EP1759438B1 - Antenne - Google Patents

Antenne Download PDF

Info

Publication number
EP1759438B1
EP1759438B1 EP05782909A EP05782909A EP1759438B1 EP 1759438 B1 EP1759438 B1 EP 1759438B1 EP 05782909 A EP05782909 A EP 05782909A EP 05782909 A EP05782909 A EP 05782909A EP 1759438 B1 EP1759438 B1 EP 1759438B1
Authority
EP
European Patent Office
Prior art keywords
antenna
planar
differential signal
planar antenna
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05782909A
Other languages
German (de)
English (en)
Other versions
EP1759438A1 (fr
Inventor
Carlos Prieto-Burgos
Rainer Wansch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1759438A1 publication Critical patent/EP1759438A1/fr
Application granted granted Critical
Publication of EP1759438B1 publication Critical patent/EP1759438B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to antennas, and more particularly to antennas made up of a plurality of planar antennas.
  • Antennas are used for wireless connection of data transmission devices. Depending on the field of application, antennas with special characteristics are selected. There are some compromises to be made that specifically consider the integrability, gain, noise or bandwidth of an antenna.
  • One of the key selection factors is the antenna's feed method. Here, a distinction is made between a differential or a one-sided, also single-ended supply.
  • balun transformer also called balun, can be used, which transforms from a differential signal routing to a single-ended signal routing.
  • the decision of the feed method determines the type of antennas used or, alternatively, the use of a balun.
  • the dipole antenna or similar differentially fed antennas have the disadvantage that they must have no ground surface or metal surface next to them and are often not integrable.
  • the use of a planar antenna, such as a patch antenna although allows a better Integrity, but on the other hand requires a balancer, which can take a considerable amount of space.
  • the EP 1 231 671 A2 describes antennas with two, parallel to each other, arranged conductive plates which are contacted via feed points. Air or plastic may be disposed between the conductive plates.
  • the US Pat. No. 6,307,510 B1 describes an antenna with a substrate having a ground plane and a dielectric layer. On the substrate is disposed a diagonal pair of antenna elements forming an antenna dipole.
  • the US 2004/0155831 A1 describes a dipole antenna with a three-dimensional emitter element positioned in front of a conductive reflector.
  • the JP 2001 189615 A1 shows two antennas, which are arranged over a ground plane.
  • the US 5,955,995 shows an antenna with two oppositely disposed conductive plates separated by an air gap. The larger the gap, the wider the bandwidth of the antenna. An advantage of the arrangement is that no ground plane is needed.
  • the US 4,922,259 describes an antenna with two microstrip emitters each having a conductive patch separated from a ground plane by a dielectric spacer material. Between the two ground planes of the two radiators is an internal feed network. Both radiating elements are each contacted by a pair of feeders. The antenna is supplied with a non-differential "input signal". This input signal is supplied to the two radiators via one of the two connection lines. The input signal thus coincides with both emitters in phase.
  • the two radiators are each supplied with input signals that are phase-shifted by 90 degrees. For each other, the two input signals, which are phase-shifted by 90 degrees, are in phase again.
  • the present invention is based on the finding that differentially powered planar antennas function like a dipole antenna whose arms are planar antennas.
  • the planar antennas can be used with a differential feed system without a single-ended-to-differential transformation.
  • the approach according to the invention which is a differential fed dipole antenna,
  • the arms of which are planar antennas overcome the obstacles encountered when using known differentially fed antennas or when using known planar antennas, and still offers some significant advantages.
  • the inventive approach enables the use of a differential feed together with planar antennas without an additional balun.
  • An antenna according to the inventive approach can be used both in a transmitter and in a receiver in which a differential feed and a full integration capability is required.
  • two opposite concepts namely the differential feed and the planar antennas, are used together without the need for an additional element, such as a balun.
  • differential feed may be needed for certain designs, for example in terms of noise or gain.
  • the use of two planar antennas according to the inventive approach also makes it possible for the differentially fed antenna to be integrated more easily.
  • planar antennas used for the inventive approach does not differ from the design of a single-ended planar antenna.
  • adaptation to a desired frequency and radiation pattern will be developed for the particular configuration presented.
  • the inventive approach allows a structure of the antenna on both sides of an electronic module, so that a radiation takes place on both sides and thus the omnidirectional characteristic of the antenna is improved.
  • the approach according to the invention is suitable for applications in wireless data transmission, for audio or video transmission, and in particular also in the localization, ie wherever an emission in as many directions as possible is desired.
  • the antennas according to the invention can be planar integrated in the form presented. This offers itself due to the small size, especially at transmission frequencies in the centimeter and millimeter wave range. In this way, very compact units can be produced.
  • the antenna according to the invention will find application in transmitters and receivers because of their differential connections, which use differential feed because of higher power, lower noise, and simpler design.
  • the inventive approach is ideal for transmitters or receivers in which miniaturized antennas are to be integrated, which are relatively broadband in terms of their size.
  • the presented dipole antenna with planar arms is well suited to produce a desired omnidirectional radiation pattern.
  • Fig. 1 shows an antenna according to an example.
  • the antenna has a first planar antenna 102 and a second planar antenna 104, which are connected via means 106 for coupling or coupling out a differential signal.
  • the first planar antenna 102 has a first planar radiation element 112.
  • the second planar antenna 104 has a second planar radiation element 114.
  • the radiating elements 112, 114 are arranged on a first surface of a substrate 116 spaced from each other. On a second surface of the substrate 116, an electrically conductive layer 118 is disposed. The second surface of the substrate 116 is disposed opposite the first surface of the substrate 116.
  • the conductive layer 118 is a metallization layer that forms a ground plane of the planar antennas 102, 104.
  • the substrate 116 for example, a ceramic substrate is formed as a dielectric.
  • the first planar antenna 102 consists of a layered structure of the first planar radiating element 112, the substrate 116 and the electrically conductive layer 118.
  • the second planar antenna 104 consists of the second planar radiating element 114, the substrate 116 and the electrically conductive layer 118.
  • the means for coupling 106 is shown schematically in FIG. Shown is a differential signal port 122 or a generator for providing a differential signal, which has a first area 124 for providing a first component of the differential signal with the first planar antenna 102 and a second area 126 for providing a second component of the differential signal the second planar antenna 104 is connected.
  • the first component of the differential signal is a signal inverted to the second component of the differential signal.
  • the signal terminal 122 is connected to an evaluation device (not shown in the figures) for evaluating the received first component and the received second component of the differential signal.
  • the antenna is a differential fed planar antenna in a dipole configuration without the use of a balun.
  • the antenna shown consists of two planar antennas 102, 104, which fulfill the function of the dipole arms, since each planar antenna 102, 104 is fed by a different polarity (+/-).
  • the first planar antenna 102 represents a first dipole half and the second planar antenna 104 a second dipole half.
  • the schematic representation of the means for coupling 106 is representative of a differential feed or removal of a differential signal.
  • the antenna according to the invention works with all known feeding methods of an antenna element. For example, radiation coupling, a feed via a microstrip line or a feeder pin may be mentioned here.
  • the two dipole halves may each comprise a plurality of planar antennas.
  • Fig. 2 shows a cross-sectional view of an antenna according to an embodiment of the present invention.
  • the antenna has a first planar antenna 202, a second planar antenna 204, and means for coupling the planar antenna 202,204 with a differential signal.
  • the first planar antenna 202 has a first planar radiation element 212 and the second planar antenna 204 has a second planar radiation element 214.
  • the antenna has a substrate stack consisting of a first substrate layer 216a, a second substrate layer 216b and a third substrate layer 216c.
  • an electrically conductive layer 218a is arranged in the form of a metallization. Between the second substrate layer 216b and the third substrate layer 216c, a second electrically conductive layer 218b is also arranged in the form of a metallization. On a second surface of the first substrate layer 216a, opposite the metallization 218a, the first planar radiation element 212 of the first planar antenna 202 is arranged.
  • the first planar antenna 202 is composed of the first planar radiating element 212, the first substrate layer 216a, and the metallization 218a.
  • the second planar radiation element 214 of the second planar antenna 204 is arranged on a surface of the second substrate layer 216b arranged opposite the second metallization 218b.
  • the second planar antenna 204 is composed of the second planar radiating element 214, the second substrate layer 216b, and the metallization 218b.
  • Substrate layers 216a, 216b, 216c are implemented as dielectrics.
  • a coupling in or out of the differential signal takes place via a radiation coupling.
  • the means 206 for coupling is shown schematically in Figure 2 and comprises a differential signal port 122, a first region 124 for providing the first component of the differential signal, and a second region 126 for providing a second component of the differential signal.
  • a first radiation coupling element 228a serves to connect the first radiation element 212 to the first region 124 for providing the first component of the differential signal.
  • a second radiation coupling element 228b is used to connect the second region 126 to provide the second component of the differential signal with the second radiation element 214.
  • the radiation coupling elements 228a, 228b are microstrip lines in this embodiment which are arranged in the first substrate layer 216a and the second substrate layer 216b, respectively, and project in an overlapping region of the radiation elements 212, 214 with the metallization layer 218a, 218b.
  • a coupling between the radiation elements 212, 214 and the radiation coupling elements 228a, 228b can take place, for example, via a capacitive or inductive coupling.
  • the radiation elements 212, 214 are arranged symmetrically on the substrate stack 216a, 216b, 216c.
  • the first planar antenna 202 is identical to the second planar antenna 204. In order to achieve special antenna characteristics, it is possible to deviate from this symmetrical arrangement.
  • Fig. 3 shows a three-dimensional representation of a further embodiment of an antenna according to the present invention.
  • a first planar antenna 302 and a second planar antenna 304 are implemented as a PIFA antenna, which are connected via a device 306 for coupling or coupling out a differential signal.
  • the antenna shown in Fig. 3 has a layer structure according to the embodiment shown in Fig. 2.
  • the first planar radiating element 212 of the first planar antenna 302 is arranged on a first surface of a first substrate layer 216a.
  • a second planar radiating element of the second planar antenna 304 is not visible in FIG. 3, since it is arranged on the underside of the second substrate layer 216b.
  • Disposed between the first substrate layer 216a and the second substrate layer 216b is a third substrate layer 216c which is connected from the first substrate layer 216a via the first metallization layer 218a and to the second substrate layer 216b via the second metallization layer 218b.
  • a differential signal terminal is arranged consisting of a first signal line 324 for guiding the first component of the differential signal and a second line 326 for guiding the second component of the differential signal.
  • the first line 324 is connected to the first radiating element 212 of the first planar antenna 302 via a first feed line 328a.
  • the second line 326 for routing the second component of the differential signal is connected to the second radiating element (not shown in FIG. 3) of the second planar antenna 304 via a second feed line 328b.
  • a conductive layer disposed laterally on the substrate stack constitutes a first shorting plate 332 of the first PIFA antenna 302, and a second electrically conductive layer disposed laterally on the substrate stack constitutes a second shorting plate 334 of the second PIFA antenna 304.
  • FIG. 4 shows a further side view of the embodiment of the antenna according to the invention shown in FIG. 3, based on two PIFA antennas.
  • the elements of the antenna shown in Fig. 4 are denoted by the same reference numerals as those already described with reference to FIG. 3. A repeated description of these elements is omitted here.
  • the planar antennas 302, 304 which correspond to the dipole arms of a dipole antenna, are PIFA antennas, each of the PIFA antennas 302, 304 being constructed on one side of the transmitter in order to produce the most isotropic radiation pattern possible.
  • the transmitter module be integrated in the third substrate layer 216c.
  • the measured adaptation of the antenna is not just the adaptation of the antenna, but that of both elements.
  • FIG. 5A and 5B A simulation of the antenna shown in Fig. 4 is shown in Figs. 5A and 5B.
  • FIG. 5A shows a characteristic of the reflection factor S11 of the antenna shown in FIG. 4. On the horizontal axis the frequency is plotted in Hz. In the vertical direction, the attenuation is plotted in dB. From the characteristic shown in Fig. 5A, it can be seen that the resonance frequency of the antenna is about 2.5 GHz. The maximum reflection loss is about -42 dB.
  • FIG. 5B shows a reflection factor diagram of the antenna shown in FIG. 4.
  • FIG. The locus of the reflection factor S11 can be seen from the reflection factor diagram.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Claims (9)

  1. Antenne aux caractéristiques suivantes:
    une pile de substrats avec une première couche de substrat (216a), une deuxième couche de substrat (216b) et une troisième couche de substrat (216c) disposée entre la première et la deuxième couche de substrat;
    une première antenne plane (202; 302), avec une première couche électroconductrice (218a) disposée entre la première couche de substrat et la troisième couche de substrat et un premier élément de radiation (212) sur une surface de la première couche de substrat opposée à la première couche électroconductrice;
    une deuxième antenne plane (204; 304), avec une deuxième couche électroconductrice (218b) disposée entre la deuxième couche de substrat et la troisième couche de substrat et un deuxième élément de radiation (214) sur une surface de la deuxième couche de substrat opposée à la deuxième couche électroconductrice;
    caractérisée par
    une connexion de signal différentiel destinée à mettre à disposition un signal différentiel; et
    un moyen destiné à coupler (206; 306) la première antenne plane à une première composante du signal différentiel et à coupler la deuxième antenne plane à une deuxième composante du signal différentiel.
  2. Antenne selon la revendication 1, la première antenne plane (202; 302) et la deuxième antenne plane (204; 304) présentant, chacune, au moins un élément de radiation plan (212, 214).
  3. Antenne selon la revendication 1, l'antenne étant une antenne dipôle et la première antenne plane (202; 302) étant une première moitié de dipôle et la deuxième antenne plane (204; 304) une deuxième moitié de dipôle de l'antenne dipôle.
  4. Antenne selon l'une des revendications 1 à 3, la connexion de signal différentiel présentant une première zone (224; 324) pour la mise à disposition de la première composante du signal différentiel et une deuxième zone (226; 326) pour la mise à disposition de la deuxième composante du signal différentiel, le moyen destiné à coupler étant réalisé de manière à coupler la première antenne plane (202; 302) à la première zone et la deuxième antenne plane (204; 304) à la deuxième zone.
  5. Antenne selon l'une des revendications 1 à 4, le moyen (306) destiné à coupler présentant une première liaison électroconductrice (328a) destinée à relier l'élément de radiation (212) de la première antenne plane (202) à la première zone (324) de la connexion de signal différentiel et une deuxième liaison électroconductrice (328b) destinée à relier l'élément de radiation (214) de la deuxième antenne plane (204) à la deuxième zone (326) de la connexion de signal différentiel.
  6. Antenne selon l'une des revendications 1 à 4, le moyen (206) destiné à coupler présentant un premier élément de couplage de radiation (228a) électriquement isolé de l'élément de radiation (212) de la première antenne plane (204), pour coupler la première antenne plane à la première zone de la connexion de signal différentiel et un deuxième élément de couplage de radiation (228b) électriquement isolé de l'élément de radiation (214) de la deuxième antenne plane (206), pour coupler la deuxième antenne plane à la deuxième zone de la connexion de signal différentiel.
  7. Antenne selon l'une des revendications 1 à 6, avec par ailleurs les caractéristiques suivantes:
    une première ligne (324) destinée à guider la première composante du signal différentiel et une deuxième ligne (326) destinée à guider la deuxième composante du signal différentiel,
    la première ligne et la deuxième ligne étant disposées dans la deuxième couche de substrat (216b);
    une première plaque de court-circuit (332) qui est reliée de manière conductrice au premier élément de radiation (212);
    une deuxième plaque de court-circuit (334) qui est reliée de manière conductrice au deuxième élément de radiation (214);
    une première ligne d'alimentation (328a) destinée à relier de manière électroconductrice le premier élément de radiation à la première ligne; et
    une deuxième ligne d'alimentation (328b) destinée à relier de manière électroconductrice le deuxième élément de radiation à la deuxième ligne.
  8. Antenne selon l'une des revendications 1 à 7, l'antenne pouvant être intégrée de manière plane.
  9. Antenne selon l'une des revendications 1 à 8, l'antenne présentant une caractéristique de radiation omnidirectionnelle.
EP05782909A 2004-09-21 2005-09-07 Antenne Not-in-force EP1759438B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045707A DE102004045707A1 (de) 2004-09-21 2004-09-21 Antenne
PCT/EP2005/009617 WO2006032368A1 (fr) 2004-09-21 2005-09-07 Antenne

Publications (2)

Publication Number Publication Date
EP1759438A1 EP1759438A1 (fr) 2007-03-07
EP1759438B1 true EP1759438B1 (fr) 2008-01-02

Family

ID=36011538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05782909A Not-in-force EP1759438B1 (fr) 2004-09-21 2005-09-07 Antenne

Country Status (9)

Country Link
US (1) US7289065B2 (fr)
EP (1) EP1759438B1 (fr)
AT (1) ATE382965T1 (fr)
AU (1) AU2005287663B2 (fr)
BR (1) BRPI0515599A (fr)
CA (1) CA2579113C (fr)
DE (2) DE102004045707A1 (fr)
PT (1) PT1759438E (fr)
WO (1) WO2006032368A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868841B2 (en) * 2007-04-11 2011-01-11 Vubiq Incorporated Full-wave di-patch antenna
US7768457B2 (en) 2007-06-22 2010-08-03 Vubiq, Inc. Integrated antenna and chip package and method of manufacturing thereof
US7929474B2 (en) 2007-06-22 2011-04-19 Vubiq Incorporated System and method for wireless communication in a backplane fabric architecture
DE102007034977A1 (de) * 2007-07-26 2009-01-29 Lanxess Deutschland Gmbh Phthalatfreie Isocyanuratzubereitungen
JP5086004B2 (ja) * 2007-08-30 2012-11-28 富士通株式会社 タグアンテナ、およびタグ
US7733286B2 (en) * 2008-05-26 2010-06-08 Southern Taiwan University Wideband printed dipole antenna for wireless applications
EP2467897B1 (fr) 2009-08-19 2019-07-03 Vubiq, Incorporated Interface de guide d'onde de précision
US9893406B2 (en) 2009-08-19 2018-02-13 Vubiq Networks, Inc. Method of forming a waveguide interface by providing a mold to form a support block of the interface
CN203745630U (zh) * 2014-01-29 2014-07-30 西门子(深圳)磁共振有限公司 一种去耦装置、射频线圈和磁共振成像装置
JP6452477B2 (ja) * 2015-02-06 2019-01-16 学校法人金沢工業大学 アンテナ及びそれを用いた通信装置
JP6090548B1 (ja) * 2015-06-30 2017-03-08 株式会社村田製作所 結合補助デバイスおよびrfid通信システム
GB201615108D0 (en) * 2016-09-06 2016-10-19 Antenova Ltd De-tuning resistant antenna device
KR102425821B1 (ko) 2017-11-28 2022-07-27 삼성전자주식회사 커플링 급전을 이용한 이중 대역 안테나 및 그것을 포함하는 전자 장치
DE102017011225B4 (de) 2017-11-30 2021-10-28 Technische Universität Ilmenau Strahlungselement
US10818997B2 (en) 2017-12-29 2020-10-27 Vubiq Networks, Inc. Waveguide interface and printed circuit board launch transducer assembly and methods of use thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922259A (en) * 1988-02-04 1990-05-01 Mcdonnell Douglas Corporation Microstrip patch antenna with omni-directional radiation pattern
JP2000318634A (ja) 1993-03-17 2000-11-21 Denso Corp 車両制御装置
US5955995A (en) * 1997-01-21 1999-09-21 Texas Instruments Israel Ltd. Radio frequency antenna and method of manufacture thereof
US5926150A (en) * 1997-08-13 1999-07-20 Tactical Systems Research, Inc. Compact broadband antenna for field generation applications
JP2001189615A (ja) * 1999-10-18 2001-07-10 Matsushita Electric Ind Co Ltd 移動無線用アンテナおよび、それを用いた携帯型無線機
JP2001217607A (ja) * 2000-02-03 2001-08-10 Ngk Insulators Ltd アンテナ装置
US6307510B1 (en) * 2000-10-31 2001-10-23 Harris Corporation Patch dipole array antenna and associated methods
US6904296B2 (en) * 2001-02-09 2005-06-07 Nokia Mobile Phones Limited Internal antenna for mobile communications device
EP1231571A1 (fr) 2001-02-12 2002-08-14 George Ho Installation de stationnement pour véhicules
US7253779B2 (en) * 2001-12-07 2007-08-07 Skycross, Inc. Multiple antenna diversity for wireless LAN applications
JP4083462B2 (ja) * 2002-04-26 2008-04-30 原田工業株式会社 マルチバンドアンテナ装置
ATE360268T1 (de) * 2002-12-23 2007-05-15 Huber+Suhner Ag Breitband-antenne mit einem 3-dimensionalen gussteil
EP1568105A1 (fr) * 2003-11-21 2005-08-31 Artimi Ltd Antenne a bande ultralarge

Also Published As

Publication number Publication date
PT1759438E (pt) 2008-04-04
US20060109177A1 (en) 2006-05-25
DE102004045707A1 (de) 2006-03-30
DE502005002426D1 (de) 2008-02-14
EP1759438A1 (fr) 2007-03-07
CA2579113C (fr) 2012-01-24
BRPI0515599A (pt) 2008-07-29
US7289065B2 (en) 2007-10-30
WO2006032368A1 (fr) 2006-03-30
AU2005287663B2 (en) 2009-03-05
AU2005287663A1 (en) 2006-03-30
CA2579113A1 (fr) 2006-03-30
ATE382965T1 (de) 2008-01-15

Similar Documents

Publication Publication Date Title
EP1759438B1 (fr) Antenne
DE69222464T2 (de) Mikrostreifenantenne
DE102017103161B4 (de) Antennenvorrichtung und Antennenarray
DE60133344T2 (de) Kurzgeschlossene Streifenleiterantenne und Zweiband-Übertragungsanordnung damit
DE69821884T2 (de) Multifrequenzstreifenleitungsantenne und Gerät mit einer derartigen Antenne
DE60318106T2 (de) Phasengesteuerte Gruppenantenne für im Weltraum stationiertes Radar
DE10142384B4 (de) Mikrostripline-Antenne
DE60009874T2 (de) V-Schlitz-Antenne für zirkulare Polarisation
DE69826223T2 (de) In Mikrostreifenleitungstechnik ausgeführte Antenne und diese enthaltende Vorrichtung
DE69724469T2 (de) Schmalbandiger übergekoppelter richtkoppler in einer mehrschichtpackung
DE102006038528B3 (de) Abstimmbare Antenne planarer Bauart
DE60131193T2 (de) Kopplungseinrichtung mit innenkondensatoren in einem mehrschichtsubstrat
DE602005002330T2 (de) Logarithmisch periodische Mikrostreifengruppenantenne mit geerdetem halbkoplanaren Übergang von Wellenleiter auf Mikrostreifenleitung
DE69936903T2 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
DE102016207434B4 (de) Antennenvorrichtung
DE69811266T2 (de) Speiseschaltung für kompakte antenne
EP3244483B1 (fr) Boîtier blindé pour applications hf
EP2991159A1 (fr) Réseau d'alimentation pour systèmes d'antennes
DE102014013926A1 (de) Mehrstruktur-Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich für Fahrzeuge
WO2013120994A1 (fr) Agencement de circuit imprimé pour alimenter des antennes par un système à trois fils afin d'exciter des polarisations différentes
DE602004007773T2 (de) Mikrowellenverbinder, antenne und herstellungsverfahren
DE102011004478B4 (de) Antenne vom Substrattyp
EP1370886B1 (fr) Antenne avec de reseau d'alimentation du type coplanaire pour recevoir et/ou emettre des faisceaux radar
DE202019101043U1 (de) Phasenschiebermodulanordnung zum Einsatz in einer Mobilfunkantenne
DE102013222139A1 (de) Planare Mehrfrequenzantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005002426

Country of ref document: DE

Date of ref document: 20080214

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080325

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

26N No opposition filed

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080907

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160926

Year of fee payment: 12

Ref country code: DE

Payment date: 20160922

Year of fee payment: 12

Ref country code: NL

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160921

Year of fee payment: 12

Ref country code: PT

Payment date: 20160829

Year of fee payment: 12

Ref country code: FR

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002426

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 382965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002