkyl or alkane-based aluminum hydrolysis method, and a sodium metaaluminate-aluminum aluminate method.
  • the hydrated aluminum halide used in the present invention can be prepared by the low-carbon alkane-based aluminum hydrolysis method described in Chinese patent CN 85100218B: d ⁇ C 4 alkyl fluorinated aluminum, preferably aluminum triisopropoxide and water
  • the amount of low-carbon alcohol (such as water-containing isopropanol) is less than 20% by weight, preferably 4 to 15% by weight.
  • ⁇ 120 -C reaction for 1 ⁇ 96 hours, preferably 1 ⁇ 16 hours.
  • the preferred hydrated alumina of the present invention is hydrated alumina having a boehmite content greater than 60% by weight.
  • the zeolite used in the present invention is a mesoporous or macroporous zeolite having an acidity value of 1.0-2.0 mmol / g as measured by the NH 3 -TPD method.
  • Such a zeolite may be selected from faujasite, mordenite, ZSM-5 zeolite, Beta zeolite, or omega zeolite.
  • the zeolite can be modified by various methods, such as ion exchange method, impregnation method, and the like.
  • Preferred zeolites are argon or rare earth Y-type zeolites or mordenites.
  • the hydrated aluminum amide selected according to the above-mentioned standard and the zeolite selected according to the above-mentioned standard are mixed uniformly at a certain ratio, and then formed, dried, and calcined to obtain the catalyst carrier of the present invention.
  • a hydrated aluminum halide selected according to the above-mentioned standards may be mixed with a zeolite selected according to the above-mentioned standards, or one or more kinds of hydrated oxidation selected according to the above-mentioned standards may be mixed with one or several A zeolite phase selected according to the above criteria was mixed.
  • the mixing ratio of hydrated and gasified aluminum 4 zeolite should meet the following conditions: After mixing, forming, drying and calcining the hydrated aluminum halide and zeolite, the gasified aluminum accounts for 20 to 90 weight of the entire catalyst support. /. , Preferably 50-80% by weight.
  • the forming method is a conventional method in the art, such as a method such as tabletting, ball forming, or extrusion.
  • a method of extrusion molding is preferred in the present invention.
  • the baking temperature is 500 to 650, and the baking time is 3 to 5 hours or more.
  • fluorine, nickel gas, and tungsten oxide are supported as active ingredients on a carrier prepared by the above method.
  • the fluorine can be loaded by a conventional impregnation method, that is, the carrier obtained by the above method is impregnated with a predetermined amount of a fluorine-containing aqueous solution, and then dried and fired.
  • the fluorine-containing aqueous solution refers to an aqueous solution of a fluorine-containing inorganic compound, such as an aqueous solution of ammonium vaporized and / or thorium fluoride. It is generally dried at 100 130 'C and then calcined at 400-500 for 3-5 hours.
  • the supported amount of fluorine generally accounts for 0.5 to 5.0% by weight of the entire catalyst, preferably 1.0 to 4.0% by weight.
  • the support of nickel-tungsten can also adopt the conventional impregnation method, that is, the nickel-containing -The tungsten aqueous solution is immersed, then dried and fired.
  • the nickel-tungsten-containing aqueous solution is generally made of ammonium metatungstate, dodecanoate, ethyl ammonium metatungstate or nickel metatungstate, and nickel nitrate or nickel acid according to a predetermined nickel-tungsten content in the catalyst. Mix the aqueous solution. Generally, it is dried at 100-130 and then baked at 400-500 1C for 3 to 5 hours.
  • the loading amount of nickel should be such that the nickel halide accounts for 2.5-6.0% by weight, preferably 2.6-5.0% by weight, of the entire halogenating agent. Loading of tungsten should be accounted for 10 tungsten entire gasification catalyst - 38 wt%, preferably 19--25 weight 0/0.
  • the catalyst of the present invention can be used under conventional argon-cracking conditions. Before use, it can be triturated according to conventional methods.
  • the catalyst provided by the present invention is suitable for performing argon cracking on a hydrocarbon feedstock to produce a hydrocarbon fraction having a lower boiling point and a lower molecular weight.
  • the hydrocarbon feedstock may be various heavy mineral oils or synthetic oils or their distillates, such as straight run gas oils, vacuum gas oils, and demetallized oils ), Atmospheric residue, deasphalted vacuum residue, coker distillates.
  • Catalytic cracker distillates, shale oil, Tar sand oil, coal liquid, etc.
  • the catalyst provided by the present invention is particularly suitable for argon cracking of heavy and inferior tritium oil to produce 149 to 371, especially argon cracking of middle distillate with a distillation range of 180 to 370 1C.
  • the catalyst can be used for the hydrogenation upgrading of distillate oil, especially the medium-pressure hydrogenation upgrading process.
  • the gas content in the oil separation raw materials can be as high as 1500 ppm, and the radon content can be as high as 3.5% by weight.
  • the catalyst provided by the present invention When used for thorium oil separation and chlorine cracking, it can be used under conventional argon cracking process conditions, such as a reaction temperature of 200 to 650, preferably 300 to 510 t, and a reaction pressure of 3 to 24 MPa, preferably 4 ⁇ 15 MPa, liquid hourly space velocity 0.1 ⁇ 10 hours, preferably 0.2 ⁇ 5 hours— ', argon oil volume ratio 100 ⁇ 5000, preferably 200 ⁇ 1000. '
  • the catalyst provided by the present invention has high stability against nitrogen, good debreaking, denitrification activity, and aromatic saturated argon addition activity.
  • hydrated trifluoride fe A hydrated trifluoride aluminum B
  • hydrated trihalide aluminum :. Among them, hydrated trihalide A is disclosed in accordance with Chinese patent CN 85100218B The method is as follows:
  • Alumina hydrate B is an industrial product prepared by the sodium metaaluminate-digasification carbon method (the product name is dry pseudoboehmite, produced by China Shandong Aluminum Factory).
  • Hydrated aluminum halide C is a commercially available product produced by the German company Condea under the brand name SB.
  • Table 1 shows the acidity value, specific surface area, and pore volume of the aluminite content of the above-mentioned hydrated aluminum halide and the aluminum hydrate formed by calcination of 550 X :, 600 "C, and 650 for 4 hours. Specific surface area and pore volume were determined by B ET low temperature gas adsorption method.
  • argon Y zeolite (HY), rare earth Y zeolite (REY), and air-type mordenite (HM) are used, respectively.
  • Table 2 shows the silica-alumina ratio, acidity value and rare earth element oxide content of the above zeolites. Among them, the content of rare earth element gaseous compounds was determined by X-ray fluorescence spectrometry (see “Petroleum Chemical Tillering Method (RIPP Test Method)", P368-370, Science Press, 1990).
  • HY argon Y zeolite
  • REY rare earth Y zeolite
  • HM chloromordenite
  • Table 3 shows the amount of each raw material and the calcination temperature and time during the preparation of the catalyst support.
  • the carrier was quantitatively weighed, immersed in an aqueous solution of ammonium fluoride for 1 hour, dried at 120 X and baked.
  • Table 4 shows the amount of support, the amount of ammonium fluoride, and the temperature and time for firing.
  • the above-mentioned fluorine-containing support was impregnated with a predetermined amount of a mixed aqueous solution of ammonium metatungstate and nickel nitrate for 4 hours, dried at 120 ° C, and the catalyst provided by the present invention was obtained after firing.
  • Table 5 shows the amount of ammonium metatungstate and nickel nitrate and the calcination temperature and time.
  • Table 6 shows the content of each active ingredient in the prepared catalyst.
  • the contents of NiO and ⁇ ⁇ 0 3 were determined by plasma emission spectrometry (ICP / AES) (see “Petrochemical Tillering Method (RIPP Test Method)" P360 ⁇ 361, Science Press, 1990).
  • the content is determined by the fluoride ion electrode method (see the same book P 185 ⁇ 187).
  • catalysts 1 to 7 The catalysts prepared in Examples 1 to 7 are referred to as catalysts 1 to 7 respectively.
  • the catalyst was prepared in the same manner as in Examples 1 to 7, except that hydrated aluminum halide C was used to prepare the catalyst support.
  • the catalysts 2 and 6 obtained in Examples 2 and 6 were evaluated, respectively.
  • the reaction was carried out on a small fixed bed reactor with a catalyst loading of 2.0 grams. Prior to the reaction, the catalyst was pre-cracked in a 300% argon atmosphere with a 3% by weight dihydrazine solution for 2 hours. Then pass in the reaction raw materials at 360 4.1 MPa, The reaction was evaluated under the condition of weight hourly space velocity (WHSV) 3.4h ⁇ argon / n-heptane (volume) of 4000. Sampling was started after 3 hours of reaction, and the product was analyzed by chromatography. The color column was a 5-meter packed column and detected by a thermal conductivity detector. The results are shown in Table 7.
  • This comparative example shows that the catalyst provided by the present invention has better nitrogen resistance stability than the prior art catalysts.
  • Table 7 shows that for the argon-cracking reaction of nitrogen-containing n-heptane, the activity stability of the catalyst provided by the present invention is better than that of the prior art.
  • Table 7 Conversion rate of n-heptane
  • This example illustrates the argon-cracking performance of the catalyst of the present invention for vacuum gas oil.
  • the argon-cracking performance of catalyst 2 obtained in Example 2 was evaluated using a vacuum gas oil with a range of 208 to 520 "as the raw material.
  • the reaction was performed on a 100-ml argon-cracking device, and the amount of catalyst was 100 ml. Catalyst. Before the reaction, the catalyst was pre-dried with kerosene containing 2% by weight of carbon disulfide at 300 Torr under argon for 25 hours. Then the reaction raw materials were passed in at 380 ", 6.4MPa, hydrogen oil volume ratio 800, liquid The reaction was evaluated under the conditions of space-time velocity (LHSV) l. Oif 1 . The results obtained are shown in Table 8. The breaking content in the table is measured by the electric quantity method, and the content is measured by the chemiluminescence method. Selectivity refers to the selectivity of middle distillates with a distillation range of 180-370 X :.
  • This comparative example shows that when vacuum gas oil is used as a raw material, the catalyst provided by the present invention has a Prior art catalysts have higher selectivity to middle distillates.
  • Example 10 Repeat the operation of Example 10. The same reaction raw materials, reaction apparatus, pre-sulfidation process and reaction conditions were used as in Example 10, but the catalyst 8 obtained in Comparative Example 1 was used. The evaluation results obtained are shown in Table 8.
  • This example illustrates the argon-cracking performance of the catalyst of the present invention on atmospheric gas oil.
  • Atmospheric gas oil with a distillation range of 180 to 350 Torr was used as a reaction raw material, and the hydrocracking performance of the catalyst 6 obtained in Example 6 was evaluated.
  • the conditions of the reaction device, the catalyst loading and the catalyst pre-dehydration were the same as those in Example 10.
  • the reaction conditions are: 360 Torr, 6.4 MPa, liquid hourly space velocity (LHSV) 2.0h "', argon oil volume ratio 500.
  • the evaluation results are shown in Table 9.
  • This comparative example illustrates that when atmospheric gas oil is used as the original scale, the catalyst provided by the present invention has a higher selectivity to middle distillates than the catalysts of the prior art.
  • Example 11 The same reaction raw materials, reaction apparatus, pre-amination process and reaction conditions were used as in Example 11, but the catalyst 8 obtained in Comparative Example 1 was used. The evaluation results obtained are shown in Table 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Figure imgf000003_0001
本发明的技术领域
本发明涉及一种馆分油加氪裂化催化剂。 更具体地说, 本发明涉及一 种含镍、 钨和沸石的加氬裂化催化剂。
本发明的背景技术
近年来, 世界范围内原油重质和劣质化倾向日益明显, 与此同时, 对 中间垴分油的需求量却不断增加, 这促使以重质饱分油的优质和轻质化为 目的的加氩裂化技术得到迅速发展, 而加氢裂化催化剂是其中最为重要和 关键的因素之一。
加氩裂化催化剂是一种双功能催化剂, 它同时具有裂化活性和加氬活 性, 即同时含有酸性组分和加氩活性组分。 酸性组分主要为构成载体的耐 热无机氡化物和 /或各种沸石, 加氩活性组分一般选自元素周期表中 VIB族 和 VIII族金属的氣化物。 为得到不同的加氩裂化产物, 需要调节催化剂的 裂化活性和加氪活性。 一般来说, 加氢裂化催化剂应具有优良的脱硤脱氮 和芳烃饱和加氢性能, 用于生产中间垴分油的催化剂还应该具有较高的对 中间馏分油的选择性和抗氮稳定性。 一般来说, 通过调节催化剂的酸性来 提高加氢裂化催化剂对中间馆分油的选择性和抗氮稳定性。
中国专利申请 CN90102648.4公开了一种加氬处理催化剂。该催化剂含 有 0.5~5.0重%的氟、 2.5~6.0重%的氣化镍、 10~32重%的氧化钨, 硅铝 比为 9,5~10.5的丝光沸石或硅铝比为 4.5~5.5的 Y型沸石以及氣化铝。 该 氡化铝是用烷氡基铝水解法制成的、 一水铝石含量大于 65重%的水合氡化 铝经焙烧后形成的。 该催化剂虽具有较高的加氬和裂化活性, 但该催化剂 仅用于生产蒸汽裂解原料, 不适用于生产中间馆分油的过程, 载体的成本 也偏高。
US 4894142公开了一种用于生产中间馏分油的加氬裂化工艺, 该工艺 中所使用的催化剂中含有元素周期表 VIB族和 VIII族金属组分, 另外还含 有耐热无机氣化物和一种 Y型沸石。 该 Y型沸石的晶跑大小为 24.2〜24.40 埃, 离子交换容量大于 0.07,用 NH3-TPD法测定的酸度值小于 2.00。 此外, US 4419271 、 US 4401556及 US 4517073也各自公开了一种 烃转化或加氪裂化催化剂, 其特征在于使用了具有某种特定硅铝比, 经不 同方法改性的 Y型沸石。
本发明的目的之一是提供一种适用于生产中间馏分油且具有较高抗氮 稳定性的加氢裂化催化剂。
本发明的目的之二是提供这种加氢裂化催化剂的制备方法。
如前所述, 往往通过调节催化剂的酸性来提高加氩裂化催化剂对中间 馏分油的选择性和抗氮稳定性。 根据现有技术, 主要通过改变催化剂载体 中所用的沸石种类、 沸石的含量或沸石的性质来调节催化剂的酸性。 本发 明的发明人发现, 通过选择具有适宜酸性的氡化铝和沸石来制备加氩裂化 催化剂的载体, 即使具有特定酸度值的氡化铝与具有特定酸度值的沸石相 匹配, 就能够得到具有较高的对中间馏分油的选择性和较好的抗氣稳定性 的加氩裂化催化剂。
本发明概述
本发明提供的催化剂的组成为氟 0.5〜5.0重%、 氡化镍 2.5~6.0重%、 氡化钨 10~38重%, 其余为催化剂载体。 该载体是由 20~90重%的氡化铝 和 10~80重%的沸石组成, 其中沸石为酸度值 1.0~2.0m mol/g的中孔或大 孔沸石, 氡化铝为酸度值 0.5~0.8m mol/g的氣化铝, 所述氣化铝或沸石的 酸度值指用 NH3 - TPD法测定的酸度值。 混合均 后成型、 干燥、 焙烧制成催化剂载体, 然后依次用含氣水溶液和 含镍 -钨的水溶液浸渍该载体, 每次浸渍后干燥并焙烧。 其中, 所述氣化 铝的前身物为 500~650 1C焙烧 2~8小时后能形成 NH3 - TPD法测定的酸 度值为 0.5~O.8m mol/g的氡化铝的水合氣化铝, 所述沸石为 NH3 一 TPD 法测定的酸度值为 1.0~2.0m mo皿 /g的中孔或大孔沸石; 所述水合氡化铝和 沸石的比例指经 500~650 'C焙烧 3〜5小时后, 能使催化剂载体中氣化铝占 20~9()重 °/。, 沸石占 10~80重%时所需水合氡化铝与沸石的比例。
本发明的详细描述
本发明提供的催化剂组合物的组成为: 基于整个催化剂的重量, 氣为 0.5-5.0重%, 氡化镍为 2.5-6.0重%, 氣化钨为 10 - 38重%, 其余为催化 剂载体。 该催化剂载体由 20 - 90重%的氡化铝和 10 - 80重%的沸石组 成。 其中沸石为 NH3 - TPD法测定的酸度值为 1.0-2.0mmol/g的中孔或大 孔沸石,氣化铝为 NH3 - TPD法测定的酸度值为 0.5-0.8minol/g的氧化铝。
在上述催化剂活性组分中, 基于整个催化剂的重量, 氟优选 1.0-4.0重 % , 氣化镍优选 2.6-5.0重%, 氡化钨优选 19 - 25重%。 在上述催化剂载 体中, 氣化铝优选 50 - 80重%, 沸石优选 20 - 50重%。
本发明催化剂的制备方法如下:
( 1 ) 催化剂载体的制备
本发明催化剂的载体由水合氧化铝和沸石制得。 根据本发明, 所用的 水合氣化铝为在一定条件下焙烧后能形成酸度值为 0.5-0.8 mmol/g的氣化 铝的水合氧化铝。 焙烧温度为 500 - 650 , 焙烧时间为 2 - 8小时或更 长。 在此条件下焙烧水合氡化铝所得到的氡化铝的孔体积最好大于
0.3ml/g , 比表面积最好大于 200m2/g 。
在本申请中所用术语 "睃度值" 是指用氛程序升温脱附法 ( NH3 - TPD ) 测定的酸度值。 具体測定步骤如下:
取少量样品置于热重分柝仪中, 通入高纯氮气流。 升温至 500 恒重, 记录样品重量 \¥,。 降温至 150 并通入高纯氦气, 吸附平衡后停止进氦。 恒温 1 小时以脱除物理吸附的氛气。 记录吸氛后的样品重量 \V2。 以 10 / 分的升温速率程序升温至 500 记录失重曲线, 并记录脱氦后的样品重 量 VV3, 由下式计算出样品的酸度值:
W2(mg)-W3(ing)
酸度值 = (mmol/g)
Wi(g) χ氛的分子量
其中的热重分柝仪可采用例如杜邦公司出品的 9900热分柝系统中 951 热重分柝仪。
本发明所用水合氡化铝可由偏铝酸钠 -二氡化碳法、 烷基铝或烷氣基 铝水解法、 偏铝酸钠-硤酸铝法制得。
例如, 本发明所用水合氡化铝可采用中国专利 CN 85100218B所述低 碳烷氣基铝水解法制备: 将 d~C4烷氡基铝, 最好是三异丙氧基铝和含水 量小于 20重%, 最好 4~15重%的低碳醇 (如含水异丙醇) 在控制水量接 近但不大于低破烷氡基铝水解反应所需化学计量水的条件下, 在 5~120 -C 反应 1~96小时, 最好 1〜16小时。 蒸出含水量小于 0.2重%的低碳醇后, 在固体产物中加入去离子水。然后,在 5~100 TC ,最好 78~100 老化卜 120 小时, 最好 6~40小时, 蒸出含水异丙醇。 将固体产物于 110~120 烘干, 即可得到本发明所用水合氣化 。
本发明优选的水合氡化铝为一水铝石含量大于 60重%的水合氧化铝。 本发明所用的沸石为 NH3 - TPD法測得的酸度值为 1.0-2.0 mmol/g的 中孔或大孔沸石。这样的沸石可选自八面沸石、丝光沸石、 ZSM ― 5沸石、 Beta沸石或 Ω沸石。 该沸石可以用各种方法加以改性, 如离子交换法、 浸 渍法等。 优选的沸石为氩型或稀土型的 Y型沸石或丝光沸石。
根据本发明, 将按上述标准选择的水合氨化铝与按上述标准选择的沸 石按一定比例混合均匀后成型、 干燥并焙烧后, 即得到本发明催化剂载体。
本发明中, 可将按上述标准选择的一种水合氡化铝与一种按上述标准 选择的沸石相混合, 也可将一种或几种按上述标准选择的水合氧化^与一 种或几种按上述标准选择的沸石相混合。
水合氣化铝 4沸石的混合比应满足这样的条件: 水合氡化铝与沸石混 合、 成型、 干燥并焙烧后, 氣化铝占整个催化剂载体的 20 - 90重。 /。, 优 选 50 ― 80重%。
所述成型方法为本领域的常规方法, 如压片、 成球或挤条等方法。 本 发明优选挤条成型的方法。
上述焙烧温度为 500 - 650 , 焙烧时间为 3 - 5小时或更长。
( 2 ) 活性成分的负载
根据本发明, 在依上述方法制得的载体上负载作为活性成分的氟、 氣 化镍和氧化钨。
氟的负载可采用常规的浸渍的方法, 即将按上述方法得到的载体用预 定量的含氟水溶液浸渍, 然后烘干、 焙烧。 所述含氟水溶液指含氟的无机 化合物的水溶液, 如氣化铵和 /或氟化氳的水溶液。 一般在 100 130 'C进 行烘干, 然后于 400 - 500 焙烧 3 - 5小时。
氟的负载量一般占整个催化剂的 0.5 - 5.0重%, 优选 1.0-4.0重%。 镍 -钨的负载也可采用常规的浸渍的方法, 即将上述含氟载体用含镍 -钨的水溶液浸渍, 然后烘干、 焙烧。 所述含镍-钨的水溶液一般是由偏 钨酸铵、 鸽酸铵、 乙基偏钨酸铵或偏钨酸镍和硝酸镍或睹酸镍按催化剂中 预定的镍-钨含量制成的混合水溶液。 一般在 100 - 130 进行烘干, 然 后于 400 - 500 1C焙烧 3 一 5小时。
镍的负载量应使氡化镍占整个伥化剂的 2.5-6.0重%, 优选 2.6-5.0重 %。 钨的负载量应使氣化钨占整个催化剂的 10 - 38重%, 优选 19 - 25 重0 /0
本发明催化剂可在常规的加氬裂化条件下使用。 在使用前, 可按常规 方法进行硤化处理。
本发明提供的催化剂适用于对烃类原料进行加氬裂化以生产具有较低 沸点和较低分子量的烃类馏分。 所述烃类原料可以是各种重质矿物油或合 成油或它们的馏分油, 如直馏瓦斯油 ( straight run gas oils ) 、 减压瓦斯 油 (vacuum gas oils)、 脱金属油 (demetallized oils)、 常压渣油 (atmospheric residue)、脱沥青减压法油 (deasphalted vacuum residue)、焦化 出油 (coker distillates). 催化裂化馏出油(catalytic cracker distillates), 页岩油(shale oil), 沥青砂油(tar sand oil)、 煤液化油(coal liquid)等。 本发明提供的催化 剂特别适用于重 和劣质垴分油的加氩裂化以生产熘程为 149~371 , 尤 其是馏程为 180〜370 1C中间馏分油的加氩裂化过程。 本发明提供的催化剂 和加氫精制催化剂配合使用时則可用于对馏分油的加氢改质, 特别是中压 加氢改质过程。 所述馆分油原料中的氣含量可以高达 1500ppm, 硤含量可 以高达 3.5重%。
本发明提供的催化剂用于垴分油加氯裂化时, 可在常规的加氩裂化工 艺条件下使用, 如反应温度 200~650 , 优选 300〜510 t , 反应压力 3~24 兆帕, 优选 4~15兆帕, 液时空速 0.1~10小时 , 优选 0.2~5小时— ', 氩油 体积比 100〜5000, 优选 200~1000。 '
本发明提供的催化剂具有较高的抗氮稳定性、 良好的脱破、 脱氮活性 和芳烃饱和加氬活性。
本发明的最佳实施方案
下面的实例将对本发明做进一步说明, 但并不因此而限制本发明。 在下面的实例和对比例中, 分别使用了水合氡化 fe A、 水合氡化铝 B 和水合氡化铝(:。 其中, 水合氡化铝 A是按中国专利 CN 85100218B公开 的方法制备的, 具体制备方法如下:
在带搅拌和回流冷凝管的反应釜中加入 5588克含 13.2重%水的异丙 醇, 加热至沸腾, 将 2941 克融化的三异丙氡基铝滴加到反应釜中, 回流反 应 6小时, 蒸出含水量 0.2重%的异丙醇 3555克, 在反应釜中加入 8.8升 去离子水, 在 80 老化 16小时, 老化的同时蒸出含水异丙醇, 将固体产 物于 120 X:烘干得到水合氡化铝 A 。
水合氧化铝 B是偏铝酸钠 -二氣化碳法制备的工业产品 (产品名称为 干拟薄水铝石, 中国山东铝厂出品) 。
水合氡化铝 C是德国 Condea公司生产的市售品, 商品牌号为 SB 。 表 1给出了上述水合氡化铝的一水铝石含量及水合氨化铝经 550 X:、 600 "C及 650 焙烧 4小时后形成的氡化铝的酸度值、 比表面积和孔体积。 比表面积和孔体积采用 B ET低温氣吸附法测定。
在下面的实例和对比例中, 分别使用了氩 Y沸石 ( HY ) 、 稀土 Y沸 石 ( REY ) 和氣型丝光沸石 ( HM ) 。
表 2给出了上述沸石的硅铝比、 酸度值和稀土元素氧化物的含量。 其中, 稀土元素氣化物的含量采用 X射线荧光光谱法测定 (参见 《石 油化工分柝方法 ( RIPP试验方法)》, P368 - 370,科学出版社, 1990 )。 表 1 水合氡化铝
水 编号 A B C 口
氡 一水铝石含量 68 62 78 化 (重%)
焙烧温度 ( 1C ) 550 600 650 550 600 650 600 氣 酸度值 (mmol/g) 0.7156 0.7028 0.6760 0.6700 0.6565 0.6214 0.9306 化 比表面积(m2/g) 268 252 240 292 278 265 219 铝 孔体积(ml/g) 0.61 0.61 0.60 0.41 0.40 0.40 0.50 表 2 石
Figure imgf000009_0001
实例 1 一 7
这些实施例涉及本发明催化剂的制备。
( 1 ) 催化剂载体的制备
分别定量称取水合氣化铝 A和水合氡化铝 B, 分别与定量的氩 Y沸石 ( HY ) 、 稀土 Y沸石 ( REY ) 或氯型丝光沸石 ( HM ) 混合均勻, 加 入适量助挤剂、 胶粘剂和水, 挤成外接圓直径为 1.8毫米的三叶形条, 烘干 后焙烧。
表 3给出了催化剂载体制备过程中各原料用量及焙烧温度和时间。
( 2 ) 氟的负载
定量称取上述载体, 用氟化铵水溶液浸渍 1 小时, 于 120 X 烘干后焙 烧。
表 4给出了载体的用量、 氟化铵的用量及焙烧温度和时间。
( 3 ) 镍-鸪的浸渍
用预定量的偏钨酸铵和硝酸镍混合水溶液浸渍上述含氟载体 4小时, 于 120 "C烘干, 焙烧后即得本发明提供的催化剂。
表 5给出了偏钨酸铵和硝酸镍的用量及焙烧温度和时间。
表 6给出了制得的催化剂中各活性成分的含量。其中 NiO和 \¥03的含 量是采用等离子体发射光谱法 ( ICP/AES ) 测定的 (参见 《石油化工分柝 方法 ( RIPP试验方法) 》 P360~361, 科学出版社, 1990 ) , 氣的含量 是采用氟离子电极法测定的 (参见同书 P 185~187 ) 。
实例 1 - 7所制得的催化剂分别记为催化剂 1 - 7 。
对比例 1
采用与实例 1 - 7相同的方法制备催化剂, 所不同的是采用了水合氡 化铝 C来制备催化剂载体。
制备催化剂过程中所用各原料用量及焙烧温度和时间, 制备出的催化 剂 (记为催化剂 8 ) 的活性成分含量分别列于表 3~6中。 酸度值、
W03及氟含量的测定方法同实例 1~7 。 表 3 催化剂载体的制备
Figure imgf000010_0001
* 水合氣化铝和沸石的量均以干基重量计。 表 4 氟的浸渍
实例 载体用量 氟的浸渍 焙烧条件 编号 (^) 氟化铵用量 水用量 温度 时间
(克) (毫升) (^ ) (小时) 实例 1 100 1.5 200 420 4 实例 2 100 5.5 200 450 4 实例 3 100 13.1 200 550 4 实例 4 100 4.1 200 450 4 实例 5 100 4.4 200 450 4 实例 6 100 6.4 200 450 4 实例 7 100 1.5 200 450 4 对比例 1 100 6.1 200 450 4 表 5 镍-鸽的浸渍
Figure imgf000011_0001
表 6催化剂的活性成分含量
Figure imgf000011_0002
实例 8~9
下面的实例说明本发明催化剂的抗氣稳定性。
以含 lOOOppm有机氣 (吡啶) 的正庚烷为原料, 分别对实例 2和实例 6所得催化剂 2和催化剂 6进行评价。 反应在小型固定床反应装置上进行, 催化剂装量 2.0克。反应前先在 300 氩气氛下用浓度为 3重%的二硤化破 正己垸溶液将催化剂预破化 2小时。然后通入反应原料,在 360 4.1 MPa, 重时空速 ( WHSV ) 3.4h \ 氩 /正庚烷(体积) 为 4000的条件下进行评价 反应。 反应 3小时后开始取样, 采用色谱分析产物, 色镨柱为 5米填充柱, 用热导检测器检测。 结果列于表 7中。
对比例 2
本对比例说明本发明提供的催化剂的抗氮稳定性优于现有技术催化 剂。
重复实例 8 - 9的操作。 采用与实例 8 9相同的反应原料、 反应装 置、 预硫化过程及反应条件, 但采用对比例 1 所得催化剂 8。 所得的评价 结果列于表 7中。
表 7的结杲说明, 对于含氮正庚烷的加氬裂化反应, 本发明提供的催 化剂的活性稳定性优于现有技术。 表 7 正庚圪转化率
Figure imgf000012_0001
实例 10
本实例说明本发明催化剂对减压瓦斯油的加氩裂化性能。
采用馆程为 208~520 " 的减压瓦斯油为原料,评价实例 2所得催化剂 2 的加氩裂化性能。 反应在 100毫升加氩裂化装置上进行, 催化剂用量为 100ml长度为 2 - 3毫米的催化剂。 反应前先在氩气氡下用含 2重%二硫 化碳的煤油在 300匸下将催化剂预疏化 25小时。然后通入反应原料,在 380 " , 6.4MPa , 氢油体积比 800, 液时空速 ( LHSV ) l.Oif1的条件下进 行评价反应。 所得结果列于表 8中。 表中破含量采用电量法测定, 含量 采用化学发光法测定。 选择性是指对馏程为 180 - 370 X:的中间馏分油的 选择性。
对比例 3
本对比例说明在以减压瓦斯油为原料时, 本发明提供的催化剂具有较 现有技术催化剂更高的对中间馏分油的选择性。
重复实例 10的操作。 采用与实例 10相同的反应原料、 反应装置、 预 硫化过程及反应条件, 但采用对比例 1所得催化剂 8。 所得的评价结果列 于表 8中。
表 8的结果说明, 催化剂 2和催化剂 8的脱硤、 脱氮性能相近, 但催 化剂 2对中间馆分油的选择性可达 62重%, 而催化剂 8仅为 55重%, 前 者比后者提高了 12.7%。 表 8 减压瓦斯油的加氩裂化
Figure imgf000013_0001
实例 11
本实例说明本发明催化剂对常压瓦斯油的加氬裂化性能。
采用馏程为 180〜350 Ό的常压瓦斯油为反应原料, 评价实例 6所得催 化剂 6的加氫裂化性能。 反应装置、 催化剂装量及催化剂预疏化条件同实 例 10。 反应条件为: 360 Ό , 6.4MPa , 液时空速 ( LHSV ) 2.0h"' , 氬 油体积比 500。 评价结果列于表 9中。
对比例 4
本对比例说明在以常压瓦斯油为原秤时, 本发明提供的催化剂具有较 现有技术催化剂更高的对中间馏分油的选择性。
重复实例 11 的操作。 采用与实例 11相同的反应原料、 反应装置、 预 硤化过程及反应条件, 但采用对比例 1所得催化剂 8。 所得的评价结果列 于表 9中。
n 表 9的结果说明, 本发明提供的催化剂 6和催化剂 8的脱硤、 脱氮性 能相近, 但前者对中间馆分油的选择性较后者提高了 16.2%。
表 9 常压瓦斯油的加氩裂化 实例编号 实例 11 对比例 4 催化剂 催化剂 6 催化剂 8 硫含量 原料 1800 1800
(ppm) 产物 15 17
脱疏率(%) 99.2 99.1 氮含量 原料 133 133
(ppm) 产物 0.5 0.3
脱氮率(%) 99.6 99.7
选择性(重%) 79 68 芳烃指数值 原料 20.79 20.79
产品中间馏分油 13.93 13.87

Claims

权 利 要 求
1. 一种含有镍、 钨、 氣、 沸石及氡化铝的馏分油加氣裂化催化剂, 其特 征在于该催化剂具有如下组成: 基于催化剂的重量, 氟 0.5~5.0重%、 氡化 镍 2.5~6.0重%、 氡化钨 10~38重%, 其余为载体; 该载体是由 20~90重% 的氡化铝和 10~80重%的沸石组成,其中沸石为 NH3 - TPD法测定的酸度 值为 1.0~2.0mmol/g的中孔或大孔沸石, 氨化铝为 NH3 - TPD法測定的酸 度值为 0.5~0.8mmol/g的氡化铝。
2. 根掂权利要求 1所述催化剂, 其特征在于催化剂含氟 1~4重%、 氧化 镍 2.6~5.0重%、 氡化钨 19~25重%。
3. 根据权利要求 1所述催化剂, 其特征在于催化剂载体是由 50~80重% 氡化铝和 20~50重%沸石组成。
4. 根据权利要求 1 、 2 、 3之一所述催化剂, 其特征在于所述沸石选自 八面沸石、 丝光沸石 ZSM— 5沸石、 Beta沸石、 Ω沸石中的一种或几 种。 ·
5. 根据权利要 λ 4所述催化剂, 其特征在于所述沸石选自氩型或稀土型 的 Υ型沸石和 /或丝光沸石。
6. 根据权利要求 1 、 2 、 3之一所述催化剂, 其特征在于所述氣化铝是 由选自偏铝酸钠 -二氡化碳法、 烷基铝或烷氣基铝水解法、 偏铝酸钠 -破 酸铝法制备的一种或几种水合氣化铝经焙烧而得到的。
7. 根据权利要求 6所述催化剂, 其特征在于所述水合氡化铝的一水铝石 含量大于 60重%。
8. 权利要求 1所述催化剂的制备方法, 该方法包括将水合氣化铝与沸石 按所需比例混合均匀后成型、 干燥并焙烧以得到催化剂载体, 然后依次用 含氟水溶液和含镍-钨水溶液浸渍该载体, 每次浸渍后干燥并焙烧, 其中 所述水合氨化铝是于 500 - 650 X 焙烧后能形成 ΝΗ3 - TPD法测定的睃度 值为 0.5~0.8mmol/g的氡化铝的水合氣化铝, 所述沸石为 NH3 - TPD法测 定的酸度值为 1.0~ 2.0mmol/g的中孔或大孔沸石。
9. 根据权利要求 8所述方法, 其特征在于所述水合氣化铝是选自偏铝酸 钠 -二氡化碳法、 烷基铝或烷氡基铝水解法、 ^铝酸钠- ^酸铝法制备的 一种或几种水合氡化铝。
10. 根 ^权利要求 9所述方法,其特征在于所述水合氧化铝的一水铝石含 量大于 60重%。
11. 根据权利要求 8所述方法, 其特征在于所述沸石选自八面沸石、 丝光 沸石、 ZSM - 5沸石、 Beta沸石、 Ω沸石中的一种或几种。
12. 根据权利要求 11所述方法,其特征在于所述沸石选自氢型或稀土型 的 Y 沸石和 /或丝光沸石。
PCT/CN1997/000063 1996-06-28 1997-06-27 Catalyseur d'hydrocraquage pour distillat d'huile et procede de production correspondant WO1998000235A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU32526/97A AU3252697A (en) 1996-06-28 1997-06-27 A hydrocracking catalyst of a distillate oil and production method thereof
CA002258558A CA2258558C (en) 1996-06-28 1997-06-27 Distillate hydrocracking catalyst and process for the preparation of the same
EP97928100A EP0913195B1 (en) 1996-06-28 1997-06-27 A hydrocracking catalyst of a distillate oil and production method thereof
DK97928100T DK0913195T3 (da) 1996-06-28 1997-06-27 Katalysator til hydrogenkrakning af en destillatolie og en produktionsmetode dertil
JP50369998A JP3782461B2 (ja) 1996-06-28 1997-06-27 留分水素化分解触媒およびその調製プロセス
NO19986096A NO317840B1 (no) 1996-06-28 1998-12-23 Katalysator for hydrokrakking av destillat, og fremgangsmate for fremstilling derav

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN96106587 1996-06-28
CN96106587.7 1996-06-28

Publications (1)

Publication Number Publication Date
WO1998000235A1 true WO1998000235A1 (fr) 1998-01-08

Family

ID=5119293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1997/000063 WO1998000235A1 (fr) 1996-06-28 1997-06-27 Catalyseur d'hydrocraquage pour distillat d'huile et procede de production correspondant

Country Status (10)

Country Link
US (1) US5972832A (zh)
EP (1) EP0913195B1 (zh)
JP (1) JP3782461B2 (zh)
AU (1) AU3252697A (zh)
CA (1) CA2258558C (zh)
DK (1) DK0913195T3 (zh)
HR (1) HRP970355B1 (zh)
ID (1) ID18860A (zh)
NO (1) NO317840B1 (zh)
WO (1) WO1998000235A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955093B1 (fr) * 1998-05-06 2003-09-03 Institut Francais Du Petrole Catalyseur à base de zéolithe bêta et d'element promoteur et procédé d'hydrocraquage
US6387246B1 (en) * 1999-05-19 2002-05-14 Institut Francais Du Petrole Catalyst that comprises a partially amorphous Y zeolite and its use in hydroconversion of hydrocarbon petroleum feedstocks
FR2793705B1 (fr) * 1999-05-19 2001-06-29 Inst Francais Du Petrole Catalyseur comprenant une zeolithe y partiellement amorphe, un element du groupe vb et son utilisation en hydroconversion et hydroraffinage de charges petrolieres hydrocarbonees
FR2795342B1 (fr) * 1999-06-25 2001-08-17 Inst Francais Du Petrole Catalyseur contenant une zeolithe chargee en element du groupe vb et son utilisation en hydroraffinage et hydrocraquage de coupes hydrocarbonees
FR2795341B1 (fr) * 1999-06-25 2001-08-17 Inst Francais Du Petrole Catalyseur contenant une zeolithe chargee en element des groupes vib et/ou viii et son utilisation en hydroraffinage et hydrocraquage de coupes hydrocarbonees
FR2815041B1 (fr) * 2000-10-05 2018-07-06 IFP Energies Nouvelles Procede de production de diesel par hydrocraquage a pression moderee
ES2200701B1 (es) * 2002-07-16 2005-05-01 Universidad Politecnica De Valencia Catalizador de hidrocraqueo conteniendo un material solido cristalino microporoso y uso de dicho catalizador para el hidrocraqueo de alimentacion de hidrocarburos.
US20040040890A1 (en) * 2002-08-30 2004-03-04 Morton Robert W. Desulfurization and novel compositions for same
CN100360235C (zh) * 2004-10-29 2008-01-09 中国石油化工股份有限公司 含复合沸石的氧化铝载体及其制备方法
CN100360221C (zh) * 2004-10-29 2008-01-09 中国石油化工股份有限公司 一种含改性y沸石的氧化铝载体及其制备方法
US8575063B2 (en) * 2008-10-27 2013-11-05 Hongying He Nickel-based reforming catalysts
KR20200086983A (ko) * 2019-01-10 2020-07-20 코아텍주식회사 대용량 과불화화합물 제거를 위한 금속산화물 촉매 및 그 제조 방법
CN113677778A (zh) * 2019-03-28 2021-11-19 引能仕株式会社 润滑油基础油的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401556A (en) * 1979-11-13 1983-08-30 Union Carbide Corporation Midbarrel hydrocracking
US4419271A (en) * 1979-10-15 1983-12-06 Union Oil Company Of California Hydrocarbon conversion catalyst
US4517073A (en) * 1982-08-09 1985-05-14 Union Oil Company Of California Hydrocracking process and catalyst therefor
CN1056514A (zh) * 1990-05-11 1991-11-27 中国石油化工总公司化工科学研究院 重质馏份油加氢处理催化剂

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847358A (en) * 1954-09-24 1958-08-12 California Research Corp Conversion of wax into oil
US3132089A (en) * 1960-12-23 1964-05-05 Union Oil Co Hydrocracking process with pre-hydrogenation
US3159568A (en) * 1961-10-02 1964-12-01 Union Oil Co Low pressure hydrocracking process with hydrofining of feed
GB1399379A (en) * 1971-07-14 1975-07-02 Nippon Oil Co Ltd Process for the preparation of a hydrocarbon conversion catalyst
US4175033A (en) * 1976-05-06 1979-11-20 Uop Inc. Hydroprocessing of hydrocarbons over nickel, moly, platinum catalyst
US4138326A (en) * 1977-08-12 1979-02-06 Gulf Research & Development Hydrotreating process and catalyst
US4618594A (en) * 1979-03-19 1986-10-21 Standard Oil Company (Indiana) Catalyst and process for the hydrodenitrogenation and hydrocracking of high-nitrogen feeds
NL191266C (nl) * 1979-05-25 1995-04-18 Shell Int Research Werkwijze voor de bereiding van lichte koolwaterstoffracties.
US4576711A (en) * 1979-10-15 1986-03-18 Union Oil Company Of California Hydrocracking process and catalyst therefor
US4672048A (en) * 1979-10-15 1987-06-09 Union Oil Company Of California Hydrocracking catalyst
JPS595011B2 (ja) * 1979-11-27 1984-02-02 千代田化工建設株式会社 重質炭化水素油の水素化処理用触媒ならびにその製法
US4563434A (en) * 1982-08-09 1986-01-07 Union Oil Company Of California Hydrocracking catalyst
US4483942A (en) * 1982-10-15 1984-11-20 Nippon Oil Co., Ltd. Process of preparing hydrogenation catalysts
US4844792A (en) * 1984-08-07 1989-07-04 Union Oil Company Of California Hydroprocessing with a specific pore sized catalyst containing non-hydrolyzable halogen
CN85100218B (zh) * 1985-04-01 1987-03-11 中国石油化工总公司石油化工科学研究院 低碳烷氧基铝水解制备氧化铝方法
FR2581896B1 (fr) * 1985-05-14 1987-07-24 Inst Francais Du Petrole Catalyseur d'hydroraffinage d'huile ou d'hydrocraquage doux de charges petrolieres lourdes pour produire des distillats moyens
US4891127A (en) * 1985-12-31 1990-01-02 Exxon Research And Engineering Company Preparation and use of catalysts comprising a mixture of tungsten oxide and silica supported on a boehmite-like surface
US4894142A (en) * 1987-03-24 1990-01-16 Uop Hydrocracking process employing low acidity Y zeolite
US4816538A (en) * 1987-07-16 1989-03-28 Union Oil Company Of California Nickel-containing hydrocracking catalyst
US4957895A (en) * 1988-05-23 1990-09-18 The Harshaw Chemical Company Hydrotreating catalyst and process
JP2908959B2 (ja) * 1993-04-07 1999-06-23 出光興産株式会社 新規触媒組成物
US5378671A (en) * 1993-06-03 1995-01-03 Mobil Oil Corp. Method for preparing catalysts comprising zeolites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419271A (en) * 1979-10-15 1983-12-06 Union Oil Company Of California Hydrocarbon conversion catalyst
US4401556A (en) * 1979-11-13 1983-08-30 Union Carbide Corporation Midbarrel hydrocracking
US4517073A (en) * 1982-08-09 1985-05-14 Union Oil Company Of California Hydrocracking process and catalyst therefor
CN1056514A (zh) * 1990-05-11 1991-11-27 中国石油化工总公司化工科学研究院 重质馏份油加氢处理催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0913195A4 *

Also Published As

Publication number Publication date
AU3252697A (en) 1998-01-21
DK0913195T3 (da) 2003-11-24
CA2258558C (en) 2004-11-09
JP3782461B2 (ja) 2006-06-07
EP0913195B1 (en) 2003-10-15
US5972832A (en) 1999-10-26
NO317840B1 (no) 2004-12-20
EP0913195A1 (en) 1999-05-06
ID18860A (id) 1998-05-14
NO986096L (no) 1998-12-23
EP0913195A4 (en) 2000-03-22
HRP970355A2 (en) 1998-06-30
CA2258558A1 (en) 1998-01-08
HRP970355B1 (en) 2004-12-31
NO986096D0 (no) 1998-12-23
JP2001503312A (ja) 2001-03-13

Similar Documents

Publication Publication Date Title
Ali et al. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports
WO1998000235A1 (fr) Catalyseur d'hydrocraquage pour distillat d'huile et procede de production correspondant
US5576256A (en) Hydroprocessing scheme for production of premium isomerized light gasoline
FI88264C (fi) Konversionsfoerfarande foer kolvaeten och katalysator foer anvaendning i detta foerfarande
RU2338590C2 (ru) Каталитическая композиция для гидрокрекинга и способ превращения углеводородного сырья в низкокипящие материалы
WO1998000384A1 (fr) Procede d'hydrocraquage d'une huile de distillat lourde a des pressions moyennes
US6733657B2 (en) Hydrocracking catalyst having a unique silica-alumina substrate
US5770047A (en) Process for producing reformulated gasoline by reducing sulfur, nitrogen and olefin
FI71078C (fi) Foerfarande foer reformering av kolvaete
CS274296B2 (en) Mixture suitable as base of catalysts for hydroprocess
US5393408A (en) Process for the stabilization of lubricating oil base stocks
CN109722302B (zh) 一种裂化脱硫联合方法和装置以及催化裂化和吸附脱硫的组合工艺
US5112472A (en) Process for converting hydrocarbon oils
JP4846540B2 (ja) 高オクタン価ガソリン基材の製造方法
JP2563778B2 (ja) 正パラフイン類に富む留分の新規異性化触媒およびその製造法
JP3994236B2 (ja) 脱アルミニウム化された少なくとも2つのゼオライトyを含む触媒、および該触媒を用いる石油留分の従来の水素化転換方法
EP0002791A1 (en) Conversion of hydrocarbons and carbon monoxide in exhaust gas streams
JP5480680B2 (ja) 高芳香族炭化水素油を原料とするガソリン基材の製造方法
JP5498720B2 (ja) 1環芳香族炭化水素の製造方法
CN1044715C (zh) 一种馏分油加氢裂化催化剂及其制备
MXPA05009065A (es) Catalizador y proceso para la preparacion de alcanos lineales.
WO2019189482A1 (ja) 水素化触媒及び低芳香族溶剤の製造方法
US11691132B2 (en) Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
US6235915B1 (en) Catalyst for use in hydrogenating aromatic compounds in a hydrocarbon-containing feed containing sulfur-containing compounds
US6013849A (en) Toluene disproportionation process using a zeolite/tungsten carbide catalyst

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2258558

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2258558

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1997928100

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 503699

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997928100

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997928100

Country of ref document: EP