WO1997043076A1 - Electrode de soudage - Google Patents

Electrode de soudage Download PDF

Info

Publication number
WO1997043076A1
WO1997043076A1 PCT/JP1997/001563 JP9701563W WO9743076A1 WO 1997043076 A1 WO1997043076 A1 WO 1997043076A1 JP 9701563 W JP9701563 W JP 9701563W WO 9743076 A1 WO9743076 A1 WO 9743076A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
diameter
hole
small
diameter hole
Prior art date
Application number
PCT/JP1997/001563
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Aoyama
Shoji Aoyama
Original Assignee
Yoshitaka Aoyama
Shoji Aoyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15283196A external-priority patent/JP3326491B2/ja
Priority claimed from JP19688296A external-priority patent/JPH106033A/ja
Priority claimed from JP31252496A external-priority patent/JP2903149B2/ja
Application filed by Yoshitaka Aoyama, Shoji Aoyama filed Critical Yoshitaka Aoyama
Priority to US08/913,103 priority Critical patent/US6008463A/en
Priority to EP97918395A priority patent/EP0865861B1/en
Priority to DE69723545T priority patent/DE69723545T2/de
Priority to CA002215710A priority patent/CA2215710C/en
Priority to AU26518/97A priority patent/AU723029B2/en
Publication of WO1997043076A1 publication Critical patent/WO1997043076A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/004Welding of a small piece to a great or broad piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/004Welding of a small piece to a great or broad piece
    • B23K11/0046Welding of a small piece to a great or broad piece the extremity of a small piece being welded to a base, e.g. cooling studs or fins to tubes or plates
    • B23K11/0053Stud welding, i.e. resistive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/14Projection welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3081Electrodes with a seam contacting part shaped so as to correspond to the shape of the bond area, e.g. for making an annular bond without relative movement in the longitudinal direction of the seam between the electrode holder and the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/31Electrode holders and actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/31Electrode holders and actuating devices therefor
    • B23K11/314Spot welding guns, e.g. mounted on robots
    • B23K11/315Spot welding guns, e.g. mounted on robots with one electrode moving on a linear path

Definitions

  • the guide hole 2 in the electrode 1 is composed of a small-diameter hole 3 and a large-diameter hole 4, and a taper hole 5 is provided at a connection portion between the two holes 3 and 4.
  • the guide pin 6 is composed of a small-diameter portion 7 and a large-diameter portion 8, and a taper portion 9 is provided at a connection portion between the two portions 7 and 8.
  • a coil spring 10 is inserted into the guide hole 2, and its elasticity acts in a direction to push up the guide bin 6, and a vent 11 for introducing compressed air is opened in the electrode 1.
  • the taper portion 9 is in close contact with the taper hole 5 by the elasticity of the coil spring 10.
  • a gap 12 is provided between the small diameter hole 3 and the small diameter portion 7.
  • the steel plate part 13 is positioned on the electrode 1 by penetrating the guide bin 6, and the conical part 15 is inserted into the screw hole of the projection nut 14 to move the movable electrode (shown in the figure). Are not prepared).
  • the electrode 1 has a body 17 with a cap 17 integrated with a screw 18, and the outer shape and guide holes 2
  • Replacement forms (Rule 26) Has a circular cross section.
  • the movable electrode advances and its end face hits the end of the guide bin 6 and is pushed down, the tapered portion 9 is separated from the tapered hole 5, so that the compressed air from the ventilation port 11 is compressed by the tapered portion. Squirts out of gap 12 through the gap.
  • the projection nut 14 is crimped to the steel plate part 13, and then, when a welding current is applied, the nut 14 is welded to the steel plate part 13. During the welding transitional period, spatter is scattered, but this is eliminated by the air ejected from the gap 12 and is prevented from entering the gap 12. In addition, it is cooled by the jet air.
  • FIG. 12 Next, the prior art shown in FIG. 12 will be described, but members having the same functions as those in FIG. 11 will be denoted by the same reference numerals as those in FIG. 11 and detailed description thereof will be omitted. is there.
  • an end face 19 composed of a diametrically annular flat surface is formed, while at the boundary between the large-diameter hole 4 and the small-diameter hole 3, the large-diameter hole 4 is formed.
  • An inner end face 20 is formed, and a large-diameter portion 8 is fitted with a 0-ring 21 for maintaining airtightness.
  • the operation of FIG. 12 is almost the same as that of FIG.
  • the difference is that the compressed air is not blown out from the gap 12 and the compressed air is introduced to push up the guide bin 6, and the airtightness is maintained by the 0 ring 21. Therefore, here, neither the scattering prevention nor the cooling action of the spa is performed.
  • the conventional technique described above has the following problems.
  • the problem with the one shown in Fig. 11 is that when the guide bin 6 is pushed down, the contact of the tapered portion is released, and the guide bin 6 is in a so-called floating state.
  • the guide bin 6 itself is eccentric within the guide hole 2 before being crimped to 3, and the nut 14 may not be welded to the correct position of the steel plate part 13. Further, the close contact of the tapered portion is achieved by the taper between the tapered hole 5 and the taper portion 9.
  • the coating layer 6a having a very hard and rough surface is present, it is significantly worn by the small-diameter hole 3 and the taper hole 5, and the guide bin 6 body This makes it impossible to ensure a sufficient diametrical position relative to the tap 17, that is, the ring, and this problem is further increased when the inner surface of the small-diameter hole 3 is worn. Furthermore, the conical portion 15 is worn at the corners of the projection nut 14 and the coating layer 6a is removed, so that the nut comes into direct contact with the metal part. Then, the original insulation function cannot be achieved.
  • the welding electrode of the present invention is provided to solve the above-mentioned problems, and a guide hole having a circular cross section in the electrode is composed of a small diameter hole and a large diameter hole.
  • the guide bin is composed of a small-diameter portion and a large-diameter portion, and the small-diameter portion and the large-diameter portion of the guide bin are fitted into the small-diameter hole and the large-diameter hole of the guide hole, respectively. Compressed air when depressed
  • Replacement form (Rule 26) Is ejected from the gap between the small-diameter hole and the small-diameter portion, and the large-diameter portion of the guide bin is a guide portion tightly fitted into the large-diameter hole, and The end face and the inner end face of the large-diameter hole are configured to be in close contact with each other, and the guide section has an air passage formed in the axial direction of the guide bin.
  • the compressed air is completely sealed by the close contact with the inner end surface of the hole, and when the guide bin is retracted by the advance of the movable electrode, the entire guide bin is deflected by the axis center setting function of the guide part. Move smoothly without getting up. With this retreat, the contact portion is separated, and the compressed air is ejected from the air passage through the gap at the small diameter portion.
  • the large-diameter hole is at least a two-stage type, and between the small-diameter portion and the large-diameter portion of the guide bin.
  • the end face of the guide part is at least two-step type with the main end face and the sub end face, and the inner end face of the large diameter hole is one or both of the main end face and the sub end face of the guide part
  • the main inner end face and the sub inner end face may be in close contact with each other. In this case, either or both of the main end face and the main inner end face or the sub end face and the sub inner end face are in close contact with each other to maintain airtightness.
  • the middle diameter part of the guide bin is firmly fitted into the medium diameter hole in the guide hole, and the axial length of this fitting is set so that the guide bin can be retracted during welding. If it is set shorter, the tight fitting described above will block the air flow even in the middle diameter part and realize a more airtight state, and the guide bin will retract. When this is done, the medium-diameter part escapes from the medium-diameter hole to secure a flow path for air, and the guide part's axis center setting function allows the medium-diameter part to smoothly exit and enter.
  • the air passage can be formed by providing a flat portion on the outer peripheral surface of the guide portion, and the compressed air is ejected through the flat portion.
  • the air passage is provided by providing a groove on the outer peripheral surface of the guide.
  • the compressed air may be formed in this case, and the compressed air is ejected through the groove.
  • the end surface of the guide part is made of soft synthetic resin. Since it is seated on the inner end surface of the metal, the familiarity of the contact at the close contact portion is improved, and the airtightness is more reliably maintained.
  • the electrode has a guide bin held in a guide hole formed therein, and the guide bin is formed of a metal guide penetrating the hole of the plate-shaped component. And a non-metallic seal part integrated with the guide part, the seal part has a protection part with a larger diameter than the guide part, and a tapered seating part that intercepts the protection part. It is composed of a base connected to it, and ventilation holes are provided between the protection part and the guide holes of the electrodes on the outer peripheral part of the base, respectively.
  • the seal portion is made of a material such as a synthetic resin, it is possible to avoid a phenomenon in which abnormal wear occurs in each part of the guide hole of the electrode, and particularly, the protection portion is formed on the inner surface of the small diameter hole. Prevents abnormal wear.
  • the guide section is hollow to receive the projection bolt, it can function in the same manner as the projection nut.
  • the welding electrode is configured such that a retractable guide bin inserted into the guide hole of the electrode protrudes from the electrode and the large-diameter portion that slides in the guide hole to position the counterpart.
  • the guide bin When the guide bin is pushed in and air is blown out from the outer periphery of the guide bin, the guide hole through which the small diameter portion passes is a large diameter hole and a small diameter hole.
  • the electrode is provided with an exhaust passage communicating between the large-diameter hole and the outside of the electrode. The air flow from the small-diameter hole to the exhaust passage causes the inside of the large-diameter hole to be exhausted. Foreign matter such as spatter
  • An annular receiving surface is provided by the inner diameter difference between the large-diameter hole and the small-diameter hole, an exhaust passage is opened near this receiving surface, and foreign matters such as sputters entering the large-diameter hole collide with the receiving surface. It is characterized by discharging foreign matter to the outside of the electrode by air flow from the small diameter hole to the exhaust passage. Foreign matter entering from the positioning hole is stopped at the receiving surface, It is discharged out of the electrode by the flowing air flow.
  • the guide bin is substantially supported at two points because the large diameter part slides inside the guide hole and the small diameter part has a remarkably small sliding gap in the small diameter hole. In this way, even if some force acts on the guide bin in the diameter direction of the bin, the guide bin does not easily tilt, The centering function is reliably performed.
  • the guide bin is characterized in that the small-diameter portion is made of metal and the large-diameter portion is made of synthetic resin, and the small-diameter hole through which the small-diameter portion passes is formed in a member made of synthetic resin.
  • both of the above-described two-point support portions are sliding with synthetic resin, smooth sliding with metal can be obtained.
  • a retractable guide bin inserted into the guide hole of the electrode consisting of a large-diameter portion that slides in the guide hole and a small-diameter portion that projects from the electrode and positions the mating component.
  • the guide hole through which is formed is composed of a large-diameter hole and a small-diameter hole, and an annular receiving surface is provided by the inner diameter difference between the large-diameter hole and the small-diameter hole. Is to allow foreign matter held on the receiving surface to flow back toward the large-diameter hole by airflow from the small-diameter hole.
  • FIG. 1 is a longitudinal sectional view of an electrode showing an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a partial vertical sectional view showing a modification.
  • FIG. 4 is an enlarged view of a part of FIG.
  • FIG. 5 is a plan view of a guide portion provided with a concave groove.
  • FIG. 6 is a plan view of a guide portion provided with a through hole.
  • FIG. 7 is a view similar to FIG. 4 showing another modification.
  • FIG. 8 is a longitudinal sectional view showing another embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view of the guide bin in FIG.
  • FIG. 10 is a partial longitudinal sectional view showing a modification.
  • FIG. 11 is a longitudinal sectional view showing a conventional technique.
  • FIG. 12 is a longitudinal sectional view showing another conventional technique.
  • FIG. 13 is a partial cross-sectional view showing a coating layer of a guide bin.
  • FIG. 14 is a longitudinal sectional view similar to FIG.
  • FIG. 15 is a cross-sectional view of the large diameter portion in FIG.
  • FIG. 16 is an enlarged view of a main part in FIG.
  • FIG. 17 is a partially enlarged longitudinal sectional view showing a local state of the electrode end face and the steel plate part.
  • FIG. 18 is a partial longitudinal sectional view showing another embodiment of the present invention.
  • FIG. 19 is a cross-sectional view taken along line BB of FIG.
  • FIG. 20 is an enlarged view of a main part in FIG.
  • FIG. 21 is a longitudinal sectional view similar to FIG. 18 showing a modification.
  • FIG. 22 is a partial longitudinal sectional view showing a modification of the exhaust passage.
  • FIG. 23 is a plan view of a modification of FIG.
  • FIG. 24 is a longitudinal sectional view showing a modification of the receiving surface.
  • FIG. 25 is a longitudinal sectional view showing a modification in which the exhaust passage is eliminated.
  • the small-diameter portion 7 of the guide bin 6 is made of stainless steel, while the large-diameter portion 8 is made of a synthetic resin. Examples of the synthetic resin are teflon or nylon mixed with glass fiber. There is a There are various methods for integrating the small-diameter part 7 and the large-diameter part 8 such as a screw-in type and a nut-tightening method.
  • the small-diameter part 7 is also It adopts a system that can be integrated.
  • the air passage 22 formed in the axial direction of the guide bin is formed by forming a flat portion 23 as is clear from FIG.
  • the cap 17 and the body 16 are made of a metal having good conductivity, for example, a copper alloy.
  • the large-diameter portion 8 is tightly fitted into the guide hole 2 having a circular cross section.
  • the term “smooth” means that the large-diameter portion 8 can slide without substantially any gap in the guide hole 2. In other words, the air passage 22 is not provided.
  • the major part 8 is a guide part, and the guide part also displays the reference numeral 8.
  • the end surface 24 of the guide portion 8 and the inner end surface 25 of the large-diameter hole 4 are in close contact with each other, and both end surfaces are set in a plane perpendicular to the axis of the guide bin 6.
  • Reference numeral 26 indicates an insulating plate.
  • the dimensions of the electrodes are as shown in the projection nut shown.
  • the diameter of the electrode is about 25 mm
  • the total length of the electrode is about 85 mm
  • the diameter of the guide bin small diameter is about 7 mm.
  • FIG. 1 shows that the guide bin 6 is pushed upward by the air pressure from the ventilation port 11 and the tension of the coil spring 10, and the end face 24 is strongly seated on the inner end face 25.
  • the flow of compressed air is completely stopped.
  • the movable electrode (not shown) advances and pushes down the nut 14, the contact between the surface 24 and the surface 25 is released, and the compressed air flows from the air passage 22 to both surfaces 24, 2. Extrude from gap 1 2 to outside through gap 5.
  • the welding is completed. The spatter that is scattered at this time is scattered by the compressed air and enters the gap 12. There is no such thing.
  • Air cooling is also applied to heat generated during welding.
  • the guide portion 8 since the guide portion 8 is securely fitted into the guide hole 4, no runout or eccentricity occurs, and the gap 12 is uniformly held over the entire circumference.
  • the air ejection can be made uniform, and the relative position between the nut 14 and the steel plate part 13 can be set accurately.
  • a medium-diameter hole 27 is formed between the small-diameter hole 3 and the large-diameter hole 4 of the guide hole 2 so that the large-diameter hole becomes a two-stage type.
  • a medium-diameter portion 28 is formed between the small-diameter portion 7 and the large-diameter portion 8 of the guide bin 6, and the end surface of the guide portion 8 is a two-stage type having a main end surface 29 and a sub-end surface 30.
  • the middle-diameter portion is provided as described above and has a two-stage structure, it can be a three-stage structure. Therefore, it is at least a two-stage structure.
  • the inner end face of the large-diameter hole is also divided into a main inner end face 31 and a sub-inner end face 32, and the main end face 29 and the sub-end face 30 of the guide portion 8 are respectively formed in the main inner face of the large-diameter hole 4. It is designed to be in close contact with one or both of the end face 31 and the sub inner end face 32.
  • the middle diameter portion 28 of the guide bin is fitted into the middle diameter hole 27 of the guide hole in a state where it is tight.
  • the axial length L 1 of this fitting is set shorter than the length L 2 by which the guide bin 6 is retracted during welding. By doing so, the middle diameter portion 28 escapes from the middle diameter hole 27 to form a passage 33 as shown in FIG. 4, and when returning to the original state, the sensing function of the guide portion 8 is achieved. This provides a smooth fit.
  • FIGS. 5 and 6 show alternative ways of installing the air passages 22.
  • the one shown in FIG. 5 has four grooves 34 formed in the axial direction, and the one shown in FIG.
  • Four through holes 35 in the axial direction are formed near the outer periphery of the guide portion 8, and each through hole 35 opens at the end face of the guide portion 8.
  • the guide portion of the guide bin fits tightly into the large-diameter portion of the guide hole, and the end surface of the guide portion and the inner end surface of the large-diameter hole are annular flat surfaces. Because of the close contact, there is no need to perform difficult fabrication of the tapered surface, and reliable airtightness is maintained. Since the guide portion is fitted so as to prevent the guide bin from eccentricity and eccentricity, the gap at the small diameter portion is maintained uniformly over the entire circumference, and the gap between the projection section nut and the steel plate component is also maintained. The relative position is also secured with high precision. A stepped structure is adopted for the guide hole, and a stepped structure is also adopted for the guide bin in conformity with the structure, so that the above-mentioned surface contact is performed. This is very advantageous for airtight maintenance.
  • the function of maintaining airtightness is achieved in the fitting portion. Even if foreign matter gets into the close contact area of each end face for some reason, the above-mentioned function of keeping the fitting part airtight can prevent air leakage. And
  • the guide part plays the function of firmly ringing, the medium hole and the medium diameter part can always smoothly come out and enter. Since the large diameter portion of the guide bin is made of synthetic resin, the formation of the air passage can adopt a molding method, which is extremely advantageous in terms of manufacturing. In addition, the workability is good even when cutting is performed, which is equally advantageous. Since the electrode itself is made of metal and the end surface made of synthetic resin is seated on the inner end surface of the large-diameter hole, initial familiarization proceeds on the synthetic resin side, and good airtightness can be obtained.
  • each seating surface is orthogonal to the axis of the guide bin, a simple and high-precision one can be obtained, which is very advantageous for improving airtightness. Since the length of the guide is about half the length of the guide bin, extremely stable operation is achieved to prevent runout and eccentricity.
  • the guide bin 6 includes a metal guide portion 37 and a non-metallic seal portion 38 integral with the guide portion 37, and the seal portion 38 is larger than the guide portion 37. It is composed of a protection part 39 with a diameter, a tapered seating part 40 connected to the protection part 39, and a base part 41 connected to the protection part 39, between the protection part 39 and the small diameter hole 3 and the ⁇ part. Vent gaps 42 and 43 are provided between 41 and the large-diameter hole 4, respectively.
  • the cross section of each of the electrode 1 and the guide bin 6 is circular.
  • the guide portion 37 is provided with a shaft portion 44 which is formed integrally with the guide portion 37, and penetrates the seal portion 38, and tightens a nut 45 at an end thereof to form a seal with the guide portion 37. It is integrated with parts 38.
  • the base 41 is in the form of a scar as shown in FIG. 9, and a coil spring 10 is fitted in a step 46 formed therein.
  • Guide part 3 7 is stainless steel
  • the seal part 38 is most suitably made of synthetic resin, such as tephron or nylon mixed with glass fiber.
  • the diameters of the guide part 37, the protection part 39, and the base part 41 are 6 mm, 8 mm, and 20 mm, respectively, and the ventilation gaps 42, 43 are 0.5 mm, and the total length of the guide bin 6 is 38 mm.
  • FIG. 10 shows a modification in which the guide portion 37 is hollow as indicated by reference numeral 47.
  • the parts are projection bolts, and reference numeral 48 denotes a shaft portion, and reference numeral 49 denotes a flange portion integrated with the shaft portion.
  • FIG. 8 shows a state in which the seating portion 40 comes into close contact with the tapered hole 5 by the air pressure from the ventilation port 11 and shuts off the air flow.
  • the seating portion made of a nonmetallic material is in close contact with the metal taper hole, so that the seating portion has a high sealing effect due to the familiarity of the seating portion.
  • the protection part is also made of non-metal and has a larger diameter than the guide part, there is no metal contact between the guide part and the small diameter hole. Does not wear the inner surface. In this manner, the ventilation gap is always set to a constant value, and the durability of the electrode itself can be significantly prolonged. Even if the metal guide part is slightly worn, the non-metal seal part performs the insulating function, so that there is no problem of short-circuit of welding current.
  • FIGS. 14 to 17 show modifications of the embodiment of FIG. 3, in which the guide hole 102 of the electrode 101 is formed in the small-diameter hole 103, the large-diameter hole 104, and in the middle thereof. It is constituted by a medium diameter hole 105.
  • the guide bin 106 has a small-diameter portion 107, a medium-diameter portion 108, and a large-diameter portion 109 corresponding to the holes 103, 105 and 104 described above.
  • the small-diameter portion 107 is provided with a required gap 110 between the small-diameter hole 103 and the small-diameter hole 103.
  • the middle diameter part 108 has a short length when viewed in the axial direction, but is slidably fitted into the middle diameter hole 105, and the large diameter part 109 also has a large diameter. It fits slidably into hole 104. All of the members described above are circular in cross section.
  • the small diameter portion 107 is made of metal, for example, using stainless steel, and a port 111 is provided on an end of the body.
  • the middle diameter part 108 and the large diameter part 109 are made of synthetic resin, and are made of, for example, PTFE which is commercially available under the trademark Teflon.
  • the small-diameter part 107 is inserted into the synthetic resin part, and the nut 111 is fastened to the bolt 111 protruding therefrom, so that the small-diameter part 107 and the synthetic resin part are tightened.
  • the large-diameter portion 109 is provided with an air passage 113, which is formed by the notched flat portion 113a in FIG.
  • the electrode 101 is formed by integrating a cap 115 with a main body 114 with a screw portion 116.
  • a steel plate part 123 as a counterpart member is placed on the end face 122 of the electrode 101, and the small-diameter part 107 penetrates a positioning hole 124 opened in the part. In the small diameter part 107, it gradually decreases toward the tip.
  • a support portion 125 having a diameter is formed.
  • the parts here are projection nuts denoted by reference numeral 126, reference numeral 127 denotes a screw hole, and reference numeral 128 denotes a projection for welding.
  • the corner of the screw hole 127 is hooked in the middle of the support part 125 and is supported as shown in FIG.
  • the electrode 101 is a fixed electrode
  • the counter electrode 125 is a movable electrode, which has a receiving hole 130 in the support 125.
  • the term “tight” used herein refers to a fitting relationship in which slidable and air-permeable but substantially no radial play is present.
  • the electrode 12 9 advances, the nut 1 26 is pushed down, so that the guide bin 106 is pushed down at the same time, and the end face 1 17 is separated from the inner end face 1 18 and has a medium-diameter hole.
  • the medium diameter part 108 escapes from 105, compressed air flows from the air passage 113 through the medium diameter hole 105, the gap 110, the positioning hole 124, and the nut 126. Flows into between steel plate parts 1 2 3.
  • the electrodes are energized, and the welding projections 128 melt to complete the welding.
  • the accuracy of the position of nut welding is set to be extremely narrow between the small-diameter portion 107 and the positioning hole 124 in order to pursue high assembling accuracy in a single automobile, for example.
  • the inside diameter of the positioning hole 124 is 7.2 mm
  • the diameter of the small diameter part 107 is 6.8 mm
  • the clearance allowed in the air passage is 0 2 mm.
  • the inner diameter of the steel plate part 1 2 3 is increased by increasing the flow resistance at this point and increasing the air pressure in the gap 110. Slightly floats from the end face 122, and a large amount of air flows into the gap between the end face 122 and the steel plate part 123 rather than the gap between the small diameter part 107 and the positioning hole 124. That is, at this time, granular spatter or sand particles may be caught between the end face 122 and the steel plate part 123.
  • the electrode 12 9 is pressurized and energized in this state, as shown in Fig. 17, the aforementioned foreign matter 13 1 digs into the electrode surface 122 and rises due to deformation of the end surface at that time.
  • a part 132 is formed, and the tip part comes into contact with the steel plate part 123, and there is a gap as shown in the drawing except for the contact part, so that power cannot be supplied. Since power is supplied to such a state, the contact area is small, rather close to a point contact, so the current density at that point is high and the welding projections 1 28 cannot be melted. Even if the melting is incomplete or incomplete, the above-mentioned portion rapidly melts and the melted ridges 132 are scattered.
  • the protuberances 132 are formed on the end face 122 side because the electrode is made of a relatively soft material such as chrome steel.
  • the reason why the spatter enters the gap 110 is that when the protrusion 128 melts and the lower surface of the nut 126 closely adheres to the surface of the steel plate part 123, the air outlet is blocked. As a result, the air flow stops, and at that time, the spatter scatters right and left from the portion of the projection 128, so that the air enters through a small gap between the positioning hole 124 and the small diameter portion 107. In this way, foreign matter such as spatter entering the gap 110 enters between the end face 122 and the steel plate part 123 when the airflow is restarted.
  • FIG. 18 shows that the nut welding has just been completed, and thus the end face 1 17 Is away from the inner end face 1 1 8
  • FIG. 20 shows a state in which the end face 1 17 is in close contact with the inner end face 1 18 to stop the flow of air.
  • the guide hole 102 where the small diameter portion 107 penetrates is composed of the large diameter hole 133 and the small diameter hole 134, and is received by the difference in inner diameter between both holes 133, 134.
  • the surface 1 35 is formed.
  • An exhaust passage 136 communicating the large-diameter hole 133 with the outside of the electrode is provided in the electrode in the radial direction.
  • the exhaust passage 1336 is opened near the receiving surface 135 to positively discharge foreign substances that are likely to stay on the receiving surface 135, as shown in the figure.
  • the electrode is formed as a radial hole.
  • the small-diameter holes 13 4 are made in a support plate 13 7 made of a synthetic resin such as PTFE, and this support plate 13 7 is pressed into the inside of the cap 11 as shown in Fig. 18.
  • the diameter of the small part 107 is 6.8 mm
  • the inner diameter of the positioning hole 124 is 7.4 mm
  • the inner diameter of the large hole 133 is 8.5 mm
  • the inside diameter of 134 is 7.0 mm
  • the width of the receiving surface 135 is 0.75 mm.
  • the gap between the small-diameter hole 134 and the small-diameter portion 107 is 0.1 mm on the left and right in FIG. 20, and such a value is the radial play of the guide bin 106.
  • the guide bin 106 is supported at substantially two points, that is, the small-diameter hole 134 and the large-diameter portion 109.
  • the small diameter portion 107 is made of metal, for example, stainless steel, and the large diameter portion 109 is made of a synthetic resin such as PTFE.
  • the protrusion 1 2 8 melts and the nut 1 2 6 presses against the steel plate part 1 2 3
  • the target component is a projection bolt 138, which is composed of a shaft portion 139, a flange 140, and a welding projection 141.
  • the small diameter portion 107 of the guide bin 106 has a hollow pipe shape, and the shaft portion 139 is inserted therein.
  • Other configurations and operations are the same as in the previous embodiment.
  • Fig. 22 and Fig. 23 show modified examples of the exhaust passage, in which a groove 1 42 in the radial direction is formed on the end surface 1 2 of the electrode, and a groove 1 42 is opened near the receiving surface 1 3 5
  • the support plate 13 7 is arranged close to the end face 1 2 2 of the cable 1 15.
  • the inner end face 118 cooperating with the end face 117 is formed on the lower surface of the cap 115.
  • the length of the large-diameter hole 133 is shorter than the previous one, but the operation is the same as that described above.
  • FIG. 24 shows a modification in which a small-diameter hole 134 is drilled in a metal cap 115.
  • the small-diameter hole during the transition period in which the steel plate part 123 is being removed from the electrode after the welding is completed by removing the foreign matter entering the positioning hole 124 by stopping the exhaust passage (136). It is designed to be discharged upward by an air jet from 134.
  • An annular receiving surface is provided by the inner diameter difference between the large-diameter hole and the small-diameter hole, and the exhaust passage is opened near this receiving surface. Since the foreign matter has a high-speed airflow from the small-diameter hole, it does not enter the small-diameter hole, but rather collides with the receiving surface and is discharged out of the electrode by the airflow flowing from the small-diameter hole toward the exhaust passage. . Therefore, the foreign matter does not enter the close contact portion between the small-diameter hole and the large-diameter portion end face and the inner end face, thereby completely preventing the occurrence of air leakage.
  • the entire guide bin is supported at two points with virtually no play and no gap between the two large-diameter and small-diameter parts, so some bending force acts on the small-diameter support. Even so, the support is highly stable, so that the guide bin does not tilt or eccentric, and can perform a highly accurate guide function.
  • the guide bin has a small-diameter part made of metal and a large-diameter part made of synthetic resin, and a small-diameter hole through which the small-diameter part penetrates is made in a synthetic resin member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Resistance Welding (AREA)
  • Electrostatic Separation (AREA)
  • Arc Welding In General (AREA)
  • Elimination Of Static Electricity (AREA)

Description

明細書 溶接用電極 背景技術 この ¾明は、 電極内の断面円形のガイ ド孔が小径孔と大径孔から 構成されていると共にガイ ドビンが小径部と大径部から構成され、 ガイ ド ビンの小径部と大径部とがそれぞれガイ ド孔の小径孔と大径 孔とに嵌ま り込んでおり、 ガイ ドビンが押し下げられると圧縮空気 が小径孔と小径部との間の隙間から噴出する形式の溶接用電極に関 するものである。
この発明に最も密接な従来技術としては、 実公昭 5 4— 9 8 4 9 号公報と実公昭 6 2 - 3 2 7 1 4号公報が挙げられる。 前者は図 1 1 に、 後者は図 1 2に示してある。 まず、 図 1 1 について説明する と、 電極 1 内のガイ ド孔 2が小径孔 3 と大径孔 4から構成され、 両 孔 3 , 4の接続部にテ一パ孔 5が設けられている。 一方、 ガイ ドピ ン 6は小径部 7 と大径部 8から構成され、 両部 7 , 8の接続部にテ ーパ部 9が設けられている。 ガイ ド孔 2内にはコイルスプリ ング 1 0が挿入され、 その弾力はガイ ドビン 6を押し上げる方向に作用し ており、 圧縮空気を導入する通気口 1 1が電極 1 に明けられている。 図示のようにコイルスプリ ング 1 0の弾力によ り、 テ一パ部 9がテ —パ孔 5に密着している。 小径孔 3 と小径部 7 との間には隙間 1 2 が設置されている。 電極 1上には鋼板部品 1 3がガイ ドビン 6の貫 通を受けて位置決めがなされており、 プロジェクシヨ ンナツ ト 1 4 のねじ孔に円錐部 1 5が進入させられて、 可動電極( 図示していな い) の進出に備えている。 なお、 電極 1は、 本体 1 6にキャ ップ 1 7がねじ部 1 8で一体化されているもので、 外形およびガイ ド孔 2
差替え用紙 (規則 26) は断面が円形である。 可動電極が進出してきてその端面がガイ ドビ ン 6の端部に当たって押し下げられることによ り、 テーパ部 9がテ ーパ孔 5から離れるため、 通気口 1 1からの圧縮空気はテ一パ部分 の空隙を通って隙間 1 2から外部へ噴出する。 そして、 さらに可動 電極が進出すると、 プロジェクシヨ ンナッ ト 1 4が鋼板部品 1 3 に 圧着され、 次いで溶接電流が流されるとナツ ト 1 4が鋼板部品 1 3 に溶着されるものである。 この溶着される過渡期には、 スパッ夕が 飛散するが、 これは隙間 1 2からの噴出空気によって排除され、 隙 間 1 2内への進入が阻止される。 また、 この噴出空気によって冷却 されるのである。
次に、 図 1 2の従来技術について説明するが、 図 1 1のものと同 じ機能を采たす部材については、 図 1 1 と同一の符号を記載して詳 細な説明は省略してある。 大径部 8 と小径部 7 との境界には、 直径 方向の環状の平坦面からなる端面 1 9が形成され、 一方、 大径孔 4 と小径孔 3 との境界には、 大径孔 4の内端面 2 0が形成され、 さ ら に、 大径部 8には気密保持用の 0 リ ング 2 1 がはめ込んである。 図 1 2のものの作動は図 1 1のものの作動とほぽ同じである。 ただ、 異なっているのは、 圧縮空気が隙間 1 2から噴出されず、 圧縮空気 がガイ ドビン 6を押し上げるために導入されているもので、 0 リ ン グ 2 1 によって気密が保たれている。 したがって、 ここではスパヅ 夕の飛散防止や冷却作用はなされていない。
上述の従来技術であると、 次のような問題点がある。 図 1 1のも のについての問題は、 ガイ ドビン 6が押し下げられると、 テーパ部 分の密着が離れるために、 ガイ ドビン 6はいわゆる浮動状態となり、 したがってブロジェクシヨンナツ ト 1 4が鋼板部品 1 3に圧着され るまでにガイ ドビン 6 自体がガイ ド孔 2内で偏心することとな り、 ナツ ト 1 4が鋼板部品 1 3の正しい位置に溶接されないことが生じ る。 さらに、 テーパ部分の密着は、 テーパ孔 5 とテ一パ部 9 とのテ
差替え用紙 (規則 26) ーパ角度を極めて高精度に仕上げておかないと、 気密を得るための 密着性が確保できないという問題があ り、 工場エアーが漏浊して不 絰済なこ とになる。 また、 図 1 2のものについての問題は、 スパッ 夕を飛散させた り、 空気冷却を行なう ことが不可能という ことであ る。 むしろ、 スパッ夕処理や空冷についての配慮がなされていない 技術である。
さ らに、 ここに掲げた実用新案公報には記載されていないが、 こ のような形式のガイ ドビンには、 表面の全域にわたってセラ ミ ッ ク がコーティ ングされ、 それによつて絶縁性と耐摩耗性が付与されて いる。 この点は、 図 1 3に示されており、 たとえば鋼鉄のよう な金 厲製のガイ ドビン 6の表面にセラ ミ ッ クが溶射されてコ一ティ ング 層 6 aが形成されている。 上述のようなガイ ドビンであると、 非常 に硬質で表面がざらざらしたコーティ ング層 6 aが存在するために、 小径孔 3ゃテ一パ孔 5 によって著しく摩耗し、 ガイ ドビン 6事体の キャ ップ 1 7 に対する直径方向の相対位置、 すなわちセン夕 リ ング が十分に確保できな く なって しまうのであ り、 特に、 小径孔 3の内 面が摩耗するとこの問題が一層増大される。 さ らに、 円錐部 1 5 が プロジェクシヨ ンナツ ト 1 4の角部で摩耗してきて、 コ一ティ ング 層 6 aがな く な りナッ トが金属部分に直接接触するようなことにな ると、 本来の絶縁機能が達成されなくなつてしまうのである。 発明の閧示 本発明の溶接用電極は、 以上に述べた問題点を解決するために提 供されたもので、 電極内の断面円形のガイ ド孔が小径孔と大径孔か ら構成されていると共にガイ ドビンが小径部と大径部から構成され、 ガイ ドビンの小径部と大径部とがそれぞれガイ ド孔の小径孔と大径 孔とに嵌ま り込んでおり、 ガイ ドビンが押し下げられると圧縮空気
差替え用紙 (規則 26) が小径孔と小径部との間の隙間から噴出する形式のものにおいて、 ガイ ドビンの大径部が大径孔にしつ く り と嵌ま り込んでいるガイ ド 部とされ、 ガイ ド部の端面と大径孔の内端面とが密着するように構 成し、 ガイ ド部にはガイ ドビンの軸方向に空気通路を形成したこと を特徴とするもので、 ガイ ド部の端面と大径孔の内端面との密着に よって、 圧縮空気は完全に封鎖され、 可動電極の進出でガイ ド ビン が後退させられると、 ガイ ドビン全体はガイ ド部の軸心設定機能に よ り芯振れを起こしたりすることなく 円滑に移動する。 この後退で 前記の密着部分が離れて、 圧縮空気は空気通路から小径部の箇所の 隙間を絰て噴出させられるのである。
ガイ ド孔の小径孔と大径孔との間に中径孔を形成することによつ て大径孔を少な く とも二段型とし、 ガイ ドビンの小径部と大径部と の間に中侄部を形成することによってガイ ド部の端面を主端面と副 端面との少なく とも二段型とし、 大径孔の内端面はガイ ド部の主端 面と副端面のいずれかまたは両方が密着する主内端面と副内端面と してもよ く、 この場合、 主端面と主内端面あるいは副端面と副内端 面のいずれか又は両方が密着して気密保持を果たす。
ガイ ド孔内の中径孔内にガイ ドビンの中径部をしつ く り と嵌ま り 込ませ、 この嵌ま り込みの軸方向の長さを溶接時にガイ ドビンが後 退させられる長さよ り も短く設定すれば、 上記のしっ く り とした嵌 ま り込みによって、 中径部においても空気の流通を阻止してよ り気 密性の高い状態を実現し、 ガイ ドビンが後退させられると、 中径部 は中径孔から抜け出して空気の流通経路を確保し、 さらにガイ ド部 の軸心設定機能によって、 中径部の抜け出しと入り込みが円滑に行 なわれる。
空気通路はガイ ド部の外周面に平面部を設けることによって形成 させることができ、 圧縮空気は平面部を通って噴出されて行く。 あ るいは、 空気通路はガイ ド部の外周面に凹溝を設けることによって
差替え用紙 (規則 26) 形成させてもよ く 、 この場合、 圧縮空気は凹溝を通って噴出されて 行く 。
ガイ ドビンの小径部を金属製と し、 大径部を合成樹脂製と し、 電 極を導電性の良好な金属製とするこ とによって、 ガイ ド部の端面が 合成樹脂の軟らかさでもって金属の内端面に着座するこ とにな り、 この密着部分における接触の馴染みが良好とな り、 気密保持がよ り 確実なものとなる。
本発明のもう一つの態様によれば、 電極がその内部に形成された ガイ ド孔に保持されたガイ ドビンを有し、 このガイ ドビンは、 板状 部品の孔に貫通する金属製のガイ ド部とこのガイ ド部と一体の非金 属製のシール部から成るものにおいて、 シール部はガイ ド部よ り も 大径の保護部とそれに迎なるテ一パ状の着座部とさ らにそれに連な る基部から構成され、 保護部と基部の外周部にはそれぞれ電極のガ ィ ド孔との間に通気空隙が設置されている。 シール部が合成樹脂の ような材料で作られているこ とによって、 電極のガイ ド孔各部に異 常な摩耗が ¾生するような現象が回避でき、 特に、 保護部が小径孔 の内面の異常摩耗を防止している。
ガイ ド部を中空にしてブロジェクシヨ ンボル ト を受け入れるよう にすれば、 プロジェクシヨ ンナッ トの場合と同様に機能させるこ と ができる。
本 ¾明の別の態様では、 溶接用電極は、 電極のガイ ド孔内に挿入 された進退可能なガイ ドビンがガイ ド孔内を摺動する大径部と電極 から突き出て相手方部品の位置決めをする小径部で構成されている と共にガイ ドビンが押し込まれるとガイ ドビンの外周部から空気が 噴出される形式のものにおいて、 小径部が貫通しているガイ ド孔が 大径孔と小径孔で構成され、 大径孔と電極外部とを連通する排気通 路が電極に形成されているこ とを特徴とするもので、 小径孔から排 気通路に向かう空気流によ り、 大径孔内に入ったスパッ夕等の異物
差替え用紙 (規則 26) を電極外へ排出するのである。
大径孔と小径孔との内径差によ り環状の受け面を設け、 この受け 面の近くに排気通路を開口させ、 大径孔に進入してきたスパッ夕等 の異物を受け面に衝突させ、 小径孔から排気通路への空気流によつ て電極外部へ異物を排出することを特徴とするもので、 位置決め孔 から入ってきた異物は受け面で停止させられ、 小径孔から排気通路 へ向かう空気流によって、 電極外へ排出される。
ガイ ドビンはその大径部がガイ ド孔内を摺動していること、 小径 部が小径孔において著しく小さな摺動問隙とされていることによ り、 実質的にガイ ドビンが 2点支持の形態とされていることを特徴とす るもので、 こうするこ とによってガイ ド ビンにビンの直径方向に何 らかの力が作用しても、 ガイ ドビンは容易に傾いたりせず、 芯出し 機能を確実に果たしている。
ガイ ドビンは小径部が金属製とされているとともに大径部が合成 樹脂製とされ、 小径部が貫通している小径孔は合成樹脂製の部材に 形成されていることを特徴とするもので、 上記の 2点支持の箇所が 両方とも合成樹脂の摺動であるから、 金属との滑らかな滑動が得ら れる。
電極のガイ ド孔内に挿入された進退可能なガイ ドビンがガイ ド孔 内を摺動する大径部と電極から突き出て相手方部品の位置決めをす る小径部で構成されたものにおいて、 小径部が貫通しているガイ ド 孔が大径孔と小径孔で構成され、 大径孔と小径孔との内径差によ り 環状の受け面が設けられていることを特徴とするもので、 これは受 け面に保持された異物を小径孔からの空気流で大径孔の方へ逆流さ せるものである。
以下、 本発明の実施の形態を添付の図面を参照して説明する。 図面の簡単な説明
差替え用紙 (規則 26) 図 1は本 ½明の実施例を示す電極の縦断面図である。
図 2は図 1 の A— A線断面図である。
図 3は変形例を示す部分的な縦断面図である。
図 4は図 3の一部を拡大した図である。
図 5は凹溝を設けたガイ ド部の平面図である。
図 6は貫通孔を設けたガイ ド部の平面図である。
図 7は別の変形例を示す図 4 と類似の図である。
図 8は本発明のもう一つの実施例を示す縦断面図である。
図 9は図 8におけるガイ ドビンの縦断面図である。
図 1 0は変形例を示す部分的な縦断面図である。
図 1 1は従来技術を示す縦断面図である。
図 1 2は別の従来技術を示す縦断面図である。
図 1 3はガイ ドビンのコーティ ング層を示す部分的な断面図であ る。
図 1 4は図 3 と類似の縦断面図である。
図 1 5は図 1 4における大径部の横断面図である。
図 1 6は図 1 4における要部の拡大図である。
図 1 7は電極端面と鋼板部品との局部的な状態を示す部分的な拡 大縦断面図である。
図 1 8は本発明の別の実施例を示す部分的な縦断面図である。 図 1 9は図 1 8の B— B線における横断面図である。
図 2 0は図 1 8における要部の拡大図である。
図 2 1は変形例を示す図 1 8 と類似の縦断面図である。
図 2 2は排気通路の変形例を示す部分的な縦断面図である。
図 2 3は図 2 2の変形例の平面図である。
図 2 4は受け面の変形例を示す縦断面図である。
図 2 5は排気通路を廃止した変形例を示す縦断面図である。
差替え用紙 (規貝 IJ26) 発明を実施するための最良の形態 まず、 図 1 および図 2の実施例から説明するが、 図 1 1 および図 1 2 に関連して説明した部材と同じ機能を果たすものについては、 同一の符号を図面に表示して詳細な説明は省略してある。 ガイ ド ビ ン 6の小径部 7はステンレス鋼で作られており、 一方、 大径部 8 は 合成樹脂で作られ、 合成樹脂の例と してはガラス繊維を混入したテ フロ ンやナイ ロ ンがある。 小径部 7 と大径部 8 との一体化には捩じ 込み式、 ナツ 卜の締付け式などいろいろな方法があるが、 ここでは 大径部 8 をモール ド成型する際に、 小径部 7 も一体に銪込むよう な 方式を採用 している。 ガイ ド ビンの軸方向に形成されている空気通 路 2 2は、 図 2 から明らかなよう に平面部 2 3 を形成することによ つて構成されている。 なお、 キャ ップ 1 7や本体 1 6は導電性の良 好な金属、 たとえば銅合金で製作されている。 大径部 8は、 断面円形のガイ ド孔 2 に しつ く り と嵌ま り込んでい る。 この 「しっ く り」 というのは、 大径部 8がガイ ド孔 2 内に実質 的に隙間がな く て摺動ができる状態を意味しており、 換言すると、 空気通路 2 2がなければ圧縮空気の流れを極めて微量なものとする か、 あるいは流れを生じさせな く て摺動ができ る状態であ り、 こう するこ とによって、 ガイ ドビン 6全体が微小に傾いた りせず、 芯振 れゃ偏心が防止されるのである。 このような大侄部 8がガイ ド部と されており、 ガイ ド部にも符号 8 を表示している。 ガイ ド部 8の端 面 2 4 と大径孔 4の内端面 2 5が密着する形状とされ、 両端面はガ ィ ド ビン 6の軸線に直交する平面の形態で設置されている。 なお、 符号 2 6は絶縁板を示している。
ちなみに、 電極の寸法は、 図示のプロジェクシヨ ンナツ トのよう
差替え用紙 (規則 26) な場合であると、 電極の直径は 2 5 m m、 電極の全長は 8 5 m m、 ガイ ドビン小径部の直径は 7 m mといった程度のものが一般的であ る。
この実施例の作動を説明すると、 図 1 は通気口 1 1 からの空気圧 力とコイルスプリ ング 1 0の張力によって、 ガイ ドビン 6は上方に 押し上げられ、 端面 2 4が内端面 2 5に強く着座して圧縮空気の流 出を完全に止めている状態である。 ここで、 図示していない可動電 極が進出してきてナッ ト 1 4を押し下げると、 面 2 4 と面 2 5 との 密着が離されるので、 圧縮空気は空気通路 2 2から両面 2 4 , 2 5 の間を通って隙間 1 2から外部へ喰出する。 この状態でナツ ト 1 4 が鋼板部品 1 3に圧接されて通電がなされると、 溶接が完了するの であり、 この時に飛び散るスパッ夕は圧縮空気で飛散させられ、 隙 問 1 2に進入してく るようなことがない。 そして、 溶接時の発熱に 対しても空気冷却がなされる。 以上の作動において、 ガイ ド部 8は ガイ ド孔 4内にしっ く り と嵌ま り込んでいるので、 芯振れや偏心が 発生したりせず、 隙間 1 2が全周にわたって均一に保持され、 空気 噴出を均一化させると共にナツ 卜 1 4 と鋼板部品 1 3 との相対位置 を正確に設定することができる。
次に、 図 3および図 4の変形例について説明すると、 ガイ ド孔 2 の小径孔 3 と大径孔 4 との間の中径孔 2 7を形成して大径孔が二段 型になっている。 ガイ ドビン 6の小径部 7 と大径部 8 との間に中径 部 2 8を形成して、 ガイ ド部 8の端面が主端面 2 9 と副端面 3 0の 二段型になっている。 中径の部分を上述のように設けて二段型にし たが、 これを三段型にすることも可能であり、 したがって、 少な く とも二段型ということになる。 大径孔の内端面も同様に主内端面 3 1 と副内端面 3 2に分割されており、 ガイ ド部 8の主端面 2 9 と副 端面 3 0 とがそれぞれ大径孔 4の主内端面 3 1 と副内端面 3 2のい ずれか一方または両方に密着するようになっている。
差替え用紙 (規貝 IJ26) そして、 ガイ ド孔の中径孔 2 7内にガイ ドビンの中径部 2 8がし つ く り と した状態で嵌ま り込んでいる。 この嵌ま り込みの軸方向の 長さ L 1 は、 溶接時にガイ ド ビン 6が後退させられる長さ L 2 よ り も短く設定してある。 こうすることによって、 図 4のごと く 中径部 2 8は中径孔 2 7から抜け出して通路 3 3が形成されるのであり、 元の状態に戻るときにはガイ ド部 8のセン夕 リ ング機能によって、 円滑な嵌ま り込みがなされる。
図 5および図 6は空気通路 2 2の設置の仕方の別案を示している もので、 図 5のものは軸方向に凹溝 3 4を 4本形成したものであり、 図 6のものはガイ ド部 8の外周近くに軸方向の貫通孔 3 5を 4本明 けたもので、 各貫通孔 3 5はガイ ド部 8の端面に開口している。
図 7の変形例は、 中径孔 2 7 と中径部 2 8がしつく り とした嵌ま り込みではなく、 隙間 3 6が付^されているものである。 したがつ て、 前述の L 1 と L 2 との長短関係が逆になつている。
述べたように、 ガイ ド ビンのガイ ド部がガイ ド孔の大径部にしつ く り と嵌ま り込み、 ガイ ド部の端面と大径孔の内端面とが環状の平 面同士で密着するので、 テーパ面の困難な加工製作を行う必要がな く、 確実な気密保持がなされる。 そして、 ガイ ド部はガイ ドビンの 芯振れや偏心が発生しないような嵌め込みにしてあるから、 小径部 の箇所の隙間が全周にわたって均一に維持され、 また、 ブロジェク シヨ ンナツ 卜 と鋼板部品との相対位置も高精度の下に確保される。 ガイ ド孔に段構造を採用し、 それに合致させてガイ ドビンにも段構 造を採用して、 前述のような面密着を行わせるものであるから、 気 密保持にとって非常に有利である。
中径孔と中径部はしつ く り とはめあい関係にしてあるから、 この はめあい部分において気密保持の機能が果たされる。 万一、 何らか の原因で各端面の密着箇所に異物が嚙み込んでも、 上記のはめあい 部分の気密保持機能によって、 空気の漏洩が防止できる。 そして、
差替え用紙 (規則 26) ガイ ド部がしっかり とセン夕 リ ング機能を果た しているので、 中径 孔と中径部との抜け出し及び入り込みが常に滑らかに達成される。 ガイ ドビンの大径部は合成樹脂製であるため、 空気通路の形成が 型成形の手法を採用でき製作面で非常に有利である。 また、 切削加 ェを行う場合でも加工性が良好で同様に有利である。 電極自体は金 厲製であ り大径孔の内端面に合成樹脂製の端面が着座するので、 合 成樹脂の側で初期馴染みが進行して、 気密保持が良好に得られる。
着座する各面がガイ ドビンの軸心に直交する形態であるから、 加 ェが簡単で高精度のものが得られ、 したがって、 気密保持の向上に とって非常に有利である。 ガイ ド部の長さはガイ ドビン全長の約半 分であるから、 芯振れや偏心の防止にとって、 極めて安定した作動 が実現するのである。
次に、 本発明のもう一つの実施形態を図 8および図 9 に従って説 明するが、 既述の部材と同じ機能を果たすものについては、 同一の 符号で表示して詳細な説明は省略してある。 ガイ ドビン 6は、 金属 製のガイ ド部 3 7 とこのガイ ド部 3 7 と一体の非金属製のシール部 3 8 から構成され、 シール部 3 8は、 ガイ ド部 3 7 よ り も大径の保 護部 3 9 とそれに連なるテーパ状の着座部 4 0 とさ らにそれに連な る基部 4 1 から構成されていて、 保護部 3 9 と小径孔 3 との間およ び ^部 4 1 と大径孔 4 との間にそれぞれ通気空隙 4 2および 4 3 が 設置されている。 なお、 電極 1 やガイ ドビン 6 はいずれも断面は円 形である。
ガイ ド部 3 7 には軸部 4 4がー体的に設けられており、 これがシ ール部 3 8 を貫通しその端部にナッ ト 4 5 を締め付けて、 ガイ ド部 3 7 とシール部 3 8 との一体化が図られている。 基部 4 1 は図 9 の ようにスカー ト状になっていて、 その内部に形成した段部 4 6 にコ ィルスプリ ング 1 0がはめ込んである。 ガイ ド部 3 7 はステンレス
差替え用紙 (規則 26) またはそれを主体とする合金で製作されてお り、 また、 シール部 3 8 は合成樹脂で作るのが最も適当で、 その例と してはガラス繊維を 混入したテフロ ンやナイ ロ ンがある。 なお、 各部の寸法を例示する と、 ガイ ド部 3 7、 保護部 3 9、 基部 4 1 の各直径はそれぞれ 6 m m、 8 m m、 2 0 m mであ り、 通気空隙 4 2 , 4 3は 0 . 5 m mで あ り、 ガイ ドビン 6の全長は 3 8 m mである。
図 1 0は、 ガイ ド部 3 7が符号 4 7で示すように中空になってい る変形例を示している。 ここでの部品はブロジェクシヨ ンボル トで あ り、 符号 4 8は軸部、 符号 4 9 は軸部と一体のフラ ンジ部を示し ている。
図 8 は通気口 1 1 からの空気圧で着座部 4 0がテーパ孔 5 にびつ た り と密着して、 空気の流通を遮断している状態である。 いま、 可 動電極( 図示していない) の進出でナツ 卜 1 4やフラ ンジ部 4 9 が 押し下げられると、 着座部 4 0がテ一パ孔 5から離れるので、 圧縮 空気は通気間隙 4 3、 テーパ孔 5から離れた着座部 4 0および通気 空隙 4 2 を経て板状部品 1 3の孔から流出して行き、 スパッ夕の進 入防止や冷却作用を行っている。
述べたように、 非金属材料で作られた着座部が金属製のテ一パ孔 に密着するものであるから、 着座部の馴染み性によって密封効果の 高い弁作用が得られる。 そして、 保護部も非金属製とされていてガ ィ ド部よ り も大径とされているので、 ガイ ド部と小径孔との金属接 触がな く、 したがって、 この部分が小径孔の内面を摩耗させるこ と がない。 このよう にして通気空隙を常に一定値に設定し電極自体の 耐久性を著し く長期化することが可能となる。 金属製のガイ ド部が 少々摩耗しても絶縁機能は非金属製のシール部が果たすので、 溶接 電流の短絡問題が発生しない。
また、 ガイ ド部を中空にするこ とによって、 プロジェクシヨ ンボ ル ト等を首尾よ く 溶接するこ とができる。 図 1 4から図 1 7は図 3の実施例の改変例を示し、 電極 1 0 1 の ガイ ド孔 1 0 2が小径孔 1 0 3、 大径孔 1 0 4およびそれらの中間 に形成した中径孔 1 0 5によって構成されている。 一方、 ガイ ドビ ン 1 0 6は、 前述の各孔 1 0 3 , 1 0 5および 1 0 4に対応して小 径部 1 0 7、 中径部 1 0 8および大径部 1 0 9から構成され、 小径 部 1 0 7は小径孔 1 0 3 との間に所要の隙間 1 1 0が設置されてい る。 中径部 1 0 8は軸方向で見て短い長さであるが中径孔 1 0 5内 にしつ く り と摺動自在に嵌ま り込んでおり、 大径部 1 0 9 も大径孔 1 0 4内にしっ く り と摺動自在に嵌ま り込んでいる。 以上に述べた 部材はすべて断面が円形である。
小径部 1 0 7は、 金属製でたとえばステンレス鋼を用いて製作さ れており、 その端部にはポル ト 1 1 1 がー体に設けてある。 中径部 1 0 8や大径部 1 0 9は合成樹脂製でたとえば商標テフロンの下に 市販されている P T F Eで製作されている。 小径部 1 0 7は合成樹 脂製の部分に差し込まれていて、 それによつて突き出ているボル ト 1 1 1 にナッ ト 1 1 2を締め付けて、 小径部 1 0 7 と合成樹脂製の 部分が一体化されている。 大径部 1 0 9には空気通路 1 1 3が設け てあり、 これは図 1 5の切り欠いた平面部 1 1 3 aによって形成さ れている。 なお、 電極 1 0 1 は本体 1 1 4にキャ ップ 1 1 5がねじ 部 1 1 6で一体化されている。
大径部 1 0 9の端面 1 1 7がキャップ 1 1 5の内端面 1 1 8に密 着していることによって、 後述の圧縮空気が遮断されており、 大径 孔 1 0 4内に設置した圧縮コイルスプリ ング 1 1 9の張力で上記の 密着が果たされている。 大径孔 1 0 4の端部には圧縮空気の入口 1 2 0が開口しており、 それに空気管 1 2 1が接続されている。
電極 1 0 1の端面 1 2 2には相手方部材である鋼板部品 1 2 3が 載置され、 該部品に明けた位置決め孔 1 2 4を小径部 1 0 7が貫通 した状態になっている。 小径部 1 0 7 には先端に向かって次第に小
差替え用紙 (規則 26) 径となる支持部 1 2 5が形成されている。 ここでの部品は符号 1 2 6で示されたブロジェクシヨンナッ トであり、 1 2 7はねじ孔、 1 2 8は溶着用の突起である。 ねじ孔 1 2 7の角部が支持部 1 2 5の 途中に引っ掛かって図 1 4のように支持されている。 この例の場合 は、 電極 1 0 1が固定電極であり、 それと対を成す電極 1 2 9が可 動電極であり、 これには支持部 1 2 5の受入れ孔 1 3 0が明けてあ る。 なお、 ここで用いた 「しっ く り」 という表現は、 摺動可能で通 気性はあるが、 直径方向のがたつきは実質的に存在しないような嵌 合関係を意味している。
電極 1 2 9が進出して く ると、 ナツ ト 1 2 6 を押し下げるので、 これと共にガイ ドビン 1 0 6全体が押し下げられ、 端面 1 1 7が内 端面 1 1 8から離れてしかも中径孔 1 0 5から中径部 1 0 8が脱出 すると、 圧縮空気が空気通路 1 1 3から中径孔 1 0 5、 隙間 1 1 0、 位置決め孔 1 2 4を絰て、 ナヅ ト 1 2 6 と鋼板部品 1 2 3 との間に 流れ込む。 このような過程を経て図 1 6の状態になると、 電極問に 通電がなされて、 溶着用突起 1 2 8が溶融して溶接を完了する。
最近のナツ ト溶接の位置の精度は、 たとえば自動車の単体である と組立精度を高く追求するために、 小径部 1 0 7 と位置決め孔 1 2 4 との隙間を著しく狭く設定してある。 その寸法の一例を挙げると、 位置決め孔 1 2 4の内径は 7 . 2 m m、 小径部 1 0 7の直径は 6 . 8 m mであり、 空気通路に許される隙間は図 1 6の左右で 0 . 2 m mということになる。 このような寸法の状況下、 図 1 6のように溶 着用突起 1 2 8が鋼板部品 1 2 3に押し付けられる直前には、 溶着 用突起 1 2 8が溶けていないので、 ナヅ ト 1 2 6の下面と鋼板部品 1 2 3の上面との間には隙間が存在している。 したがって、 ガイ ド ビン 1 0 6が押し下げられたことによって隙間 1 1 0内に導かれる 空気流は、 位置決め孔 1 2 4からナッ ト 1 2 6 と鋼板部品 1 2 3 と の間の当該隙間を通って流出して行く。 しかし、 位置決め孔 1 2 4
差替え用紙 (規則 26) の内径を上述のように著しく 小さ く してあるので、 この箇所の流路 抵抗が大き くな り隙間 1 1 0内の空気圧が高くなつて、 最終的には 鋼板部品 1 2 3が電極の端面 1 2 2から僅かに浮上させられ、 空気 は小径部 1 0 7 と位置決め孔 1 2 4 との隙間よ り も端面 1 2 2 と鋼 板部品 1 2 3 との隙間の方へ大量に流れることになり、 この時に粒 状のスパッ夕や砂粒が端面 1 2 2 と鋼板部品 1 2 3 との間にひっか かった りすることが発生する。 この状態で電極 1 2 9の加圧および 通電がなされると、 図 1 7に示したように、 前述の異物 1 3 1 が電 極端面 1 2 2に食い込み、 そのときの端面の変形で隆起部 1 3 2が でき、 その先端部が鋼板部品 1 2 3に接触することになり、 この接 触箇所以外は図示のように隙間があいて通電不可の状態となる。 こ のような状態のところへ通電がなされる訳であるから、 わずかな接 触面積、 むしろ点接触に近い状態なので、 その箇所の電流密度が高 く なり、 溶着用突起 1 2 8が溶けないかあるいは不完全な溶融であ つても、 前記箇所は急速に溶融して溶けた隆起部 1 3 2が飛び散る 現象となる。 なお、 隆起部 1 3 2が端面 1 2 2側に発生するのは、 電極の材料が比較的軟らかいクロム鋼のような材料で作られている からである。
そして、 スパッ夕等が隙間 1 1 0内へ進入するのは、 突起 1 2 8 が溶けてナツ ト 1 2 6の下面が鋼板部品 1 2 3の表面に密着すると、 空気の流出先が閉塞されるために空気流が停止し、 そのときに突起 1 2 8の部分からスパッ夕が左右に飛び散るので、 位置決め孔 1 2 4 と小径部 1 0 7 との僅かな隙間から入ってしまうのである。 この ようにして隙間 1 1 0内に入ったスパッ夕等の異物は空気流の再開 時に端面 1 2 2 と鋼板部品 1 2 3 との間に進入するのである。
上に述べた問題点を解決するための図 1 8から図 2 0の実施例に ついて説明すると、 図 1 8はナッ ト溶接がちょう ど完了したところ を示しており、 したがって、 端面 1 1 7が内端面 1 1 8から離れて
差替え用紙 (規則 26) いて、 空気の流通が可能な状態であ り、 また、 ナッ ト 1 2 6の下面 は鋼板部品 1 2 3の表面に密着していると共に支持部 1 2 5がねじ 孔 1 2 7内に嵌ま り込んでいるので、 位置決め孔 1 2 4からは外部 へ空気が流出できない状態である。 図 2 0は、 端面 1 1 7が内端面 1 1 8に密着して空気の流通を停止している状態を示す。
小径部 1 0 7が貫通している箇所のガイ ド孔 1 0 2が、 大径孔 1 3 3 と小径孔 1 3 4で構成され、 両孔 1 3 3 , 1 3 4の内径差で受 け面 1 3 5が形成されている。 大径孔 1 3 3と電極外部とを連通す る排気通路 1 3 6が電極に半径方向に設けられている。 この排気通 路 1 3 6は、 受け面 1 3 5に留まろう とする異物を積極的に外部へ 排出するために、 受け面 1 3 5の近く に開口させてあ り、 図示のよ うに電極に半径方向の孔と して形成されている。 小径孔 1 3 4は、 P T F Eのような合成樹脂で作られた支持板 1 3 7に明けてあり、 この支持板 1 3 7はキャップ 1 1 5の内側に図 1 8のごと く圧入し てある。 図 20の各部の寸法を例示すると、 小怪部 1 0 7の直径 6. 8 mm、 位置決め孔 1 2 4の内径 7. 4 mm、 大径孔 1 3 3の内径 8. 5 mm、 小径孔 1 3 4の内径 7. 0 mmであり、 したがって、 受け面 1 3 5の幅は 0. 7 5 m mである。 また、 小径孔 1 3 4と小 径部 1 0 7 との間の間隙は図 2 0の左右で 0. 1 mmづっであり、 このような値はガイ ドビン 1 0 6の半径方向のがたつきを殆ど生じ させない程度であり、 したがって、 ガイ ドビン 1 0 6は、 小径孔 1 34の部分と大径部 1 0 9 との実質的に 2点で支持がなされている のである。 これは、 ガイ ドビン 1 0 6が押し下げられたときに、 2 点支持がピン全体のセンタ リ ングを助長して傾きを抑制する上で効 果的に効く ことを意味する。 なお、 小径部 1 0 7は金属製で、 たと えばステンレス鋼で製作されており、 大径部 1 0 9は P T F Eのよ うな合成樹脂でつく られている。
突起 1 2 8が溶融してナッ ト 1 2 6が鋼板部品 1 2 3に押し付け
差替え用紙 (規則 26) られる過渡期には、 スパッ夕が内外方向に飛散するので、 その一部 が位置決め孔 1 2 4から隙間 1 1 0内へ進入するが、 この時には小 径部 1 0 7 と小径孔 1 3 4 との間の微小な隙間に高速の空気流が形 成されているので、 スパッ夕はこの隙間へ入ることなく、 受け面 1 3 5に衝突する。 この時には、 位置決め孔 1 2 4から空気は流出で きないので、 小径孔 1 3 4から排気通路 1 3 6に向かう空気流が積 極的に形成されている。 したがって、 スパッ夕等の異物は受け面 1 3 5に衝突したら直ちに排気通路 1 3 6から電極外へ排出される。
図 2 1の変形例では、 対象の部品がプロジヱクシヨ ンボル ト 1 3 8であ り、 軸部 1 3 9、 フランジ 1 4 0、 溶着用突起 1 4 1から構 成されている。 ガイ ドビン 1 0 6の小径部 1 0 7は中空のパイ ブ状 になっており、 その中に軸部 1 3 9が揷入されている。 他の構成や 作動は、 先の実施例と同じである。
図 2 2および図 2 3は排気通路の変形例を示し、 電極の端面 1 2 2に半径方向の溝 1 4 2を形成したもので、 受け面 1 3 5の近く に 溝 1 4 2を開口させるために、 支持板 1 3 7をキヤ ヅブ 1 1 5の端 面 1 2 2に近付けて配置してある。 なお、 ここでは端面 1 1 7 と協 働する内端面 1 1 8はキャ ップ 1 1 5の下面に形成してある。 この 変形例は、 大径孔 1 3 3の長さが先のものに比べて短いが、 作動は 前述のものと同じである。
図 2 4は、 小径孔 1 3 4が金属製のキヤップ 1 1 5に明けられて いる変形例を示す。
また、 図 2 5の変形例は、 排気通路 ( 1 3 6 ) を止めて位置決め 孔 1 2 4から進入した異物を、 熔接終了後に電極から鋼板部品 1 2 3 を取り除きつつある過渡期に小径孔 1 3 4からの空気噴流で上方 へ排出するようにしたものである。
述べたように、 空気は常に排気通路から排出されているので、 鋼 板部品を押し上げる気圧が実質的に無害な値となり、 電極端面と鋼
差替え用紙 (規貝 U26) 板部品とは密着した状態で、 この両者間には空気が流れた り しない のである。 よって、 この両者間に前述のような異物が介入すること がなく、 前述の電極表面の短絡通電がなく なり、 スパークが飛んだ り溶融によって電極端面が損傷するのを防止できる。 さらに、 排気 通路からは十分な量の空気を排出できるので、 溶接熱を放熱させる のに極めて好適である。 前述の電極端面と鋼板部品との間には異物 が介在しないものであるから、 この両者間に隙間が発生したりせず、 したがって、 無駄な空気の漏洩が防止できる。 そして、 空気流量は 排気通路へ異物を排出させるだけの量に設定すればよいので、 必要 最小限の空気量でよ く、 エネルギー節約にとって有効である。 小径 部が貫通している箇所のガイ ド孔が大径孔と小径孔で構成されてい るので、 小径孔からの空気噴流を異物排除に有効に活用できる。
大径孔と小径孔との内径差によ り環状の受け面を設け、 この受け 面の近く に排気通路を開口させることによ りてあるから、 大径孔内 に入ってきたスパッ夕等の異物は小径孔からの高速空気流があるの で、 この小径孔に入り込むことがなく、 むしろ受け面に衝突して、 小径孔から排気通路に向かう空気流によつて電極外へ排出される。 したがって、 異物が小径孔ゃ大径部の端面と内端面との密着部に介 入することがな く、 空気漏れを発生させるようなことが完全に防止 できる。
ガイ ドビン全体は、 大径部と小径部の 2 力所で実質的にがたつき 間隙のないような 2点支持とされているので、 小径部の支持部に何 らかの曲げ力が作用しても安定性の高い支持であるために、 ガイ ド ビンが傾いたり偏心した りすることがなく、 高精度のガイ ド機能が 果たせるのである。
ガイ ド ビンは、 小径部が金属製とされ大径部が合成樹脂製とされ ており、 しかも小径部が貫通している小径孔は合成樹脂製の部材に 明けてあるので、 2 力所におけるガイ ドビンの摺動部分は、 それぞ
差替え用紙 (規則 26) れ合成樹脂と金属との摺動関係を維持でき、 したがって、 摺動間隙 が最小化されても滑らかな滑動を維持でき、 ガイ ドビンに曲げ力が 作用しても合成樹脂の部分が直径方向に緩衝効果を発揮し、 安定し た摺動保持が得られる。
排気通路がなくて前述の小径孔からの空気噴流と受け面との作用 によ り、 大径孔内に入った異物を空気噴流で逆流させ、 鋼板部品を 持ち上げる過渡期に異物を大径孔から排出させることも可能である。
差替え用紙 (規則 26)

Claims

請求の範囲
1 電極内の断面円形のガイ ド孔が小径孔と大径孔から構成されて いる と共にガイ ドビンが小径部と大径部から構成され、 ガイ ド ビン の小径部と大径部とがそれぞれガイ ド孔の小径孔と大径孔とに嵌ま り込んでおり、 ガイ ドビンが押し下げられる と圧縮空気が小径孔と 小径部との間の隙間から噴出する形式のものにおいて、 ガイ ドビン の大径部が大径孔に しつ く り と嵌ま り込んでいるガイ ド部とされ、 ガイ ド部の端面と大径孔の内端面とが密着するように構成し、 ガイ ド部にはガイ ドビンの軸方向に空気通路を形成したことを特徴とす る溶接用電極。
2 ガイ ド孔の小径孔と大径孔との間に中径孔を形成することによ つて大侄孔が少な く とも二段型とされ、 ガイ ドビンの小径部と大径 部との間に中径部を形成するこ とによってガイ ド部の端面が主端面 と副端面との少な く とも二段型とされ、 大径孔の内端面はガイ ド部 の主端面と副端面のいずれかまたは両方が密着する主内端面と副内 端面とされていることを特徴とする請求項 1 の溶接用電極。
3 ガイ ド孔内の中径孔内にガイ ドビンの中径部がしっ く り と嵌ま り込んでお り、 この嵌ま り込みの軸方向の長さは溶接時にガイ ド ビ ンが後退させられる長さよ り も短く設定してあることを特徴とする 請求項 2の溶接用電極。
4 空気通路がガイ ド部の外周面に平面部を設けることによって形 成されていることを特徴とする請求項 1の溶接用電極。
5 空気通路がガイ ド部の外周面に平面部を設けることによって形
差替え用紙 (規則 26) 成されていることを特徴とする請求項 2の溶接用電極。
6 空気通路がガイ ド部の外周面に凹溝を設けるこ とによって形成 されていることを特徴とする請求項 1 の溶接用電極。
7 ガイ ドビンの小径部は金属製とされ、 大径部は合成樹脂製とさ れ、 電極は導電性の良好な金属製とされているこ とを特徴とする請 求項 1の溶接用電極。
8 板状部品の孔に貫通する金属製のガイ ド部とこのガイ ド部と一 体の非金属製のシール部から成るものにおいて、 シール部はガイ ド 部よ り も大径の保護部とそれに連なるテ一パ状の着座部とさ らにそ れに連なる基部から構成され、 保護部と基部の外周部にはそれぞれ 電極のガイ ド孔との間に通気空隙が設置されているこ とを特徴とす る溶接用電極のガイ ドビン。
9 ガイ ド部が中空になっていることを特徴とする請求項 8の溶接 用電極のガイ ドビン。
1 0 電極のガイ ド孔内に挿入された進退可能なガイ ドビンがガイ ド孔内を摺動する大径部と電極から突き出て相手方部品の位置決め をする小径部で構成されていると共にガイ ドビンが押し込まれる と ガイ ド ビンの外周部から空気が噴出される形式のものにおいて、 小 径部が貫通しているガイ ド孔が大径孔と小径孔で構成され、 大径孔 と電極外部とを連通する排気通路が電極に形成されているこ とを特 徴とする溶接用電極。
1 1 大径孔と小径孔との内径差によ り環状の受け面を設け、 この
差替え用紙 (規則 26) 受け面の近く に排気通路を開口させ、 大径孔に進入してきたスパッ 夕等の異物を受け面に衝突させ、 小径孔から排気通路への空気流に よつて電極外部へ異物を排出するこ とを特徴とする請求項 1 0の溶 接用電極。
1 2 ガイ ドビンはその大径部がガイ ド孔内を摺動していることと、 小径部が小径孔において著し く 小さな摺動間隙とされているこ とに よ り、 実質的にガイ ドビンが 2点支持の形態とされているこ とを特 徴とする請求項 1 0の溶接用電極。
1 3 ガイ ドビンは小径部が金属製とされているとともに大径部が 合成樹脂製とされ、 小径部が貫通している小径孔は合成樹脂製の部 材に形成されていることを特徴とする請求項 1 0の溶接用電極。
1 4 電極のガイ ド孔内に挿入された進退可能なガイ ドビンがガイ ド孔内を摺動する大径部と電極から突き出て相手方部品の位置決め をする小径部で構成されたものにおいて、 小径部が貫通しているガ ィ ド孔が大径孔と小径孔で構成され、 大径孔と小径孔との内径差に よ り環状の受け面が設けられていることを特徴とする溶接用電極。
差替え用紙 (規則 26)
PCT/JP1997/001563 1996-05-11 1997-05-09 Electrode de soudage WO1997043076A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/913,103 US6008463A (en) 1996-05-11 1997-05-09 Resistance welding electrode with guide pin
EP97918395A EP0865861B1 (en) 1996-05-11 1997-05-09 Welding electrode
DE69723545T DE69723545T2 (de) 1996-05-11 1997-05-09 Schweisselektrode
CA002215710A CA2215710C (en) 1996-05-11 1997-05-09 Electrode for welding
AU26518/97A AU723029B2 (en) 1996-05-11 1997-05-09 Electrode for welding

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP15283196A JP3326491B2 (ja) 1996-05-11 1996-05-11 電気抵抗溶接用の電極
JP8/152831 1996-05-11
JP8/196882 1996-06-22
JP19688296A JPH106033A (ja) 1996-06-22 1996-06-22 溶接電極のガイドピン
JP31252496A JP2903149B2 (ja) 1996-10-19 1996-10-19 ガイドピン付きのプロジェクション溶接電極
JP8/312524 1996-10-19

Publications (1)

Publication Number Publication Date
WO1997043076A1 true WO1997043076A1 (fr) 1997-11-20

Family

ID=27320356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001563 WO1997043076A1 (fr) 1996-05-11 1997-05-09 Electrode de soudage

Country Status (9)

Country Link
US (1) US6008463A (ja)
EP (2) EP1323488B1 (ja)
KR (1) KR100486035B1 (ja)
CN (1) CN1181724A (ja)
AU (1) AU723029B2 (ja)
CA (1) CA2215710C (ja)
DE (2) DE69733783T2 (ja)
TW (1) TW334373B (ja)
WO (1) WO1997043076A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303893B1 (en) * 2000-07-21 2001-10-16 Perks Mfg Engineering Company Resistance projection welder and method therefor
EP1350589A1 (en) * 2000-12-13 2003-10-08 Kabushiki Kaisha SMK Device for welding nut or the like
DE10113496C1 (de) * 2001-03-20 2002-09-05 Klaus Kuerzinger Schweißelektrode zum Verbinden gelochter Werkstücke
US6740840B2 (en) * 2001-06-04 2004-05-25 Daimlerchrysler Corporation Weld electrode for detecting a misoriented weld nut
US7564005B2 (en) * 2001-07-10 2009-07-21 Doben Limited Resistance welding fastener electrode and monitor and method of using same
US6576859B2 (en) * 2001-07-10 2003-06-10 Doben Limited Resistance welding fastener electrode
DE10209492B4 (de) * 2002-03-05 2006-02-09 Daimlerchrysler Ag Preßschweißmaschine
AU2003248079B2 (en) * 2002-07-20 2009-09-24 Yoshitaka Aoyama Electrode for projection welding
US6750419B2 (en) * 2002-10-08 2004-06-15 Doben Limited Resistance welding electrode
BRPI0509092A (pt) * 2004-03-24 2007-08-28 Friatec Ag elemento de admissão
JP4147557B2 (ja) * 2004-11-13 2008-09-10 好高 青山 プロジェクションナットの供給装置
US7633032B2 (en) * 2005-07-08 2009-12-15 Gm Global Technology Operations, Inc. System and method for clamping and resistance welding
DE102006013342B3 (de) * 2006-03-23 2007-09-20 GEDIA Gebrüder Dingerkus GmbH Vorrichtung und Verfahren zum Verschweißen von Gegenständen
US7250585B1 (en) 2006-05-31 2007-07-31 Honda Motor Co., Ltd. Robotic welding system and method for welding projection weld nuts
CA2687726C (en) * 2007-05-29 2013-10-29 Doben Limited Resistance welding electrode
US7753230B2 (en) * 2007-12-20 2010-07-13 Mikio Kusano Nut feeder
JP4424755B1 (ja) * 2009-04-17 2010-03-03 株式会社エスエムケイ 溶接用下部電極装置
RU2453410C2 (ru) * 2009-12-02 2012-06-20 Валерий Никитич Гринавцев Графитовый (угольный) электрод
US8294064B1 (en) 2010-03-18 2012-10-23 Honda Motor Co., Ltd. Floating electrode assembly and automated system and method for welding projection weld nuts
CN102069329A (zh) * 2010-12-07 2011-05-25 苏州和林精密科技有限公司 一种双支架式卸料设备
JP5185409B2 (ja) * 2011-03-30 2013-04-17 日本碍子株式会社 抵抗溶接方法及び抵抗溶接治具
CN102151972A (zh) * 2011-05-13 2011-08-17 重庆平伟科技(集团)有限公司 一种环形螺母专用强制气冷电阻凸焊下电极
CN102248271B (zh) * 2011-06-28 2013-03-27 重庆长安汽车股份有限公司 一种凸焊螺母焊接下电极
BR102012017279B1 (pt) * 2012-07-12 2019-02-12 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Dispositivo e processo de conformação e soldagem simultânea de tubos conectores para compressores
CA2916590C (en) * 2013-07-02 2022-03-29 Shoji Aoyama Projection bolt welding method
KR101390318B1 (ko) * 2013-10-15 2014-04-30 주식회사 경인엠제이시스템 스패터 유입 방지가 용이한 용접 대상물 지지장치
CN103753076A (zh) * 2013-11-26 2014-04-30 四川蓝讯宝迩电子科技有限公司 一种焊接螺母的双工位定位焊接装置
JP6260786B2 (ja) * 2014-10-07 2018-01-17 青山 省司 プロジェクション溶接用電極
JP6481826B2 (ja) * 2015-09-01 2019-03-13 青山 省司 電気抵抗溶接用電極
JP6553004B2 (ja) 2016-08-08 2019-07-31 青山 省司 電気抵抗溶接用電極
CN106735819A (zh) * 2016-12-28 2017-05-31 重庆太乙机械有限公司 一种电极焊接设备
DE102017111633B4 (de) * 2017-05-29 2021-11-04 Doceram Gmbh Elektrode zum Widerstandsschweißen
CN107275909B (zh) * 2017-06-19 2018-11-13 温惟善 一种消除密封连接器电极导柱漏气方法
JP6395068B1 (ja) * 2017-08-17 2018-09-26 青山 省司 電気抵抗溶接用電極および気密維持方法
US11590612B2 (en) 2018-04-27 2023-02-28 Hobart Brothers Llc Micro-porous tubular welding wire
JP6793163B2 (ja) * 2018-09-20 2020-12-02 本田技研工業株式会社 抵抗溶接装置
DE102018125690B4 (de) * 2018-10-16 2022-10-06 Doceram Gmbh Schweißelektrode
CN109719380A (zh) * 2019-01-29 2019-05-07 武汉中人瑞众汽车零部件产业有限公司 利用焊接机器人在钣金件上凸焊螺母的方法及装置
CN112139698A (zh) * 2019-06-27 2020-12-29 四川瑞达新材料科技有限公司 低合金钢气保焊药芯焊丝
EP3789150A1 (de) * 2019-09-04 2021-03-10 FRONIUS INTERNATIONAL GmbH Verfahren und schweissvorrichtung zum durchführen eines mehrfach-schweissverfahrens
US20210205914A1 (en) * 2020-01-03 2021-07-08 Tec-Option, Inc. Floating electrode welding
JP6751519B1 (ja) * 2020-02-25 2020-09-09 青山 省司 電気抵抗溶接電極
CN111843150A (zh) * 2020-08-04 2020-10-30 桐乡辰宇机械股份有限公司 一种用于碰焊的气接头结构及碰焊设备和碰焊方法
CN112643186A (zh) * 2021-03-10 2021-04-13 南京金焊焊接实业有限公司 一种焊接定向螺母的异型电极组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146985U (ja) * 1981-03-07 1982-09-16
JPH01278974A (ja) * 1988-04-30 1989-11-09 Yoshitaka Aoyama プロジエクシヨンボルト等のスポツト溶接用電極
JPH0314083U (ja) * 1989-06-20 1991-02-13

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2623974A (en) * 1949-10-25 1952-12-30 Gen Motors Corp Process for extruding flanges around holes in metal sheets and welding nuts thereto
US3657509A (en) * 1971-02-16 1972-04-18 Donald Joseph Beneteau Nut welding electrode
EP0057920A1 (en) * 1981-02-06 1982-08-18 Eaton Corporation Hose and tube fitting
US4609805A (en) * 1985-07-12 1986-09-02 Toyota Jidosha Kabushiki Kaisha Weld nut welding apparatus
JPH0220671A (ja) * 1988-07-09 1990-01-24 Yoshitaka Aoyama スポット溶接における電極のガイドピン
JPH0767624B2 (ja) * 1990-10-19 1995-07-26 好高 青山 プロジェクシヨン溶接方法およびその装置
JPH06226458A (ja) * 1991-12-12 1994-08-16 Kanto Denka Kogyo Co Ltd スポット溶接機用基準ピン
JPH0630288A (ja) * 1992-07-13 1994-02-04 Ricoh Co Ltd カラーファクシミリ装置
JPH0857660A (ja) * 1994-06-15 1996-03-05 Ondo Kosakusho:Kk プロジェクションナット溶接機用ガイドピン
GB9617879D0 (en) * 1996-05-11 1996-10-09 Aoyama Yoshitaka Electrode for electric resistance welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146985U (ja) * 1981-03-07 1982-09-16
JPH01278974A (ja) * 1988-04-30 1989-11-09 Yoshitaka Aoyama プロジエクシヨンボルト等のスポツト溶接用電極
JPH0314083U (ja) * 1989-06-20 1991-02-13

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0865861A4 *

Also Published As

Publication number Publication date
EP0865861A4 (en) 2000-03-29
TW334373B (en) 1998-06-21
AU723029B2 (en) 2000-08-17
KR100486035B1 (ko) 2005-08-29
EP1323488A3 (en) 2003-07-09
DE69733783D1 (de) 2005-08-25
DE69723545D1 (de) 2003-08-21
DE69733783T2 (de) 2006-04-20
EP1323488A2 (en) 2003-07-02
EP1323488B1 (en) 2005-07-20
DE69723545T2 (de) 2004-06-09
AU2651897A (en) 1997-12-05
CA2215710A1 (en) 1997-11-11
CA2215710C (en) 2005-01-11
EP0865861B1 (en) 2003-07-16
EP0865861A1 (en) 1998-09-23
CN1181724A (zh) 1998-05-13
KR19990021891A (ko) 1999-03-25
US6008463A (en) 1999-12-28

Similar Documents

Publication Publication Date Title
WO1997043076A1 (fr) Electrode de soudage
US6424082B1 (en) Apparatus and method of improved consumable alignment in material processing apparatus
US20200361028A1 (en) Gas Nozzle Having a Displaceable Valve Sleeve
US7605340B2 (en) Apparatus for cooling plasma arc torch nozzles
EP0573653B1 (en) Plasma torch for cutting
US7193174B2 (en) Method and apparatus for alignment of components of a plasma arc torch
EP1765046B2 (en) Plasma torch electrode with improved insert configurations
NZ228185A (en) Fluid jet cutting nozzle assembly
US5705784A (en) Electrode for electric resistance welding
KR20090108705A (ko) 최적화된 수냉각을 갖는 플라즈마 아크 토치 커팅 부품
US7078648B2 (en) Curved electrode for welding
US6966188B2 (en) Plate-like body connecting method, connected body, tail pipe for gas turbine combustor, and gas turbine combustor
JPH0584579A (ja) 切断用プラズマトーチ
US20050133484A1 (en) Nozzle with a deflector for a plasma arc torch
JP2903149B2 (ja) ガイドピン付きのプロジェクション溶接電極
JP3716369B2 (ja) 電気抵抗溶接用の電極
EP0935405A1 (fr) Electrode pour torche à plasma
JPH06320288A (ja) ウエルドナットの溶接方法
JP3326491B2 (ja) 電気抵抗溶接用の電極
US20200305267A1 (en) Wide Area Shield for use in a Plasma Cutting Torch.
JPH106033A (ja) 溶接電極のガイドピン
JP3392074B2 (ja) 溶接または切断用トーチ
JP2002086274A (ja) プラズマトーチ用のノズル
JP6086351B6 (ja) 空気噴射式の電気抵抗溶接電極
CN117564457A (zh) 一种激光焊接气体保护装置及激光焊接设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190178.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 08913103

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2215710

Country of ref document: CA

Ref document number: 2215710

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997918395

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970708366

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997918395

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970708366

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997918395

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970708366

Country of ref document: KR