WO1997035355A1 - Planarer strahler - Google Patents

Planarer strahler Download PDF

Info

Publication number
WO1997035355A1
WO1997035355A1 PCT/EP1997/001275 EP9701275W WO9735355A1 WO 1997035355 A1 WO1997035355 A1 WO 1997035355A1 EP 9701275 W EP9701275 W EP 9701275W WO 9735355 A1 WO9735355 A1 WO 9735355A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
radiator according
electrically conductive
thickness
planar
Prior art date
Application number
PCT/EP1997/001275
Other languages
English (en)
French (fr)
Inventor
Lutz Rothe
Original Assignee
Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh filed Critical Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh
Priority to CA002250928A priority Critical patent/CA2250928C/en
Priority to EP97914238A priority patent/EP0886887B1/de
Priority to US09/142,679 priority patent/US6204814B1/en
Priority to DE59700474T priority patent/DE59700474D1/de
Priority to KR1019980707236A priority patent/KR20000064587A/ko
Priority to JP9533125A priority patent/JP2000507055A/ja
Priority to DK97914238T priority patent/DK0886887T3/da
Priority to IL12613197A priority patent/IL126131A/en
Publication of WO1997035355A1 publication Critical patent/WO1997035355A1/de
Priority to GR990402821T priority patent/GR3031727T3/el

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays

Definitions

  • the invention relates to a planar radiator with a radiator plane having surface resonators and a network plane with a coupling network, the surface resonators being galvanically and in phase coupling with one another via the coupling network.
  • planar antennas usually only have high system quality in a small spectral range and are therefore only suitable for use with multipom multichannel communication services to a limited extent, since the small bandwidth means that only relatively few frequency scanners can be transmitted with a single antenna are.
  • planar radiator is constructed in a sandwich-like manner from layers which are plane-parallel to one another, and in that a first dielectric layer by means of an electrically conductive thin layer, which forms the common ground plane for the radiator and network levels, of a second dielectric layer is separated, and that the first dielectric layer on its side facing away from the electrically conductive layer carries the surface resonators, and that the second dielectric layer carries on its side facing away from the electrically conductive layer the coupling network which is formed from microstrip lines.
  • the planar emitter according to the invention advantageously only needs a common ground area for the emitter and network level, as a result of which the overall height of the emitter is significantly reduced compared to known planar emitters and the manufacturing material costs are reduced.
  • Kar.r. without influencing the wave resistance of the coupling network, by appropriately selecting the thickness of the first dielectric layer, the band width of the radiation field to be determined and err.ofa ⁇ enen radiation field can be varied, wooei at the same time a high system quality is achieved in the entire spectral range.
  • Each flat resonator is open to the coupling network with an electrically conductive connection by means of an electrically connecting pin,
  • the electrically conductive connector pin is inserted in a through hole perpendicular to the emitter and network veins.
  • the connecting pins are relatively long, as a result of which the pins themselves have an electrically transforming effect.
  • the inductive flower component represented by the pen can therefore no longer be neglected and must be balanced.
  • This can be done on the one hand by means of a sleeve which at least in sections envelops the pin and is made of a material, in particular Teflon, which has a higher dielectric number than the materials forming the dielectric layers, which serve as the base material for the emitter and network level.
  • Teflon Teflon
  • the inductive dummy component of the pin can also advantageously be compensated for by means of the coupling network, by utilizing the transforming effect of the length and width ratios of the microstrip lines used.
  • Such transformations using microstrip conductors are well known from the relevant literature.
  • a pulse can optionally be omitted.
  • Apertures are obtained by simulation or experimental tests.
  • the first dielectric layer is constructed from two dielectric materials, each of which forms a layer for itself.
  • the thickness of the first layer is greater than the thickness of the second layer, the second layer bearing the resonator surfaces on its side facing away from the first layer.
  • the first layer forms the actual 3as ⁇ material of the planar emitter and essentially determines the properties of the emitter plane with its ⁇ r and loss angle tan ⁇ ⁇ .
  • the material of the first layer is advantageously the cheap material polystyrene, which is flexible in its foamed form and in particular has a specific volume weight of 20kg / m 3 .
  • the second layer is advantageously formed by a polyethylene terephthalate film which is glued to the first layer.
  • the advantage of this polyethylene terephthalate film is that it forms a firm and permanent connection with copper, which means that the resonator surfaces have firm adhesion.
  • the fan resonators can be shaped and arranged in any way. To generate the necessary impedance profile along the line of symmetry of the cavity resonators, which is transverse to the radiating edge, and to generate the necessary straniun ⁇ soezc ⁇ enen individual characteristic of the cavity resonators it is recommended to design the Fiachenresonatoren recntec ⁇ g, whereby the broad side is identical to the radiating edge.
  • the cavity resonators are advantageously arranged in a matrix to one another. It has never been shown that for most fields of application it is sufficient to arrange only eight fan resonators, in particular two rows and four columns. Also for reasons of simple computability and minimizing the dimensions of the planar emitter, it is advantageous if the row and column spacings of the array resonators arranged in the form of a matrix are identical to one another.
  • the planar radiator has an extension that carries a wave path that connects a coupling point of the coupling network to a connector.
  • a commercially available N socket can be connected, which is modified such that the inner conductor of the socket is connected to the microstrip line, which is applied to the extension of the dielectric carrier of the coupling network, and that the ground area of the extension, which at the same time Extension of the electrically suffering layer is flatly connected to the outer jacket of the socket by the pressing pressure generated by means of a dielectric press block.
  • the wave path is formed by a microstrip line, the second dielectric layer and the ground plane, which is connected to the coaxial connector accordingly.
  • FIG. 3 a plan view of the network veins
  • FIG. 4 a plan view of the electrically conductive ground surface
  • Figure ⁇ a cross-sectional view of the wave path LÜG de ⁇ connector
  • FIG. 6 a cross-sectional illustration of the radiator according to the invention, with two layers forming the first dielectric layer;
  • Figure 7 a representation according to Figure 6, wherein the length of the sleeve is shortened and its wall thickness is increased.
  • FIG. 1 shows an embodiment of the radiator according to the invention, in which the first dielectric layer 5 is made of a single material.
  • the resonator surfaces 4, consisting of a thin copper layer, are applied to the top of the rail 5.
  • the conductive ground surface 6 lies between the first dielectric layer 5 and the second dielectric layer 7.
  • the ground surface 6 is an approximately 17-18 ⁇ m thick copper layer.
  • the microstrip lines 8 or the coupling network 3 are arranged on the flat side of the layer 7 facing away from the ground plane.
  • the coupling points 12 and 13 are connected by means of an electrically conductive pin 9.
  • the pin 9 has a small diameter, so that the input impedance of the flat resonator 4, which is determined by the position of the coupling point 12, is not undefined by a large-area contact of the pin 9 with the resonator surface.
  • the Darcnrißsser of the pin 9 is therefore to be chosen so small that the stripe side of the coupling network 3 is not exceeded ⁇ ir ⁇ .
  • the thickness of the pin 9 should not exceed 1 mm.
  • the pen is used for the purposes of fixing and cutting. permanent contact with the copper layers of the net works and the ⁇ trah_erebene soldered and is of a sleeve _1 -m ⁇ eoen, which acts to stiffen the stranier.
  • the thickness D2 of the layer 5 essentially determines the overall standard of the planar radiator.
  • the mass flap 6 has in the areas where the pin 9 passes through the ground surface 6 a circular recess 10, whose diameter is larger than the outer diameter of the pin 9. If the length of the sleeve 11 is equal to the lengths D2 plus D3, the diameter of the recess 10 is to be selected at least as large as the outer diameter of the sleeve II.
  • the layer 5 is made of polystyrene, which is flexible in the foamed state, as a result of which the planar emitter can be bent within certain limits. This bendability is only slightly impaired by the thin copper layers 4, 6 and 8 and the layer 7.
  • the coupling point 12 need not be arranged centrally to the resonator surfaces 4.
  • the input impedance of the field resonators required for the respective frequency and bandwidth can be calculated, from which the position of the coupling point 12 can be derived.
  • FIG. 3 shows the coupling network 3 with the wave path 16 that emits or decouples the signals.
  • the network 3 consists of striplines 3a-3f and 16.
  • the stripline sections have different lengths and widths in order to compensate for the inductive component caused by the length of the pin 9 and for the impedance-matched merging of the waveguide paths leading to the cavity resonators.
  • the conductive copper layer of the bulk sheet is shown in FIG. 4.
  • the black areas 10, 19 and 20 represent places where the copper was left out. Due to these steepnesses, the corresponding diameter is also: Am ⁇ t ⁇ _e pins 9 "nd 21, sleeves 11, and Fastening screws for the connecting duo: 18 you can reach through the Massefladhe 6.
  • FIG. 5 shows a cross-sectional representation of the projection 24 carrying the wave path 16 and the connector 18.
  • the projection 24 lies between the connector 18 and the pressure block 22.
  • the connector 18 and the pressure block 22 are by means of the projection 24 and the bores 23 provided therefor engaging fastening screws screwed together, so that the connector 18 is in fixed connection with the projection 24.
  • planar radiator has a high system quality in the frequency spectrum from 2,500 GHz to 2,686 GHz.
  • the resonator surfaces have a length of 47 mm, a width of 53 mm and a row and column spacing of 87 mm.
  • the feed or coupling point 12 is located approximately 2 mm from the center of the broad side within the surface.
  • the thicknesses Dl, D3 and D5 of the copper layers are approx. 18 ⁇ m thick.
  • the layer 5 has two layers, the first layer 14 having a thickness LI equal to 10.5 mm and consisting of foamed polystyrene, the spec. Volume weight is 20kg / m 3 .
  • the second layer 15 has a thickness L2 of 100 ⁇ m and consists of polyethylene terephthalate.
  • the second dielectric layer 7 consists of glass fiber-marketed polytetrafluoroethylene 381 ⁇ m thick.
  • the pin 9 nat a Durcr-ir.es ⁇ er. 1.2 mm and lies with its one end m of the 3hole of the hole 7, the diameter of which is 1.2 mm and passes through the coupling point 13.
  • the rail 5 and 6 also have holes in the area of the pin 9, the diameter of which for receiving the Pin 9 and the sleeve 11 4.2 mm oetra ⁇ t.
  • Opp_ungsnetzwerJc 3 is thawed symmetrically, in such a way that all resonator surfaces are fed in the same phase from the coupling point 1 " .
  • the coupling points 13 have an inner diameter of 1.2 mm and an outer diameter of 2.1 mm.
  • a conductor 3a with a width of 0.49 mm for a length of 27 mm goes out in the direction of the adjacent feed point 13 in the row.
  • This conductor 3a then jumps into a conductor 3b with a width of 1.15 mm, which is 31 mm long.
  • the conductor 3b m again has a width of 0.49 mm in order to reach the adjacent feed point 13 after a length of 27 mm.
  • the feed points of the resonator surfaces 4 located on the outside in each line are connected to the feed points 13, respectively, of the resonator surfaces 4 that are adjacent to and below the line.
  • a conductor 3c with a width of 1.88 mm and a length of 22.3 mm connects from the center of the conductor 3b in the direction of the conductor 3b opposite in the column, which then jumps to a width of 1.15 mm for a distance of 42.45 mm (conductor 3d) transforms.
  • the conductor then widens again to a width of 1.88 mm in order to meet with the center of the conductor 3b opposite the column after a length of 22.3 mm.
  • a line 3e with a width of 1.88 mm and a length of 22.3 mm is connected to the center of the conductor 3d.
  • the conductor 3e then changes to a width of 1.15 mm for a length of 129.4 mm (conductor 3f).
  • the width of the conductor 3f changes to 1.88 mm for a length of 22.3 mm.
  • the center of the opposite conductor 3d is thus reached.
  • the middle of the conductor 3f is followed by a waveguide with a width of 1.88 mm and a length of 22.3 mm, in order to reduce its width to 1.15 mm and to lead to the point of interruption 21 of the network 3 .

Abstract

Die Erfindung betrifft einen planaren Strahler mit einer Flächenresonatoren (4) aufweisenden Strahlerebene (1) und einer ein Kopplungsnetzwerk (3) aufweisenden Netzwerkebene (2), wobei die Flächenresonatoren (4) über das Kopplungsnetzwerk (3) miteinander galvanisch und phasengleich gekoppelt sind, wobei der planare Strahler sandwich-artig aus zueinander planparallelen Schichten (4, 5, 6, 7, 8) aufgebaut ist, und daß eine erste dielektrische Schicht (5) mittels einer elektrisch leitenden dünnen Schicht (6), welche die gemeinsame Massefläche für die Strahler- (1) und die Netzwerkebene (2) bildet, von einer zweiten dielektrischen Schicht (7) getrennt ist, und daß die erste dielektrische Schicht (5) an ihrer der elektrisch leitenden Schicht (6) abgewandten Seite die Flächenresonatoren (4) trägt, und daß die zweite dielektrische Schicht (7) an ihrer der elektrisch leitenden Schicht (6) abgewandten Seite das Kopplungsnetzwerk (3) trägt, das aus Mikrostreifenleitungen (8) gebildet ist.

Description

Planarer Strahler
Die Erfindung betrifft einen planaren Strahler mit einer Flächenresonatoren aufweisenden Strahlerebene und einer ein Kopplungsnetzwerk aufweisenden Netzwerkebene, wobei die Flächenresonatoren über das Kopplungsnetzwerk miteinander galvanisch und phasengleich gekoppelt sind.
Für Kommunikationsdienste insbesondere Multipoint-Multichannel- Kommunikationsdienste, die den Empfang bzw. die Abstrahlung gerichteter elektromagnetischer Strahlungsfelder linearer Polarisation im Mikrowellenspektrum erfordern, werden heute Reflektorantenne oder planare Antennen bzw. Strahler eingesetzt. Die Strahlungseigenschaften der Reflektorantennen beruht auf der Erzeugung einer entsprechenden Amplituden- und Phasenbelegung der elektromagnetischen Strahlungsfeld¬ komponenten auf der Reflektorfläche mittels geeigneter Erreger. Die verwendeten Reflektoren sind hierbei entweder in Form geschlossener Flachen definierter Krümmung und Berandung ausgelegt oder werden durch gitterartige Anordnungen diskreter leitfähiger Linearelemeπte definierter Lange und Distar.zierung ausgeführt. Bekannte planare Losungen beruhen auf der .--r.Ordnung galvanisch und parallel gespeister Flachenresonatoren definierter Gruppengroße und Di≤tanzierung zueinander. Nachteilig bei den bekannten planaren Antennen ist, daß sie meist nur m einem kleinen Spektralbereich hohe Systemguten aufweisen und somit nur mit Einschränkungen für den Einsatz für Multipomt-Multichannel-Kommunikationsdienste geeignet sind, da durch die kleine Bandbreite nur relativ wenige Frequenzcander mit einer einzigen Antenne übertragbar sind.
Es iεt daher Aufgabe der Erfindung, einen planaren Strahler mit Flächenresonatoren bereitzustellen, der einfach und klein in seinem Aufbau ist und aus wenigen leicht zu fertigenden Teilen besteht und zugleich in einem möglichst breiten Spektralbereich eine hohe frequenzunabhängige Systemgüte hat, derart, daß er für eine mehrkanalige Punkt-zu-Punkt-Ubertragung insbesondere im Frequenzbereich zwischen 2.500 GHz bis 2.686 GHz geeignet ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der planare Strahler sandwich-artig aus zueinander planparallelen Schichten aufgebaut ist, und daß eine erste dielektrische Schicht mittels einer elektrisch leitenden dünnen Schicht, welche die gemeinsame Massefläche für die Strahler- und die Netzwerkebene bildet, von einer zweiten dielektrischen Schicht getrennt ist, und daß die erste dielektrische Schicht an ihrer der elektrisch leitenden Schicht abgewandten Seite die Flächenresonatoren tragt, und daß die zweite dielektrische Schicht an ihrer der elektrisch leitenden Schicht abgewandten Seite das Kopplungsnetzwerk trägt, das aus Mikroεtreifenleitungen gebildet ist.
Der erfindungsgemäße planare Strahlers benötigt vorteilhaft nur noch eine gemeinsame Massefläche für die Strahler- und Netzwerkebene, wodurch sich die Gesamthöhe des Strahlers gegenüber bekannten planaren Strahlern deutlich verringert und die Fertigung-- Materialkosten verringert werden. Auch kar.r. ohne Beeinflussung des Wellenwiderstana.es des Kopplungsnettwerks durch geeignete Wahl der Dicke der ersten dielektrischen Schicht die Bandoreite des vom Strahler zu sencenoen und err.ofaπσenen Straπiungsfeldes variiert wercen, wooei gleichzeitig eine hohe Systemgute im gesamten Spektralbereich erzielt wird.
Jeαer Flacnenresonator ist αaoei mittels eines elektrisch ieitenαen Verbindungsstiftes mit dem Kopplungsnetzwerk m elektπscn leitender Verbindung,
Figure imgf000005_0001
αer elektrisch leitende Verbmαungsstift m einer senkrecht zur Strahler- und Netzwerkeoene befindlichen Durcngangsbohrung einliegt.
Durch die unverhältnismäßig große Dicke der ersten dielektriscnen Schicht, sind die Verbindungsstifte relativ lang, wodurch die Stifte selbst elektrisch transformierend wirken. Die vom Stift repräsentierte induktive Blmdkomponente kann daher nicht mehr vernachlässigt werden und muß ausgeglichen werden. Dies kann zum einen mittels einer Hülse geschehen, die den Stift zumindest abschnittsweise umhüllt und aus einem Material insbesondere Teflon ist, das eine höhere Dielektnzitatszahl hat, als die die dielektrischen Schichten bildenden Materialien, die als Basismateπal für die Strahler¬ und Netzwerkebene dienen. Mittels der Einstellung der Wandstarke, der Höhe und des εr der Hülse kann der Kapazitatsbelag der Stift-Hulse-Kombmation eingestellt werden, wodurch die induktive Blmdkomponente des Stifts kompensiert wird.
Zum anαeren kann jedoch auch vorteilhaft die Kompensation der induktiven Blindkomponente des Stiftes mittels des Kopplungsnetzwerks erfolgen, indem die transformierende Wirkung der Langen- und Breitenverhaltnisse der verwendeten Mikrostreifenleitungen ausgenutzt werden. Derartige Transformationen mittels Mikrostreifenieitern sind hinlänglich aus der einschlagigen Literatur bekannt. Auf eine Kulse kann m diesem Fall gegeoenenfalls verzicntet werden.
Ξs ist ferner erforderlicn, αaß αie eler.triscr. leitende αunne Scmcr.t m den Bereichen, wo die elektriscn leitenden Stifte die Scn^cht durchtreten, msoescnαere kreisförmig fensterartige -.assoarungen nat, derart, αaß die Stifte mit der elektriscn _eιter.den ≤cr.icr.t nicht m e_el:tπscner Verbindung sind. Diese kreisförmig fensterartigen A.ussparungen bilden Blenden, wobei mittels des Durchmessers der Aussparungen der Kopplungsfaktor einstellbar ist. Der Koppiungsfaktor bestimmt dabei den Anteil der Signalintensitat, welcher von der Strahlerebene zur
Netzwerkebene gefuhrt wird. Den optimalen Durchmesser der
Blenden erhält man durch Simulation oder experimentelle Tests.
Damit der planare Strahler flexibel bzw. biegsam wird, ist es möglich, daß die erste dielektrische Schicht aus zwei dielektrischen Materialien, die jeweils für sich eine Lage bilden, aufgebaut ist. Die Dicke der ersten Lage ist hierbei größer, als die Dicke der zweiten Lage, wobei die zweite Lage an ihrer der ersten Lage abgewandten Seite die Resonatorflächen tragt. Die erste Lage bildet dabei das eigentliche 3asιsmaterιal des planaren Strahlers und bestimmt mit seinem εr sowie Verlustwinkel tan δε im wesentlichen die Eigenschaften der Strahlerebene. Das Material der ersten Lage ist vorteilshaft der billige Werkstoff Polystyrol, welcher in seiner ausgeschäumten Form flexibel ist, und insbesondere ein spezifisches Volumengewicht von 20kg/m3 hat. Die zweite Lage ist vorteilhaft durch eine Polyethylenterephtalat-Folie gebildet, die mit der ersten Lage verklebt ist. Der Vorteil dieser Polyethylenterephtalat-Folie ist, daß sie mit Kupfer eine feste und dauerhafte Verbindung eingeht, wodurch die Resonatorflächen eine feste Haftung haben.
Ein weiterer Vorteil durch den Einsatz der oben beschriebenen Hülsen ergibt sich dadurch, daß durch die steif ausgeführten Hülsen der Abstand zwischen der Strahler- und der Netzwerkebene zumindest in den Bereichen der Stifte auch unter Einwirkung äußerer Kräfte sowie bei der Antennenmontage konstant bleibt. Die Systemgüte verändert sich somit auch beim Verbiegen und Zusammendrucken des planaren Strahlers nicht.
Die Fiachenresonatoren können beliebig geformt und angeordnet werden. Zur Erzeugung des notwendigen Impedanzprofils entlang der quer zur strahlenden Kante liegenden Symmetrieiinie der Fiachenresonatoren, sowie zur Erzeugung der erforderlichen straniunαsoezcαenen Ξinzelcharakteristik der Fiachenresonatoren ist es empfehlenswert, die Fiachenresonatoren recntecκιg zu gestalten, wobei die Breitseite identisch der strahlenden Kante ist. Die Fiachenresonatoren werden dabei vorteil≤maßig matrixfcrmig zueinander angeordnet. Es hat sich nierbei gezeigt, daß es für die meisten Einsatzgebiete ausreicht, lediglicn acht Fiachenresonatoren msoesondere m zwei Zeilen und vier Spalten anzuordnen. Ebenfalls aus Gründen der einfachen Berechenbarkeit und der Minimierung der Abmessungen des planaren Strahlers ist es von Vorteil, wenn Zeilen- und Spaltenabstande der matrixformig angeordneten Fiachenresonatoren zueinander gleich sind.
Um eine gute Auskopplung bzw. Emkopplung des empfangenen bzw. zu sendenden Signals mit möglichst schon bestehenden Komponenten und Stecksystemen zu ermöglichen, hat der planare Strahler eine Verlängerung, die einen Wellenpfad tragt, die einen Kopplungspunkt des Kopplungsnetzwerks mit einem Anschlußstuck verbindet. An das Anschlußstuck ist eine handelsübliche N-Buchse anschließbar, die derart modifiziert ist, daß der Innenleiter der Buchse mit dem Mikrostreifenleiter, der auf der Verlängerung des dielektrischen Tragers des Kopplungsnetzwerks aufgebracht ist, verbunden ist, und daß die Masseflache der Verlängerung, die gleichzeitig die Verlängerung der elektrisch leidenden Schicht ist, mit dem Außenmantel der Buchse flachig durch den mittels eines dielektrischen Preßblocks erzeugten Preßdrucks verbunden ist. Der Wellenpfad wird durch eine Mikrostreifenleitung, der zweiten dielektrischen Schicht und der Masseflache gebildet, der mit dem koaxialen Anschlußstuck entsprechend verbunden ist.
Nachfz_gend werden einige Ausführungsformen der Erfindung anhand von Zeicnnungen naher erläutert.
:c_: ;me Ouerschnittsdarstellunσ des planaren SJ .ers ;
"igur 1 : eine Draufs icht auf die Stranlerebene ; Figur 3: eine Draufsicnt auf die Netzwerkeoene;
Figur 4: eine Draufsicnt auf die elektrisch leitende Masseflache;
Figur Ξ: eine Querschnittsdarstellung des Wellenpfades LÜG deε Anschlußstucks;
Figur 6: eine Querschnittsdarstellung des erfindungsgemaßen Strahlers, mit zwei die erste dielektrische Schicht bildenden Lagen;
Figur 7: eine Darstellung gemäß Figur 6, wobei die Lange der Hülse verkürzt und ihre Wandstarke vergrößert ist.
Die Figur 1 stellt eine Ausführungsform des erfindungsgemaßen Strahlers dar, bei dem die erste dielektrische Schicht 5 aus einem einzigen Material ist. Auf der Oberseite der Schient 5 sind die aus einer dünnen Kupferschicht bestehenden Resonatorflachen 4 aufgebracht. Zwischen der ersten dielektrischen Schicht 5 und der zweiten dielektrischen Schicht 7 liegt die leitende Masseflache 6. Die Masseflache 6 ist eine ca. 17-18μm starke Kupferschicht. Auf der der Masseflache abgewandten flachen Seite der Schicht 7 sind die Mikrostreifenleitungen 8 bzw. das Kopplungsnetzwerk 3 angeordnet. Die Kopplungspunkte 12 und 13 sind mittels eines elektrisch leitenden Stifts 9 in Verbindung. Der Stift 9 hat einen kleinen Durchmesser, damit die durch die Lage des Kopplungspunktes 12 bestimmte EingangsImpedanz des Flachenresonators 4 nicht durch einen großflächigen Kontakt des Stiftes 9 mit der Resonatorflache unbestimmt wird. Der Darcnriβsser des Stiftes 9 ist daher so klein zu wählen, daß die Streifenoreite des Kopplungsnetzwerks 3 nient ubersenritten Λirα. D_e Dicke des Stiftes 9 sollte daner 1 mm nicht ucerscnreiten. Der Stift wird zu Zwecken des Festsetzenε und des cesserer. dauerhaften Kontakts mit den Kupferschicnten der NettΛerk- und der Ξtrah_erebene verlotet und ist von einer Hülse _1 -mαeoen, die eine Versteifung des Straniers Gewirkt. Die Dιcκe D2 der Schicht 5 bestimmt im wesentlichen die Gesamtnor.e des planaren Strahlers.
Die Masseflacne 6 hat m den Bereichen, m denen der Stift 9 durch die Masseflache 6 hindurchtritt eine kreisförmige Aussparung 10, ceren Durchmesser großer -.st, als der Außendurcnmesser des Stifts 9. Ist die Lange der Hülse 11 gleich den Langen D2 plus D3, so ist der Durchmesser der Aussparung 10 mindestens so groß wie der Außendurchmesser der Hülse II zu wählen.
Die Schicht 5 ist aus Polysterol, welches im ausgeschaumten Zustand flexibel ist, wodurch der planare Strahler in gewissen Grenzen oiegbar ist. Diese Verbiegbarkeit wird nur geringfügig durch die dünnen Kupferschichten 4, 6 und 8 sowie die Schicht 7 beeinträchtigt.
Wie aus Figur 2 ersichtlich ist, muß der Kopplungspunkt 12 nicht zentrisch zu den Resonatorflächen 4 angeordnet sein. Mit Hilfe bekannter Simmulationsmethoden, laßt sich die für die jeweilige Frequenz und Bandbreite erforderliche Eingangsimpedanz der Fiachenresonatoren berechnen, woraus die Lage des Kopplungspunktes 12 ableitbar ist.
In Figur 3 ist das Kopplungsnetzwerk 3 mit dem die Signale em- bzw. auskoppelnden Wellenpfad 16 dargestellt. Das Netzwerk 3 besteht aus Streifenleitungen 3a-3f sowie 16. Die Streifenleitungsabschmtte haben unterschiedliche Langen und Breiten, um den induktiven Anteil, welcher durch die Lange des Stifts 9 verursacht wurde, auszugleichen, sowie die impedanzangepaßte Zusammenfuhrung der zu den Fiachenresonatoren führenden Wellenleiterpfade zu ermöglichen.
In Figur 4 ist die leitende Kupferschicr.t der Masseflacne € dargeΞte_lt. Die schwarzen ?unκte 10, 19 und 20 repräsentieren dabei Stellen, an denen das Kupfer ausgespart wurde. Durch diese Steilen sind zudem Bonrungen entsprechenden Durcnmessers :amιt α_e Stifte 9 „nd 21, Hülsen 11, sowie Befestigungsschrauben für das Anschlußstuo: 18 euren die Massefladhe 6 durchgreifen können.
Die Figur 5 zeigt eine Querschmttsdarsteiiung des den Wellenpfad 16 sowie das Anschlußstuck 18 tragenden Vorsprungs 24. Der Vorsprung 24 liegt zwisenen dem Anscnlußstuck 18 und dem Anpreßblock 22. Das Anschlußstuck 18 und der Anpreßblock 22 werden mittels durch den Vorsprung 24 und den dafür vorgesehenen Bohrungen 23 greifenden Befestigungsschrauben miteinander verschraubt, so daß das Anscnlußstuck 18 mit dem Vorsprung 24 in fester Verbindung ist.
Nachfolgend werden beispielhafte geometrische Daten aufgeführt, mittels der der planare Strahler im Frequenzspektrum von 2.500 GHz bis 2.686 GHz eine hohe Systemgute aufweist.
Die Resonatorflachen haben dazu die Lange 47 mm, die Breite 53 mm sowie einen Zeilen- und Spaltenabstand von 87 mm. Der Speise- bzw. Kopplungspunkt 12 befindet sich von der Mitte der breiten Seite ca. 2 mm entfernt innerhalb der Fläche. Die Dicken Dl, D3 und D5 der Kupferschichten sind ca. 18μm stark. Die Schicht 5 ist wie in Figur 6 dargestellt zweilagig, wobei die erste Lage 14 eine Dicke LI gleich 10.5 mm hat und aus verschaumten Polystyrol besteht, dessen spez. Volumengewicht 20kg/m3 betragt. Die zweite Lage 15 hat eine Dicke L2 von lOOμm und besteht aus Polyethylenterephtalat. Die zweite dielektrische Schicht 7 besteht aus glasfaserversarktem Polytetraflourethylen der Starke 381 μm.
Samtliche Schichten sind miteinander fest verfugt, wobei die Lage 14 mit der Lage 15 verklebt ist und die Kleoeverbmcung eine Starke von 7um hat.
Der Stift 9 nat einen Durcr-ir.esεer vor. 1.2 mn und liegt mit seinem einem Ende m der 3ohrung der Scnicht 7, deren Durchmesser eoer.falls 1.2 mm betragt ein und durchtritt den Kopp1ungspunkt 13. Die Schient 5 und 6 weist im Bereicn des Stifts 9 ebenfalls Bohrungen auf, deren Durchmesser zur Aufnanme des Stifts 9 und der Hülse 11 4.2 mm oetraσt. Das ?:opp_ungsnetzwerJc 3 ist symmetrisch aufgeoaut, derart, daß alie Resonatorflachen gleicnphasig vom Kopplungspunkt 1" αespeist werden. Die Kopplungspunkte 13 haben einen Innendurchmesser von 1.2 mm und einen Außendurcnmesser von 2.1 mm.
Ausgehend von jedem Kopplungspunkt 13 geht m Richtung des in der Zeile benachbarten Speisepunktes 13 ein Leiter 3a der Breite 0.49 mm für eine Lange von 27 mm ab. Dieser Leiter 3a geht dann sprungartig m einen Leiter 3b der Breite 1.15 mm über, welcher 31 mm lang ist. Anschließend geht der Leiter 3b wieder m eine Breite von 0.49 mm über, um den benachbarten Speisepunkt 13 nach einer Lange von 27 mm zu erreichen. Auf diese Weise werden die Speisepunkte der in jeder Zeile außen liegenden Resonatorflachen 4 mit den Speisepunkten 13 αer jeweils m der Zeile benachbarten und unten liegenden Resonatorflachen 4 verbunden. Von der Mitte des Leiters 3b schließt sich in Richtung des in der Spalte gegenüberliegenden Leiters 3b ein Leiter 3c der Breite 1.88 mm und der Lange 22.3 mm an, der danach sprungartig auf eine Breite von 1.15 mm für eine Strecke von 42.45 mm (Leiter 3d) übergeht. Der Leiter erweitert sich anschließend wieder auf eine Breite von 1.88 mm, um nach einer Lange von 22.3 mm mit der Mitte des m der Spalte gegenüberliegenden Leiters 3b zusammen zu treffen. An die Mitte des Leiters 3d schließt sich m Richtung des gegenüberliegenden Leiters 3d eine Leitung 3e der Breite 1.88 mm sowie der Lange 22.3 mm an. Danach geht der Leiter 3e auf eine Breite von 1.15 mm für eine Lange von 129.4 mm über (Leiter 3f) . Die Breite des Leiters 3f ändert sich auf 1.88 mm für eine Lange von 22.3 mm. Damit ist die Mitte des gegenüberliegenden Leiters 3d erreicht. Ar αie Mitte des Leiters 3f schließt ein Wellenleiter der Breite 1.88 mm sowie der Lange 22.3 mm an, um sich danacn εorungnaft m αer Breite auf 1.15 mm zu reduzieren und zum -._s-.opp-ungspunkt 21 des Netzwerkes 3 gefuhrt z„ werden.
-l_tte-5 des coen oeschr_ebenen Kooolungsnetzwerks 3 werden die -"-αu^:i"en Blmdkomponenten der Stifte 9, die euren die
Figure imgf000011_0001
der langl_.cren Stifte 9, welcne ihrerseits "ci der Dicke 12 der ersten dielektrischen Schicht 5 bedingt sind, kompensiert.
In Figur " ist dargestellt, daß die Hülse 11 sich nicht über die gesamte Höhe der Schichten 5 und 6 erstrecken muß. Durch die Wahl der Wandstärke WS und der Lange LS der Hülse 11 kann deren kapazitiver Belag beeinflußt werden, wodurch die induktive Blindleistungskomponente des langen Stifts 9 aufgehoben wird und ein die Blindkomponenten kompensierendes Netzwerk 3 nicht mehr benötigt wird.
Bezugszeichenliste:
1 Stahlerebene
2 Netzwerkeoene
3 Kopplungsnetzwerk
3a-3f Streifenleitungsabschnitte
4 Fiachenresonatoren
5 erste dielektrische Schicht
6 elektrisch leitende dünne Schicht; Masseflache
7 zweite dielektrische Schicht
8 Mikrostreifenleitungen
9 Verbindungsstift
10 fensterartige Aussparungen
11 Hülse
12 Speisepunkt des Flachenresonators
13 Kopplungspunkt
14 erste Lage
15 zweite Lage
16 Wellenpfad
17 gemeinsamer Kopplungspunkt
18 Anschlußstuck; N-Buchse
19 Aussparung für Durchgangsstift
20 Aussparung für Befestigungsschraube
21 Durchgangsstift
22 Anpreßblock
23 Bohrung für Befestigungsschrauben 2- Verlängerung für Wellenpfad

Claims

Patentansprüche
1. Pianarer Strahler mit einer Flächenresonatoren (4) aufweisenden Strahlerebene (1) und einer ein Kopplungsnetzwerk (3) aufweisenden Netzwerkebene (2), wobei die Flächenresonatoren (4) über das Kopplungsnetzwerk (3) miteinander galvanisch und phasengleich gekoppelt sind, d a d u r c h g e k e n n z e i c h n e t , daß
- der planare Strahler sandwich-artig aus zueinander planparallelen Schichten (4,5,6,7,8) aufgebaut ist, und
- daß eine erste dielektrische Schicht (5) mittels einer elektrisch leitenden dünnen Schicht (6) , welche die gemeinsame Massefläche für die Strahler- (1) und die Netzwerkebene
(2) bildet, von einer zweiten dielektrischen Schicht (7) getrennt ist, und
- daß die erste dielektrische Schicht (5) an ihrer der elektrisch leitenden Schicht (6) abgewandten Seite die Fiachenresonatoren (4) trägt, und
- daß die zweite dielektrische Schicht (7) an ihrer der elektrisch leitenden Schicht (6) abgewandten Seite das Kopplungsnetzwerk (3) trägt, das aus Mikrostreifenleitungen
(8) αebildet ist.
r_onαi. Strahler nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß jeder Flächenresonator (4)
.ndungsεtifte;
;m Koppiungsnstzwerk (3) in elektrisch leitender Verbindung =t, wobei der elektrisch leitende Verbindungsstift l9,ι m i.ner senkrecht zur Strahler- 1' und Metzwerkebene t2' ≥findlichen Durchgangsbohrung emiiegt.
3. Flanarer Strahler nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die elektrisch leitende dünne Schicht (6) m den Bereichen, wo die elektrisch leitenden Stifte (9) die Schicht (6) durchtreten, insbesondere -ireisformig fensterartige Aussparungen (10) hat, derart, daß die Stifte (9) mit der elektriscn leitenden Schient (6) nicht m elektrischer Verbindung sind.
4. Planarer Strahler nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die kreisförmig fensterartigen Aussparungen (10) Blenden bilden, und mittels des Durchmessers der Aussparungen (10) der Reflektions- und Transmissionsfaktor zwischen dem Kopplungsnetzwerk und den jeweiligen Fiachenresonatoren einstellbar ist.
5. Planarer Strahler nach einem der Ansprüche 2, 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , daß jeder elektrisch leidende Stift (9) im Bereich zwischen der leitenden Schicht (6) der Flächenresonatoren (4) und der leitenden Schicht (6) der Mikrostreifenleitungen (8) zumindest abschnittsweise von einer Hülse (11) umschlossen ist.
6. Planarer Strahler nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß die Hülse (11) aus einem dielektrischen Material insbesondere Teflon ist, dessen Dielektrizitätskonstante εr insbesondere größer ist als die Dielektrizitätskonstante εr des die Hülse (11) umgebenden Materials der dielektrischen Schichten (5,
7) .
~. Flanarer Strahler nach einem αer vcrnerigen Ansprucne, d a d u r c h g e k e n n z e i c h n e t , daß die erste dielektrische Schicht (5) aus zwei dielektrischen Materialien, die jeweils für sich eine Lage 14r 15) bilden, aufgebaut ist, ;oDeι die Dicke (LI) der ersten Lage großer ist, als die Dicke 12) cer zweiten Lage, wooei die zweite Lage (Ic; an ir.rer der ersten Lage (14/ abgewandten Seite die Resonatorflachen (4) tragt.
8. Flanarer Strahler nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die erste Lage (14) aus Polystyrol gebildet ist, welches m semer ausgesehaumten Form flexibel ist, und insbesondere ein spezifisches Volumengewicht von 20kg/m3 hat, wobei die erste Lage (14) insbesondere eine Dicke (LI) von 10.5 mm hat.
9. Planarer Strahler nach einem der Ansprüche 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , daß die zweite
Lage (15^ durch eine Polyethylenterephtalat-Folie msoesondere der Dicke (L2) gleich lOOum gebildet ist, die mit der ersten Lage (14) verklebt ist.
10. Planarer Strahler nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die elektrisch leitende dünne Schicht (6) eine Dicke von ca. 18μm hat.
11. Planarer Strahler nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß mittels geeigneter Wahl der Wandstarke (WS), der Hohe (LS) und der Dielektrizitatszahl εr der Hülse (11) die durch die Dicke (D2) der ersten dielektrischen Schicht (5) bedingte induktive 31ιndkcmconente mittels der Hülse (11) kompensierbar ist.
12. Flanarer Stranier nach Anspruch 10 oder 11, d a d u r c h g e k e n n z e i c h n e t , daß die Lange
LS) der Hülsen (11) den Abstand zwischen der Stahler- lλ und der Netzwerkebene (2; zumindest m den Bereichen der Iurengangsbohrungen (10) bzw. Stifte (9) auch unter Ξir.wirmr.g äußerer Kräfte -:or.star.t halt, sowie insbesondere für die Montage definierte -Auflagepunkte bildet. _1. F_anarer Strahler nacn einem oer vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß mittels des Kopplur.gsnetzwerκs (3) die durch die Dicke (D2) der ersten diele<trιschen Schicht (5) bedingte induktive Blmdkomponente des Ξt-ftes (9) und der kapazitive Belag der Hülse (11) -compensieroar sind.
14. Planarer Strahler nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Fiachenresonatoren (4) rechteckig sind und matrixformig insbesondere m zwei Zeilen und vier Spalten angeordnet sind.
15. Planarer Strahler nach Ansprucn 14, d a d u r c h g e k e n n z e i c h n e t , daß die Zeilen- und Spaltenabstande der matnxformig angeordneten Fiachenresonatoren (4) gleich sind.
16. Planarer Strahler nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die
Netzwerkebene (3) bestehend aus den Mikrostreifenleitungen (8), der zweiten dielektrischen Schicht (7) und der Masseflache (6), m Fcrm eines Wellenpfades (16) zwischen dem gemeinsamen Kopplungspunkt (17) und einem Anschlußstuck (18) derart verlängert ist, daß die wellenleiterseitige Kopplung ohne Trennung der Wellenleiterebene unmittelbar auf das Anschlußstuck (18) in koaxialer Ausfuhrung erfolgt.
PCT/EP1997/001275 1996-03-16 1997-03-13 Planarer strahler WO1997035355A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA002250928A CA2250928C (en) 1996-03-16 1997-03-13 Planar emitter
EP97914238A EP0886887B1 (de) 1996-03-16 1997-03-13 Planarer strahler
US09/142,679 US6204814B1 (en) 1996-03-16 1997-03-13 Planar emitter
DE59700474T DE59700474D1 (de) 1996-03-16 1997-03-13 Planarer strahler
KR1019980707236A KR20000064587A (ko) 1996-03-16 1997-03-13 플레이너이미터
JP9533125A JP2000507055A (ja) 1996-03-16 1997-03-13 プレーナ・エミッタ
DK97914238T DK0886887T3 (da) 1997-03-13 1997-03-13 Planar stråler
IL12613197A IL126131A (en) 1996-03-16 1997-03-13 Planar emitter
GR990402821T GR3031727T3 (en) 1996-03-16 1999-11-03 Planar emitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19615497A DE19615497A1 (de) 1996-03-16 1996-03-16 Planarer Strahler
DE19615497.9 1996-03-16

Publications (1)

Publication Number Publication Date
WO1997035355A1 true WO1997035355A1 (de) 1997-09-25

Family

ID=7791749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001275 WO1997035355A1 (de) 1996-03-16 1997-03-13 Planarer strahler

Country Status (12)

Country Link
US (1) US6204814B1 (de)
EP (1) EP0886887B1 (de)
JP (1) JP2000507055A (de)
KR (1) KR20000064587A (de)
CN (1) CN1214152A (de)
AT (1) ATE185023T1 (de)
CA (1) CA2250928C (de)
DE (2) DE19615497A1 (de)
GR (1) GR3031727T3 (de)
IL (1) IL126131A (de)
TW (1) TW355854B (de)
WO (1) WO1997035355A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0105251D0 (en) 2001-03-02 2001-04-18 Nokia Mobile Phones Ltd Antenna
EP1239539A3 (de) * 2001-03-02 2003-11-05 Nokia Corporation Antenne
US6759984B2 (en) * 2001-06-01 2004-07-06 Agere Systems Inc. Low-loss printed circuit board antenna structure and method of manufacture thereof
CN112204817A (zh) * 2018-05-01 2021-01-08 韦弗有限责任公司 用于电力传输的低成本电介质及使用其的天线
RU2738759C1 (ru) * 2020-06-04 2020-12-16 Акционерное общество "Научно-производственная фирма "Микран" Сверхширокополосный планарный излучатель

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318107A (en) * 1978-11-24 1982-03-02 Thomson-Csf Printed monopulse primary source for airport radar antenna and antenna comprising such a source
EP0200819A2 (de) * 1985-04-25 1986-11-12 Robert Bosch Gmbh Array-Antenne
US4973972A (en) * 1989-09-07 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Stripline feed for a microstrip array of patch elements with teardrop shaped probes
DE4306056A1 (en) * 1992-02-27 1993-09-16 Murata Manufacturing Co Microstrip antenna having circular dielectric substrate - has emitter electrode with central clear volume in which circuit on board is moulded with external connections.
DE4340825A1 (de) * 1993-12-01 1995-06-08 Rothe Lutz Planare Strahleranordnung für den Direktempfang der TV-Signale des direktstrahlenden Satellitensystems TDF 1/2

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3514880A1 (de) * 1984-05-22 1985-11-28 Robert Bosch Gmbh, 7000 Stuttgart Array-antenne
US4899164A (en) * 1988-09-16 1990-02-06 The United States Of America As Represented By The Secretary Of The Air Force Slot coupled microstrip constrained lens
JPH02214205A (ja) * 1989-02-14 1990-08-27 Fujitsu Ltd 電子回路装置
US5001493A (en) * 1989-05-16 1991-03-19 Hughes Aircraft Company Multiband gridded focal plane array antenna
FR2647599B1 (fr) * 1989-05-24 1991-11-29 Alcatel Espace Structure de realisation de circuits et composants appliquee aux hyperfrequences
US5245745A (en) * 1990-07-11 1993-09-21 Ball Corporation Method of making a thick-film patch antenna structure
US5231406A (en) * 1991-04-05 1993-07-27 Ball Corporation Broadband circular polarization satellite antenna
KR920022585A (ko) * 1991-05-14 1992-12-19 오오가 노리오 플레이너 안테나
US5153600A (en) * 1991-07-01 1992-10-06 Ball Corporation Multiple-frequency stacked microstrip antenna
JP2604947B2 (ja) * 1991-09-16 1997-04-30 エルジー電子株式会社 平面アンテナ
DE4239597C2 (de) * 1991-11-26 1999-11-04 Hitachi Chemical Co Ltd Ebene Antenne mit dualer Polarisation
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol
JPH0812973B2 (ja) * 1993-04-02 1996-02-07 防衛庁技術研究本部長 アレイアンテナ装置
NL9301677A (nl) * 1993-09-29 1995-04-18 Hollandse Signaalapparaten Bv Multipatch antenne.
US5859614A (en) * 1996-05-15 1999-01-12 The United States Of America As Represented By The Secretary Of The Army Low-loss aperture-coupled planar antenna for microwave applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318107A (en) * 1978-11-24 1982-03-02 Thomson-Csf Printed monopulse primary source for airport radar antenna and antenna comprising such a source
EP0200819A2 (de) * 1985-04-25 1986-11-12 Robert Bosch Gmbh Array-Antenne
US4973972A (en) * 1989-09-07 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Stripline feed for a microstrip array of patch elements with teardrop shaped probes
DE4306056A1 (en) * 1992-02-27 1993-09-16 Murata Manufacturing Co Microstrip antenna having circular dielectric substrate - has emitter electrode with central clear volume in which circuit on board is moulded with external connections.
DE4340825A1 (de) * 1993-12-01 1995-06-08 Rothe Lutz Planare Strahleranordnung für den Direktempfang der TV-Signale des direktstrahlenden Satellitensystems TDF 1/2

Also Published As

Publication number Publication date
US6204814B1 (en) 2001-03-20
CN1214152A (zh) 1999-04-14
JP2000507055A (ja) 2000-06-06
CA2250928A1 (en) 1997-09-25
TW355854B (en) 1999-04-11
DE19615497A1 (de) 1997-09-18
DE59700474D1 (de) 1999-10-28
CA2250928C (en) 2003-12-23
EP0886887B1 (de) 1999-09-22
IL126131A0 (en) 1999-05-09
IL126131A (en) 2002-02-10
EP0886887A1 (de) 1998-12-30
KR20000064587A (ko) 2000-11-06
ATE185023T1 (de) 1999-10-15
GR3031727T3 (en) 2000-02-29

Similar Documents

Publication Publication Date Title
DE102017103161B4 (de) Antennenvorrichtung und Antennenarray
DE10030402B4 (de) Oberflächenbefestigungsantenne und Kommunikationsvorrichtung unter Verwendung derselben
EP1759438B1 (de) Antenne
DE60009874T2 (de) V-Schlitz-Antenne für zirkulare Polarisation
DE69821327T2 (de) Kurzgeschlossene Streifenleiterantenne und Gerät damit
DE10142384B4 (de) Mikrostripline-Antenne
DE602005002330T2 (de) Logarithmisch periodische Mikrostreifengruppenantenne mit geerdetem halbkoplanaren Übergang von Wellenleiter auf Mikrostreifenleitung
DE102016207434B4 (de) Antennenvorrichtung
DE4136476C2 (de) Höchstfrequenzlinse und Antenne mit elektronischer Strahlschwenkung mit einer solchen Linse
WO1991002386A1 (de) Sende- und/oder empfangsanordnung für tragbare geräte
EP0795926A2 (de) Flache dreidimensionale Antenne
DE102014011514A1 (de) Kapazitiv geschmiertes Gehäuse, insbesondere kapazitiv geschmiertes Komponenten-Gehäuse für eine Antenneneinrichtung
WO2001003238A1 (de) Integrierbare dualband-antenne
EP2991159A1 (de) Speisenetzwerk für antennensysteme
EP1410062A2 (de) Integrierte schaltung für ein radargerät in hermetisch abgeschlossenem gehäuse mit einer aus einem blech-biegeteil geformten patch-antenne
EP0737371B1 (de) Planarantenne
EP1370886B1 (de) Antenne mit koplanarem speisenetzwerk zum senden und/oder empfangen von radarstrahlen
WO1997035355A1 (de) Planarer strahler
WO2002063717A1 (de) Planare antenne
DE10150086B4 (de) Gruppenantenne mit einer regelmäßigen Anordnung von Durchbrüchen
WO2001017061A1 (de) Multiband-antenne
EP3707775B1 (de) Ein- und auskopplungsvorrichtung zwischen einem schaltungsträger und einem wellenleiter
DE3409460A1 (de) Antenne
DE60301699T2 (de) Kompakte Streifenleiterantenne mit einer Anpassungsanordnung
DE102004032175A1 (de) Vorrichtung und Verfahren zum Senden/Empfangen elektromagnetischer HF-Signale

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193108.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IL JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997914238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980707236

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2250928

Country of ref document: CA

Ref document number: 2250928

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09142679

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997914238

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997914238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707236

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707236

Country of ref document: KR