WO1997043794A1 - Procede de preparation de materiaux positifs pour piles secondaires au lithium au moyen d'energie micro-ondes - Google Patents

Procede de preparation de materiaux positifs pour piles secondaires au lithium au moyen d'energie micro-ondes Download PDF

Info

Publication number
WO1997043794A1
WO1997043794A1 PCT/CN1997/000039 CN9700039W WO9743794A1 WO 1997043794 A1 WO1997043794 A1 WO 1997043794A1 CN 9700039 W CN9700039 W CN 9700039W WO 9743794 A1 WO9743794 A1 WO 9743794A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
lithium
atmosphere
positive electrode
synthesized
Prior art date
Application number
PCT/CN1997/000039
Other languages
English (en)
French (fr)
Inventor
Hongwei Yan
Xuejie Huang
Liquan Chen
Rongjian Xue
Hong Huang
Original Assignee
Institute Of Physics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Physics, Chinese Academy Of Sciences filed Critical Institute Of Physics, Chinese Academy Of Sciences
Priority to DE0913876T priority Critical patent/DE913876T1/de
Priority to EP97920486A priority patent/EP0913876A4/en
Priority to JP9540354A priority patent/JPH11511290A/ja
Publication of WO1997043794A1 publication Critical patent/WO1997043794A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1292Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn5O12]n-
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method for preparing a positive electrode material for a secondary lithium battery by using microwave energy.
  • metal oxides, hydroxides, or salts need to be mixed in a certain ratio and then calcined in a conventional heating furnace.
  • the transition metal oxides LiCo0 2 , LiNi0 2 , and LiMn 2 0 4 used as cathode materials of lithium ion batteries are usually prepared by using lithium hydroxide or salt and transition metal-containing hydroxide or salt as raw materials. Calcined at 700-900 ° C for a long time and repeated several times. The electrochemical reversible capacity of the obtained material is between 120-140mAh / g. In the reference: 1. K.
  • the conventional solid-phase reaction method for the production of positive electrode materials for secondary lithium batteries has large energy consumption and low production efficiency, difficult to control material formulations, resulting in poor repeatability and unstable material performance.
  • the purpose of the present invention is to save energy and improve production efficiency; the second purpose is to reduce the volatilization of lithium salt during the preparation process, to ensure the accurate control of the formula, and to make the production repeatable: to obtain a microcrystalline positive electrode material with uniform crystal grains: its positive electrode
  • the material has good cyclicity and can withstand high current charge and discharge.
  • the general formula of the positive electrode material is:
  • the precursor After the precursor is pressed into a sheet or kept loose, it is placed in a container that can be penetrated by microwaves, such as mullite foam insulation brick or alumina foam insulation brick, high temperature resistant glass, and then put in a frequency of 2.45 Gigahertz (GHz) or 28 GHz (GHz) or 60 GHz (GHz) single-mode microwave oven or multi-mode microwave oven, the microwave frequency is in the range of 0.3--300 gigahertz (GHz), and the microwave wavelength is lmm-- It is synthesized between 500 ° C and 1000 ° C, and the holding time is from 1 minute to 5 hours, and then cooled with the furnace to prepare a positive electrode material for a secondary lithium battery.
  • microwaves such as mullite foam insulation brick or alumina foam insulation brick, high temperature resistant glass
  • the prepared materials include: Li 1 + x Co0 2 , Li 1 + x Ni0 2 , Ni w 0 2 and Li l + x Mn 2 0 4. 7 , Li 4 Mn40 9 , LiMn0 2 , Li 2 Mn0 3 , Li 5 Mn40 9 , Li 4 Mn 5 0 ] 2 o
  • the invention uses electromagnetic waves with a microwave frequency in the range of 0.3-300 gigahertz (GHz), and the corresponding wavelength is between 1 m and 1 mm. It has the characteristics of short wavelength, high frequency, strong penetrating ability, and obvious quantum characteristics. New energy can realize rapid heating and rapid sintering of materials.
  • Microwave heating is completely different from conventional heating. It relies on the absorption of microwave energy by an object to convert it into thermal energy to heat up to a certain temperature. The heat is generated inside the material rather than from an external heating source. It is a bulk heating method, so the synthesis temperature is lower than conventional method. After the material absorbs microwave energy and converts it into kinetic and thermal energy of internal molecules, it heats up uniformly at the same time.
  • the heating temperature rises exponentially, which results in extremely high heating rates.
  • the material will quickly cross the low temperature region where the surface diffuses rapidly, and the fine-grained microstructure is maintained to a high temperature.
  • grain boundary diffusion and bulk diffusion will prevail. Therefore, the time for grain growth is greatly shortened, thereby obtaining uniform, fine and dense microstructures and greatly reducing the cost of energy and time.
  • the grain size of the material at 0.1 ⁇ 0.5 ⁇ ! Between about a conventional method of synthesizing 1/10 LiCo0 2. At the same time, agglomeration between ⁇ particles can be avoided, and it can be used directly without further grinding.
  • the cathode active material prepared by the present invention may be a transition metal oxide containing potassium, which can reversibly intercalate and deintercalate lithium ions.
  • the lithium-containing transition metal oxide can be prepared from a lithium-containing compound and at least one transition metal such as a compound of Co, Ni, Mn, Cr, V, Ti, Sc, Fe.
  • the oxide may also contain other metals such as Al, Ga, Ti, etc., and its addition ratio is up to 30 mol%.
  • Examples of the lithium-containing transition metal oxide positive electrode active material in the present invention are Li x 0> 0 2 , Li x Ni0 2 , Li x Mn0 2 , I ⁇ 0 ⁇ N ⁇ ⁇ 0 2 .
  • a spinel-type lithium manganese oxide is also used as the positive electrode active material, and its typical material is LiMn 2 0 4 .
  • the lithium manganese oxide of the spinel structure prepared by the present invention may have various forms, including an ortho-spinel structure, an anti-spinel structure, a defect-free structure, a defect-type non-stoichiometric structure, and the like.
  • the synthesis atmosphere may be an oxidizing atmosphere or a reducing atmosphere.
  • the synthesis can be performed in air, any oxygen partial pressure atmosphere, hydrogen atmosphere, carbon monoxide atmosphere, nitrogen atmosphere, argon atmosphere or carbon dioxide atmosphere.
  • the advantage of the present invention is that the lithium ion battery cathode material is synthesized by microwave heating. It can be understood that the synthesis temperature can be reduced, the synthesis time can be shortened, and the production efficiency can be improved. Since the ⁇ synthesis is completed in a very short inch, the total amount of lithium can be evaporated. To ignore, make sure that the material ratio does not change. Because the grain growth size can be effectively controlled, the material grinding process can be omitted; the prepared cathode material has high electrochemical capacity, and other properties are superior or inferior to those of conventionally synthesized cathode materials, especially for high-current charge and discharge. Brief description of the drawings
  • Fig. 2 Scanning electron micrograph of LiCo0 2 as a cathode material for secondary lithium batteries synthesized by microwave energy
  • Fig. 3 X-ray diffraction spectrum of a sample of LiCo0 2 as a cathode material for secondary lithium batteries synthesized by microwave energy
  • Fig. 6 X-ray diffraction spectrum of a sample of lithium manganese cathode material LiMn 2 0 4 synthesized by microwave energy
  • FIG. 8 The best way to synthesize the cycle performance of LiMn 2 0 4 as a cathode material for secondary lithium batteries using microwave energy to achieve the present invention
  • LiCo0 2 Lithium salt uses chemically pure hydrogen
  • chemically pure cobalt trioxide is used.
  • the two raw materials are weighed according to a weight ratio of 1: 3.47. They are uniformly mixed by the usual dry blending method. After being compressed into a precursor, they are placed in a mullite foam insulation The material container was placed in a single-mode microwave oven with a microwave frequency of 2.45 gigahertz (GHz) and a corresponding wavelength of 12.24 cm.
  • GHz gigahertz
  • the synthesis temperature is 800 ° C and the temperature is maintained for 10 minutes.
  • the synthesis atmosphere is air and then cooled with the furnace. The entire process takes about 20 minutes.
  • the microwave heating temperature rise curve is shown in Figure 1.
  • the particle size of the synthesized UCo0 2 microcrystals was observed to be 2 ⁇ m with scanning electron microscope (see Figure 2), while the particle size of conventionally synthesized LiCo0 2 was 10-20 ⁇ m. From the XRD spectrum of Fig. 3, it can be found that the microwave-synthesized LiCo0 2 has high purity, and no other heterogeneous phases are observed. Its electrochemical reversible capacity is 140mAh / g (see Figure 4), and cycle performance is good (see Figure 5).
  • LiNi0 2 The lithium salt is chemically pure lithium nitrate
  • the nickel salt is made of analytically pure hafnium oxide.
  • the two raw materials are weighed according to a weight ratio of 1: 0.75 and uniformly mixed by the usual dry blending method.
  • the synthesis method is the same as above.
  • the synthesis temperature is 700 ° C and the temperature is maintained for 30 minutes.
  • the synthesis atmosphere is air. then cool with the furnace.
  • LiNi0 2 synthesis of crystal grain size of 1-2 microns. the electrochemical reversible capacity of 150mAh / g, good cycle performance.
  • the synthesis temperature was 500 ° C, and the temperature was maintained for 1 hour.
  • the synthesis atmosphere was an argon atmosphere. Its electrochemical reversible capacity is 120mAh / g, and its cycling performance is good.
  • nickel salt is chemically pure nickel trioxide
  • cobalt salt is chemically pure cobalt trioxide.
  • the three raw materials are weighed according to a weight ratio of 1: 3.14: 0.31.
  • the mullite foam insulation brick container was placed in a single-mode microwave oven with a microwave frequency of 2.45 GHz, and the synthesis temperature was 700. C, hold for 10 minutes, and then cool with the furnace.
  • the product is a single phase with an electrochemical reversible capacity of 150 mAh / g and good cycling performance.
  • the synthetic cathode material LiMn 2 0 4 is : chemically pure hydroxide Lithium and chemically pure manganese dioxide are used as raw materials, weighed according to a weight ratio of 1: 7.26, mixed uniformly, compressed into tablets, and placed in a mullite foam insulation brick container, placed in a 28GHz multi-mode household microwave oven, and heated with a high heating range 20 minutes, then cooled with the furnace.
  • LiMn 2 0 4 grains are uniform, [2] micron, high phase purity (see Figure 6), its electrochemical reversible capacity is 120mAh / g (see Figure 7), and good cycle performance (see Figure 8).
  • the metal nitrate was dissolved in a mixture of citric acid and ethylene glycol, esterified at 100-140 C, and then dried under vacuum at 180 ° C to obtain a foam.
  • Organic precursor It was calcined at 400 ° C for 5 hours, organic matter was removed, and the tablets were mixed and compressed, and then placed in a high temperature resistant borosilicate glass container, heated to 500 ° C in a 2.45 GHz multi-mode household microwave oven, and kept for 5 hours.
  • the composite cathode material UM ni9 V i 0 4 Lithium acetate, manganese acetate and vanadium acetate were used as raw materials to prepare precursors by sol-gel method. Take B Glycol methyl ether was used as a solvent, and ⁇ -methacrylic acid and diethylenetriamine were used as monomers to form a polymer.
  • Li: Mn: Vl: 1.9: 0.1 acetate was dissolved in ethylene glycol methyl ether, and ⁇ -methacrylic acid and diethylenetriamine were added.
  • the obtained sol was cured at 120-140 ° C to form a gel.
  • the precursor was obtained after heat treatment at 500 ° C for 5 hours. Then mix and press the tablets, heat to 750 ° C in a microwave oven, and hold for 1 minute.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

微波能制备二次锂电池用正极材料的方法
技术领域
本发明涉及一种用微波能制备二次锂电池用正极材料的方法 背景技术
用常规固相反应方法制备二次锂电池用的含锂电极材料, 需要将金属的氧化物, 氢 氧化物或盐按一定配比混合后在常规加热炉中煅烧。 如: 制备用作锂离子电池正极材料 的过渡金属氧化物 LiCo02、 LiNi02、 LiMn204 , 通常是以锂的氢氧化物或盐和 含过渡金 属的氢氧化物或盐为原料, 在 700- 900°C高温下长时间煅烧、 并重复数次而成, 所获得 的材料其电化学可逆容量在 120— 140mAh/g之间, 在参考文献: 1. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough,材料研究公报, 1980年第 15卷 783页。 ( K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mat. Res. Bull, 15, 783(1980) ) 2. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Groves, 材料研 究公报, 1985年第 20卷 1 137页。 ( M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Groves, Mat. Res. Bull., 20, 1 137(1985) ) 3. M. M. Thackeray, W. I. F. David, P. G. Bruce and J. B. Goodenough,材料研究公报, 1983年第上〗8卷 461页。 ( M. M. Thackeray, W. I. F. David, P. G. Bruce and J. B. Goodenough, Mat. Res. Bull., 18, 461(1983)) 中有所描 述。 在常规加热炉加热过程中, 热量是由加热体传递到样品的中心, 为了获得均匀产 物, 常需要 24到 48小时长时间保温, 以使样品受热均匀, 这将耗费大量的时间和能源。 另外, 长时间煅烧还将使材料晶粒长大, 为便于在二次锂电池中使用该材料, 只有再研 磨来获得细粉, 从而造成晶粒粒径分布很不均匀和晶粒外形不规则, 使正材极材料的性 能变差。 此外, 长时间加热会使化合物中锂挥发严重, 通常在反应过程中需要添加过量 的锂盐来补充, 因此用传统固相反应方法, 很难控制最终产物的组成和均匀性。 因此采 用常规固相反应方法生产二次锂电池用正极材料能源消耗大且生产效率低, 材料配方难 以控制造成重复性差, 材料性能不稳定。
本发明的目的在于节约能源和提高生产效率; 目的之二为了减少制备过程中锂盐的 挥发, 保证配方得以准确控制, 使生产重复性好: 获得具有均匀晶粒的微晶正极材料: 其正极材料循环性好, 并可耐大电流充放电。 从而提供一种将锂和过渡金属如 Co、 Ni、 Mn、 Cr的氢氧化物或氧化物或它们的盐类的混合物在微波炉中加热的合成二次锂电池用 正极材料的方法。 发明的公开
本发明微波能制备二次锂电池用正极材料的方法, 正极材料的通式为:
Li x MLy M'wC z其中 x = -l— 5, y = -l ~ 1, ω = 0~ 6, z = -8~ 3; M, M' = Co, Ni, Mn, Cr, V, Ti, Sc, Fe.用 Co, Ni, Mn, Cr, V, Ti, Sc, Fe和 Li的氧化物, 氢氧化物或盐做原料按通式所 需配比称料, 用通常的干混或湿混制成前驱体。 前驱体也可用湿化学法包括共沉淀法, 溶胶凝胶法, Pechini法来制备。 将前驱体压成片或保持疏松状后, 置于能被微波穿透的 保温材料如莫来石泡沫保温砖或氧化铝质泡沫保温砖、 耐高温玻璃等容器中, 然后放人 频率为 2.45吉赫兹 (GHz)或 28吉赫兹 (GHz)或 60吉赫兹 (GHz)单模微波炉或多模微波炉中, 使用微波频率在 0.3--300吉赫兹 (GHz)范围内, 微波波长在 lmm--lm之间, 在 500°C— 1000°C合成, 保温时间 1分钟至 5小时, 然后随炉冷却, 制备二次锂电池用正极材料。 所 制备的材料包括: Li1+xCo02, Li1+xNi02, Niw02和 Lil +xMn204.7, Li4Mn409 , LiMn02 , Li2Mn03 , Li5Mn409 , Li4Mn50] 2 o
本发明使用微波频率在 0.3-300吉赫兹 (GHz)范围的电磁波, 相应波长在 1 m- 1 mm之 间, 具有波长短、 频率高, 穿透能力强、 量子特性明显的特性, 作为一种新能源, 可以 对材料实现快速加热和快速烧结。 微波加热完全不同于常规加热, 它是依靠物体吸收微 波能转换成热能自身升温至一定温度, 热量产生于材料内部而不是来源于外部加热源, 是一种体加热方式, 因此合成温度低于常规方法。 材料吸收微波能转化为内部分子的动 能和热能后, 整体同时均匀加热。 由于材料对微波能的吸收率与温度成正比, 导致加热 温度呈指数形式升高, 从而产生极髙的加热速率, 材料将快速越过表面扩散快的低温 区, 细晶的微结构被保持到高温合成区, 此时晶界扩散和体扩散将占优势。 所以晶粒生 长的时间被大大缩短, 从而获得均匀, 细小和致密的微结构 并大大减少了能源和时间 的耗费。 从电镜照片中可以看到, 材料的晶粒大小在 0.1~0.5μη!之间, 约为常规方法合成 LiCo02 的 1/10。 同时避免 Γ颗粒之间的团聚, 可直接使用而勿需再研磨。
本发明所制备的正极活性材料可以是一种含钾的过渡金属氧化物, 能够可逆地嵌人 和脱嵌锂离子。 含锂的过渡金属氧化物可以从含锂化合物和至少一种过渡金属如 Co, Ni, Mn, Cr, V, Ti, Sc, Fe的化合物来制备。 氧化物还可包含其它金属如 Al, Ga, Ti等, 其添加 比例最高为 30 mol%。 本发明中含锂过渡金属氧化物正极活性材料的例子有 Lix0>02, LixNi02, LixMn02, Ι^Ο^Νίω02。 在本发明中, 一种尖晶石型的锂锰氧化物也被作为正 极活性材料 其典型材料为 LiMn204。 用本发明制备的尖晶石结构的锂锰氧化物可以有 各种形态, 包括正尖晶石结构, 反尖晶石结构, 无缺陷型结构, 有缺陷型非化学计量结 构等等。 合成气氛可以是氧化气氛, 也可以是还原气氛。 例如, 合成可以在空气, 任意 氧分压气氛, 氢气气氛, 一氧化碳气氛, 氮气气氛, 氩气气氛或二氧化碳气氛进行。
本发明的优点在于用微波加热合成锂离子电池正极材料 . 可以明 ¾降低合成温度, 缩短合成时间, 提高生产效率, 由于在极短的吋间内完成 Γ合成, 全过程锂量的挥发可 以忽略, 确保材料配比不变。 由于晶粒生长大小得以有效控制, 可省略对材料研磨工 序; 制备的正极材料的电化学容量高, 其他性能优于或不亚于常规方法合成的正极材 料, 尤其是可以大电流充放电。 附图的简要说明
图 1 典型微波加热升温曲线
图 2 用微波能合成二次锂电池用正极材料 LiCo02的扫描电镜照片
图 3 用微波能合成二次锂电池用正极材料 LiCo02 样品的 X光衍射谱
图 4 用微波能合成二次锂电池用正极材料 LiCo02与金属 Li组装电池的
充放电曲线
图 5 用微波能合成二次锂电池用正极材料 LiCo02的循环性能
图 6 用微波能合成二次锂电池用正极材料 LiMn204样品的 X光衍射谱
图 7 用微波能合成二次锂电池 正极材料 LiMn204与金属 Li组装电池的
充放电曲线
图 8 用微波能合成二次锂电池用正极材料 LiMn204 的循环性能 实现本发明的最佳方式
实施例 1
按 Li1+X M,.y Μ'ω04-Ζ (其中 x = 0; y = 0; ω = 0, ζ = 2 ) Μ = Co, 合成正极材料 LiCo02 : 锂盐采用化学纯氢氧化锂, 钴盐用化学纯的三氧化二钴, 将两种原料按重量比 1 : 3.47称料, 用通常干混方法均匀混合, 压片制成前驱体后, 置于莫来石泡沫保温材料 容器中, 放于微波频率为 2.45吉赫兹 (GHz),相应波长为 12.24cm的单模微波炉中进行合 成。 合成温度为 800°C, 保温 10分钟, 合成气氛为空气气氛 然后随炉冷却, 整个过程 共用 20分钟左右, 微波加热升温曲线见图 1。 用扫描电镜观察合成的 UCo02微晶粒粒度 为】- 2微米( 见图 2 ) , 而常规合成的 LiCo02其粒度则为 10— 20微米。 从图 3的 XRD谱 图中可以发现, 微波合成的 LiCo02具有很高的纯度, 观察不到其它杂相的存在。 其电化 学可逆容量为 140mAh/g ( 见图 4 ) , 循环性能良好( 见图 5 ) 。
实施例 2
按 Lil+X M卜 y M, 04-z; (其中 =0, = 0,(0 = 0,2 = 2) ?^ =^; 合成正极材料 LiNi02 : 锂盐采用化学纯硝酸锂, 镍盐采用分析纯氧化镩, 将两种原料按重量比 1 :0.75称料, 用 通常干混方法均匀混合, 合成方法同上, 合成温度为 700°C, 保温 30分钟, 合成气氛为 空气气氛。 然后随炉冷却。 合成的 LiNi02晶粒度为 1— 2微米。 其电化学可逆容量为 150mAh/g , 循环性能良好。
实施例 3 按 Lil+X M,-y Μ'ω0 (x = -0.1; y = 0; ω = 0; z = 2) M = Ni, 合成正极材料 Li09NiO2: 将同上原料按重量比 1: 0.83称料, 用干混均匀混合、 压片后在同上条件下进 行合成。 合成温度为 500°C, 保温 1小时, 合成气氛为氩气气氛。 其电化学可逆容量为 120mAh/g, 循环性能良好。
实施例 4
按 Li1+X M1-y Μ,ω04-Ζ (χ = 0, y = 0.09, ω = 0.09, ζ = 2) Μ' = Co, 合成正极材料 LiNi091Coo.o902: 锂盐采用化学纯氢氧化锂, 镍盐采用化学纯三氧化二镍, 钴盐用化学纯 三氧化二钴, 将三种原料按重量比 1:3.14:0.31称料, 均匀混合、 压片后置于莫来石泡沫 保温砖容器中, 放于微波频率为 2.45GHz的单模微波炉中进行合成, 合成温度为 700。C, 保温 10分钟, 然后随炉冷却。 产物为单相, 其电化学可逆容量为 150mAh/g, 循环性能良 好。
实施例 5
按 Lil+X M1-y Μ'ω04-ζ(χ = 0, y= 1,ω = 0,ζ = 0) M=Mn, 合成正极材料 LiMn204: 用化 学纯氢氧化锂和化学纯二氧化锰为原料, 按重量比 1: 7.26称料, 均匀混合、 压片后置于 莫来石泡沫保温砖容器中, 放于 28GHz多模家用微波炉中, 用高加热档加热 20分钟, 然 后随炉冷却。 所得的 LiMn204晶粒均匀, 为】 - 2微米, 相纯度高( 见图 6) , 其电化学可 逆容量为 120mAh/g( 见图 7) , 循环性能良好( 见图 8) 。 实施例 6 按 Lil+X M,.y Μ'ω04-Ζ (x - 0, y = 0.4, ω = 0.4, z -2 ) = Mn, M'= Cr,合成正极材料 LiCro.4Mm.6O4: 用化学纯氢氧化锂, 化学纯三氧化二铬和化学钝二氧化锰为原料, 按重 量比 1:1.27:5.81称料, 均匀混合、 压片后置于莫来石泡沫保温砖容器中, 放于 60GHz多模 家用微波炉中, 用高加热档加热 20分钟, 然后随炉冷却, 产物的电化学可逆容量为 lOOmAh/go
实施例 7
按 Li1+X M1-y Μ'ω04.ζ (其中 χ =0 , y = -0.1, ω = 0.1, ζ - 2) Μ' =Fe,合成正极材料 LiCo0.9Fe0lO2: 以 Co(N03)2 , 以 Fe(N03)2 和 LiN03 为原料, 采用通常湿化学法制备前驱 体。 以柠檬酸和乙二醇为单体以形成聚合基。 按照原子比 Li: Co: Mn =1: 0.9: 0.1将金属 硝酸盐溶解于柠檬酸和乙二醇的混合物中, 在 100-140 C使其酯化 , 然后在 180°C真空 干燥得到泡沫状有机前驱体。 400°C煅烧 5小时, 去除有机物, 然后混均压片, 放人耐高 温硼硅玻璃容器中, 在 2.45GHz多模家用微波炉中加热到 500°C, 保温 5小时。
实施例 8
按 Lil+X M1-y Μ'ω04.ζ (其中 χ = 0, y = -0.9, ω = 0.1, ζ = 0) Μ' = V,合成正极材料 UMni9V i04: 以醋酸锂. 醋酸锰, 醋酸钒为原料, 采用溶胶凝胶法制备前驱体。 以乙 二醇甲醚为溶剂, 以 α- 甲基丙烯酸和二乙三胺为单体形成聚合物。 按照原子比 Li:Mn:V-l:1.9:0.1, 将醋酸盐溶解于乙二醇甲醚中, 并加人 α- 甲基丙烯酸和二乙三胺。 得到的溶胶在 120-140°C使其固化形成凝胶。 经 500°C热处理 5小时后得到前驱体。 然后 混均压片, 在微波炉中加热到 750°C, 保温 1分钟。
实施例 9
按 ϋι+χΜ1-γΜ'ω04-ζ (其中 x = 0,y= 1,ω = 0,ζ=2)Μ=Μη,合成正极材料 LiMn02: 将 CMD(36.3g)和 LiOH(10g), 球磨混匀后压片, 放入氧化铝质耐火材料匣钵中, 在 2.45GHz 单模式微波炉中进行合成, 合成气氛为氩气。 首先在 500°C加热 5分钟, 然后再磨匀后在 1000°C加热 10分钟。

Claims

权利要求书
1、 一种微波能制备二次锂电池用正极材料的方法, 包括: 用过渡金属 M, M' = Co, Ni, Mn, Cr, V, Ti, Sc, Fe和锂的氧化物氢氧化物或盐作原料, 经通常混合方法把原料混合 均匀制成前驱体, 加热合成, 其特征在于: 正极材料组成按 υ1+χ Μ^Μ,ω04.ζ配比, 其 ψχ = -1 ~ 5, y = -l - 1, ω = 0- 6, z = -8~ 3; M, Μ' = Co, Ni, Mn, Cr, V, Ti, Sc, Fe , 将前驱 体压成片或保持疏松状后, 置于能被微波穿透的保温材料、 耐高温玻璃容器中, 然后放 入单模微波炉或多模微波炉中, 使用微波频率在 0.3--300吉赫兹 (GHz)范围内, 微波波长 为 lmm--lm之间, 在 500°C- 1000°C下合成, 保温时间 1分钟至 5小时, 然后随炉冷却。
2、 按权利要求 1所述的制备方法, 其特征在于: 所述的能被微波穿透的保温材料是 莫来石质耐火材料, 氧化铝质耐火材料, 叶蜡石, 硼硅玻璃材料。
3、 按权利要求书 1所述制备二次锂电池用正极材料的方法, 其特征在于: 微波炉中合 成气氛为氧化气氛、 还原气氛或中性气氛。
PCT/CN1997/000039 1996-05-10 1997-05-04 Procede de preparation de materiaux positifs pour piles secondaires au lithium au moyen d'energie micro-ondes WO1997043794A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE0913876T DE913876T1 (de) 1996-05-10 1997-05-04 Verfahren zur herstellung von positivmaterial für lithiumsekundärzelle mittels mikrowellenenergie
EP97920486A EP0913876A4 (en) 1996-05-10 1997-05-04 PROCESS FOR THE PREPARATION OF POSITIVE MATERIALS FOR LITHIUM SECONDARY BATTERIES USING MICROWAVE ENERGY
JP9540354A JPH11511290A (ja) 1996-05-10 1997-05-04 マイクロ波エネルギーを用いたリチウム二次電池用陽極材料の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN96104965A CN1042377C (zh) 1996-05-10 1996-05-10 一种合成锂离子电池中正极材料的方法
CN96104965.0 1996-05-10

Publications (1)

Publication Number Publication Date
WO1997043794A1 true WO1997043794A1 (fr) 1997-11-20

Family

ID=5118649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1997/000039 WO1997043794A1 (fr) 1996-05-10 1997-05-04 Procede de preparation de materiaux positifs pour piles secondaires au lithium au moyen d'energie micro-ondes

Country Status (5)

Country Link
EP (1) EP0913876A4 (zh)
JP (1) JPH11511290A (zh)
CN (1) CN1042377C (zh)
DE (1) DE913876T1 (zh)
WO (1) WO1997043794A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412633A1 (en) * 2017-06-08 2018-12-12 Basf Se Process for manufacturing an electrode active material
CN110504444A (zh) * 2019-08-19 2019-11-26 王杰 一种钪钒合锂锰氧化物作为锂电池的正极材料及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678452B2 (ja) * 2000-05-15 2011-04-27 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムマンガン複合酸化物の製造方法
CN1324731C (zh) * 2003-07-15 2007-07-04 新乡无氧铜材总厂 一种锂离子电池用锂锰氧化物正极材料的制备工艺
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
KR101748406B1 (ko) * 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법
JP5917027B2 (ja) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 電極用材料の作製方法
JP2012048865A (ja) * 2010-08-24 2012-03-08 Asahi Glass Co Ltd リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
CN103125036A (zh) * 2010-09-30 2013-05-29 日本碍子株式会社 锂离子电池用正极活性物质的制造方法
JP5741818B2 (ja) * 2011-03-18 2015-07-01 東京電力株式会社 リチウムイオン二次電池用活物質の製造方法およびその用途
CN102208643A (zh) * 2011-04-28 2011-10-05 河间市金鑫新能源有限公司 锂离子动力电池多元掺杂改性正极材料及其制备方法
CA2880876C (en) * 2012-08-10 2020-07-07 Csir Production of a spinel material
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
EP3164363B1 (en) * 2014-07-03 2020-08-19 Csir Production of a layered lithium-manganese-nickel-cobalt oxide material
CN106067548B (zh) * 2016-08-13 2018-10-23 杭州富阳伟文环保科技有限公司 一种SnO2/钨酸铁锂/碳复合纳米材料及其制备方法
DE102017220619A1 (de) * 2017-11-17 2019-05-23 Iontech Systems Ag Verfahren zur Feststoffsynthese von Metall-Mischoxiden sowie Oberflächenmodifikation dieser Materialien und Verwendung dieser Materialien in Batterien, insbesondere als Kathodenmaterialien
CN112382751A (zh) * 2020-11-12 2021-02-19 北京大学深圳研究生院 一种电池电极材料的制备方法及电池电极材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673863A (en) * 1979-11-20 1981-06-18 Tdk Corp Manufacture of positive electrode for nonaqueous- electrolyte battery
JPS60225358A (ja) * 1984-04-20 1985-11-09 Sanyo Electric Co Ltd 非水電解液電池
JPH05174872A (ja) * 1991-12-20 1993-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH05325968A (ja) * 1992-05-26 1993-12-10 Nippon Steel Corp 非水系リチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673863A (en) * 1979-11-20 1981-06-18 Tdk Corp Manufacture of positive electrode for nonaqueous- electrolyte battery
JPS60225358A (ja) * 1984-04-20 1985-11-09 Sanyo Electric Co Ltd 非水電解液電池
JPH05174872A (ja) * 1991-12-20 1993-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH05325968A (ja) * 1992-05-26 1993-12-10 Nippon Steel Corp 非水系リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0913876A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412633A1 (en) * 2017-06-08 2018-12-12 Basf Se Process for manufacturing an electrode active material
WO2018224367A1 (en) * 2017-06-08 2018-12-13 Basf Se Process for manufacturing an electrode active material
CN110504444A (zh) * 2019-08-19 2019-11-26 王杰 一种钪钒合锂锰氧化物作为锂电池的正极材料及其制备方法
CN110504444B (zh) * 2019-08-19 2022-05-13 漳州明德工贸有限公司 一种钪钒合锂锰氧化物作为锂电池的正极材料及其制备方法

Also Published As

Publication number Publication date
CN1042377C (zh) 1999-03-03
JPH11511290A (ja) 1999-09-28
DE913876T1 (de) 1999-08-19
EP0913876A4 (en) 2000-01-12
EP0913876A1 (en) 1999-05-06
CN1143267A (zh) 1997-02-19

Similar Documents

Publication Publication Date Title
Kim et al. Molten salt synthesis of LiNi0. 5Mn1. 5O4 spinel for 5 V class cathode material of Li-ion secondary battery
Antolini LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties
Chan et al. LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries
Okada et al. Cycle characterizations of LiMxMn2− xO4 (M= Co, Ni) materials for lithium secondary battery at wide voltage region
CA2209933C (en) A lithium nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery
CN102627332B (zh) 氧化物固溶体及其制备方法以及锂离子电池正极材料及其制备方法
WO1997043794A1 (fr) Procede de preparation de materiaux positifs pour piles secondaires au lithium au moyen d'energie micro-ondes
CN110797527A (zh) 一种改性富锂锰基氧化物正极材料及其制备方法
WO2007131411A1 (en) A positive electrode material for secondary battery and the preparation method of the same
KR100578447B1 (ko) 자가혼합 공융법을 이용한 고출력 리튬2차전지용 결정질나노미립자 양극 활물질의 제조방법
JPH09175825A (ja) ゾル−ゲル法を利用した複合酸化物の製造方法
KR101443359B1 (ko) 니켈 함량이 높은 리튬-니켈-코발트-망간계 복합 산화물의 제조 방법, 이에 의하여 제조된 니켈 함량이 높은 리튬-니켈-코발트-망간계 복합 산화물, 및 이를 포함하는 리튬 이차 전지
Jouybari et al. Synthesis and electrochemical properties of LiNi0. 8Co0. 2O2 nanopowders for lithium ion battery applications
US6361755B1 (en) Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
Li et al. Synthesis and characterization of LiNi1− xCoxO2 for lithium batteries by a novel method
JP2001206722A (ja) リチウムマンガン複合酸化物、リチウム二次電池用正極材料、正極、及びリチウム二次電池、並びにリチウムマンガン複合酸化物の製造方法
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JPH11189419A (ja) リチウム二次電池用スピネル系マンガン酸化物
Fauteux et al. Flexible synthesis of mixed metal oxides illustrated for LiMn2O4 and LiCoO2
Julien et al. Layered LiNi 1− y Co y O 2 compounds synthesized by a glycine-assisted combustion method for lithium batteries
KR100273507B1 (ko) 졸-겔법을 이용한 리튬 이차전지용 양극활물질의 제조방법
Yang et al. A novel method for the preparation of submicron-sized LiNi0. 8Co0. 2O2 cathode material
Liu et al. Synthesis and characterization of layered Li (Ni1/3Mn1/3Co1/3) O2 cathode materials by spray-drying method
Zhang et al. Effect of annealing treatment on electrochemical property of LiNi0. 5Mn1. 5O4 spinel
Fey et al. Sol–gel synthesis of LixNi0. 8Co0. 2O2 via an oxalate route and its electrochemical performance as an intercalation material for lithium batteries

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 540354

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997920486

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997920486

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997920486

Country of ref document: EP