WO1997037038A1 - Verfahren zur spezifischen vervielfältigung von langen nukleinsäuren durch pcr - Google Patents

Verfahren zur spezifischen vervielfältigung von langen nukleinsäuren durch pcr Download PDF

Info

Publication number
WO1997037038A1
WO1997037038A1 PCT/EP1997/001494 EP9701494W WO9737038A1 WO 1997037038 A1 WO1997037038 A1 WO 1997037038A1 EP 9701494 W EP9701494 W EP 9701494W WO 9737038 A1 WO9737038 A1 WO 9737038A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
mixture
dna polymerase
primer
enzyme mixture
Prior art date
Application number
PCT/EP1997/001494
Other languages
English (en)
French (fr)
Inventor
Bruno Frey
Hildegund Kübler
Original Assignee
Boehringer Mannheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Gmbh filed Critical Boehringer Mannheim Gmbh
Publication of WO1997037038A1 publication Critical patent/WO1997037038A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the invention relates to an enzyme mixture and its use for the specific duplication of particularly long nucleic acid sequences by the polymerase chain reaction (PCR) and a method for the specific detection of such nucleic acid sequences in the presence of a sample, in particular in biological liquids.
  • PCR polymerase chain reaction
  • PCR polymerase chain reaction
  • the PCR reaction is usually carried out using the thermophilic DNA polymerase from Thermus aquaticus, so-called Taq polymerase.
  • Taq polymerase the thermophilic DNA polymerase from Thermus aquaticus
  • DNA polymerases such as Pyrococcus furiosus are often used. so-called Pfu polymerases used (Lundberg, KS et al., Gene JO8 (1991) 1-6).
  • the Pfu polymerase is characterized by an additional activity, namely an intrinsic 3 '- (editing) -exonuclease activity (proofreading activity) and is thus able to increase the mutation rate per cycle considerably, by a factor of approximately 10 Reduce.
  • proofreading polymerases reach their limits when duplicating short sequences, ie up to about 3 kb.
  • An improvement in this regard is from W. Barnes, in Proc. Natl. Acad. Be. USA 9y.
  • the Barnes improvement consists in the use of a mixture consisting of two different DNA polymerases, one so-called proofreading activity (such as Pfu) and the other DNA polymerase present in excess having no proofreading activity (such as Taq). having.
  • proofreading activity such as Pfu
  • Taq no proofreading activity
  • the amplification of longer DNA sequences ie up to 35 kb of lambda DNA and 29.9 kb of human DNA (Cheng et al (1995) PCR Methods and Applications 4: 294-298), is dependent in each case on the ones used Primers, the cycle conditions or number of cycles or other conditions, higher efficiency as well as yield achieved.
  • nucleic acid sequences up to 29 kb in human genomic DNA and 42 kb in lambda DNA can now be amplified, the yields are nevertheless relatively low.
  • An optimization of the PCR can also be achieved according to the prior art by reducing the amount of pyrophosphate in the reaction mixture.
  • a pyrophosphatase was used in particular as the pyrophosphate-reducing agent (WO 90/1211 1, WO 94/05797).
  • the addition of a thermostable pyrophosphatase from Thermus aquaticus to the PCR then led to a doubling of the production of the PCR products compared to the PCR without pyrophosphatase
  • thermostable pyrophosphatase from E. coli or from Thermus thermophilus for the same purpose.
  • the pyrophosphatase from E. coli was not sufficiently thermostable under PCR conditions, it could be shown that the use of a thermostable pyrophosphatase from Thermus thermophilus made it possible to effectively amplify 10 kb lambda DNA fragments.
  • the object of the invention was to provide measures for the specific duplication of nucleic acid sequences which are larger than 20 kb, by means of which the disadvantages described in the prior art are overcome.
  • thermostable DNA polymerase with proofreading activity a thermophilic DNA polymerase without proofreading activity and a thermostable pyrophosphatase is used for the multiplication of larger nucleic acid sequences by means of a PCR reaction becomes. It has proven to be advantageous if the DNA polymerase is present in excess without proofreading activity, preferably in an at least 8 times higher concentration than the enzyme with proofreading activity.
  • the pyrophosphatase is present in a ratio of 0.5 - 0.1 units to approximately one unit total polymerase concentration.
  • a further embodiment of the invention is when one or two enzymes are used which have the three enzyme activities required for the enzyme mixture.
  • DNA polymerases from Pyrococcus furiosus Pfu
  • Pyrococcus species GB-D Thermotoga maritima
  • Tma Pyrococcus woesii
  • TU Thermococcus litoralis
  • Sso Sulfolobus solfataricus
  • Taq DNA polymerase or corresponding analogues such as Klentaq I (N-terminally shortened enzyme), the Klenow fragment of DNA polymerase I from T aquaticus (DSM 625) or other polymerases from Thermus species (Tth, Tfl, Tfi.
  • Tbr proved to be suitable.
  • pyrophosphatase for example, enzymes from Thermus thermophilus (TAh, DSM 579), or other Thermus species such as T. aquati ⁇ cus, and enzymes from thermophilic archaebacteria such as Sulfolobus acidocaltarius or Thermoplasma acidophilum are suitable.
  • TAh Thermus thermophilus
  • thermophilic archaebacteria such as Sulfolobus acidocaltarius or Thermoplasma acidophilum
  • a mixture of Pwo and Taq in a ratio of approximately 1:10 and a ratio of this mixture to PPase (Thermus thermophilus) of approximately 3.5: 1 is preferred.
  • the enzyme mixture of the invention can also be used advantageously for labeling long DNA fragments with modified nucleotides.
  • Long fragments mean in particular nucleic acid sequences which have 20 kb or more. In certain cases, a specific amplification with good yield for DNA fragments up to approximately 50 kb could be achieved with the mixture according to the invention.
  • PCR methods which would allow longer PCR products to be amplified with greater efficiency would facilitate genome mapping and sequencing, as well as the cloning and mutagenesis of large sequence areas and the diagnosis of deletions.
  • the optimal reaction conditions such as incubation time, temperature, buffer conditions, the magnesium (Mg 2+ ) concentration or the concentration of the enzyme mixture, depend on the template / primer pair used and should be determined individually. Corresponding preliminary tests are among the measures customary for a person skilled in the art.
  • MgCl 2 is used; the usual concentration is approx. 2.35 mM.
  • Another embodiment of the invention is an enzyme mixture consisting of a thermostable DNA polymerase with proofreading activity, a thermophilic DNA polymerase without proofreading activity and a thermostable pyrophosphate and addition of a special reaction buffer-salt mixture.
  • a buffer solution based on tricine ammonia and other salts proved to be advantageous as a reaction buffer-salt mixture.
  • Ammonium sulfate has a salt concentration of approx. 5 - 25 mM. preferably of 7.5-10 mM has been found to be particularly advantageous.
  • the pH value for the amplification is about 8.8 - 9.2, preferably about 9.0.
  • the PCR reaction can usually be carried out by adding further substances such as bovine serum albumin in a concentration of up to approx. 100 ⁇ g / ml, SH reagents such as dithiothreitol or beta-mercaptoethanol in a concentration range from 1.0 to 80 mM, preferably 50 mM, or a detergent such as, for example, Tween 20 or Nonidet NP40 in a concentration range of 0.01 to 5.0%, preferably approximately 0.05-0.5%, spermidine or glycerol in conventional concentrations are further improved.
  • further substances such as bovine serum albumin in a concentration of up to approx. 100 ⁇ g / ml, SH reagents such as dithiothreitol or beta-mercaptoethanol in a concentration range from 1.0 to 80 mM, preferably 50 mM, or a detergent such as, for example, Tween 20 or Nonidet NP40 in a concentration range of 0.01 to 5.0%, preferably approximately
  • reaction buffer-salt mixture described above which contains a tricine-ammonia buffer with a concentration of approximately 50 mM, ammonium sulfate with a concentration of 7.5-25 mM, 2- 4% DMSO, 0.1% TWEEN 20 and mercaptoethanol with a concentration of approx. 10 mM, is not only suitable as a reaction mixture for such PCR reactions which is carried out with the enzyme mixture according to the invention, but with other known measures become. This can be seen in Figures 2 and 5.
  • a temperature for the extension step of approximately 66-70 ° C., preferably 68 ° C., has proven to be advantageous.
  • the elongation time is between approx. 10 and 35 minutes and depends strongly on the length of the fragment to be amplified. For DNA fragments of 30 kb, 20 minutes in particular have proven advantageous, for fragments of approximately 40 kb approximately 27 minutes and for DNA fragments of the order of 50 kb approximately 35 minutes.
  • the elongation time should be extended by 5 - 20 seconds per cycle after the 10th cycle.
  • a temperature of approximately 92-94 ° C., preferably 92 ° C., has proven particularly useful for denaturation during the cycles; the denaturation time should be approximately 10 seconds.
  • the use of ultra-thin reaction vessels with a volume of approximately 0.2 ml has proven to be particularly advantageous.
  • a reagent used for nucleic acid amplification essentially consists of two individual mixtures.
  • the first mixture contains the respective template DNA, such as genomic DNA or recombinant DNA (eg cosmids) in a concentration range of approximately 1 to 500 ng / batch with so-called upstream and downstream primers (preferably each approx.
  • nucleotide triphosphates a nucleotide triphosphate required for the DNA chain extension, such as dATP.
  • dCTP, dGTP and dTTP a nucleotide triphosphate required for the DNA chain extension.
  • dCTP, dGTP and dTTP a concentration of 200-600 ⁇ M; preferably 500 ⁇ M, proven to be particularly suitable.
  • the second mixture essentially contains the buffer required for the PCR reaction and the enzyme mixture according to the invention in a correspondingly higher concentrated form, so that after mixing with the first mixture the concentrations according to the invention result.
  • Reaction batches of 10 to 100 ⁇ l, preferably 50 ⁇ l, have proven to be advantageous for the amplification of long fragments.
  • the sample is introduced into an appropriate thermal cycler device and first denatured to separate the double strand of the respective DNA fragment (at 92 ° C., 2 minutes). This is followed by the individual cycles of the PCR.
  • SEQ ID NO: 2 tPA primer 2 5'-TGT CTC CAG CAC ACA GCA TGT TGT CGG TGA C-3 '
  • SEQ ID NO: 3 tPA primer 3 5 * -CAA AGT CAT GCG GCC ATC GTT CAG ACA CAC C-3 '
  • Beta-Globin Primer 1 5'-CAC AAG GGC TAC TGG TTG GCG ATT-3 '
  • Beta-Globin Primer 2 5 * -AGC TTC CCA ACG TGA TCG CCT T-3 '
  • Beta-Globin Primer 3 5'-CAC TTG TTT AGG CCT TAG CGG GCT-3 '
  • Beta-globin primer 4 5'-TGC TGC TCT GTG CAT CCG AGT G-3 '
  • Beta-globin primer 5 5'-TGA GAC TTT TGT CCC AGC AGG TGT-3 '
  • Beta-Globin Primer 6 5'-CCT TCA CCA TGT CCC TGC AAA GAC-3 '
  • Lambda Primer 1 5'-CTG ATG AGT TCG TGT CCG TAC AAC TGG CGT AAT
  • Lambda Primer 7 5'-CGG TTT AAG GCG TTT CCG TTC TTC TTC GTC-3 '
  • the enzyme mixture with PPase shows significantly more PCR product in every buffer condition than the enzyme mixture without PPase.
  • a further improved product yield is achieved in combination of the enzyme mixture with PPase with a tricine NH 3 buffer.
  • Amplification of 20 kb, 25 kb. 30 kb, 35 kb, 40 kb and 47 kb from lambda DNA with Taq / Pwo / PPase enzyme mixture (according to the invention).
  • Taq / Pwo mixture without PPase and Tris-HCl buffer prior art
  • Taq / Pwo / PPase mixture and Tricine- NH 3 buffer accordinging to the invention
  • Lane 3 20 kb fragment with Taq / Pwo mixture without PPase and Tris-HCl buffer
  • Lane 5 25 kb fragment with Taq / Pwo mixture without PPase and Tris-HCl buffer
  • Lane 7 30 kb fragment with Taq / Pwo mixture without PPase and Tris-HCl buffer.
  • Lane 9 35 kb fragment with Taq / Pwo mixture without PPase and Tris-HCl buffer
  • Lane 4 20 kb fragment with Taq / Pwo-PPase mixture and tricine-ammonia buffer
  • Lane 6 25 kb fragment with Taq / Pwo PPase mixture and tricine ammonia buffer
  • Lane 8 30 kb fragment with Taq / Pwo PPase mixture and tricine ammonia buffer lane 10 35 kb fragment with Taq / Pwo PPase mixture and tricine ammonia
  • Lane 12 40 kb fragment with Taq / Pwo PPase mixture and tricine ammonia buffer
  • Enzyme mixture with PPase shows significantly more PCR product at all lengths than enzyme mixture without PPase.
  • Tricine-NH 3 buffer shows significantly more PCR product in combination with Taq / Pwo enzyme mixture than the use of Tris-HCl buffer.
  • Lane 1 and 2 15 kb fragment from tPA gene with Taq / Pwo enzyme mixture and Tris-HCl buffer
  • Lane 2 and 3 15 kb fragment from tPA gene with Taq / Pwo enzyme mixture and tricine-NH 3 buffer
  • thermostable polymerases from Thermus aquaticus (Taq) and Pvrococcus woesii (Pwo) and the thermostable PPase from Thermus thermophilus were used as the Taq / Pwo / PPase enzyme mixture (according to the invention).
  • the mixing ratio of the two polymerases was 10: 1 (Taq: Pwo) by activity (units).
  • the mixing ratio of polymerases to PPase was 3.6: 1 by activity (units).
  • a typical enzyme mixture was 3.5 U Taq polymerase + 0.3 U Pwo polymerase + 1 U PPase per ⁇ l.
  • the enzyme mixture was stored in storage buffer (20 mM Tris / HCl, pH 7.5 (20 ° C), 100 mM KC1, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween20, 0.5% Nonidet P40, 50 % Glycerol) stored at -20 ° C.
  • PCR polymerase chain reaction
  • PCR buffer 7.5 mM (NH 4 ) 2 SO 4 ; 50 mM Tricine / NH 3 (20 ° C)
  • genomic DNA 250 ng was used as template.
  • primer pairs and conditions were used:
  • Fig. 1 shows the amplification of 23 kb, 24 kb, 27 kb, 28.3 kb, 29.9 kb, 31 kb and 35 kb fragments from human, genomic DNA with Taq / Pwo / PPase enzyme mixture (according to the invention).
  • the amplification conditions were identical to those in example 1.
  • a Taq / Pwo / PPase enzyme mixture with the ratio 10: 1 according to units and a Tris-HCl buffer (50 mM Tris-HCl pH 9.2, 16 mM (NH 4 ) 2 SO 4? DMSO 2%, Tween 20.1%, 2.25 mM MgCl 2 ) was used.
  • Beta-globin primer 3 was used as the primer as the forward primer and beta-globin primer 2 as the reverse primer.
  • Figure 2 shows the amplification of a 28.3 kb fragment from the human beta globin gene with Taq / Pwo mixture without PPase (prior art) and Taq / Pwo / PPase mixture (according to the invention) with Tris buffer (prior art) and Tricine-NH 3 buffer (according to the invention).
  • the enzyme mixture with PPase shows significantly more PCR product in every buffer condition than the enzyme mixture without PPase. However, the greatest product yield is only achieved by combining the enzyme mixture with PPase and the Tricine-NH 3 buffer.
  • Lambda Primer 1 and 2 (20 kb) 2) Lambda Primer 1 and 3 (25 kb) 3) Lambda Primer 1 and 4 (30 kb) 4) Lambda Primer 1 and 5 (35 kb) 5) Lambda Primer 1 and 6 (40 kb) 6) Lambda Primer 7 and 6 (47 kb)
  • Figure 3 shows the amplification of 20 kb, 25 kb. 30 kb. 35 kb, 40 kb and 47 kb from lambda DNA with Taq / Pwo / PPase enzyme mixture (according to the invention).
  • the amount of lambda DNA was 10 pg for the 20 kb and 25 kb fragment and 1 ng for the other examples.
  • Figure 4 shows the amplification of 20 kb, 25 kb, 30 kb. 35, kb and 40 kb fragments from lambda DNA with Taq / Pwo mixture without PPase and Tris-HCl buffer (prior art) and Taq / Pwo / PPase mixture and Tricine-NH 3 buffer (according to the invention) below Use of a limited amount of lambda DNA.
  • the enzyme mixture with PPase shows significantly more PCR product at all lengths than the enzyme mixture without PPase.
  • the amplification conditions correspond to those described in Example 1 (Tricine buffer) and Example 2 (Taq / Pwo enzyme mixture and Tris buffer). 50 ng were used as template DNA (human genomic DNA). TPA primer 4 (forward) and tPA primer 5 (reverse) were used as primers; the annealing temperature was 63 ° C; the elongation time was 10 minutes. 30 cycles were carried out.
  • Figure 5 shows that the use of the Tricine-NH 3 buffer results in significantly more PCR product in combination with Taq / Pwo enzyme mixture than the use of Tris-HCl buffer.
  • MOLECULE TYPE other nucleic acid
  • DESCRIPTION / desc - "Primer"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Erfindung betrifft eine Enzymmischung bestehend aus zwei thermostabilen DNA-Polymerasen mit und ohne proofreading-Aktivität, einer thermostabilen Pyrophosphatase sowie weitere Hilfssubstanzen für die PCR und deren Verwendung zur Vervielfältigung von besonders langen einzel- und doppelsträngigen Nukleotid-Fragmenten. Das Verfahren zur Vervielfältigung der langen DNA-Fragmente zeichnet sich insbesondere durch die Verwendung der Enzymmischung, eines Tricine-NH3 Puffers, und einer Elongationstemperatur von ca. 68 °C aus.

Description

97/37038 PC1YEP97/01494
VERFAHREN ZUR SPEZIFISCHEN VERVIELFÄLTIGUNG VON LANGEN NUKLEINSÄUREN DURCH PCR
Die Erfindung betrifft eine Enzymmischung bzw. deren Verwendung zur spezifischen Vervielfältigung von besonders langen Nukleinsäuresequenzen durch die Polymerase Ketten Reaktion (PCR) bzw. ein Verfahren zum spezifischen Nachweis solcher Nu¬ kleinsäuresequenzen in Gegenwart einer Probe, insbesondere in biologischen Flüssig¬ keiten.
Die Vermehrung von einzel- bzw. doppelsträngigen Nukleinsäuresequenzen in Gegen- wart bestimmter Primer und eines die Polymerisation induzierenden Agenzes, wie z.B. hitzestabile DNA-Polymerasen oder reverse Transkriptasen, finden heutzutage eine breite Anwendung in der Molekularbiologie, molekularen Evolution, genetischen Unter¬ suchungen, Forensik, Genom Analyse und Sequenzierung und insbesondere in der kli¬ nischen Diagnostik. Das mehrere Cyclen durchlaufende Verfahren ist hinlänglich als Polymerase-Ketten-Reaktion (PCR) bekannt (EP 0 200 362, EP 0 258 017, Saiki et al., 1985, Science 230:1350-1354). Die PCR-Reaktion wird üblicherweise mit Hilfe der thermophilen DNA-Polymerase aus Thermus aquaticus, sogenannter Taq-Polymerase durchgeführt. Dieses sogenannte klassische PCR- Verfahren zeigt jedoch eine Limitation wenn PCR Fragmente größer als 3 kb vervielfältigt werden sollen. Diese Limitation ist wahrscheinlich durch die die fehlerhafte Ablesung des Enzyms bei dem Polymerisa¬ tionsprozeß zurückzufuhren.
Daher werden heute häufig DNA-Polymerasen wie z.B. aus Pyrococcus furiosus. soge¬ nannte Pfu-Polymerasen verwendet (Lundberg, K.S. et al., Gene JO8 (1991) 1-6). Die Pfu-Polymerase zeichnet sich durch eine zusätzliche Aktivität und zwar eine intrinsische 3'-(editing)-exonuclease-Aktivität (proofreading activity) aus und ist so imstande, die Mutationsrate pro Cyclus beträchtlich, und zwar um den Faktor von ungefähr 10, zu vermindern. Es hat sich jedoch gezeigt, daß die proofreading- Polymerasen bei der Vervielfältigung von kurzen Sequenzen, d.h. bis ca. 3 kb, an ihre Grenzen stoßen. Eine Verbesserung in dieser Hinsicht ist von W. Barnes, in Proc. Natl. Acad. Sei. USA 9J. (1994), 2216-2220 bzw. WO 94/26766 beschrieben. Die Verbesserung nach Barnes besteht in dem Einsatz einer Mischung, bestehend aus zwei verschiedenen DNA-Polymerasen, wobei die eine sogenannte proofreading-Aktivität (wie z.B. Pfu) und die andere, im Überschuß vorliegende DNA-Polymerase keine proofreading-Aktivität (wie z.B. Taq) aufweist. Dadurch wird die Amplifikation von längeren DNA-Sequenzen, d.h. von bis zu 35 kb an Lambda DNA und 29,9 kb an humaner DNA (Cheng et al (1995) PCR Methods and Applications 4:294-298), jeweils abhängig von den verwendeten Primern, den Cyclenbedingungen bzw. Cyclenanzahl oder sonstigen Bedingungen, eine höhere Effizienz als auch Ausbeute erzielt. Obwohl nun Nukleinsäuresequenzen bis zu 29 kb an human genomischer DNA und 42 kb an Lambda DNA amplifiziert werden können, sind die Ausbeuten dennoch relativ niedrig.
Eine Optimierung der PCR kann darüber hinaus nach dem Stand der Technik durch die Reduzierung der Menge an Pyrophosphat in der Reaktionsmischung erreicht werden. Als Pyrophosphat-reduzierendes Agenz wurde insbesondere eine Pyrophosphatase ver¬ wendet (WO 90/1211 1, WO 94/05797). Der Zusatz einer thermostabilen Pyrophospos- phatase aus Thermus aquaticus zur PCR führte danach zu einer Verdopplung der Pro- duktion der PCR-Produkte im Vergleich zur PCR ohne Pyrophosphatase
(WO 90/12111). Kiselev et al. (WO 94/05797) verwendeten für den selben Zweck eine thermostabile Pyrophosphatase aus E. coli oder aus Thermus thermophilus. Während sich jedoch die Pyrophosphatase aus E. coli als nicht ausreichend thermostabil unter PCR-Bedingungen erwies, konnte gezeigt werden, daß bei Verwendung einer thermo- stabilen Pyrophosphatase aus Thermus thermophilus die effektive Amplifizierung von 10 kb langen Lambda DNA-Fragmenten möglich war.
Trotz der oben beschriebenen Optimierungen der PCR besteht nach wie vor ein Bedürf¬ nis, längere PCR-Fragmente spezifisch und in zufriedenstellenden Ausbeuten zu ampli- fizieren.
Insbesondere lag der Erfindung die Aufgabe zugrunde, für die spezifische Vervielfälti¬ gung von Nukleinsäuresequenzen, die größer als 20 kb sind, Maßnahmen zur Verfügung zu stellen, durch die die im Stand der Technik beschriebenen Nachteile überwunden werden.
Die Aufgabe wird dadurch gelöst, daß eine Mischung bestehend aus einer thermosta¬ bilen DNA-Polymerase mit proofreading-Aktivität, einer thermophilen DNA-Polyme¬ rase ohne proofreading-Aktivität sowie einer thermostabilen Pyrophosphatase zur Ver- vielfaltigung von größeren Nukleinsäuresequenzen mittels PCR-Reaktion verwendet wird. Als vorteilhaft hat sich erwiesen, wenn die DNA-Polymerase ohne proofreading- Aktivität dabei im Überschuß vorliegt, vorzugsweise in einer mindestens 8fach höheren Konzentration als das Enzym mit proofreading-Aktivität. Die Pyrophosphatase liegt in einem Verhältnis von 0,5 - 0,1 Units zu ca. einer Unit gesamten Polymerasen-Konzen- tration vor.
Eine weitere Ausfuhrungsform der Erfindung ist, wenn ein oder zwei Enzyme verwen¬ det werden, die die drei für die Enzymmischung erforderlichen Enzymaktivitäten auf¬ weisen.
Für die proofreading-Aktivität aufweisende Polymerase kommen beispielsweise DNA- Polymerasen aus Pyrococcus furiosus (Pfu), aus Pyrococcus spezies GB-D, Thermotoga maritima (Tma), aus Pyrococcus woesii (Pwo, DSM 3773), aus Thermococcus litoralis (TU) oder Sulfolobus solfataricus (Sso) in Betracht. Für das Enzym ohne proofreading- Aktivität haben sich Taq DNA-Polymerase oder entsprechende Analoge wie Klentaq I (N-terminal verkürztes Enzym), das Klenowfragment der DNA-Polymerase I aus T aquaticus (DSM 625) oder andere Polymerasen aus Thermus species (Tth, Tfl, Tfi. Tbr) als geeignet erwiesen. Für die Pyrophosphatase (PPase) kommen beispielsweise Enzyme aus Thermus thermophilus (TAh, DSM 579), oder anderen Thermus-Arten wie T. aquati¬ cus sowie Enzyme aus thermophilen Archaebacterien wie Sulfolobus acidocaltarius oder Thermoplasma acidophilum in Betracht. Erfindungsgemäß bevorzugt ist eine Mischung von Pwo und Taq im Verhältnis von ca. 1 : 10 und ein Verhältnis dieser Mischung zu PPase (Thermus thermophilus) von ca. 3,5 : 1.
Die Enzymmischung der Erfindung kann neben der Vervielfältigung langer Fragmente auch vorteilhaft zur Markierung von langen DNA-Fragmenten mit modifizierten Nu- kleotiden eingesetzt werden. Lange Fragmente bedeuten insbesondere Nukleinsäurese- quenzen, die 20 kb oder mehr aufweisen. In bestimmten Fällen konnte mit der erfin¬ dungsgemäßen Mischung eine spezifische Amplifikation mit guter Ausbeute für DNA- Fragmente bis zu ca. 50 kb erzielt werden.
PCR Methoden die erlauben würden längere PCR Produkte mit größerer Effizienz zu amplifizieren, würden Genom Mapping und Sequenzierung, sowie die Klonierung und Mutagenese von großen Sequenzbereichen sowie die Diagnostik von Deletionen er¬ leichtern.
Darüber hinaus hängen die optimalen Reaktionsbedingungen, wie Inkubationszeit, Tem- peratur, Pufferbedinungen, die Magnesium (Mg2+)-Konzentration bzw. die Konzentra¬ tion der Enzymmischung vom jeweils verwendeten Template/Primer-Paar ab und sollte jeweils individuell bestimmt werden. Entsprechende Vorversuche gehören zu den für den Fachmann üblichen Maßnahmen.
Darauf aufbauend hat sich nun überraschenderweise ergeben, daß eine Mischung, die eine Gesamt-Enzymkonzentration im Bereich von 0,5 - 5 U/Testansatz aufweist, vor¬ zugsweise haben sich ungefähr 2,5 U/Testansatz als optimal erwiesen. Für den Test¬ ansatz werden üblicherweise 50 μl verwendet.
Als optimale Mg2+-Konzentration hat sich in den meisten Fällen ein Bereich von 0,5 - 5 mM, vorzugsweise ca. 1,5 - 3,0 mM, erwiesen. In der Regel wird MgCl2 verwendet; die übliche Konzentration beträgt ca. 2,35 mM.
Eine weitere Ausführungsform der Erfindung ist eine Enzymmischung, bestehend aus einer thermostabilen DNA-Polymerase mit proofreading-Aktivität, einer thermophilen DNA-Polymerase ohne proofreading-Aktivität sowie einer thermostabilen Pyrophos¬ phatase und Zusatz einer speziellen Reaktionspuffer-Salz-Mischung. Als Reaktionspuffer-Salz-Mischung erwies sich eine Pufferlösung auf Basis von Tri- cine- Ammoniak und weiterer Salze als vorteilhaft. Erfindungsgemäß hat sich insbe¬ sondere eine Konzentration der Pufferkomponente im Bereich von ca. 5 - 100 mM, vorzugsweise von ca. 50 mM. sowie die Anwesenheit bestimmter Salze als vorteilhaft erwiesen. Als Salz hat sich Ammoniumsulfat und zwar in einer Konzentration von ca. 5 - 25 mM. bevorzugt von 7,5 - 10 mM als besonders vorteilhaft erwiesen. Der pH- Wert für die Amplifikation liegt erfindungsgemäß bei ca. 8.8 - 9.2, bevorzugt bei ca. 9,0.
Die Verwendung von DMSO als weiteres Additiv in einem Konzentrationsbereich bis zu ca. 10%, bevorzugt 2 - 4% hat sich als weiterer Vorteil erwiesen. Darüber hinaus kann die PCR-Reaktion erfindungsgemäß durch den Zusatz weiterer Substanzen wie beispielsweise Rinderserumalbumin in einer Konzentration von bis zu ca. 100 μg/ml, SH-Reagenzien wie Dithiothreitol oder beta- Mercaptoethanol üblicherweise in einem Konzentrationsbereich von 1,0 bis 80 mM, vorzugsweise 50 mM, oder ein Detergenz wie beispielsweise Tween 20 oder Nonidet NP40 in einem Konzentrationsbereich von 0,01 bis 5,0%, vorzugsweise ca. 0,05 - 0,5%, Spermidin oder Glycerin in üblichen Konzentrationen weiter verbessert werden.
Es hat sich darüber hinaus gezeigt, daß die oben beschriebene Reaktionspuffer-Salz-Mi- schung, die einen Tricine- Ammoniak-Puff er mit einer Konzentration von ca. 50 mM, Ammoniumsulfat mit einer Konzentration von 7,5-25 mM, 2 - 4% DMSO, 0,1% TWEEN 20 und Mercaptoethanol mit einer Konzentration von ca. 10 mM aufweist, sich nicht nur für solche PCR-Reaktionen als Reaktionsgemisch eignet, die mit der erfin¬ dungsgemäßen Enzymmischung, sondern mit anderen bekannten Maßnahmen durchge- führt werden. Dies ist den Abbildungen 2 und 5 zu entnehmen.
Für die erfindungsgemäße Amplifikation von langen Fragmenten, hat sich insbesondere eine Temperatur für den Verlängerungsschritt von ca. 66 - 70°C, vorzugsweise von 68°C als vorteilhaft erwiesen. Die Elongationszeit beträgt zwischen ca. 10 und 35 Minuten, und hängt stark von der Länge des zu amplifizierenden Fragments ab. Für DNA-Fragmente von 30 kb haben sich hier insbesondere 20 Minuten, für Fragmente von ca. 40 kb ca. 27 Minuten und für DNA-Fragmente in der Größenordnung von 50 kb ca. 35 Minuten, als vorteilhaft erwiesen. Die Elongationszeit sollte nach dem 10. Zyklus um jeweils 5 - 20 Sekunden pro Zyklus verlängert werden.
Für die Denaturierung während der Zyklen hat sich insbesondere eine Temperatur von ca. 92 - 94°C bewährt, vorzugsweise 92°C; die Denaturierungszeit sollte ca. 10 Se¬ kunden betragen. Darüber hinaus hat sich die Verwendung von ultradünnen Reagier¬ gefäßen mit einem Volumen von ca. 0,2 ml als besonders vorteilhaft erwiesen. Ein für die Nukleinsäure-Amplifikation verwendetes Reagenz besteht im wesentlichen aus zwei Einzelmischungen. Die erste Mischung enthält die jeweilige Template-DNA, wie z.B. genomische DNA oder rekombinante DNA (z.B. Cosmide) in einem Konzen¬ trationsbereich von ca. 1 bis 500 ng/ Ansatz mit sogenannten upstream- und down- stream-Primern (vorzugsweise je ca. 300 nM) und sämtliche für die DNA-Kettenver¬ längerung erforderlichen Nukleotide (Nukleotidtriphosphate), wie dATP. dCTP, dGTP und dTTP. Für die einzelnen Nukleotide hat sich in der Regel eine Konzentration von jeweils 200 - 600 μM; bevorzugt 500 μM, als besonders geeignet erwiesen.
Die zweite Mischung enthält im wesentlichen den für die PCR-Reaktion erforderlichen Puffer und die erfindungsgemäße Enzymmischung in einer entsprechend höher konzen¬ trierten Form, so daß sich nach Vermischung mit der ersten Mischung die erfindungsge¬ mäßen Konzentrationen ergeben. Für die Amplifikation von langen Fragmenten haben sich Reaktionsansätze von 10 bis 100 μl, vorzugsweise 50 μl als vorteilhaft erwiesen. Nach Zusammenmischung der Einzelmischungen wird die Probe in ein entsprechendes Thermocycler-Gerät eingebracht und zunächst zur Trennung des Doppelstranges des jeweiligen DNA-Fragments denaturiert (bei 92°C, 2 Minuten). Daran schließen sich die einzelnen Cyclen der PCR.
Abkürzungsverzeichnis
AS Ammoniumsulfat bp Basenpaare
C Celsius dATP 2'-Desoxy-adenin-5'-triphosphat dCTP 2'-Desoxy-cytidin-5 '-triphosphat dGTP 2'-Desoxy-guanin-5'-triphosphat dNTP 2'-Desoxy-nukleosid-5'-triphosphat
DTT 1,4-Dithiothreit dTTP 2'-Desoxy-thymidin-5'-triphosphat
DMSO Dimethylsulfoxid
EDTA (Ethylendinitrilo)tetraessigsäure
HC1 Salzsäure kb Kilobasen
KC1 Kaliumchlorid
Min. Minute mM milimolar μM mykromolar ng Nanogramm
(NH4)2SO4 Ammoniumsulfat
NH3 Ammoniak
PCR Polymerase Ketten Reaktion
Pwo DNA Polymerase aus Pyrococcus woesii
Sek. Sekunde
Taq DNA Polymerase aus Thermus aquaticus
Tth DNA Polymerase aus Thermus thermophilus tPA tissue Plasminogen Activator
Tricine N-[Tris-(hydroxymethyl)-methyl]-glycin
Tris 2-Amino-2(hydroxymethyl> 1 ,3-propandiol
U Unit (Enzymeinheit)
Primerverzeichnis
SEQ ID NO:l tPA Primer 1 : 5'-CCT TCA CTG TCT GCC TAA CTC CTT CGT GTG TTC
C-3*
SEQ ID NO:2 tPA-Primer 2: 5'-TGT CTC CAG CAC ACA GCA TGT TGT CGG TGA C-3'
SEQ ID NO:3 tPA-Primer 3 : 5*-CAA AGT CAT GCG GCC ATC GTT CAG ACA CAC C-3'
SEQ ID NO:4 Beta-Globin Primer 1 : 5'-CAC AAG GGC TAC TGG TTG GCG ATT-3'
SEQ ID NO:5
Beta-Globin Primer 2: 5*-AGC TTC CCA ACG TGA TCG CCT T-3'
SEQ ID NO:6
Beta-Globin Primer 3: 5'-CAC TTG TTT AGG CCT TAG CGG GCT-3'
SEQ ID NO: 7
Beta-Globin Primer 4: 5'-TGC TGC TCT GTG CAT CCG AGT G-3'
SEQ ID NO:8
Beta-Globin Primer 5: 5'-TGA GAC TTT TGT CCC AGC AGG TGT-3'
SEQ ID NO:9: Beta-Globin Primer 6: 5'-CCT TCA CCA TGT CCC TGC AAA GAC-3'
SEQ ID NO 10:
Lambda Primer 1 : 5'-CTG ATG AGT TCG TGT CCG TAC AAC TGG CGT AAT
C-31
SEQ ID NO 1 1 :
Lambda Primer 2 : 5'-GTG CAC CAT GCA ACA TGA ATA ACA GTG GGT
TAT C-3* SEQ ID NO 12: Lambda Primer 3 : 5'-GAA ACC ATG CAG GAG ATT AAC ACT CTG CTG
ATC G-3' SEQ ID NO 13:
Lambda Primer 4: 5'-GAA AGT TAT CGC TAG TCA GTG GCC TGA AGA
GAC G-3'
SEQ ID NO 14:
Lambda Primer 5 : 5'-ATT ATG TCG GTG ATA CTT CGT CGC TGT CTC-3'
SEQ ID NO 15:
Lambda Primer 6: 5'-TAA TGC AAA CTA CGC GCC CTC GTA TCA CAT-3'
SEQ ID NO 16:
Lambda Primer 7: 5'-CGG TTT AAG GCG TTT CCG TTC TTC TTC GTC-3'
SEQ ID NO 17: tP A Primer 4 : 5'-CCT TCA CTG TCT GCC TAA CTC CTT CGT GTG TTC
C-3'
SEQ ID NO 18: tP A Primer 5 : 5'- ACT GTG CTT CCT GAC CCA TGG GAG AAG CGC CTT C-3'
Legenden zu den Abbildungen:
Abbildung 1
Amplifikation von 23 kb (Spur 2), 24 kb (Spur 3), 27 kb (Spur 4). 28.3 kb (Spur 5), 29.9 kb (Spur 6), 31 kb (Spur 7) und 35 kb (Spur 8) Fragmenten aus humaner, genomischer DNA mit Taq/Pwo/PPase-Enzymmischung (erfindungsgemäß).
Abbildung 2
Amplifikation eines 28,3 kb Fragments aus dem humanen beta-GIobin Gen mit Taq/ Pwo-Mischung ohne PPase (Stand der Technik, Spur 3) und Taq/ Pwo/PPase Mischung (erfindungsgemäß, Spur 4) mit Tris Puffer (Stand der Technik. Spur 5) und Tricine- NH3-Puffer (erfindungsgemäß, Spur 6).
Die Enzymmischung mit PPase zeigt bei jeder Pufferbedingung deutlich mehr PCR- Produkt als die Enzyrnmischung ohne PPase. Eine weiter verbesserte Produktausbeute wird in Kombination der Enzymmischung mit PPase mit einem Tricine- NH3-Puffer er¬ zielt.
Abbildung 3
Amplifikation von 20 kb, 25 kb. 30 kb, 35 kb, 40 kb und 47 kb aus Lambda DNA mit Taq/Pwo/PPase-Enzymmischung (erfindungsgemäß).
Abbildung 4
Amplifikation von 20 kb, 25 kb, 30 kb, 35, kb und 40 kb Fragmenten aus Lambda DNA mit Taq/Pwo-Mischung ohne PPase und Tris-HCl-Puffer (Stand der Technik) und Taq/ Pwo/PPase Mischung und Tricine-NH3-Puffer (erfindungsgemäß) unter Verwendung von limitierender Menge an Lambda DNA. Dabei bedeuten:
Spur 3 20 kb Fragment mit Taq/Pwo-Mischung ohne PPase- und Tris-HCl-Puffer
Spur 5 25 kb Fragment mit Taq/Pwo-Mischung ohne PPase- und Tris-HCl-Puffer
Spur 7 30 kb Fragment mit Taq/Pwo-Mischung ohne PPase- und Tris-HCl-Puffer Spur 9 35 kb Fragment mit Taq/Pwo-Mischung ohne PPase- und Tris-HCl-Puffer
Spur 11 40 kb Fragment mit Taq/Pwo-Mischung ohne PPase- und Tris-HCl-Puffer
Spur 4 20 kb Fragment mit Taq/Pwo-PPase-Mischung und Tricine-Ammoniak- Puffer Spur 6 25 kb Fragment mit Taq/Pwo-PPase-Mischung und Tricine-Ammoniak- Puffer
Spur 8 30 kb Fragment mit Taq/Pwo-PPase-Mischung und Tricine- Ammoniak- Puffer Spur 10 35 kb Fragment mit Taq/Pwo-PPase-Mischung und Tricine-Ammoniak-
Puffer
Spur 12 40 kb Fragment mit Taq/Pwo-PPase-Mischung und Tricine-Ammoniak- Puffer
Enzymmischung mit PPase zeigt bei allen Längen deutlich mehr PCR Produkt als Enzymmischung ohne PPase.
Abbildung 5
Amplifikation eines 15 kb Fragmentes aus dem tPA-Gen aus humaner genomischer DNA mit Taq/Pwo-Enzymmischung (Stand der Technik) und Tris-HCl-Puffer (Stand der Technik) sowie Taq/Pwo-Enzymmischung (Stand der Technik) und Tricine-NH3- Puffer (erfindungsgemäß).
Die Verwendung des Tricine-NH3-Puffer zeigt deutlich mehr PCR-Produkt in Kom¬ bination mit Taq/Pwo-Enzymmischung als die Verwendung von Tris-HCl-Puffer.
Spur 1 und 2: 15 kb Fragment aus tPA-Gen mit Taq/Pwo-Enzymmischung und Tris- HCl-Puffer
Spur 2 und 3 : 15 kb Fragment aus tPA-Gen mit Taq/Pwo-Enzymmischung und Tricine-NH3-Puffer
Die folgenden Beispiele verdeutlichen die Erfindung weiter:
Beispiel 1:
In den gezeigten Beispielen wurde als Taq/Pwo/PPase Enzymmischung (erfindungsge¬ mäß) die thermostabilen Polymerasen von Thermus aquaticus (Taq) und Pvrococcus woesii (Pwo) sowie die thermostabile PPase von Thermus thermophilus verwendet. Das Mischungsverhältnis der beiden Polymerasen war 10 : 1 (Taq : Pwo) nach Aktivität (Units). Das Mischungsverhältnis Polymerasen zu PPase war 3,6 : 1 nach Aktivität (Units). Eine typische Enzymmischung war 3,5 U Taq Polymerase + 0,3 U Pwo Poly¬ merase + 1 U PPase pro μl. Die Enzymmischung wurde in Lagerpuffer (20 mM Tris/HCl, pH 7,5 (20°C), 100 mM KC1, 1 mM DTT, 0,1 mM EDTA, 0,5% Tween20, 0,5% Nonidet P40, 50% Glycerin) bei -20°C gelagert.
Die Polymerase-Ketten-Reaktion (PCR) wurde im 50 μl Volumen durchgeführt. Die Reaktionsbedingungen für die Enzymmischung war wie folgt:
PCR-Puffer: 7,5 mM (NH4)2SO4; 50 mM Tricine/ NH3(20°C)
DMSO 2%, 0,5% Tween 20; 50 mM Mercapto- ethanol pH 9,0
MgCl2 2,35 mM
Enzymmischung 2,6 U (0,75 μl) dNTP 500 μM (jeweils)
Primer forward 300 nM Primer reverse 300 nM
Als Template wurde 250 ng genomische DNA (human) verwendet . Folgende Primerpaare und Bedingungen wurden verwendet:
1) Beta-Globin Primer 1 + 2 (23 kb)
2) tPA-Primer 1 + 2 (24 kb)
3) tPA Primer 1 + 3 (27 kb)
4) Beta-Globin Primer 3 + 2 (28,3 kb)
5) Beta-Globin Primer 1 + 4 (29,9 kb) 6) Beta-Globin Primer 1 + 5 ( 31 kb)
7) Beta-Globin Primer 6 + 2 (35 kb) Der PCR Ansatz wurde über zwei Mastermixe hergestellt:
Figure imgf000015_0001
Kurz vor Zyklusbeginn auf Eis Mastermix 1 (25μl) und Mastermix 2 (25μl) zusammen pipettieren. Gut mischen (es muß gewährleistet sein, daß die Komponenten gut durch¬ mischt sind) und Reaktionsansatz mit 30 μl Mineralöl bedecken.
Die Amplifikationen wurden in einem Perkin Eimer GenAmp 9600 Thermocycler mit folgendem Cycleprogramm durchgeführt:
lx Denaturierung für 2 Min. bei 92 °C Denaturierung für 10 Sek. bei 92°C
lOx Annealing für 30 Sek. bei 65 °C Elongation für 15 - 25 Min.* bei 68°C Denaturierung für 10 Sek. bei 92°C
20x Annealing für 30 Sek. bei 60°C
Elongation für 15 - 25 Min.* bei 68°C + Cycle
Verlängerung für 20 Sek. für jeden weiteren Cycle
lx 7 Min. bei 68°C ** Die Elongationszeit ist abhängig von der Fragmentlänge. Der Zusammenhang zwischen Produktlänge und Elongationszeit ist in der folgenden Tabelle aufgelistet.
Figure imgf000016_0001
20 μl des erhaltenen PCR Produktes wurde auf einem 0.5%igen Agarose-Gel analysiert.
Abb. 1 zeigt die Amplifikation von 23 kb, 24 kb, 27 kb, 28.3 kb, 29,9 kb, 31 kb und 35 kb Fragmenten aus humaner, genomischer DNA mit Taq/Pwo/PPase-Enzym¬ mischung (erfindungsgemäß).
Beispiel 2:
Die Amplifikationsbedingungen waren identisch wie im Beispiel 1. Neben der Taq/ Pwo/PPase Enzymmischung und des Tricine-NH3-Puffers wurde noch eine Taq/Pwo Enzymmischung mit dem Verhältnis 10 : 1 nach Units und ein Tris-HCl-Puffer (50 mM Tris-HCl pH 9,2, 16 mM (NH4)2SO4? DMSO 2%, Tween 20. 1%, 2,25 mM MgCl2) ver¬ wendet.
Template DNA (human-genomische DNA) war 250 ng. Als Primer wurde Beta-Globin Primer 3 als forward Primer und Beta-Globin Primer 2 als reverse Primer verwendet.
Abbildung 2 zeigt die Amplifikation eines 28,3 kb Fragments aus dem humanen beta- Globin Gen mit Taq/Pwo-Mischung ohne PPase (Stand der Technik) und Taq/Pwo/ PPase Mischung (erfindungsgemäß) mit Tris Puffer (Stand der Technik) und Tricine- NH3 Puffer (erfindungsgemäß).
Die Enzymmischung mit PPase zeigt bei jeder Pufferbedingung deutlich mehr PCR Produkt als die Enzymmischung ohne PPase. Die größte Produktausbeute wird aber nur in der Kombination von Enzymmischung mit PPase und dem Tricine-NH3 Puffer erzielt.
Beispiel 3:
Eine Reihe von verschiedenen PCR Fragmenten wurden aus 10 ng Lambda DNA ampli¬ fiziert. Die Bedingungen für die PCR Reaktion sowie das Cycle Programm waren wie in Beispiel 1 beschrieben mit folgenden Änderungen: Es wurden 25 Zyklen mit folgende Primerpaare und Bedingungen verwendet:
1 ) Lambda Primer 1 und 2 (20 kb) 2) Lambda Primer 1 und 3 (25 kb) 3) Lambda Primer 1 und 4 (30 kb) 4) Lambda Primer 1 und 5 (35 kb) 5) Lambda Primer 1 und 6 (40 kb) 6) Lambda Primer 7 und 6 (47 kb)
Abbildung 3 zeigt die Amplifikation von 20 kb, 25 kb. 30 kb. 35 kb, 40 kb und 47 kb aus Lambda DNA mit Taq/Pwo/PPase-Enzymmischung (erfindungsgemäß).
Beispiel 4:
Die Amplifikationbedingungen als auch die Zyklenbedingungen waren wie im Beispiel 3 aufgeführt, mit folgenden Änderungen:
Die Menge an Lambda DNA war 10 pg für das 20 kb und 25 kb Fragment und 1 ng für die anderen Beispiele.
Die Taq/Pwo Enzymmischung sowie der dazu verwendete Tris-HCl-Puffer ist wie unter Beispiel 3 beschrieben.
Abbildung 4 zeigt die Amplifikation von 20 kb, 25 kb, 30 kb. 35, kb und 40 kb Frag¬ menten aus Lambda DNA mit Taq/Pwo-Mischung ohne PPase und Tris-HCl-Puffer (Stand der Technik) und Taq/Pwo/PPase Mischung und Tricine-NH3 Puffer (erfindungs¬ gemäß) unter Verwendung von limitierender Menge an Lambda DNA.
Die Enzymmischung mit PPase zeigt bei allen Längen deutlich mehr PCR Produkt als die Enzymmischung ohne PPase.
Beispiel 5:
Die Amplifikationsbedingungen entsprechen den in Beispiel 1 (Tricine-Puffer) und Beispiel 2 (Taq/Pwo-Enzymmischung und Tris-Puffer) beschriebenen. Als Template- DNA (human genomische DNA) wurden 50 ng eingesetzt. Als Primer wurden TPA- Primer 4 (forward) und tPA Primer 5 (reverse) eingesetzt; die Annealing-Temperatur betrug 63°C; die Elongationszeit war 10 Minuten. Es wurden 30 Zyklen durchgeführt. Abbildung 5 zeigt, daß die Verwendung des Tricine-NH3-Puffer deutlich mehr PCR- Produkt in Kombination mit Taq/Pwo-Enzymmischung als die Verwendung von Tris- HCl-Puffer ergibt.
SEQ. ID NO: 17 tPA Primer 4: 5'-CCT TCA CTG TCT GCC TAA CTC CTT CGT GTG TTC C-3'
SEQ. ID NO: 18 tPA Primer 5: 5'-ACT GTG CTT CCT GAC CCA TGG GAG AAG CGC CTT C-3'
SEQUENZPROTOKOLL
( 1 ) ALLGEMEINE ANGABEN:
(i) ANMELDER:
(A) NAME: BOEHRINGER MANNHEIM GMBH
(B) STRASSE: Sandhofer Str. 1 16
(C) ORT: Mannheim (E) LAND Deutschland
(F) POSTLEITZAHL: D-68305
(G) TELEFON: 0621/759-3277 (H) TELEFAX: 0621/759-4457 (ii) BEZEICHNUNG DER ERFINDUNG: Verfahren zur spezifischen Verviel¬ fältigung von langen Nukleinsäuren durch die PCR
(iii) ANZAHL DER SEQUENZEN: 16 (iv) COMPUTER-LESBARE FASSUNG:
(A) DATENTRDGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30B (EPA)
(v) DATEN DER PRIORITÄTSANMELDUNG: ANMELDENUMMER:
(2) ANGABEN ZU SEQ ID NO: 1 :
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 34 Basenpaare
(B) ART: Nucleotid (C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc - "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1 :
CCTTCACTGTCTGCCTAACTCCTTCGTGTGTTC 34 (2) ANGABENZU SEQIDNO:2:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 31 Basenpaare (B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
TGTCTCC AGCACACAGCATGTTGTCGGTGAC 31
(2) ANGABEN ZU SEQ ID NO: 3 :
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 31 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: CAAAGTCATGCGGCCATCGTTCAGACACACC 31
(2) ANGABEN ZU SEQ ID NO: 4: (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 24 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:
CACAAGGGCTACTGGTTGGCGATT 24 (2) ANGABENZUSEQIDNO: 5:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 22 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5 :
AGCTTCCCAACGTGATCGCCTT 22
(2) ANGABEN ZU SEQ ID NO: 6:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 24 Basenpaare (B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:
CACTTGTTTAGGCCTTAGCGGGCT 24
(2) ANGABEN ZU SEQ ID NO: 7:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 22 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7: TGCTGCTCTGTGCATCCGAGTG 22 (2) ANGABEN ZU SEQ ID NO: 8:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 24 Basenpaare (B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:
TGAGACTTTTGTCCCAGCAGGTGT 24
(2) ANGABEN ZU SEQ ID NO: 9:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 24 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9: CCTTCACCATGTCCCTGCAAAGAC 24
(2) ANGABEN ZU SEQ ID NO: 10: (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 34 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:
CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC 34 (2) ANGABENZUSEQIDNO: 11:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 34 Basenpaare (B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11 :
GTGCACCATGCAACATGAATAACAGTGGGTTATC 34
(2) ANGABEN ZU SEQ ID NO: 12:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12: GAAACCATGCAGGAGATTAACACTCTGCTGATCG 34
(2) ANGABEN ZU SEQ ID NO: 13:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13: GAAAGTTATCGCTAGTCAGTGGCCTGAAGAGACG 34 (2) ANGABENZUSEQIDNO: 14:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 30 Basenpaare (B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:
ATTATGTCGGTGATACTTCGTCGCTGTCTC 30
(2) ANGABEN ZU SEQ ID NO: 15:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15: TAATGCAAACTACGCGCCCTCGTATCACAT 30
(2) ANGABEN ZU SEQ ID NO: 16: (i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 30 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:
CGGTTTAAGGCGTTTCCGTTCTTCTTCGTC 30 (2) ANGABEN ZU SEQ ID NO: 17:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare (B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid (A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:
CCTTCACTGTCTGCCTAACTCCTTCGTGTGTTCC 34
(2) ANGABEN ZU SEQ ID NO: 18:
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18: ACTGTGCTTCCTGACCCATGGGAGAAGCGCCTTC 34

Claims

Patentansprüche
1. Verfahren zur spezifischen Vervielfältigung von ein- oder doppelsträngigen DNA- Fragmenten in Gegenwart mindestens eines geeigneten Primer-Paares, einer zwi¬ schen pH 8,8 und 9,2 puffernden Substanz, sämtlicher für die DNA-Kettenver¬ längerung erforderlichen Nukleotide (dNTPs) und einer Enzymmischung, dadurch gekennzeichnet, daß die Enzymmischung aus einer thermophilen DNA-Poly¬ merase mit proofreading-Aktivität, einer thermophilen DNA-Polymerase ohne proofreading-Aktivität und einer thermostabilen Pyrophosphatase besteht und nach gegebenenfalls stattgefundenem Denaturierungsschritt, der Elongations- schritt zwischen 10 und 35 Minuten bei 66 - 70°C durchgeführt wird.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, daß ein- oder doppel- strängige DNA-Fragmente, die länger als 20 kb sind, amplifiziert werden.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß als puffernde Substanz Tricine-Ammoniak verwendet wird und Ammoniumsulfat verwendet wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Tricine-Ammoniak- Puffer in einer Konzentration von 5 - 100 mM und Ammoniumsulfat in einer Konzentration von 5 - 20 mM vorliegt.
5. Verfahren nach Anspruch 1 , 2, 3 oder 4, dadurch gekennzeichnet, daß die Enzym¬ mischung eine DNA-Polymerase ohne proofreading-Aktivität im Überschuß auf¬ weist.
6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die thermostabile Pyrophosphatase in einem Verhältnis von ca. 0,5 - 0,1 Ein¬ heiten zu ca. 1 Einheit der gesamten Polymeraseaktivität vorliegt.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Enzymmischung eine DNA-Polymerase erhältlich aus Pyrococcus woesii, eine DNA-Polymerase erhältlich aus Thermus aquaticus und eine Pyrophospha¬ tase erhältlich aus Thermus thermophilus aufweist, wobei die Gesamtenzymakti¬ vität ca. 0,5 U bis 5,0 U in der Reaktionsmischung beträgt.
8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß Magnesiumionen in einem Konzentrationsbereich von 0,5 bis 5,0 mM zu¬ gegen sind.
9. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß Magnesiumionen in einem Konzentrationsbereich von ca. 1.5 bis 3.0 mM zugegen sind und/oder die Konzentration der einzelnen dNTPs jeweils über
200 μM beträgt.
10. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß ungefähr 5 bis 10 mM Ammoniumsulfat in der Reaktionsmischung, die einen Ausgangs-pH-Wert von ca. 9,0 aufweist, vorhanden sind.
1 1. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Elongationstemperatur ca. 68°C beträgt.
12. Enzymmischung bestehend aus einer thermophilen DNA-Polymerase mit proof¬ reading-Aktivität und einer thermophilen DNA-Polymerase ohne proofreading- Aktivität im Verhältnis 1 : 10 sowie einer Mischung dieser Polymerasen zur
Pyrophosphatase erhältlich aus Thermus thermophilus im Verhältnis 3,5 : 1 wobei die Konzentration der Enzyme so angelegt ist, daß sie 0,5 bis 5,0 Einheiten/Volu¬ men Reaktionsmischung beträgt und die Reaktionsmischung einen Tricine-Am- moniak-Puffer sowie ein Ammoniumsalz enthält.
13. Enzymmischung nach Anspruch 12, dadurch gekennzeichnet, daß eine DNA- Polymerase aus erhältlich Pyrococcus woesii. eine DNA-Polymerase erhältlich aus Thermus aquaticus und eine Pyrophosphatase erhältlich aus Thermus thermo¬ philus sowie Magnesiumionen in einer Konzentration von 0,5 bis 5,0 mM enthal- ten sind.
14. Verwendung der Enzymmischung gemäß Anspruch 12 oder 13 zur Vervielfälti¬ gung langer DNA-Fragmente und/oder Markierung von DNA -Fragmenten mit modifizierten Nukleotiden.
15. Verwendung gemäß Anspruch 12 oder 13 dadurch gekennzeichnet, daß DNA- Fragmente länger als 20 kb erzielbar sind.
16. Verwendung einer Mischung, die einen Tricine-Ammoniak-Puffer in einer Kon- zentration von ca. 5 - 100 mM, Ammoniumsulfat in einer Konzentration von ca.
5,0 - 25 mM, von ca. 2 - 4% DMSO, ca. 0,05 - 0,5% TWEEN 20 und Mercapto¬ ethanol in einer Konzentration von ca. 10 mM aufweist, zur Amplifizierung von DNA-Fragmenten.
PCT/EP1997/001494 1996-03-29 1997-03-25 Verfahren zur spezifischen vervielfältigung von langen nukleinsäuren durch pcr WO1997037038A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19612779A DE19612779A1 (de) 1996-03-29 1996-03-29 Verfahren zur spezifischen Vervielfältigung von langen Nukleinsäuren durch PCR
DE19612779.3 1996-03-29

Publications (1)

Publication Number Publication Date
WO1997037038A1 true WO1997037038A1 (de) 1997-10-09

Family

ID=7790009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001494 WO1997037038A1 (de) 1996-03-29 1997-03-25 Verfahren zur spezifischen vervielfältigung von langen nukleinsäuren durch pcr

Country Status (2)

Country Link
DE (1) DE19612779A1 (de)
WO (1) WO1997037038A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060526A2 (en) * 2001-12-21 2003-07-24 Affymetrix, Inc. High throughput re-sequencing and variation detection using high density microarrays
US7625725B1 (en) 1997-03-21 2009-12-01 Stratagene California Polymerase enhancing factor (PEF) extracts, PEF protein complexes, isolated PEF proteins, and methods for purifying and identifying them
US8741560B2 (en) 1996-08-14 2014-06-03 Life Technologies Corporation Stable compositions for nucleic acid amplification and sequencing
CN113481180A (zh) * 2021-07-05 2021-10-08 吉林大学 碱性嗜热无机焦磷酸酶及其在增强聚合酶链式反应和合成udp-半乳糖反应中的应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049614A1 (en) * 1999-10-06 2003-03-13 Holly Hurlbut Hogrefe Compositions for dna amplification, synthesis, and mutagenesis
US20060003343A1 (en) 2004-01-23 2006-01-05 Biomerieux, Inc. Primer and probe design for efficient amplification and detection of HCV 3' non-translating region
EP1634965B1 (de) 2004-09-09 2010-01-20 Roche Diagnostics GmbH Echtzeit-PCR unter Zusatz von Pyrophosphatase
EP2069487B1 (de) * 2006-07-25 2014-03-19 Agilent Technologies, Inc. Zwitterionische reiniger für die lagerung und verwendung von dna-polymerasen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012111A1 (en) * 1989-04-12 1990-10-18 President And Fellows Of Harvard College Improved primer extension reactions
US5256555A (en) * 1991-12-20 1993-10-26 Ambion, Inc. Compositions and methods for increasing the yields of in vitro RNA transcription and other polynucleotide synthetic reactions
WO1994005797A1 (en) * 1992-09-01 1994-03-17 Vsevolod Kiselev Synthesis of dna molecules in vitro
WO1995016028A1 (en) * 1993-12-08 1995-06-15 Stratagene Novel polymerase compositions and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012111A1 (en) * 1989-04-12 1990-10-18 President And Fellows Of Harvard College Improved primer extension reactions
US5256555A (en) * 1991-12-20 1993-10-26 Ambion, Inc. Compositions and methods for increasing the yields of in vitro RNA transcription and other polynucleotide synthetic reactions
WO1994005797A1 (en) * 1992-09-01 1994-03-17 Vsevolod Kiselev Synthesis of dna molecules in vitro
WO1995016028A1 (en) * 1993-12-08 1995-06-15 Stratagene Novel polymerase compositions and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARNES W. M.: "PCR amplification of up to 35-kb DNA with high fidelity and high yield from l bacteriophage templates", PROC. NATL. ACAD. SCI. USA, vol. 91, - March 1994 (1994-03-01), pages 2216 - 2220, XP002034119 *
CHENG S. ET AL.,: "Effective amplification of long targets from cloned inserts and human genomic DNA", PROC. NATL. ACAD. SCI. USA, vol. 91, - June 1994 (1994-06-01), pages 5695 - 5699, XP002034120 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741560B2 (en) 1996-08-14 2014-06-03 Life Technologies Corporation Stable compositions for nucleic acid amplification and sequencing
US7625725B1 (en) 1997-03-21 2009-12-01 Stratagene California Polymerase enhancing factor (PEF) extracts, PEF protein complexes, isolated PEF proteins, and methods for purifying and identifying them
US7943358B2 (en) 1997-03-21 2011-05-17 Agilent Technologies, Inc. Polymerase enhancing factor (PEF) extracts, PEF protein complexes, isolated PEF protein, and methods for purifying and identifying
WO2003060526A2 (en) * 2001-12-21 2003-07-24 Affymetrix, Inc. High throughput re-sequencing and variation detection using high density microarrays
WO2003060526A3 (en) * 2001-12-21 2003-11-06 Affymetrix Inc High throughput re-sequencing and variation detection using high density microarrays
CN113481180A (zh) * 2021-07-05 2021-10-08 吉林大学 碱性嗜热无机焦磷酸酶及其在增强聚合酶链式反应和合成udp-半乳糖反应中的应用

Also Published As

Publication number Publication date
DE19612779A1 (de) 1997-10-02

Similar Documents

Publication Publication Date Title
DE69219727T2 (de) Nukleinsäure Zielerzeugung
EP0942917B1 (de) Verwendung von stabile zubereitungen in nukleinsäureamplifikation und sequenzierung verfahren
DE60219579T2 (de) Reversibel modifizierte thermostabile Enzyme für die in vitro-Synthese und -Amplifizierung von DNA
DE69835008T2 (de) Zusammensetzungen und verfahren der reversen transkriptase-polymerasekettenreaktion (rt-pcr)
DE69119083T2 (de) Direkte klonierung von pcr amplifizierten nukleinsäuren
DE60034396T2 (de) Reaktionsgemisch und Verfahren für RT-PCR mittels einer homopolymeren Nukleinsäure
DE60034878T2 (de) Verfahren zur Amplifizierung einer Nukleinsäuresequenz unter Verwendung eines chimären Primers
DE69838210T2 (de) Markierter Primer, geeignet für die Detektion von Nukleinsäuren
DE60123980T2 (de) Amplifizierung von nukleinsäuresequenzen mittels multiplex priming
DE69333242T2 (de) Verfahren, reagenz und salz zum nachweis und amplifikation von nukleinsäuresequenzen
EP0718408B1 (de) Verfahren zum besonders sensitiven Nachweis von Nukleinsäuren
WO1998006736A9 (en) Stable compositions for nucleic acid amplification and sequencing
DE19653439A1 (de) Verfahren zur direkten, exponentiellen Amplifikation und Sequenzierung von DNA Molekülen und dessen Anwendung
DE19653494A1 (de) Verfahren zur entkoppelten, direkten, exponentiellen Amplifikation und Sequenzierung von DNA Molekülen unter Zugabe einer zweiten thermostabilen DNA Polymerase und dessen Anwendung
DE69836395T2 (de) Primern zum Nachweis von HIV-1
DE3929030A1 (de) Verfahren zur vermehrung von nukleinsaeuren
WO1997037038A1 (de) Verfahren zur spezifischen vervielfältigung von langen nukleinsäuren durch pcr
DE60029225T2 (de) Zusammensetzungen und verfahren zu höhere empfindlichkeit und spezifität von nukleinsäuresynthese
EP3759247A1 (de) Verfahren zur primer-verlängerungsreaktion mit verbesserter spezifität
EP0745687A1 (de) Verfahren zur spezifischen Vervielfältigung und zum Nachweis von DNA bzw. RNA
EP0736608A1 (de) Verfahren zur spezifischen Vervielfältigung und zum Nachweis von DNA bzw. RNA
DE4106473C2 (de) Verfahren zur Herstellung in vitro replizierbarer Nukleinsäuren
EP0736609A2 (de) Verfahren zur spezifischen Vervielfältigung und zum Nachweis von DNA bzw. RNA
EP3530755B1 (de) Verfahren zum anzeigen des fortschrittes der amplifikation von nukleinsäuren und kit zu dessen durchführung
DE19614852A1 (de) Verfahren zum quantitativen Nachweis einer Analytnukleinsäure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97534895

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase