EP1759438B1 - Antenne - Google Patents

Antenne Download PDF

Info

Publication number
EP1759438B1
EP1759438B1 EP05782909A EP05782909A EP1759438B1 EP 1759438 B1 EP1759438 B1 EP 1759438B1 EP 05782909 A EP05782909 A EP 05782909A EP 05782909 A EP05782909 A EP 05782909A EP 1759438 B1 EP1759438 B1 EP 1759438B1
Authority
EP
European Patent Office
Prior art keywords
antenna
planar
differential signal
planar antenna
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05782909A
Other languages
English (en)
French (fr)
Other versions
EP1759438A1 (de
Inventor
Carlos Prieto-Burgos
Rainer Wansch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1759438A1 publication Critical patent/EP1759438A1/de
Application granted granted Critical
Publication of EP1759438B1 publication Critical patent/EP1759438B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to antennas, and more particularly to antennas made up of a plurality of planar antennas.
  • Antennas are used for wireless connection of data transmission devices. Depending on the field of application, antennas with special characteristics are selected. There are some compromises to be made that specifically consider the integrability, gain, noise or bandwidth of an antenna.
  • One of the key selection factors is the antenna's feed method. Here, a distinction is made between a differential or a one-sided, also single-ended supply.
  • balun transformer also called balun, can be used, which transforms from a differential signal routing to a single-ended signal routing.
  • the decision of the feed method determines the type of antennas used or, alternatively, the use of a balun.
  • the dipole antenna or similar differentially fed antennas have the disadvantage that they must have no ground surface or metal surface next to them and are often not integrable.
  • the use of a planar antenna, such as a patch antenna although allows a better Integrity, but on the other hand requires a balancer, which can take a considerable amount of space.
  • the EP 1 231 671 A2 describes antennas with two, parallel to each other, arranged conductive plates which are contacted via feed points. Air or plastic may be disposed between the conductive plates.
  • the US Pat. No. 6,307,510 B1 describes an antenna with a substrate having a ground plane and a dielectric layer. On the substrate is disposed a diagonal pair of antenna elements forming an antenna dipole.
  • the US 2004/0155831 A1 describes a dipole antenna with a three-dimensional emitter element positioned in front of a conductive reflector.
  • the JP 2001 189615 A1 shows two antennas, which are arranged over a ground plane.
  • the US 5,955,995 shows an antenna with two oppositely disposed conductive plates separated by an air gap. The larger the gap, the wider the bandwidth of the antenna. An advantage of the arrangement is that no ground plane is needed.
  • the US 4,922,259 describes an antenna with two microstrip emitters each having a conductive patch separated from a ground plane by a dielectric spacer material. Between the two ground planes of the two radiators is an internal feed network. Both radiating elements are each contacted by a pair of feeders. The antenna is supplied with a non-differential "input signal". This input signal is supplied to the two radiators via one of the two connection lines. The input signal thus coincides with both emitters in phase.
  • the two radiators are each supplied with input signals that are phase-shifted by 90 degrees. For each other, the two input signals, which are phase-shifted by 90 degrees, are in phase again.
  • the present invention is based on the finding that differentially powered planar antennas function like a dipole antenna whose arms are planar antennas.
  • the planar antennas can be used with a differential feed system without a single-ended-to-differential transformation.
  • the approach according to the invention which is a differential fed dipole antenna,
  • the arms of which are planar antennas overcome the obstacles encountered when using known differentially fed antennas or when using known planar antennas, and still offers some significant advantages.
  • the inventive approach enables the use of a differential feed together with planar antennas without an additional balun.
  • An antenna according to the inventive approach can be used both in a transmitter and in a receiver in which a differential feed and a full integration capability is required.
  • two opposite concepts namely the differential feed and the planar antennas, are used together without the need for an additional element, such as a balun.
  • differential feed may be needed for certain designs, for example in terms of noise or gain.
  • the use of two planar antennas according to the inventive approach also makes it possible for the differentially fed antenna to be integrated more easily.
  • planar antennas used for the inventive approach does not differ from the design of a single-ended planar antenna.
  • adaptation to a desired frequency and radiation pattern will be developed for the particular configuration presented.
  • the inventive approach allows a structure of the antenna on both sides of an electronic module, so that a radiation takes place on both sides and thus the omnidirectional characteristic of the antenna is improved.
  • the approach according to the invention is suitable for applications in wireless data transmission, for audio or video transmission, and in particular also in the localization, ie wherever an emission in as many directions as possible is desired.
  • the antennas according to the invention can be planar integrated in the form presented. This offers itself due to the small size, especially at transmission frequencies in the centimeter and millimeter wave range. In this way, very compact units can be produced.
  • the antenna according to the invention will find application in transmitters and receivers because of their differential connections, which use differential feed because of higher power, lower noise, and simpler design.
  • the inventive approach is ideal for transmitters or receivers in which miniaturized antennas are to be integrated, which are relatively broadband in terms of their size.
  • the presented dipole antenna with planar arms is well suited to produce a desired omnidirectional radiation pattern.
  • Fig. 1 shows an antenna according to an example.
  • the antenna has a first planar antenna 102 and a second planar antenna 104, which are connected via means 106 for coupling or coupling out a differential signal.
  • the first planar antenna 102 has a first planar radiation element 112.
  • the second planar antenna 104 has a second planar radiation element 114.
  • the radiating elements 112, 114 are arranged on a first surface of a substrate 116 spaced from each other. On a second surface of the substrate 116, an electrically conductive layer 118 is disposed. The second surface of the substrate 116 is disposed opposite the first surface of the substrate 116.
  • the conductive layer 118 is a metallization layer that forms a ground plane of the planar antennas 102, 104.
  • the substrate 116 for example, a ceramic substrate is formed as a dielectric.
  • the first planar antenna 102 consists of a layered structure of the first planar radiating element 112, the substrate 116 and the electrically conductive layer 118.
  • the second planar antenna 104 consists of the second planar radiating element 114, the substrate 116 and the electrically conductive layer 118.
  • the means for coupling 106 is shown schematically in FIG. Shown is a differential signal port 122 or a generator for providing a differential signal, which has a first area 124 for providing a first component of the differential signal with the first planar antenna 102 and a second area 126 for providing a second component of the differential signal the second planar antenna 104 is connected.
  • the first component of the differential signal is a signal inverted to the second component of the differential signal.
  • the signal terminal 122 is connected to an evaluation device (not shown in the figures) for evaluating the received first component and the received second component of the differential signal.
  • the antenna is a differential fed planar antenna in a dipole configuration without the use of a balun.
  • the antenna shown consists of two planar antennas 102, 104, which fulfill the function of the dipole arms, since each planar antenna 102, 104 is fed by a different polarity (+/-).
  • the first planar antenna 102 represents a first dipole half and the second planar antenna 104 a second dipole half.
  • the schematic representation of the means for coupling 106 is representative of a differential feed or removal of a differential signal.
  • the antenna according to the invention works with all known feeding methods of an antenna element. For example, radiation coupling, a feed via a microstrip line or a feeder pin may be mentioned here.
  • the two dipole halves may each comprise a plurality of planar antennas.
  • Fig. 2 shows a cross-sectional view of an antenna according to an embodiment of the present invention.
  • the antenna has a first planar antenna 202, a second planar antenna 204, and means for coupling the planar antenna 202,204 with a differential signal.
  • the first planar antenna 202 has a first planar radiation element 212 and the second planar antenna 204 has a second planar radiation element 214.
  • the antenna has a substrate stack consisting of a first substrate layer 216a, a second substrate layer 216b and a third substrate layer 216c.
  • an electrically conductive layer 218a is arranged in the form of a metallization. Between the second substrate layer 216b and the third substrate layer 216c, a second electrically conductive layer 218b is also arranged in the form of a metallization. On a second surface of the first substrate layer 216a, opposite the metallization 218a, the first planar radiation element 212 of the first planar antenna 202 is arranged.
  • the first planar antenna 202 is composed of the first planar radiating element 212, the first substrate layer 216a, and the metallization 218a.
  • the second planar radiation element 214 of the second planar antenna 204 is arranged on a surface of the second substrate layer 216b arranged opposite the second metallization 218b.
  • the second planar antenna 204 is composed of the second planar radiating element 214, the second substrate layer 216b, and the metallization 218b.
  • Substrate layers 216a, 216b, 216c are implemented as dielectrics.
  • a coupling in or out of the differential signal takes place via a radiation coupling.
  • the means 206 for coupling is shown schematically in Figure 2 and comprises a differential signal port 122, a first region 124 for providing the first component of the differential signal, and a second region 126 for providing a second component of the differential signal.
  • a first radiation coupling element 228a serves to connect the first radiation element 212 to the first region 124 for providing the first component of the differential signal.
  • a second radiation coupling element 228b is used to connect the second region 126 to provide the second component of the differential signal with the second radiation element 214.
  • the radiation coupling elements 228a, 228b are microstrip lines in this embodiment which are arranged in the first substrate layer 216a and the second substrate layer 216b, respectively, and project in an overlapping region of the radiation elements 212, 214 with the metallization layer 218a, 218b.
  • a coupling between the radiation elements 212, 214 and the radiation coupling elements 228a, 228b can take place, for example, via a capacitive or inductive coupling.
  • the radiation elements 212, 214 are arranged symmetrically on the substrate stack 216a, 216b, 216c.
  • the first planar antenna 202 is identical to the second planar antenna 204. In order to achieve special antenna characteristics, it is possible to deviate from this symmetrical arrangement.
  • Fig. 3 shows a three-dimensional representation of a further embodiment of an antenna according to the present invention.
  • a first planar antenna 302 and a second planar antenna 304 are implemented as a PIFA antenna, which are connected via a device 306 for coupling or coupling out a differential signal.
  • the antenna shown in Fig. 3 has a layer structure according to the embodiment shown in Fig. 2.
  • the first planar radiating element 212 of the first planar antenna 302 is arranged on a first surface of a first substrate layer 216a.
  • a second planar radiating element of the second planar antenna 304 is not visible in FIG. 3, since it is arranged on the underside of the second substrate layer 216b.
  • Disposed between the first substrate layer 216a and the second substrate layer 216b is a third substrate layer 216c which is connected from the first substrate layer 216a via the first metallization layer 218a and to the second substrate layer 216b via the second metallization layer 218b.
  • a differential signal terminal is arranged consisting of a first signal line 324 for guiding the first component of the differential signal and a second line 326 for guiding the second component of the differential signal.
  • the first line 324 is connected to the first radiating element 212 of the first planar antenna 302 via a first feed line 328a.
  • the second line 326 for routing the second component of the differential signal is connected to the second radiating element (not shown in FIG. 3) of the second planar antenna 304 via a second feed line 328b.
  • a conductive layer disposed laterally on the substrate stack constitutes a first shorting plate 332 of the first PIFA antenna 302, and a second electrically conductive layer disposed laterally on the substrate stack constitutes a second shorting plate 334 of the second PIFA antenna 304.
  • FIG. 4 shows a further side view of the embodiment of the antenna according to the invention shown in FIG. 3, based on two PIFA antennas.
  • the elements of the antenna shown in Fig. 4 are denoted by the same reference numerals as those already described with reference to FIG. 3. A repeated description of these elements is omitted here.
  • the planar antennas 302, 304 which correspond to the dipole arms of a dipole antenna, are PIFA antennas, each of the PIFA antennas 302, 304 being constructed on one side of the transmitter in order to produce the most isotropic radiation pattern possible.
  • the transmitter module be integrated in the third substrate layer 216c.
  • the measured adaptation of the antenna is not just the adaptation of the antenna, but that of both elements.
  • FIG. 5A and 5B A simulation of the antenna shown in Fig. 4 is shown in Figs. 5A and 5B.
  • FIG. 5A shows a characteristic of the reflection factor S11 of the antenna shown in FIG. 4. On the horizontal axis the frequency is plotted in Hz. In the vertical direction, the attenuation is plotted in dB. From the characteristic shown in Fig. 5A, it can be seen that the resonance frequency of the antenna is about 2.5 GHz. The maximum reflection loss is about -42 dB.
  • FIG. 5B shows a reflection factor diagram of the antenna shown in FIG. 4.
  • FIG. The locus of the reflection factor S11 can be seen from the reflection factor diagram.

Description

  • Die vorliegende Erfindung bezieht sich auf Antennen und insbesondere auf Antennen, die aus einer Mehrzahl von Planarantennen aufgebaut sind.
  • Antennen werden zur drahtlosen Anbindung von Datenübertragungsgeräten genutzt. Je nach Anwendungsgebiet werden Antennen mit speziellen Charakteristika ausgewählt. Dabei sind einige Kompromisse einzugehen, die speziell die Integrierbarkeit, den Gewinn, das Rauschen oder die Bandbreite berücksichtigen einer Antenne. Einer der entscheidenden Auswahlfaktoren ist die verwendete Speisungsmethode der Antenne. Dabei wird zwischen einer differenziellen oder einer einseitigen, auch single-ended genannten Speisung unterschieden.
  • Wenn aufgrund eines höheren Gewinns, eines niedrigeren Rauschens oder eines einfacheren Designs bei einem Antennen-Verstärker eine differenzielle Signalführung benutzt wird, sollte idealerweise eine differenziell gespeiste Antenne, beispielsweise eine Dipolantenne, ausgewählt werden. Statt dessen kann auch ein Symmetrieübertrager, auch Balun genannt, eingesetzt werden, der von einer differenziellen Signalführung nach einer Single-Ended-Signalführung transformiert. In der Praxis bestimmt die Entscheidung der Speisungsmethode die Art der verwendeten Antennen oder alternativ die Verwendung eines Symmetrieübertragers.
  • Die Dipolantenne oder ähnliche differenziell gespeiste Antennen haben den Nachteil, dass sie keine Massefläche oder Metallfläche neben sich haben dürfen und häufig nicht integrierbar sind. Die Verwendung einer Planarantenne, beispielsweise einer Patchantenne, erlaubt zwar eine bessere Integrierbarkeit, benötigt aber andererseits einen Symmetrieübertrager, der einen beträchtlichen Platz einnehmen kann.
  • Die EP 1 231 671 A2 beschreibt Antennen mit zwei, parallel zueinander, angeordneten leitfähigen Platten, die über Speisepunkte kontaktiert werden. Zwischen den leitfähigen Platten kann Luft oder Kunststoff angeordnet sein.
  • Die US 6,307,510 B1 beschreibt eine Antenne mit einem Substrat, das eine Massefläche und eine dielektrische Schicht aufweist. Auf dem Substrat ist ein diagonales Paar von Antennenelementen angeordnet, die einen Antennendipol bilden.
  • Die US 2004/0155831 A1 beschreibt eine Dipolantenne mit einem dreidimensionalen Emitterelement, das vor einem leitfähigen Reflektor positioniert ist.
  • Die JP 2001 189615 A1 zeigt zwei Antennen, die über eine Massefläche angeordnet sind.
  • Die US 5,955,995 zeigt eine Antenne mit zwei gegenüberliegend angeordneten leitfähigen Platten, die durch einen Luftspalt getrennt sind. Je größer der Spalt ist, desto breiter ist die Bandbreite der Antenne. Ein Vorteil der Anordnung ist es, dass keine Massefläche benötigt werde.
  • Die US 4,922,259 beschreibt eine Antenne mit zwei Mikrostreifenabstrahlern, die jeweils einen leitfähigen Patch aufweisen, der von einer Massefläche durch ein dielektrisches Abstandsmaterial getrennt ist. Zwischen den beiden Masseflächen der beiden Abstrahlern befindet sich ein internes Einspeisungsnetzwerk. Beide Abstrahlelemente werden jeweils von einem Paar von Einspeiseleitungen kontaktiert. Der Antenne wird ein nicht-differentielles "Inputsignal" zugeführt. Dieses Eingangssignal wird den beiden Strahlern über jeweils eine der beiden Anschlussleitungen zugeführt. Das Eingangssignal trifft also bei beiden Strahlern phasengleich ein. Über die anderen beiden Leitungen werden den beiden Strahlern jeweils um 90 Grad phasenverschobene Eingangssignale zugeführt. Zueinander sind die beiden um 90 Grad phasenverschobenen Eingangssignale wiederum phasengleich.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine integrierbare Antenne zu schaffen.
  • Diese Aufgabe wird durch eine Antenne gemäß Anspruch 1 gelöst.
  • Die vorliegende Erfindung schafft eine Antenne mit folgenden Merkmalen:
    • einer ersten Planarantenne;
    • einer zweiten Planarantenne; und
    • einer Einrichtung zum Koppeln der ersten Planarantenne mit einer ersten Komponente eines differenziellen Signals und zum Koppeln der zweiten Planarantenne mit einer zweiten Komponente des differenziellen Signals.
  • Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass differenziell gespeiste Planarantennen wie eine Dipolantenne funktionieren, deren Arme Planarantennen sind. Insbesondere können die Planarantennen zusammen mit einem differenziellen Speisungssystem ohne eine Single-Ended-zu-Differenziell-Transformation verwendet werden. Der erfindungsgemäße Ansatz, der eine differenziell gespeiste Dipolantenne, deren Arme Planarantennen sind betrifft, überwindet die Hindernisse, die beim Einsatz bekannter differenziell gespeister Antennen oder beim Einsatz bekannter Planarantennen auftreten und bietet weiterhin einige wesentliche Vorteile. Insbesondere ermöglicht der erfindungsgemäße Ansatz die Verwendung einer differenziellen Speisung zusammen mit Planarantennen ohne einen zusätzlichen Balun.
  • Bei der Antenne gemäß dem erfindungsgemäßen Ansatz werden im Gegensatz zu herkömmlichen Planarantennen zwei Planarantennen ohne einen zusätzlichen Balun differenziell gespeist. Daraus resultiert eine ganz auf Multilayersubstraten integrierbare Antenne, die alle Vorteile einer differenziellen Speisung und einer Planarantenne enthält.
  • Eine Antenne gemäß dem erfindungsgemäßen Ansatz kann sowohl in einem Sender als auch in einem Empfänger verwendet werden, in denen eine differenzielle Speisung und eine Vollintegrierbarkeit benötigt ist. Damit werden zwei entgegengesetzte Konzepte, nämlich der differenziellen Speisung und der Planarantennen, zusammen verwendet ohne dass ein zusätzliches Element, beispielsweise ein Balun erforderlich ist.
  • Die Verwendung einer differenziellen Speisung kann für bestimmte Entwürfe, beispielsweise in Bezug auf Rauschen oder Gewinn benötigt werden. Die Verwendung zweier Planarantennen gemäß dem erfindungsgemäßen Ansatz ermöglicht es ferner, dass die differentiell gespeiste Antenne leichter integrierbar ist.
  • Ein weiterer Vorteil liegt darin, dass sich das grundsätzliche Design der für den erfindungsgemäßen Ansatz verwendeten Planarantennen nicht vom Design einer single-endedgespeisten Planarantenne unterscheidet. Die Anpassung an eine gewünschte Frequenz und Strahlungscharakteristik wird jedoch für die vorgestellte spezielle Konfiguration entwickelt werden.
  • Sowohl die elektrischen Eigenschaften als auch die Strahlungscharakteristik sind bei der Verwendung einer Antenne gemäß dem erfindungsgemäßen Ansatz deutlich verbessert, was zu einer Leistungssteigerung führt. Insbesondere ermöglicht der erfindungsgemäße Ansatz einen Aufbau der Antenne auf beiden Seiten eines Elektronikmoduls, so dass eine Abstrahlung auf beiden Seiten erfolgt und somit die Rundstrahlcharakteristik der Antenne verbessert wird.
  • Der erfindungsgemäße Ansatz ist geeignet für Anwendungen in der drahtlosen Datenübertragung, für Audio- oder Videoübertragung, und insbesondere auch in der Lokalisierung, also überall dort, wo eine Abstrahlung in möglichst alle Richtungen erwünscht ist. Die erfindungsgemäßen Antennen sind in der vorgestellten Form planar integrierbar. Dies bietet sich aufgrund der geringen Baugröße vor allem bei Übertragungsfrequenzen im Zentimeter- und Millimeterwellenbereich an. Auf diese Weise lassen sich sehr kompakte Einheiten herstellen.
  • Die erfindungsgemäße Antenne wird wegen ihrer differenziellen Anschlüsse in Sendern und Empfängern Anwendung finden, die aufgrund einer höheren Leistung, eines niedrigeren Rauschens und eines einfacheren Designs differenzielle Speisung nutzen. Außerdem ist der erfindungsgemäße Ansatz ideal für Sender oder Empfänger, bei denen miniaturisierte Antennen integriert werden sollen, die bezogen auf ihre Größe relativ breitbandig sind.
  • Aufgrund der Aufbauflexibilität und der Integrierbarkeit auf planaren Schaltungen ist die vorgestellte Dipolantenne mit Planararmen gut geeignet, um ein gewünschtes Rundstrahlungsdiagramm zu erzeugen.
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer Antenne gemäß einem Beispiel;
    Fig. 2
    eine schematische Querschnittsdarstellung einer Antenne gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 3
    eine Seitenansicht einer Antenne gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 4
    eine weitere Seitenansicht der in Fig. 3 gezeigten Antenne;
    Fig. 5A
    eine Kennlinie des Reflexionsfaktors der in Fig. 4 gezeigten Antenne; und
    Fig. 5B
    ein Reflexionsfaktor-Diagramm der in Fig. 4 gezeigten Antenne.
  • In der nachfolgenden Beschreibung der bevorzugten Ausführungsbeispiele der vorliegenden Erfindung werden für die in den verschiedenen Zeichnungen dargestellten und ähnlich wirkenden Elemente gleiche oder ähnliche Bezugszeichen verwendet, wobei eine wiederholte Beschreibung dieser Elemente weggelassen wird.
  • Fig. 1 zeigt eine Antenne gemäß einem Beispiel. Die Antenne weist eine erste Planarantenne 102 und eine zweite Planarantenne 104 auf, die über eine Einrichtung 106 zum Einkoppeln oder Auskoppeln eines differenziellen Signals verbunden sind. Die erste Planarantenne 102 weist ein erstes planares Strahlungselement 112 auf. Die zweite Planarantenne 104 weist ein zweites planares Strahlungselement 114 auf. Die Strahlungselemente 112, 114 sind auf einer ersten Oberfläche eines Substrats 116 voneinander beabstandet angeordnet. Auf einer zweiten Oberfläche des Substrats 116 ist eine elektrisch leitfähige Schicht 118 angeordnet. Die zweite Oberfläche des Substrats 116 ist gegenüberliegend der ersten Oberfläche des Substrats 116 angeordnet.
  • In diesem Beispiel ist die leitfähige Schicht 118 eine Metallisierungsschicht, die eine Massefläche der Planarantennen 102, 104 bildet. Das Substrat 116, beispielsweise ein Keramiksubstrat ist als Dielektrikum ausgebildet. Die erste Planarantenne 102 besteht aus einem schichtförmigen Aufbau des ersten planaren Strahlungselementes 112, des Substrats 116 und der elektrisch leitfähigen Schicht 118. Entsprechend dazu besteht die zweite Planarantenne 104 aus dem zweiten planaren Strahlungselement 114, dem Substrat 116 und der elektrisch leitfähigen Schicht 118.
  • Die Einrichtung zum Koppeln 106 ist in Fig. 1 schematisch dargestellt. Gezeigt ist ein differenzieller Signalanschluss 122 bzw. ein Generator zum Bereitstellen eines differenziellen Signals, der über einen ersten Bereich 124 zum Bereitstellen einer ersten Komponente des differenziellen Signals mit der ersten Planarantenne 102 und über einen zweiten Bereich 126 zum Bereitstellen einer zweiten Komponente des differenziellen Signals mit der zweiten Planarantenne 104 verbunden ist. Die erste Komponente des differenziellen Signals ist ein zu der zweiten Komponente des differenziellen Signals invertiertes Signal.
  • Wird die in Fig. 1 gezeigte Antenne als eine Empfangsantenne genutzt, so ist der Signalanschluss 122 mit einer Auswerteeinrichtung (nicht gezeigt in den Figuren) zum Auswerten der empfangenen ersten Komponente und der empfangenen zweiten Komponente des differenziellen Signals verbunden.
  • Aus Fig. 1 ist ersichtlich, dass es sich bei der Antenne um eine differenziell gespeiste Planarantenne in Dipolkonfiguration ohne die Verwendung eines Baluns handelt. Die gezeigte Antenne besteht aus zwei Planarantennen 102, 104, die die Funktion der Dipolarme erfüllen, da jede Planarantenne 102, 104 von einer anderen Polarität (+/-) gespeist wird. Bezogen auf eine Dipolantenne stellt die erste Planarantenne 102 eine erste Dipolhälfte und die zweite Planarantenne 104 eine zweite Dipolhälfte dar.
  • Die schematische Darstellung der Einrichtung zum Koppeln 106 steht stellvertretend für eine differenzielle Einspeisung bzw. Abführung eines differenziellen Signals. Die erfindungsgemäße Antenne arbeitet mit allen bekannten Speisungsmethoden eines Antennenelements. Beispielsweise sei hier die Strahlungskopplung, eine Einspeisung über eine Mikrostreifenleitung oder einem Speisepin genannt.
  • In diesem Beispiel sind die planaren Strahlungselemente 112, 114 als planare, rechteckige Schichten gezeigt, die aus einem elektrisch leitfähigen Material aufgebaut sind. Abweichend von der gezeigten Geometrie können die planaren Strahlungselemente 112, 114 gemäß allen anderen bekannten Arten der Planarantennengeometrie aufgebaut sein. Als Beispiel sei hier eine viereckige, dreieckige oder ringförmige Ausformung genannt. Ferner können die Planarantennen als PIFA (PIFA = planar inverted F antenna) oder als gestapelte Antennen ausgeführt sein.
  • Gemäß einem weiteren Beispiel können die beiden Dipolhälften jeweils eine Mehrzahl von Planarantennen aufweisen.
  • Fig. 2 zeigt eine Querschnittsdarstellung einer Antenne gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Antenne weist eine erste Planarantenne 202, eine zweite Planarantenne 204 und eine Einrichtung zum Koppeln der Planarantenne 202, 204 mit einem differenziellen Signal auf. Die erste Planarantenne 202 weist ein erstes planares Strahlungselement 212 und die zweite Planarantenne 204 ein zweites planares Strahlungselement 214 auf. Die Antenne weist einen Substratstapel bestehend aus einer ersten Substratschicht 216a, einer zweiten Substratschicht 216b und einer dritten Substratschicht 216c auf.
  • Zwischen der ersten Substratschicht 216a und der dritten Substratschicht 216c ist eine elektrisch leitfähige Schicht 218a in Form einer Metallisierung angeordnet. Zwischen der zweiten Substratschicht 216b und der dritten Substratschicht 216c ist eine zweite elektrisch leitfähige Schicht 218b ebenfalls in Form einer Metallisierung angeordnet. Auf einer zweiten Oberfläche der ersten Substratschicht 216a, gegenüberliegend der Metallisierung 218a, ist das erste planare Strahlungselement 212 der ersten Planarantenne 202, angeordnet. Die erste Planarantenne 202 ist aus dem ersten planaren Strahlungselement 212, der ersten Substratschicht 216a und der Metallisierung 218a aufgebaut. Auf einer der zweiten Metallisierung 218b gegenüberliegend angeordneten Oberfläche der zweiten Substratschicht 216b ist das zweite planare Strahlungselement 214 der zweiten Planarantenne 204 angeordnet. Die zweite Planarantenne 204 ist aus dem zweiten planaren Strahlungselement 214, der zweiten Substratschicht 216b und der Metallisierung 218b aufgebaut. Die Substratschichten 216a, 216b, 216c sind als Dielektrikum ausgeführt.
  • Gemäß dem in Fig. 2 gezeigten Ausführungsbeispiel findet eine Ein- bzw. Auskopplung des differenziellen Signals über eine Strahlungskopplung statt. Die Einrichtung 206 zum Koppeln ist in Fig. 2 schematisch dargestellt und weist einen differenziellen Signalanschluss 122, einen ersten Bereich 124 zum Bereitstellen der ersten Komponente des differenziellen Signals und einen zweiten Bereich 126 zum Bereitstellen einer zweiten Komponente des differenziellen Signals auf. Ein erstes Strahlungskoppelelement 228a dient zur Verbindung des ersten Strahlungselements 212 mit dem ersten Bereich 124 zum Bereitstellen der ersten Komponente des differenziellen Signals. Entsprechend dazu dient ein zweites Strahlungskoppelelement 228b zur Verbindung des zweiten Bereichs 126 zum Bereitstellen der zweiten Komponente des differenziellen Signals mit dem zweiten Strahlungselement 214. Die Strahlungskoppelelemente 228a, 228b sind in diesem Ausführungsbeispiel als Mikrostreifenleitungen ausgeführt, die in der ersten Substratschicht 216a bzw. der zweiten Substratschicht 216b angeordnet sind, und in einem Überlappungsbereich der Strahlungselemente 212, 214 mit der Metallisierungsschicht 218a, 218b hineinragen. Eine Kopplung zwischen den Strahlungselementen 212, 214 und den Strahlungskoppelelementen 228a, 228b kann beispielsweise über eine kapazitive oder induktive Kopplung erfolgen.
  • Gemäß diesem Ausführungsbeispiel sind die Strahlungselemente 212, 214 symmetrisch auf dem Substratstapel 216a, 216b, 216c angeordnet. Bevorzugterweise ist die erste Planarantenne 202 identisch zu der zweiten Planarantenne 204 ausgeführt. Um spezielle Antennencharakteristika zu erreichen, kann von dieser symmetrischen Anordnung abgewichen werden.
  • Fig. 3 zeigt eine dreidimensionale Darstellung eines weiteren Ausführungsbeispiels einer Antenne gemäß der vorliegenden Erfindung. Gemäß diesem Ausführungsbeispiel ist eine erste Planarantenne 302 und eine zweite Planarantenne 304 als PIFA-Antenne ausgeführt, die über eine Einrichtung 306 zum Einkoppeln oder Auskoppeln eines differenziellen Signals verbunden sind.
  • Die in Fig. 3 gezeigte Antenne weist einen Schichtaufbau entsprechend dem in Fig. 2 gezeigten Ausführungsbeispiel auf. Das erste planare Strahlungselement 212 der ersten Planarantenne 302 ist auf einer ersten Oberfläche einer ersten Substratschicht 216a angeordnet. Ein zweites planares Strahlungselement der zweiten Planarantenne 304 ist in Fig. 3 nicht ersichtlich, da es auf der Unterseite der zweiten Substratschicht 216b angeordnet ist. Zwischen der ersten Substratschicht 216a und der zweiten Substratschicht 216b ist eine dritte Substratschicht 216c angeordnet, die von der ersten Substratschicht 216a über die erste Metallisierungsschicht 218a und mit der zweiten Substratschicht 216b über die zweite Metallisierungsschicht 218b verbunden ist.
  • In der dritten Substratschicht 216c ist ein differenzieller Signalanschluss bestehend aus einer ersten Signalleitung 324 zum Führen der ersten Komponente des differenziellen Signals und einer zweiten Leitung 326 zum Führen der zweiten Komponente des differenziellen Signals angeordnet. Die erste Leitung 324 ist über eine erste Speiseleitung 328a mit dem ersten Strahlungselement 212 der ersten Planarantenne 302 verbunden. Die zweite Leitung 326 zum Führen der zweiten Komponente des differenziellen Signals ist über eine zweite Speiseleitung 328b mit dem zweiten Strahlungselement (nicht gezeigt in Fig. 3) der zweiten Planarantenne 304 verbunden.
  • Eine seitlich an dem Substratstapel angeordnet leitfähige Schicht stellt eine erste Kurzschlussplatte 332 der ersten PIFA-Antenne 302 und eine zweite, seitlich an dem Substratstapel angeordnete elektrisch leitfähige Schicht stellt eine zweite Kurzschlussplatte 334 der zweiten PIFA-Antenne 304 dar.
  • Fig. 4 zeigt eine weitere seitliche Ansicht des in Fig. 3 gezeigten Ausführungsbeispiels der erfindungsgemäßen Antenne, basierend auf zwei PIFA-Antennen. Die in Fig. 4 gezeigten Elemente der Antenne sind mit den gleichen Bezugszeichen bezeichnet wie die bereits anhand von Fig. 3 beschriebenen. Auf eine wiederholte Beschreibung dieser Elemente wird hier verzichtet.
  • Erste Prototypen einer Antenne gemäß dem in Fig. 4 gezeigten Ausführungsbeispiel wurden mit einem FDTD- (FDTD = finite difference time domain) Simulator simuliert, um sie auf ein Sendermodul aufzubauen. Die Planarantennen 302, 304, die den Dipolarmen einer Dipolantenne entsprechen, sind dabei PIFA-Antennen, wobei jede der PIFA-Antennen 302, 304 auf einer Seite des Senders aufgebaut sind, um ein möglichst isotropes Strahlungsdiagramm zu erzeugen. Gemäß dem in Fig. 4 gezeigten Ausführungsbeispiel kann das Sendermodul in der dritten Substratschicht 216c integriert sein.
  • Für die Messung des in Fig. 4 gezeigten Prototyps der Antenne wurde ein Balun verwendet, da alle zur Verfügung stehenden Messgeräte mit Single-Ended-Leitungen arbeiten. Deshalb ist die gemessene Anpassung der Antenne nicht nur die Anpassung der Antenne, sondern die von beiden Elementen.
  • Eine Simulation der in Fig. 4 gezeigten Antenne ist in den Fig. 5A und 5B gezeigt.
  • Fig. 5A zeigt eine Kennlinie des Reflexionsfaktor S11 der in Fig. 4 gezeigten Antenne. Auf der horizontalen Achse ist die Frequenz in Hz aufgetragen. In vertikaler Richtung ist die Dämpfung in dB aufgetragen. Aus der in Fig. 5A gezeigten Kennlinie ist ersichtlich, dass die Resonanzfrequenz der Antenne bei ca. 2,5 GHz liegt. Die maximal Reflexionsdämpfung liegt bei ca. -42 dB.
  • Fig. 5B zeigt ein Reflexionsfaktordiagramm der in Fig. 4 gezeigten Antenne. Aus dem Reflexionsfaktordiagramm ist die Ortskurve des Reflexionsfaktors S11 ersichtlich.

Claims (9)

  1. Antenne mit folgenden Merkmalen:
    einem Substratstapel mit einer ersten Substratschicht (216a), einer zweiten Substratschicht (216b) und einer dritten Substratschicht (216c), die zwischen der ersten und zweiten Substratschicht angeordnet ist;
    einer ersten Planarantenne (202; 302), mit einer ersten elektrisch leitfähigen Schicht (218a), angeordnet zwischen der ersten Substratschicht und der dritten Substratschicht und einem ersten Strahlungselement (212) auf einer, der ersten elektrisch leitfähigen Schicht gegenüberliegenden Oberfläche der ersten Substratschicht;
    einer zweiten Planarantenne (204; 304), mit einer zweiten elektrisch leitfähigen Schicht (218b), angeordnet zwischen der zweiten Substratschicht und der dritten Substratschicht und einem zweiten Strahlungselement (214) auf einer, der zweiten elektrisch leitfähigen Schicht gegenüberliegenden Oberfläche der zweiten Substratschicht;
    gekennzeichnet durch,
    einen differenziellen Signalanschluss zum Bereitstellen eines differenziellen Signals; und
    eine Einrichtung zum Koppeln (206; 306) der ersten Planarantenne mit einer ersten Komponente des differenziellen Signals und zum Koppeln der zweiten Planarantenne mit einer zweiten Komponente des differenziellen Signals.
  2. Antenne gemäß Anspruch 1, wobei die erste Planarantenne (202; 302) und die zweite Planarantenne (204; 304) jeweils mindestens ein planares Strahlurigselement (212, 214) aufweisen.
  3. Antenne gemäß Anspruch 1, wobei die Antenne eine Dipolantenne und die erste Planarantenne (202; 302) eine erste Dipolhälfte und die zweite Planarantenne (204; 304) eine zweite Dipolhälfte der Dipolantenne ist.
  4. Antenne gemäß einem der Ansprüche 1 bis 3, wobei der differenzielle Signalanschluss einen ersten Bereich (224; 324) zum Bereitstellen der ersten Komponente des differenziellen Signals und einen zweiten Bereich (226; 326) zum Bereitstellen der zweiten Komponente des differenziellen Signals aufweist, wobei die Einrichtung zum Koppeln ausgebildet ist, um die erste Planarantenne (202; 302) mit dem ersten Bereich und die zweite Planarantenne (204; 304) mit dem zweiten Bereich zu koppeln.
  5. Antenne gemäß einem der Ansprüche 1 bis 4, wobei die Einrichtung (306) zum Koppeln eine erste elektrisch leitfähige Verbindung (328a) zum Verbinden des Strahlungselements (212) der ersten Planarantenne (202) mit dem ersten Bereich (324) des differenziellen Signalanschlusses und eine zweite elektrisch leitfähige Verbindung (328b) zum Verbinden des Strahlungselements (214) der zweiten Planarantenne (204) mit dem zweiten Bereich (326) des differenziellen Signalanschlusses aufweist.
  6. Antenne gemäß einem der Ansprüche 1 bis 4, wobei die Einrichtung (206) zum Koppeln eine von dem Strahlungselement (212) der ersten Planarantenne (204) elektrisch isoliertes erstes Strahlungskoppelelement (228a) zum Koppeln der ersten Planarantenne mit dem ersten Bereich des differenziellen Signalanschlusses und ein von dem Strahlungselement (214) der zweiten Planarantenne (206) elektrisch isoliertes zweites Strahlungskoppelelement (228b) zum Koppeln der zweiten Planarantenne mit dem zweiten Bereich des differenziellen Signalanschlusses aufweist.
  7. Antenne gemäß einem der Ansprüche 1 bis 6, ferner mit folgenden Merkmalen:
    einer ersten Leitung (324) zum Führen der ersten Komponente des differenziellen Signals und einer zweiten Leitung (326) zum Führen der zweiten Komponente des differenziellen Signals,
    wobei die erste Leitung und die zweite Leitung in der zweiten Substratschicht (216b) angeordnet ist;
    einer ersten Kurzschlussplatte (332), die mit dem ersten Strahlungselement (212) leitfähig verbunden ist;
    einer zweiten Kurzschlussplatte (334), die mit dem zweiten Strahlungselement (214) elektrisch leitfähig verbunden ist;
    einer ersten Speiseleitung (328a) zum elektrisch leitfähigen Verbinden des ersten Strahlungselements mit der ersten Leitung; und
    einer zweiten Speiseleitung (328b) zum elektrisch leitfähigen Verbinden des zweiten Strahlungselements mit der zweiten Leitung.
  8. Antenne gemäß einem der Ansprüche 1 bis 7, wobei die Antenne planar integrierbar ist.
  9. Antenne gemäß einem der Ansprüche 1 bis 8, wobei die Antenne eine Rundstrahlcharakteristik aufweist.
EP05782909A 2004-09-21 2005-09-07 Antenne Not-in-force EP1759438B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045707A DE102004045707A1 (de) 2004-09-21 2004-09-21 Antenne
PCT/EP2005/009617 WO2006032368A1 (de) 2004-09-21 2005-09-07 Antenne

Publications (2)

Publication Number Publication Date
EP1759438A1 EP1759438A1 (de) 2007-03-07
EP1759438B1 true EP1759438B1 (de) 2008-01-02

Family

ID=36011538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05782909A Not-in-force EP1759438B1 (de) 2004-09-21 2005-09-07 Antenne

Country Status (9)

Country Link
US (1) US7289065B2 (de)
EP (1) EP1759438B1 (de)
AT (1) ATE382965T1 (de)
AU (1) AU2005287663B2 (de)
BR (1) BRPI0515599A (de)
CA (1) CA2579113C (de)
DE (2) DE102004045707A1 (de)
PT (1) PT1759438E (de)
WO (1) WO2006032368A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868841B2 (en) * 2007-04-11 2011-01-11 Vubiq Incorporated Full-wave di-patch antenna
US7768457B2 (en) 2007-06-22 2010-08-03 Vubiq, Inc. Integrated antenna and chip package and method of manufacturing thereof
WO2009002464A2 (en) 2007-06-22 2008-12-31 Vubiq Incorporated System and method for wireless communication in a backplane fabric architecture
DE102007034977A1 (de) * 2007-07-26 2009-01-29 Lanxess Deutschland Gmbh Phthalatfreie Isocyanuratzubereitungen
JP5086004B2 (ja) * 2007-08-30 2012-11-28 富士通株式会社 タグアンテナ、およびタグ
US7733286B2 (en) * 2008-05-26 2010-06-08 Southern Taiwan University Wideband printed dipole antenna for wireless applications
KR20120078697A (ko) 2009-08-19 2012-07-10 부비큐, 인코포레이티드 정밀 도파관 인터페이스
US9893406B2 (en) 2009-08-19 2018-02-13 Vubiq Networks, Inc. Method of forming a waveguide interface by providing a mold to form a support block of the interface
CN203745630U (zh) * 2014-01-29 2014-07-30 西门子(深圳)磁共振有限公司 一种去耦装置、射频线圈和磁共振成像装置
JP6452477B2 (ja) * 2015-02-06 2019-01-16 学校法人金沢工業大学 アンテナ及びそれを用いた通信装置
CN207753167U (zh) * 2015-06-30 2018-08-21 株式会社村田制作所 耦合辅助器件以及rfid通信系统
GB201615108D0 (en) * 2016-09-06 2016-10-19 Antenova Ltd De-tuning resistant antenna device
KR102425821B1 (ko) * 2017-11-28 2022-07-27 삼성전자주식회사 커플링 급전을 이용한 이중 대역 안테나 및 그것을 포함하는 전자 장치
DE102017011225B4 (de) 2017-11-30 2021-10-28 Technische Universität Ilmenau Strahlungselement
US10818997B2 (en) 2017-12-29 2020-10-27 Vubiq Networks, Inc. Waveguide interface and printed circuit board launch transducer assembly and methods of use thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922259A (en) * 1988-02-04 1990-05-01 Mcdonnell Douglas Corporation Microstrip patch antenna with omni-directional radiation pattern
JP2000318634A (ja) 1993-03-17 2000-11-21 Denso Corp 車両制御装置
US5955995A (en) * 1997-01-21 1999-09-21 Texas Instruments Israel Ltd. Radio frequency antenna and method of manufacture thereof
US5926150A (en) * 1997-08-13 1999-07-20 Tactical Systems Research, Inc. Compact broadband antenna for field generation applications
JP2001189615A (ja) * 1999-10-18 2001-07-10 Matsushita Electric Ind Co Ltd 移動無線用アンテナおよび、それを用いた携帯型無線機
JP2001217607A (ja) * 2000-02-03 2001-08-10 Ngk Insulators Ltd アンテナ装置
US6307510B1 (en) * 2000-10-31 2001-10-23 Harris Corporation Patch dipole array antenna and associated methods
US6904296B2 (en) * 2001-02-09 2005-06-07 Nokia Mobile Phones Limited Internal antenna for mobile communications device
EP1231571A1 (de) 2001-02-12 2002-08-14 George Ho Parkeinrichtung für Fahrzeuge
WO2003050917A1 (en) * 2001-12-07 2003-06-19 Skycross, Inc. Multiple antenna diversity for wireless lan applications
JP4083462B2 (ja) * 2002-04-26 2008-04-30 原田工業株式会社 マルチバンドアンテナ装置
DE50307071D1 (de) * 2002-12-23 2007-05-31 Huber+Suhner Ag Breitband-Antenne mit einem 3-dimensionalen Gussteil
CN1898837A (zh) * 2003-11-21 2007-01-17 阿蒂密有限公司 超宽带天线

Also Published As

Publication number Publication date
CA2579113C (en) 2012-01-24
EP1759438A1 (de) 2007-03-07
US20060109177A1 (en) 2006-05-25
BRPI0515599A (pt) 2008-07-29
US7289065B2 (en) 2007-10-30
ATE382965T1 (de) 2008-01-15
WO2006032368A1 (de) 2006-03-30
AU2005287663A1 (en) 2006-03-30
CA2579113A1 (en) 2006-03-30
PT1759438E (pt) 2008-04-04
DE502005002426D1 (de) 2008-02-14
DE102004045707A1 (de) 2006-03-30
AU2005287663B2 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
EP1759438B1 (de) Antenne
DE102017103161B4 (de) Antennenvorrichtung und Antennenarray
DE60133344T2 (de) Kurzgeschlossene Streifenleiterantenne und Zweiband-Übertragungsanordnung damit
DE69821884T2 (de) Multifrequenzstreifenleitungsantenne und Gerät mit einer derartigen Antenne
DE60318106T2 (de) Phasengesteuerte Gruppenantenne für im Weltraum stationiertes Radar
DE10142384B4 (de) Mikrostripline-Antenne
DE60009874T2 (de) V-Schlitz-Antenne für zirkulare Polarisation
DE69826223T2 (de) In Mikrostreifenleitungstechnik ausgeführte Antenne und diese enthaltende Vorrichtung
DE60211069T2 (de) Dielektrische Resonatorantenne
DE69724469T2 (de) Schmalbandiger übergekoppelter richtkoppler in einer mehrschichtpackung
DE60208589T2 (de) Vivaldi-antenne
DE102006038528B3 (de) Abstimmbare Antenne planarer Bauart
DE60131193T2 (de) Kopplungseinrichtung mit innenkondensatoren in einem mehrschichtsubstrat
DE602005002330T2 (de) Logarithmisch periodische Mikrostreifengruppenantenne mit geerdetem halbkoplanaren Übergang von Wellenleiter auf Mikrostreifenleitung
DE69936903T2 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
DE102016207434B4 (de) Antennenvorrichtung
DE102008037836A1 (de) Antenne und dieselbe verwendendes Mobilfunkgerät
EP3244483B1 (de) Schirmgehäuse für hf-anwendungen
DE102014013926A1 (de) Mehrstruktur-Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich für Fahrzeuge
WO2013120994A1 (de) Leiterplattenanordnung zur speisung von antennen über ein dreileitersystem zur anregung unterschiedlicher polarisationen
EP2991159A1 (de) Speisenetzwerk für antennensysteme
DE602004007773T2 (de) Mikrowellenverbinder, antenne und herstellungsverfahren
DE102011004478B4 (de) Antenne vom Substrattyp
EP1370886B1 (de) Antenne mit koplanarem speisenetzwerk zum senden und/oder empfangen von radarstrahlen
DE202019101043U1 (de) Phasenschiebermodulanordnung zum Einsatz in einer Mobilfunkantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005002426

Country of ref document: DE

Date of ref document: 20080214

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080325

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

26N No opposition filed

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080907

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160926

Year of fee payment: 12

Ref country code: DE

Payment date: 20160922

Year of fee payment: 12

Ref country code: NL

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160921

Year of fee payment: 12

Ref country code: PT

Payment date: 20160829

Year of fee payment: 12

Ref country code: FR

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002426

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 382965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002