EP0795926A2 - Flache dreidimensionale Antenne - Google Patents

Flache dreidimensionale Antenne Download PDF

Info

Publication number
EP0795926A2
EP0795926A2 EP97102472A EP97102472A EP0795926A2 EP 0795926 A2 EP0795926 A2 EP 0795926A2 EP 97102472 A EP97102472 A EP 97102472A EP 97102472 A EP97102472 A EP 97102472A EP 0795926 A2 EP0795926 A2 EP 0795926A2
Authority
EP
European Patent Office
Prior art keywords
antenna
slot
antenna according
divider
resonance structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97102472A
Other languages
English (en)
French (fr)
Other versions
EP0795926B1 (de
EP0795926A3 (de
Inventor
Matthias Liebendörfer
Ulrich Dr. Dersch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ascom Systec AG
Original Assignee
Ascom Tech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascom Tech AG filed Critical Ascom Tech AG
Publication of EP0795926A2 publication Critical patent/EP0795926A2/de
Publication of EP0795926A3 publication Critical patent/EP0795926A3/de
Application granted granted Critical
Publication of EP0795926B1 publication Critical patent/EP0795926B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the object of the invention is to provide a flat, compact three-dimensional antenna which is suitable for the wireless transmission of digital data in local networks.
  • the antenna should have as omnidirectional radiation characteristics as possible and little dependence of the adaptation on neighboring external objects.
  • the antenna is constructed in three levels.
  • a base plate is located in a first level, a U-shaped slot divider is arranged in a second, and a resonance structure is arranged in a third.
  • the slot divider is angled in a U-shape in the second plane, so that a central part and two lateral legs are formed.
  • This antenna is extremely compact and radiates primarily in the spatial directions defined by the base plate (ie horizontal ").
  • the resonance structure gives the antenna an extremely wide bandwidth (eg 20% to 30%). This allows the influence of neighboring objects to be kept small.
  • the existence of a conductive base plate additionally supports this advantage.
  • the antenna is preferably fed by a strip conductor which is guided in the second plane between the two legs and contacts the slot divider on the middle part.
  • the antenna's input impedance can be adjusted by varying the width and length of the stripline.
  • the stripline can e.g. B. completely fill the area between the legs.
  • the length of the stripline is preferably less than the length of the leg, so that the feed does not take up more space than is already used by the antenna. However, it is also possible to make the stripline longer (that is to say to lead it out of the antenna on the second level and to reduce the width, for example).
  • the antenna can be fed via a microstrip line or a coaxial line (led through the base plate).
  • the slot divider is connected to the base plate at the ends of the legs.
  • the length of the middle part can also be a little longer or shorter. Accordingly, the antenna becomes more or less elongated.
  • the resonance structure is supported by (electrically conductive) flank elements on the legs of the slot divider. If the antenna is embedded in a dielectric medium, the mechanical support function is in principle performed by the dielectric medium.
  • the flank elements can then be suitably attached metallizations for connecting the resonance structure to the slot divider.
  • the entire antenna can in principle be made by bending a plate with a suitable cutting pattern.
  • the resonance structure can e.g. B. have a gap in the middle so that it is formed by two plate-shaped mirror-symmetrical elements. From an electrical point of view, the gap is of no importance, since there is a current node in the middle of the resonance structure anyway.
  • a first antenna slot formed between the base plate and slot divider is preferably larger than a second antenna slot formed between the slot divider and the resonance element.
  • the length of the second antenna slot can be varied, the bandwidth of the antenna changing accordingly. In extreme cases, it is possible to construct an antenna with two separate resonances (dual frequency mode). Conversely, the resonances can also be brought very close to one another, which leads to a narrow bandwidth.
  • the antenna according to the invention can be constructed in different ways. It is conceivable, for. B. that the antenna is formed from a stamped or etched sheet and soldered onto a base plate (z. B. a metallized circuit board). A dielectric can be present between the first and second levels of the antenna. So z. B. the slot divider as a printed circuit structure on the upper side of a suitably thick printed circuit board, the base plate by a Metallization is formed on the back of the substrate.
  • the resonance structure in the third level can then e.g. B. like a flat inverted U-profile (plate with two opposite flanks) (the flanks are soldered to the conductor structures).
  • the antenna is formed on a ceramic block.
  • the resonance structure is then a metallization on a first (upper) main surface of the ceramic block.
  • the slot divider in the second level is e.g. B. represented by a metallization on the narrow side surfaces of the ceramic block.
  • the base plate can be formed by a metallization on the second (lower) main surface of the ceramic block or by a metal surface to which the ceramic block is soldered.
  • a metallized slot in the ceramic block can be provided between the two main surfaces, in which the strip conductor for feeding the antenna is arranged.
  • U. provide an inductance. This is preferably integrated in or in front of the stripline.
  • the antenna according to the invention is also well suited for diversity reception. This applies to both spatial and angular diversity, sometimes called pattern diversity.
  • each of the two antennas is particularly sensitive in one direction in which the other has only an extremely low sensitivity.
  • Switching or combining the two antenna feeds can increase the performance of a receiver (diversity gain). It will e.g. B. switched from one antenna to the other when the signal of the former becomes too weak. If the antenna signals are additionally phase-shifted from each other, the sensitivity pattern can be rotated in space.
  • ⁇ / 3 can be placed next to each other at a certain distance (e.g. ⁇ / 3 to ⁇ / 2).
  • a 3-way spatial diversity antenna system can be set up, which is packed in a volume of 54x28x5.2 mm3 (which corresponds to an extension of a PCMCIA card).
  • the antenna according to the invention is particularly suitable for HIPERLAN applications and handheld radio telephones (including cordless telephones).
  • the frequency ranges provided for such applications are typically over 1 GHz (e.g. at 5.2 GHz in the European Telecommunication Standard-HIPERLAN).
  • the antenna is also suitable for use in an antenna array, since the large bandwidth also allows adaptation in the vicinity of the neighboring antennas.
  • the first level is defined by a base plate 1. It can be a wall of a metal box or a metallization on a printed circuit board.
  • the slot divider is on the second level. In principle, it is a U-shaped metal strip with a middle part 2 and two legs 3, 4.
  • the length of the middle part 2 is preferably ⁇ / 4, that of the legs 3, 4 is ⁇ / 8.
  • the slot divider is short-circuited to the base plate 1 at both ends of the legs 3, 4 via two legs 5, 6.
  • a resonance structure on a third level there is a resonance structure on a third level.
  • this is formed by two symmetrical plates 9, 10. These are supported by vertical side surfaces 12, 13 on the outer sides of the angled legs 3, 4 of the slot divider.
  • the two plates 9, 10 are separated by a gap 11. From an electrical point of view, this is of no importance since it is located in a power node. 1, on the other hand, it enables the antenna to be formed from a flat, suitably cut sheet metal shape.
  • a strip conductor 7 is provided, which is connected via a leg 8 to a coaxial connection below the base plate 1. If the base plate is designed as a printed circuit board, a further microstrip line can also take the place of the coaxial connection.
  • the strip conductor completely fills the area formed between the two legs 3, 4 in accordance with the required impedance matching (wherein it is separated from the legs 3, 4 only by two gaps 14, 15).
  • the two plates 9, 10 essentially cover the area spanned by the U-shaped slot divider.
  • the distance between the resonance structure and the slot divider is preferably smaller than the distance between the slot divider and the base plate 1.
  • B. the second level at a height of 2.6 mm ( ⁇ / 8) and the third level at a height of 4.2 mm ( ⁇ / 20) above the base plate (center frequency f 0 6.4 GHz, ⁇ ⁇ 4.7 cm).
  • the antenna slot is between the resonance structure and the slot divider there is an antenna slot, which is limited in length by the side surfaces 12, 13.
  • the length of this slot can be varied to determine the bandwidth.
  • the antenna slot is the same length as the middle part 2.
  • the vertical side surfaces 12, 13 can even be around the corner on the middle part 2.
  • they can also only claim a small part of the legs 3, 4 and be placed close to the ends or legs 5, 6. Accordingly, the upper antenna slot would then be approximately the same size as the lower antenna slot between the slot divider and the base plate 1.
  • the antenna according to the invention is two stacked and angled ⁇ / 2 slots with different slot lengths.
  • the impedance is adjusted via the dimensioning of the strip conductor 7.
  • it has a width of z. B. 11 mm (0.24 ⁇ ) and a depth of z. B. 5.5 mm (0.12 ⁇ ).
  • the two legs 3, 4 each a width of e.g. B. 0.75 mm (0.015 ⁇ ).
  • the gap 11 is z. B. 1 mm ( ⁇ / 50) wide.
  • the entire antenna has a width of z. B. 0.28 ⁇ and a depth of z. B. 0.14 ⁇ .
  • the stripline 7 can u. U. may also be less wide and / or run out of the area spanned by the two legs 3, 4. It is particularly suitable for feeding via microstrip lines.
  • the antenna structure shown in FIG. 1 can be partially or completely embedded in a dielectric medium (of course, by adapting the dimensions due to the higher relative dielectric constant ⁇ r > 1).
  • So z. B. the slot divider (legs 3, 4, middle part 2) and the strip conductor 7 are applied as a conductor track structure on a dielectric substrate (printed circuit board).
  • the base plate 1 can be provided as a metallization on the back of the substrate, the legs 5, 6, 8 (in the form of pins) being passed through the substrate.
  • the resonance structure can be a continuous rectangular plate, which in turn is electrically connected to the legs 3, 4 via side surfaces 12, 13 and at the same time is supported on the substrate.
  • the simplest way is to cut a piece of sheet metal which is able to cover a surface spanned by the legs 3, 4 and is equipped with lateral tabs for forming the side surfaces 12, 13 (by right-angled bending).
  • the gap 11 is neither necessary nor desirable in this embodiment (mechanical stability).
  • a dielectric can also be provided between the second and the third level. This can e.g. B. can be achieved by selective lamination of a dielectric material in the desired layer thickness.
  • the side surfaces 12, 13 can be applied to corresponding boundary surfaces of the laminated layer.
  • the plate-shaped resonance structure can be printed on the surface of the laminated layer.
  • a ceramic block 16 is shown schematically in FIG. He has an upper one and a lower major surface 17 and 18 respectively.
  • a metallization is provided as a resonance structure over the entire main upper surface 17.
  • the lower main surface 18 can also be metallized (in order to form the base plate 1 or to be able to simply solder the ceramic block onto a base plate or a metal box).
  • the ceramic block 16 has two short and two long side surfaces 19, 20 and 21, 22.
  • the slot divider is formed in that a continuous strip-like metallization is provided on the side surfaces 19, 21, 20 to form a U-shaped circumferential conductor track. Said conductor track is formed by a strip-shaped region 25, 26 approximately in the middle between the two main surfaces 17, 18.
  • a metallization 24 is led down to the main surface 18.
  • the electrical connection between the resonance structure and the slot divider is also established by a metallization 27 attached to the side surface 19.
  • the side surface 20 is selectively metallized in mirror symmetry to the side surface 19. It is obvious that the metallization 24 corresponds to the leg 6, the metallization 25 to the leg 4, the metallization 26 to the middle part 2 and the full-area metallization of the main surface 17 to the two plates 9, 10 in FIG. 1.
  • a flat, continuous slot 23 is provided. This extends from the side surface 21 to the side surface 22 and is, for. B. fully metallized. Then only one metallization 32 (see FIG. 3) led from the slot 23 on the side surface 22 is to be provided for the supply.
  • the slot mentioned can be made in the mold before hardening or can be produced by drilling. However, it is also conceivable for two thin ceramic blocks to be joined to form a thick one, the strip conductor and possibly also the slot divider being formed between them in a flat design.
  • FIG. 3 shows in exaggerated perspective view of the ceramic block 16 from behind.
  • the slot 23 has a rectangular cross section and thus four inner surfaces 28, 29, 30, 31, which are all metallized.
  • the (already mentioned) selective metallization 32 is now provided for the supply on the side surface 22. It contacts the inner region of the slot 23.
  • the inductance is now generated in that the current is first passed in a loop along the slot edge 34, 35, 36 before it can flow in the passage direction of the slot 23.
  • a non-conductive line-shaped area 33 which separates the rear end of the slot metallization.
  • a variant is shown in FIG. 3, in which the non-conductive region 33 separates approximately half the width of the inner surface 28, the entire width of the inner surface 29 and approximately half the width of the inner surface 30 from the metallization in the slot. The current must therefore flow around half the circumference of the slot, which creates a corresponding inductance.
  • the size of the inductance can be varied simply by suitably choosing the length of the non-conductive region 33.
  • the inductance can also be forced by a corresponding loop of the current on the side surface 22. This means that the current must first flow a certain amount around the slot before it is fed into it.
  • the antenna becomes smaller at the same frequency.
  • z. B. to increase the length of the upper slot (between the second and third levels).
  • the losses caused by the dielectric should not be too great.
  • the antenna according to the invention has a very high efficiency of over 90% in air.
  • the antenna is characterized by a large bandwidth (in air, for example, 20% to 30%) and by a radiation with less or negligibly smaller Power perpendicular to base plate 1.
  • a good omnidirectional characteristic is given in the direction of the base plate.
  • the antenna according to the invention is in the area of wireless LANs (e.g. HIPERLAN).
  • the antenna can be mounted on a PCMCIA card. It is particularly advantageous to position two or more antennas of the type described. In this way, diversity reception can be realized.
  • antenna system could be packed in a volume of 54x28x5.2 mm3 (which corresponds to an extension of a PCMCIA card).
  • FIG. 4 shows an example of a U-shaped arrangement of three antenna elements 37, 38, 39 on an extension of a PCMCIA card 40.
  • the adjacent antenna elements 37 and 38 or 38 and 39 are each placed at right angles to one another.
  • the antenna elements 37, 38, 39 (which are each designed, for example, as shown in FIG. 1) are arranged as close as possible to the corresponding edge of the PCMCIA card 40.
  • two antennas with the narrow sides i.e. the angled legs
  • two antennas with the narrow sides can be set up directly next to one another.
  • the two antennas have an angular selectivity that they do not have (or not in a pronounced form) as a single antenna.
  • the receiver can select the appropriate one Antenna can be switched.
  • the antenna signals can also be advantageously combined. By changing the phase of the signal from one antenna to that of the other antenna, the angle selectivity can also be rotated as required.
  • the antenna is also suitable as an element for so-called antenna arrays.
  • several individual antennas are isolated or expediently arranged in the network in order to achieve a desired radiation / reception characteristic by combining their signals.
  • the invention is also suitable for hand-held radio telephones (cordless telephones, GSM cell phones, etc.).
  • the antenna can be placed on top of the cell phone as a compact component in order to show the desired radiation characteristics. It is even conceivable that the antenna according to the invention can be designed for the reception of two adjacent frequencies (dual frequency mode).
  • the antenna described has a large number of advantages.
  • Large bandwidth variability of the bandwidth, good options for impedance-based adaptation, small space requirements, omnidirectional radiation pattern in one plane and no radiation perpendicular to the plane, compatibility with a PCMCIA card (especially as a system consisting of several antenna elements) and Suitability for diversity reception.
  • Reference list 1 Base plate 2nd Middle section 3, 4 leg 5, 6 leg 7 Stripline 8th leg 9, 10 plate 11 gap 12, 13 Side surface 14, 15 gap 16 Ceramic block 17, 18 Main area 19, 20, 21, 22 Side surface 23 slot 24, 25, 26, 27 Metallization 28, 29, 30, 31 Inner surface 32 Metallization 33 non-conductive area 34, 35, 36 Slot edge 37, 38, 39 Antenna element 40 PCMCIA card

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

Eine flache dreidimensionale Antenne ist in drei Ebenen aufgebaut. In einer ersten Ebene befindet sich eine Grundplatte (1), in einer zweiten Ebene ein U-förmig gebogener Schlitzteiler und in einer dritten Ebene über dem Schlitzteiler eine Resonanzstruktur (9, 10). Der Schlitzteiler verfügt über einen Mittelteil mit einer Länge von vorzugsweise λ/4 und über zwei gleich lange Schenkel von λ/8. Der Schlitzteiler bildet mit der Grundplatte (1) einen λ/2-Antennenschlitz, während die Resonanzstruktur (9, 10) mit dem Schlitzteiler einen kürzeren zweiten Antennenschlitz definiert. Die Antenne zeichnet sich durch eine grosse Bandbreite und eine omnidirektionale Abstrahlungscharakteristik aus. Senkrecht zur Grundplatte (1) ist im wesentlichen keine Abstrahlung vorhanden. Die Speisung erfolgt vorzugsweise über einen Streifenleiter (7), welcher zwischen die beiden Schenkel (3, 4) an den Mittelteil (2) geführt ist. Die impedanzmässige Anpassung der Antenne wird durch eine geeignete Dimensionierung des genannten Streifenleiters erreicht. Die Antenne lässt sich sowohl gut in Luft als auch in einem Dielektrikum (z. B. einem Keramikblock) aufbauen. Mehrere dieser Antennen können zu einem ultrakompakten Diversity-Antennensystem zusammengesetzt werden. <IMAGE>

Description

    Stand der Technik
  • Bei der drahtlosen Kommunikation in lokalen Netzwerken (LAN) treten zu den üblichen Erfordernissen (wie angepasste Eingangsimpedanz, gute Abstrahlcharakteristik, Effizienz) neue Vorgaben hinzu. So ist es z. B. erwünscht, dass die Antenne bzw. ein Diversity-Antennensystem auf einer PCMCIA-Karte Platz hat. Bei kommunikationsfähigen Laptop-Computern sind nämlich horizontale Einsteckschlitze für solche Karten vorgesehen. Ein auf einer PCMCIA-Karte integriertes Antennensystem sollte deshalb in der horizontalen Ebene in alle Richtungen etwa gleich gut abstrahlen. Damit eine Antenne auf einer Karte dieser Art integriert werden kann, darf sie die standardmässig zugelassene Höhe nicht überschreiten. Es ist deshalb in vielen Frequenzbereichen nicht möglich, eine einfache Monopol-Antenne für die geschilderte Kommunikation einzusetzen.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, eine flache, kompakte dreidimensionale Antenne anzugeben, welche sich für die drahtlose Übertragung von digitalen Daten in lokalen Netzwerken eignet. Die Antenne soll eine möglichst omnidirektionale Abstrahlcharakteristik und eine geringe Abhängigkeit der Anpassung von benachbarten externen Gegenständen haben.
  • Die erfindungsgemässe Lösung ist durch die Merkmale des Anspruchs 1 definiert. Demzufolge ist die Antenne in drei Ebenen aufgebaut. In einer ersten Ebene befindet sich eine Grundplatte, in einer zweiten ist ein U-förmig gebogener Schlitzteiler und in einer dritten eine Resonanzstruktur angeordnet. Der Schlitzteiler ist in der zweiten Ebene U-förmig abgewinkelt, so dass ein Mittelteil und zwei seitliche Schenkel gebildet werden.
  • Diese Antenne ist äusserst kompakt und strahlt vorwiegend in die durch die Grundplatte definierten Raumrichtungen (d. h.
    Figure imgb0001
    horizontal"). Durch die Resonanzstruktur erhält die Antenne eine äusserst grosse Bandbreite (z.B. 20% bis 30%). Dadurch kann der Einfluss von benachbarten Umgebungsgegenständen klein gehalten werden. Die Existenz einer leitenden Grundplatte unterstützt diesen Vorteil zusätzlich.
  • Vorzugsweise ist die Antenne durch einen Streifenleiter gespeist, welcher in der zweiten Ebene zwischen die beiden Schenkel geführt ist und den Schlitzteiler am Mittelteil kontaktiert. Die Anpassung der Eingangsimpedanz der Antenne kann durch Variieren der Breite und der Länge des Streifenleiters erfolgen. Der Streifenleiter kann z. B. den Bereich zwischen den Schenkeln vollständig ausfüllen. Die Länge des Streifenleiters ist vorzugsweise kleiner als die Länge der Schenke, so dass durch die Speisung nicht mehr Platz beansprucht wird, als von der Antenne ohnehin gebraucht wird. Es ist aber auch möglich, den Streifenleiter länger zu machen (d. h. quasi in der zweiten Ebene aus der Antenne herauszuführen und z. B. die Breite zu reduzieren). Die Speisung der Antenne kann je nach Ausführungsform über einen Mikrostreifenleiter oder eine (durch die Grundplatte hindurchgeführte) Koaxialleitung vorgenommen werden.
  • Der Mittelteil des Schlitzteilers hat z. B. die Länge λ/4 (λ = Wellenlänge bei der Resonanzfrequenz). Die beiden Schenke sind dann je λ/8 lang. An den Enden der Schenkel ist der Schlitzteiler mit der Grundplatte verbunden. Die Länge des Mittelteils kann auch etwas länger oder kürzer sein. Entsprechend wird die Antenne mehr oder weniger länglich.
  • Die Resonanzstruktur ist durch (elektrisch leitende) Flankenelemente auf den Schenkeln des Schlitzteilers abgestützt. Wenn die Antenne in einem dielektrischen Medium eingebettet ist, dann wird die mechanische Abstützfunktion im Prinzip durch das dielektrische Medium wahrgenommen. Die Flankenelemente können dann geeignet angebrachte Metallisierungen sein zum Verbinden der Resonanzstruktur mit dem Schlitzteiler. Für den Fall, dass die Antenne oder zumindest die Resonanzstruktur in Luft sein soll, kann die ganze Antenne im Prinzip durch Biegen einer Platte mit geeignetem Schnittmuster erfolgen. Die Resonanzstruktur kann z. B. in der Mitte einen Spalt aufweisen, so dass sie durch zwei plattenförmige spiegelsymmetrische Elemente gebildet wird. Der Spalt hat elektrisch betrachtet keine Bedeutung, da in der Mitte der Resonanzstruktur ohnehin ein Stromknoten vorhanden ist.
  • Vorzugsweise ist ein zwischen Grundplatte und Schlitzteiler gebildeter erster Antennenschlitz grösser als ein zwischen Schlitzteiler und Resonanzelement gebildeter zweiter Antennenschlitz. Die Länge des zweiten Antennenschlitzes kann variiert werden, wobei die Bandbreite der Antenne entsprechend ändert. Im Extremfall ist es möglich, eine Antenne mit zwei getrennten Resonanzen zu konstruieren (Dual Frequency Mode). Umgekehrt können die Resonanzen auch sehr nahe zueinander gebracht werden, was zu einer schmalen Bandbreite führt.
  • Die erfindungsgemässe Antenne kann in unterschiedlicher Weise aufgebaut sein. Denkbar ist z. B., dass die Antenne aus einem gestanzten oder geätzten Blech geformt wird und auf eine Grundplatte (z. B. eine metallisierte Leiterplatte) aufgelötet wird. Zwischen der ersten und zweiten Ebene der Antenne kann ein Dielektrikum vorhanden sein. So kann z. B. der Schlitzteiler als Leiterbahnstruktur auf die obere Seite einer geeignet dicken Leiterplatte aufgedruckt sein, wobei die Grundplatte durch eine Metallisierung auf der Rückseite des Substrats gebildet wird. Die Resonanzstruktur in der dritten Ebene kann dann z. B. wie ein flaches umgekehrtes U-Profil (Platte mit zwei endseitig gegenüberliegenden Flanken) ausgeführt sein (wobei die Flanken auf die Leiterbahnstrukturen gelötet sind).
  • Gemäss einer besonders bevorzugten Ausführungsform ist die Antenne auf einem Keramikblock ausgebildet. Die Resonanzstruktur ist dann eine Metallisierung auf einer ersten (oberen) Hauptfläche des Keramikblocks. Der Schlitzteiler in der zweiten Ebene wird z. B. durch eine Metallisierung auf den schmalen Seitenflächen des Keramikblocks dargestellt. Die Grundplatte kann durch eine Metallisierung auf der zweiten (unteren) Hauptfläche des Keramikblocks oder durch eine Metallfläche gebildet sein, auf welche der Keramikblock gelötet wird. Zwischen den beiden Hauptflächen kann ein metallisierter Schlitz im Keramikblock vorgesehen sein, in welchem der Streifenleiter zur Speisung der Antenne angeordnet ist. Eine derart aufgebaute Antenne ist nicht nur äusserst kompakt (wegen der relativen Dielektrizitätskonstante εr > 1), sondern auch sehr robust. Sie kann wie ein sonstiges elektronisches Bauteil (SMD = Surface Mounted Device) gehandhabt und aufgelötet werden. Aufgrund der Kleinheit der Antenne wird auch die Beschädigungsgefahr vermieden (keine aus dem Gehäuse vorstehende Antenne).
  • Zur Anpassung der Antenne ist u. U. eine Induktivität vorzusehen. Diese wird vorzugsweise im bzw. vor dem Streifenleiter integriert.
  • Die erfindungsgemässe Antenne eignet sich auch gut für den Diversity-Empfang. Dies betrifft sowohl Raum- als auch Winkeldiversity, manchmal auch Patterndiversity genannt.
  • Bemerkenswerterweise wird durch unmittelbares Nebeneinanderstellen eine sektorisierende Winkeldiversity erzielt. Das heisst, jede der beiden Antennen ist in einer Richtung besonders empfindlich, in welcher die andere nur eine äusserst geringe Empfindlichkeit hat. Durch Schalten oder Kombinieren der beiden Antennenspeisungen kann die Performance eines Empfängers erhöht werden (Diversity gain). Es wird z. B. von der einen Antenne auf die andere umgeschaltet, wenn das Signal der erstgenannten zu schwach wird. Werden die Antennensignale zusätzlich gegeneinander phasenverschoben, dann kann das Empfindlichkeitspattern im Raum gedreht werden.
  • Zur Erreichung von Raumdiversity können mehrere Antennen in einem gewissen Abstand (z. B. λ/3 bis λ/2) nebeneinander gesetzt werden. Mit dem nachfolgend beschriebenen Antennenelement kann z. B. ein 3-fach-Raumdiversity-Antennensystem aufgebaut werden, das in einem Volumen von 54x28x5.2 mm3 (welches einer Verlängerung einer PCMCIA-Karte entspricht) gepackt werden.
  • Die erfindungsgemässe Antenne eignet sich vorzüglich für HIPERLAN-Anwendungen und Handfunktelefone (einschliesslich schnurloser Telefone). Die für solche Anwendungen vorgesehenen Frequenzbereiche liegen typischerweise über 1 GHz (z. B. bei 5.2 GHz im European Telecommunication Standard-HIPERLAN).
  • Die Antenne eignet sich ausserdem zur Anwendung in einem Antennenarray, da die grosse Bandbreite auch im Umfeld der Nachbarantennen eine Anpassung erlaubt.
  • Weitere vorteilhafte Ausführungsformen und Merkmalskombinationen ergeben sich aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche.
  • Kurze Beschreibung der Zeichnungen
  • Die zur Erläuterung der Ausführungsbeispiele verwendeten Zeichnungen zeigen:
  • Fig. 1
    Eine schematische perspektivische Darstellung einer erfindungsgemässen Antenne in Luft;
    Fig. 2
    eine schematische perspektivische Darstellung einer erfindungsgemässen Antenne auf einem Keramikblock;
    Fig. 3
    eine schematische perspektivische Darstellung der Ausführungsform gemäss Fig. 2 von hinten gesehen;
    Fig. 4
    eine schematische Darstellung eines Antennensystems zur Erzielung eines Diversity-Empfangs.
  • Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.
  • Wege zur Ausführung der Erfindung
  • Fig. 1 zeigt eine erfindungsgemässe Antenne in Luft. Sie ist in drei Ebenen bzw. Schichten aufgebaut. Die erste Ebene wird durch eine Grundplatte 1 definiert. Es kann sich um eine Wand einer Metallbox oder eine Metallisierung auf einer Leiterplatte handeln.
  • In der zweiten Ebene befindet sich der Schlitzteiler. Es handelt sich im Prinzip um einen U-förmigen Metallstreifen mit einem Mittelteil 2 und zwei Schenkeln 3, 4. Die Länge des Mittelteils 2 beträgt vorzugsweise λ/4, diejenige der Schenkel 3, 4 beträgt λ/8. Der Schlitzteiler ist an den beiden Enden der Schenkel 3, 4 über zwei Beine 5, 6 mit der Grundplatte 1 kurzgeschlossen.
  • In einer dritten Ebene befindet sich eine Resonanzstruktur. Im vorliegenden Beispiel wird diese durch zwei symmetrische Platten 9, 10 gebildet. Diese sind durch vertikale Seitenflächen 12, 13 an den Aussenseiten der abgewinkelten Schenke 3, 4 des Schlitzteilers abgestützt. Die beiden Platten 9, 10 sind durch einen Spalt 11 getrennt. Elektrisch gesehen hat dieser keine Bedeutung, da er in einem Stromknoten liegt. Wie leicht aus Fig. 1 zu erkennen ist, ermöglicht er dagegen das Formen der Antenne aus einer ebenen, geeignet geschnittenen Blechform.
  • Zur Speisung der Antenne ist z. B. ein Streifenleiter 7 vorgesehen, der über ein Bein 8 mit einem Koaxialanschluss unterhalb der Grundplatte 1 verbunden ist. Ist die Grundplatte als Leiterplatte ausgebildet, so kann auch eine weitere Mikrostreifenleitung an die Stelle des Koaxialanschlusses treten. Der Streifenleiter füllt entsprechend der erforderlichen Impedanzanpassung den zwischen den beiden Schenkeln 3, 4 gebildeten Bereich vollständig aus (wobei er nur durch zwei Spalte 14, 15 von den Schenkeln 3, 4 getrennt ist).
  • Zur Dimensionierung ist folgendes zu sagen:
    Die beiden Platten 9, 10 decken im wesentlichen die vom U-förmig gebogenen Schlitzteiler aufgespannte Fläche ab. Der Abstand zwischen Resonanzstruktur und Schlitzteiler ist vorzugsweise kleiner als der Abstand zwischen dem Schlitzteiler und der Grundplatte 1. In diesem Sinn kann z. B. die zweite Ebene auf einer Höhe von 2.6 mm (λ/8) und die dritte Ebene in einer Höhe von 4.2 mm (λ/20) über der Grundplatte angeordnet sein (Mittelfrequenz f0 = 6.4 GHz, λ ≅ 4.7 cm).
  • Zwischen der Resonanzstruktur und dem Schlitzteiler ist ein Antennenschlitz vorhanden, der in der Länge durch die Seitenflächen 12, 13 begrenzt ist. Die Länge dieses Schlitzes kann variiert werden, um die Bandbreite festzulegen. Sind die Seitenflächen 12, 13 z. B. gleich lang wie die Schenke 3, 4, dann ist der Antennenschlitz gleich lang wie der Mittelteil 2. Im Prinzip können die vertikalen Seitenflächen 12, 13 sogar um die Ecke herum auf den Mittelteil 2 geführt sein. Umgekehrt können sie auch nur einen kleinen Teil der Schenkel 3, 4 beanspruchen und nahe bei den Enden bzw. Beinen 5, 6 plaziert sein. Entsprechend wäre dann der obere Antennenschlitz etwa gleich gross wie der untere Antennenschlitz zwischen Schlitzteiler und Grundplatte 1.
  • Im Prinzip handelt es sich bei der erfindungsgemässen Antenne um zwei aufeinandergestapelte und abgewinkelte λ/2-Schlitze mit unterschiedlichen Schlitzlängen.
  • Die Impedanzanpassung erfolgt über die Dimensionierung des Streifenleiters 7. Beim oben angefangenen Zahlenbeispiel anknüpfend hat er eine Breite von z. B. 11 mm (0.24 λ) und eine Tiefe von z. B. 5.5 mm (0.12 λ). Die beiden Schenkel 3, 4 haben je eine Breite von z. B. 0.75 mm (0.015 λ). Der Spalt 11 ist z. B. 1 mm (λ/50) breit. Die gesamte Antenne hat eine Breite von z. B. 0.28 λ und eine Tiefe von z. B. 0.14 λ.
  • Der Streifenleiter 7 kann u. U. auch weniger breit sein und/oder aus dem durch die beiden Schenkel 3, 4 aufgespannten Bereich herauslaufen. Insbesondere ist er zur Speisung via Mikrostreifenleiter geeignet.
  • Der in Fig. 1 gezeigte Antennenaufbau kann teilweise oder ganz in ein dielektrisches Medium eingebettet werden (selbstverständlich unter Anpassung der Dimensionierung aufgrund der höheren relativen Dielektrizitätskonstante εr > 1). So können z. B. der Schlitzteiler (Schenkel 3, 4, Mittelteil 2) und der Streifenleiter 7 als Leiterbahnstruktur auf ein dielektrisches Substrat aufgebracht werden (Printplatte). Die Grundplatte 1 kann als Metallisierung auf der Rückseite des Substrats vorgesehen sein, wobei die Beine 5, 6, 8 (in Form von Stiften) durch das Substrat hindurchgeführt sind.
  • Die Resonanzstruktur kann in diesem Fall eine durchgehende rechteckige Platte sein, welche wiederum über Seitenflächen 12, 13 mit den Schenkeln 3, 4 elektrisch verbunden und gleichzeitig auf dem Substrat abgestützt sind. Am einfachsten wird ein Blechstück geschnitten, das eine durch die Schenkel 3, 4 aufgespannte Fläche abzudecken vermag und mit seitlichen Laschen zur Bildung der Seitenflächen 12, 13 (durch rechtwinkliges Abbiegen) ausgestattet ist. Der Spalt 11 ist bei dieser Ausführungsform weder nötig noch erwünscht (mechanische Stabilität).
  • Auch zwischen der zweiten und der dritten Ebene kann ein Dielektrikum vorgesehen sein. Dies kann z. B. durch selektives Auflaminieren eines dielektrischen Materials in der gewünschten Schichtdicke erreicht werden. Die Seitenflächen 12, 13 können an entsprechenden Begrenzungsflächen der auflaminierten Schicht aufgebracht sein. Die plattenförmige Resonanzstruktur kann auf die Oberfläche der auflaminierten Schicht aufgedruckt werden.
  • Eine besonders bevorzugte Ausführungsform soll anhand der Fig. 2 und 3 erläutert werden. In Fig. 2 ist schematisch ein Keramikblock 16 dargestellt. Er weist eine obere und eine untere Hauptfläche 17 bzw. 18 auf. Auf der oberen Hauptfläche 17 ist ganzflächig eine Metallisierung als Resonanzstruktur vorgesehen. Die untere Hauptfläche 18 kann ebenfalls metallisiert sein (um so z. B. die Grundplatte 1 zu bilden oder den Keramikblock einfach auf eine Grundplatte oder eine Metallbox löten zu können).
  • Der Keramikblock 16 verfügt über zwei kurze und zwei lange Seitenflächen 19, 20 bzw. 21, 22. Der Schlitzteiler wird dadurch gebildet, dass auf den Seitenflächen 19, 21, 20 eine durchgehende streifenartige Metallisierung zur Bildung einer U-förmig umlaufenden Leiterbahn vorgesehen ist. Die genannte Leiterbahn wird durch einen streifenförmigen Bereich 25, 26 etwa in der Mitte zwischen den beiden Hauptflächen 17, 18 gebildet. Am hinteren Ende (gemäss der in Fig. 2 gewählten Darstellung) der Seitenfläche 19 ist eine Metallisierung 24 nach unten zur Hauptfläche 18 geführt. Die elektrische Verbindung zwischen der Resonanzstruktur und dem Schlitzteiler wird ebenfalls durch eine auf der Seitenfläche 19 angebrachte Metallisierung 27 hergestellt. Die Seitenfläche 20 ist spiegelsymmetrisch zur Seitenfläche 19 selektiv metallisiert. Es leuchtet ein, dass die Metallisierung 24 dem Bein 6, die Metallisierung 25 dem Schenkel 4, die Metallisierung 26 dem Mittelteil 2 und die ganzflächige Metallisierung der Hauptfläche 17 den beiden Platten 9, 10 in Fig. 1 entspricht.
  • Was bis jetzt noch fehlt, ist eine dem Streifenleiter 7 entsprechende Metallisierung. Zu diesem Zweck ist nun aber ein flacher, durchgehender Schlitz 23 vorgesehen. Dieser erstreckt sich von der Seitenfläche 21 zur Seitenfläche 22 und ist z. B. vollständig metallisiert. Zur Speisung ist dann nur noch eine vom Schlitz 23 auf der Seitenfläche 22 nach unten geführte Metallisierung 32 (siehe Fig. 3) vorzusehen. Der genannte Schlitz kann schon in der Form vor dem Härten angebracht werden oder durch Bohren hergestellt sein. Denkbar ist aber auch, dass zwei dünne Keramikblöcke zu einem dicken verbunden werden, wobei der Streifenleiter und eventuell auch der Schlitzteiler in einer flachen Ausführung zwischen ihnen ausgebildet ist.
  • Um den Eingangswiderstand auf 50 Ω zu bringen, kann es erforderlich sein, eine Induktivität (von z. B. 1 - 2 nH) vorzusehen. Eine solche lässt sich elegant integrieren. Eine mögliche Variante soll anhand der Fig. 3 erläutert werden. Diese Figur zeigt in überzeichneter perspektivischer Darstellung den Keramikblock 16 von hinten. Der Schlitz 23 hat einen rechteckigen Querschnitt und somit vier Innenflächen 28, 29, 30, 31, welche alle metallisiert sind. Zur Speisung ist nun auf der Seitenfläche 22 die (bereits erwähnte) selektive Metallisierung 32 vorgesehen. Sie kontaktiert den Innenbereich des Schlitzes 23. Die Induktivität wird nun dadurch erzeugt, dass der Strom zunächst entlang des Schlitzrandes 34, 35, 36 in einer Schleife geführt wird, bevor er in Durchgangsrichtung des Schlitzes 23 fliessen kann. Um dies zu erreichen, ist ein nicht leitender linienförmiger Bereich 33 vorgesehen, welcher das hintere Ende der Schlitzmetallisierung abtrennt. In Fig. 3 ist eine Variante dargestellt, bei welcher der nicht leitende Bereich 33 etwa die halbe Breite der Innenfläche 28, die ganze Breite der Innenfläche 29 und etwa die halbe Breite der Innenfläche 30 von der Metallisierung im Schlitz abtrennt. Der Strom muss also um den halben Schlitzumfang fliessen, was eine entsprechende Induktivität erzeugt. Die Grösse der Induktivität kann einfach dadurch variiert werden, dass die Länge des nicht leitenden Bereichs 33 geeignet gewählt wird.
  • Im Prinzip kann die Induktivität auch durch eine entsprechende Schleifenführung des Stroms auf der Seitenfläche 22 erzwungen werden. Das heisst, der Strom muss zuerst um ein bestimmtes Mass um den Schlitz herum fliessen, bevor er in ihn hineingeführt wird.
  • Im Dielektrikum wird die Antenne bei gleicher Frequenz kleiner. Um die gleichzeitig kleiner werdende Bandbreite innerhalb der physikalischen Limiten zu optimieren, ist z. B. die Länge des oberen Schlitzes (zwischen zweiter und dritter Ebene) zu vergrössern. Für die bevorzugten Anwendungen ist aber auch im Dielektrikum genügend Reserve in der Bandbreite vorhanden. Zu beachten ist weiter, dass die durch das Dielektrikum bedingten Verluste nicht allzu gross sein sollen. In Luft hat die erfindungsgemässe Antenne nämlich eine sehr hohe Effizienz von über 90%. Es sind auch Keramikmaterialien mit sehr günstigen tanδ-Werten
    Figure imgb0002
    bekannt.
  • Ganz allgemein zeichnet sich die Antenne durch eine grosse Bandbreite (in Luft z. B. 20% bis 30%) und durch eine Abstrahlung mit geringer bzw. vernachlässigbar kleiner Leistung senkrecht zur Grundplatte 1 aus. In Richtung der Grundplatte ist eine gute omnidirektionale Charakteristik gegeben.
  • Eine wichtige Anwendung der erfindungsgemässen Antenne liegt im Bereich von drahtlosen LANs (z. B. HIPERLAN). Für diese Anwendung kann die Antenne auf eine PCMCIA-Karte montiert werden. Besonders vorteilhaft ist es dabei, zwei oder mehr Antennen der beschriebenen Art zu positionieren. Es kann auf diese Weise ein Diversity-Empfang verwirklicht werden.
  • Zur Erreichung von Raumdiversity werden mehrere Antennenelemente in einem gewissen Abstand (λ/3 bis λ/2) nebeneinander plaziert. (Ein Raumdiversity-Effekt stellt sich selbst dann ein, wenn sich die Antennen berühren.) Eine beispielhafte Anordnung von drei Antennen im Abstand 0.4λ zeigt, dass sich die Antennen relativ wenig gegenseitig beeinflussen, d. h. dass jede Antenne ihr omnidirektionales Verhalten weitgehend beibehält. Die von den verschiedenen Antennen empfangenen Signale sind verhältnismässig unabhängig voneinander. In der erwähnten beispielhaften Anordnung konnte das Antennensystem in ein Volumen von 54x28x5.2 mm3 (welches einer Verlängerung einer PCMCIA-Karte entspricht) gepackt werden.
  • Fig. 4 zeigt beispielhaft eine U-förmige Anordnung von drei Antennenelementen 37, 38, 39 auf einer Verlängerung einer PCMCIA-Karte 40. Die benachbarten Antennenelemente 37 und 38 bzw. 38 und 39 sind jeweils im rechten Winkel zueinander plaziert. Aus Platzgründen werden die Antennenelemente 37, 38, 39 (welche jeweils z. B. wie in Fig. 1 gezeigt ausgebildet sind) möglichst nahe am entsprechenden Rand der PCMCIA-Karte 40 angeordnet.
  • Zur Erzielung von Winkeldiversity können zwei Antennen mit den Schmalseiten (d. h. den abgewinkelten Schenkeln) unmittelbar nebeneinander aufgebaut werden.
  • In dieser Anordnung weisen die beiden Antennen eine Winkelselektivität auf, die sie als Einzelantenne nicht (resp. nicht in ausgeprägter Form) haben. Je nachdem, aus welcher Richtung ein starkes Signal einfällt, kann der Empfänger auf die geeignete Antenne geschaltet werden. Die Antennensignale können auch vorteilhaft kombiniert werden. Durch Phasendrehung des Signals der einen Antenne gegenüber demjenigen der anderen Antenne kann die Winkelselektivität je nach Bedarf auch gedreht werden.
  • Die Antenne eignet sich auch als Element für sogenannte Antennenarrays. Es werden in diesem Fall mehrere Einzelantennen isoliert oder im Verbund zweckmässig angeordnet, um durch Kombination ihrer Signale eine gewünschte Abstrahl-/Empfangscharakteristik zu erreichen.
  • Geeignet ist die Erfindung aber auch für Handfunktelefone (schnurlose Telefone, GSM-Handies etc.). Insbesondere bei der Keramikblockvariante kann die Antenne als kompakter Bauteil oben auf das Handy gesetzt werden, um die erwünschte Abstrahlungscharakteristik zu zeigen. Denkbar ist sogar, dass die erfindungsgemässe Antenne für den Empfang von zwei benachbarten Frequenzen ausgelegt werden kann (Dual Frequency Mode).
  • Die beschriebene Antenne hat eine grosse Zahl von Vorteilen. Zusammenfassend sollen folgende erwähnt werden: Grosse Bandbreite, Variierbarkeit der Bandbreite, gute Möglichkeiten zur impedanzmässigen Anpassung, kleiner Platzbedarf, omnidirektionales Abstrahlungspattern in einer Ebene und keine Abstrahlung senkrecht zur Ebene, Kompatibilität mit einer PCMCIA-Karte (insbesondere auch als System aus mehreren Antennenelementen) und Eignung für den Diversity-Empfang.
    Bezugszeichenliste
    1 Grundplatte
    2 Mittelteil
    3, 4 Schenkel
    5, 6 Bein
    7 Streifenleiter
    8 Bein
    9, 10 Platte
    11 Spalt
    12, 13 Seitenfläche
    14, 15 Spalt
    16 Keramikblock
    17, 18 Hauptfläche
    19, 20, 21, 22 Seitenfläche
    23 Schlitz
    24, 25, 26, 27 Metallisierung
    28, 29, 30, 31 Innenfläche
    32 Metallisierung
    33 nicht leitender Bereich
    34, 35, 36 Schlitzrand
    37, 38, 39 Antennenelement
    40 PCMCIA-Karte

Claims (14)

  1. Flache dreidimensionale Antenne, bei welcher in einer ersten Ebene eine Grundplatte (1), in einer zweiten Ebene ein U-förmig gebogener und somit einen Mittelteil (2) und zwei Schenkel (3, 4) bildender Schlitzteiler und in einer dritten Ebene über dem Schlitzteiler eine Resonanzstruktur (9, 10) angeordnet ist.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass der Schlitzteiler durch einen Streifenleiter (7) gespeist ist, welcher in der zweiten Ebene zwischen die beiden Schenkel (3, 4) geführt ist, um den Mittelteil (2) zu kontaktieren.
  3. Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Resonanzstruktur (9, 10) durch Flankenelemente (12, 13) mit den Schenkeln (3, 4) des Schlitzteilers kurzgeschlossen ist und so einen Antennenschlitz begrenzt.
  4. Antenne nach Anspruch 3, dadurch gekennzeichnet, dass die Resonanzstruktur (9, 10) in der Mitte durchtrennt (11) ist.
  5. Antenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein zwischen Grundplatte (1) und Schlitzteiler (2, 3, 4) gebildeter erster Antennenschlitz grösser als ein zwischen Schlitzteiler (2, 3, 4) und Resonanzstruktur (9, 10) gebildeter zweiter Antennenschlitz ist.
  6. Antenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen erster und zweiter Ebene ein dielektrisches Substrat vorhanden ist.
  7. Antenne nach Anspruch 6, dadurch gekennzeichnet, dass der Schlitzteiler als Leiterbahnschicht auf dem Substrat aufgebracht ist, dass die Grundplatte (1) durch eine Metallisierung auf einer Rückseite des Substrats gebildet ist und dass die Resonanzstruktur auf der Leiterbahnschicht aufgebaut ist.
  8. Antenne nach Anspruch 6, dadurch gekennzeichnet, dass sie auf einem Keramikblock (16) ausgebildet ist, wobei der Schlitzteiler durch Leiterbahnen (24, 25, 26) auf Seitenflächen (19, 20, 21) gebildet ist, dass die Resonanzstruktur auf einer Hauptfläche (17) ausgebildet ist und dass ein Schlitz (23) für die Speisung in der zweiten Ebene vorgesehen ist.
  9. Antenne nach Anspruch 8, dadurch gekennzeichnet, dass in der Speisung eine Induktivität integriert ist.
  10. Antenne nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sie durch Variation einer Breite und einer Länge des Streifenleiters (7) impedanzmässig angepasst werden kann.
  11. Antenne nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass eine Bandbreite der Antenne durch Variation des zweitgenannten Antennenschlitzes veränderbar ist.
  12. Antennenarray mit mehreren Antennen nach einem der Ansprüche 1 bis 11.
  13. PCMCIA-Karte mit vorzugsweise mindestens zwei Antennen nach einem der Ansprüche 1 bis 11 für die digitale Kommunikation unter Anwendung eines Raum- und/oder Winkeldiversity-Empfangs.
  14. Handfunktelefon mit mindestens einer Antenne nach einem der Ansprüche 1 bis 11, wobei die Antenne insbesondere nach Anspruch 8 ausgebildet ist.
EP97102472A 1996-03-13 1997-02-15 Flache dreidimensionale Antenne Expired - Lifetime EP0795926B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH667/96 1996-03-13
CH66796 1996-03-13
CH66796 1996-03-13

Publications (3)

Publication Number Publication Date
EP0795926A2 true EP0795926A2 (de) 1997-09-17
EP0795926A3 EP0795926A3 (de) 1999-01-07
EP0795926B1 EP0795926B1 (de) 2002-12-11

Family

ID=4192338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97102472A Expired - Lifetime EP0795926B1 (de) 1996-03-13 1997-02-15 Flache dreidimensionale Antenne

Country Status (4)

Country Link
US (1) US5943020A (de)
EP (1) EP0795926B1 (de)
JP (1) JPH1056320A (de)
DE (1) DE59708915D1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923156A1 (de) * 1997-12-11 1999-06-16 Alcatel Kurzgeschlossene Streifenleiterantenne und Gerät damit
FR2772517A1 (fr) * 1997-12-11 1999-06-18 Alsthom Cge Alcatel Antenne multifrequence realisee selon la technique des microrubans et dispositif incluant cette antenne
WO2000036700A1 (en) * 1998-12-16 2000-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
EP1018779A2 (de) * 1999-01-05 2000-07-12 Lk-Products Oy Ebene Antenne für zwei Frequenzen und Funkgerät mit einer derartigen Antenne
WO2000057511A1 (de) * 1999-03-24 2000-09-28 Siemens Aktiengesellschaft Multiband-antenne
EP1075043A1 (de) * 1999-08-05 2001-02-07 Alcatel Antenne mit übereinanderliegenden Resonanzstrukturen und Multibandfunkkommunikationsendgerät mit einer derartigen Antenne
WO2001018910A1 (en) * 1999-09-03 2001-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Antenna
FR2822593A1 (fr) * 2001-03-23 2002-09-27 Hitachi Cable Antenne a plaque plate a fente, et appareil l'incorporant
FR2825837A1 (fr) * 2001-06-12 2002-12-13 Cit Alcatel Antenne compacte multibande
EP1760833A1 (de) * 2004-06-25 2007-03-07 Sony Corporation Antenne und funkkommunikationseinheit
WO2007092626A2 (en) * 2006-02-09 2007-08-16 Marvell World Trade Ltd. Dual band wlan antenna
US7394433B2 (en) 2006-02-09 2008-07-01 Marvell World Trade Ltd. Dual band WLAN antenna
WO2010010529A2 (en) * 2008-07-24 2010-01-28 Nxp B.V. An antenna arrangement and a radio apparatus including the antenna arrangement
EP0825673B1 (de) * 1996-08-21 2010-12-15 GULA CONSULTING Limited Liability Company Ebene Antenne mit kurzgeschlossenen übereinanderliegenden Elementen
CN101673871B (zh) * 2008-09-09 2012-10-24 智易科技股份有限公司 立体双频天线装置
EP2600466A1 (de) * 2011-12-01 2013-06-05 Sony Mobile Communications AB Niederprofil-Mehrbandantennen und zugehörige drahtlose Kommunikationsvorrichtungen
CN108539395A (zh) * 2018-04-18 2018-09-14 深圳市信维通信股份有限公司 适用于5g通信的双频毫米波天线系统及其手持设备

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429818B1 (en) 1998-01-16 2002-08-06 Tyco Electronics Logistics Ag Single or dual band parasitic antenna assembly
WO2001033665A1 (en) * 1999-11-04 2001-05-10 Rangestar Wireless, Inc. Single or dual band parasitic antenna assembly
US6240301B1 (en) * 1998-10-29 2001-05-29 Ericcson Inc. Diversity antenna in a SIM card package
ES2241378T3 (es) 1999-09-20 2005-10-16 Fractus, S.A. Antenas multinivel.
US6445906B1 (en) 1999-09-30 2002-09-03 Motorola, Inc. Micro-slot antenna
WO2001028035A1 (en) 1999-10-12 2001-04-19 Arc Wireless Solutions, Inc. Compact dual narrow band microstrip antenna
DE69910847T4 (de) 1999-10-26 2007-11-22 Fractus, S.A. Ineinandergeschachtelte mehrbandgruppenantennen
US7245196B1 (en) 2000-01-19 2007-07-17 Fractus, S.A. Fractal and space-filling transmission lines, resonators, filters and passive network elements
ATE302473T1 (de) * 2000-01-19 2005-09-15 Fractus Sa Raumfüllende miniaturantenne
JP2004501543A (ja) * 2000-04-19 2004-01-15 アドバンスド オートモーティブ アンテナズ ソシエダット デ レスポンサビリダット リミタダ 改良された自動車用マルチレベルアンテナ
JP4217938B2 (ja) * 2000-04-20 2009-02-04 ソニー株式会社 アンテナ装置及び携帯無線機
US7245880B1 (en) * 2000-08-31 2007-07-17 Intel Corporation Transmit power control within a wireless transmitter
US6693598B1 (en) 2000-09-27 2004-02-17 Tyco Electronics Logistics Ag Omni directional antenna with multiple polarizations
WO2002027862A1 (en) * 2000-09-27 2002-04-04 Rangestar Wireless, Inc. Omni directional antenna with multiple polarizations
US6563468B2 (en) 2001-04-27 2003-05-13 Tyco Electronics Logistics Ag Omni directional antenna with multiple polarizations
US6433742B1 (en) 2000-10-19 2002-08-13 Magis Networks, Inc. Diversity antenna structure for wireless communications
US7511675B2 (en) * 2000-10-26 2009-03-31 Advanced Automotive Antennas, S.L. Antenna system for a motor vehicle
US6456245B1 (en) 2000-12-13 2002-09-24 Magis Networks, Inc. Card-based diversity antenna structure for wireless communications
CN1489804A (zh) 2001-02-07 2004-04-14 弗拉克托斯股份有限公司 微型宽带环状微波传输带贴片天线
US6456242B1 (en) 2001-03-05 2002-09-24 Magis Networks, Inc. Conformal box antenna
US6448933B1 (en) * 2001-04-11 2002-09-10 Tyco Electronics Logisitics Ag Polarization and spatial diversity antenna assembly for wireless communication devices
MXPA03009485A (es) * 2001-04-16 2004-05-05 Fractus Sa Sistema de antenas doblemente polarizado y de banda doble.
FR2826209A1 (fr) * 2001-06-15 2002-12-20 Thomson Licensing Sa Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement
US7339531B2 (en) * 2001-06-26 2008-03-04 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and method of reusing the volume of an antenna
US6456243B1 (en) 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6906667B1 (en) 2002-02-14 2005-06-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures for very low-profile antenna applications
US6894650B2 (en) * 2001-08-13 2005-05-17 Molex Incorporated Modular bi-polarized antenna
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
EP1942551A1 (de) 2001-10-16 2008-07-09 Fractus, S.A. Mehrbandantenne
BR0117154A (pt) * 2001-10-16 2004-10-26 Fractus Sa Antena carregada
DE60132638T2 (de) * 2001-10-16 2009-01-29 Fractus, S.A. Mehrfrequenz-mikrostreifen-patch-antenne mit parasitär gekoppelten elementen
FI115343B (fi) * 2001-10-22 2005-04-15 Filtronic Lk Oy Sisäinen monikaista-antenni
US6542123B1 (en) * 2001-10-24 2003-04-01 Auden Techno Corp. Hidden wideband antenna
ES2190749B1 (es) 2001-11-30 2004-06-16 Fractus, S.A Dispersores "chaff" multinivel y/o "space-filling", contra radar.
US6573867B1 (en) 2002-02-15 2003-06-03 Ethertronics, Inc. Small embedded multi frequency antenna for portable wireless communications
WO2003073552A1 (en) * 2002-02-26 2003-09-04 Nortel Networks Limited User terminal antenna arrangement for multiple-input multiple-output communications
US6882318B2 (en) * 2002-03-04 2005-04-19 Siemens Information & Communications Mobile, Llc Broadband planar inverted F antenna
US6842084B2 (en) 2002-03-07 2005-01-11 Dov Herstein Transition from a coaxial transmission line to a printed circuit transmission line
US7049903B2 (en) 2002-03-07 2006-05-23 Cyoptics (Israel) Ltd. Transition from a coaxial transmission line to a printed circuit transmission line
KR100483043B1 (ko) * 2002-04-11 2005-04-18 삼성전기주식회사 멀티밴드 내장 안테나
US6744410B2 (en) 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6717551B1 (en) 2002-11-12 2004-04-06 Ethertronics, Inc. Low-profile, multi-frequency, multi-band, magnetic dipole antenna
EP2237375A1 (de) * 2002-07-15 2010-10-06 Fractus, S.A. Notch-gespeiste Antenne
US6664931B1 (en) 2002-07-23 2003-12-16 Motorola, Inc. Multi-frequency slot antenna apparatus
FI20021630A (fi) * 2002-09-12 2004-03-13 Filtronic Lk Oy Antennin lähetystehon säätöjärjestelmä
US7084813B2 (en) * 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
US7423592B2 (en) * 2004-01-30 2008-09-09 Fractus, S.A. Multi-band monopole antennas for mobile communications devices
EP1586133A1 (de) 2002-12-22 2005-10-19 Fractus S.A. Multiband-monopolantenne für ein mobiles kommunikationsgerät
JP2004208223A (ja) * 2002-12-26 2004-07-22 Alps Electric Co Ltd 2バンド共用パッチアンテナ
US6919857B2 (en) * 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
WO2004075342A1 (en) * 2003-02-19 2004-09-02 Fractus S.A. Miniature antenna having a volumetric structure
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2004312166A (ja) * 2003-04-03 2004-11-04 Alps Electric Co Ltd 逆f型板金アンテナ
JP2004318466A (ja) * 2003-04-16 2004-11-11 Matsushita Electric Ind Co Ltd 商品券、商品券発行システム及び商品券利用システム
US6822611B1 (en) * 2003-05-08 2004-11-23 Motorola, Inc. Wideband internal antenna for communication device
EP1536242A1 (de) * 2003-11-28 2005-06-01 Maschek Elekronik Elektromagnetfelddosimeter
KR100575256B1 (ko) * 2003-12-30 2006-05-03 인탑스 주식회사 전자기적 커플링 급전방식이 적용되는 방사판에 슬롯이형성된 역 에프형 내장형 안테나
EP1594187B1 (de) * 2004-05-05 2009-04-29 TDK Corporation Gefaltete flächige Antenne
US7868832B2 (en) * 2004-06-10 2011-01-11 Galtronics Corporation Ltd. Three dimensional antennas formed using wet conductive materials and methods for production
GB0501938D0 (en) * 2005-02-01 2005-03-09 Antenova Ltd Balanced-unbalanced antennas for cellular radio handsets, PDAs etc
KR100688648B1 (ko) 2005-12-30 2007-03-02 아로 주식회사 단락 스터브를 이용한 이동통신단말기용 다중대역 내장형안테나
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
JP5005407B2 (ja) * 2006-08-31 2012-08-22 富士通コンポーネント株式会社 アンテナ装置
CN101192698B (zh) * 2006-11-24 2011-07-27 鸿富锦精密工业(深圳)有限公司 立体天线安装方法
US20090237315A1 (en) * 2008-03-20 2009-09-24 Shi-Lin Huang Multi-input, multi-output antenna device
US10522915B2 (en) * 2017-02-01 2019-12-31 Shure Acquisition Holdings, Inc. Multi-band slotted planar antenna
CN107196051B (zh) * 2017-07-11 2023-05-23 中国电子科技集团公司第十四研究所 一种基于三维打印的智能蒙皮天线结构
US10957445B2 (en) 2017-10-05 2021-03-23 Hill-Rom Services, Inc. Caregiver and staff information system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2552937A1 (fr) * 1983-10-04 1985-04-05 Dassault Electronique Dispositif rayonnant a structure microruban avec element parasite
GB2147744A (en) * 1983-10-04 1985-05-15 Dassault Electronique A radiating device with an improved microstrip structure and its application to an adaptable antenna
JPS60134605A (ja) * 1983-12-23 1985-07-17 Mitsubishi Electric Corp マイクロストリツプアンテナ
EP0226390A2 (de) * 1985-12-03 1987-06-24 Nec Corporation Verkürzte Streifenleitungsantenne
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol
EP0637094A1 (de) * 1993-07-30 1995-02-01 Matsushita Electric Industrial Co., Ltd. Antenne für Mobilfunk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197544A (en) * 1977-09-28 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Windowed dual ground plane microstrip antennas
EP0621653B1 (de) * 1993-04-23 1999-12-29 Murata Manufacturing Co., Ltd. Oberflächenmontierbare Antenneneinheit
JP3123363B2 (ja) * 1994-10-04 2001-01-09 三菱電機株式会社 携帯無線機
US5657028A (en) * 1995-03-31 1997-08-12 Nokia Moblie Phones Ltd. Small double C-patch antenna contained in a standard PC card
JP3030360B2 (ja) * 1995-12-01 2000-04-10 日本電気株式会社 携帯無線機用平板アンテナ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2552937A1 (fr) * 1983-10-04 1985-04-05 Dassault Electronique Dispositif rayonnant a structure microruban avec element parasite
GB2147744A (en) * 1983-10-04 1985-05-15 Dassault Electronique A radiating device with an improved microstrip structure and its application to an adaptable antenna
JPS60134605A (ja) * 1983-12-23 1985-07-17 Mitsubishi Electric Corp マイクロストリツプアンテナ
EP0226390A2 (de) * 1985-12-03 1987-06-24 Nec Corporation Verkürzte Streifenleitungsantenne
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol
EP0637094A1 (de) * 1993-07-30 1995-02-01 Matsushita Electric Industrial Co., Ltd. Antenne für Mobilfunk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 295 (E-360), 21. November 1985 & JP 60 134605 A (MITSUBISHI DENKI KK), 17. Juli 1985 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825673B1 (de) * 1996-08-21 2010-12-15 GULA CONSULTING Limited Liability Company Ebene Antenne mit kurzgeschlossenen übereinanderliegenden Elementen
US6133879A (en) * 1997-12-11 2000-10-17 Alcatel Multifrequency microstrip antenna and a device including said antenna
FR2772517A1 (fr) * 1997-12-11 1999-06-18 Alsthom Cge Alcatel Antenne multifrequence realisee selon la technique des microrubans et dispositif incluant cette antenne
FR2772518A1 (fr) * 1997-12-11 1999-06-18 Alsthom Cge Alcatel Antenne a court-circuit realisee selon la technique des microrubans et dispositif incluant cette antenne
EP0924797A1 (de) * 1997-12-11 1999-06-23 Alcatel Multifrequenzstreifenleitungsantenne und Gerät mit einer derartigen Antenne
AU743872B2 (en) * 1997-12-11 2002-02-07 Alcatel A microstrip antenna
EP0923156A1 (de) * 1997-12-11 1999-06-16 Alcatel Kurzgeschlossene Streifenleiterantenne und Gerät damit
US6133880A (en) * 1997-12-11 2000-10-17 Alcatel Short-circuit microstrip antenna and device including that antenna
WO2000036700A1 (en) * 1998-12-16 2000-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
GB2363911A (en) * 1998-12-16 2002-01-09 Ericsson Telefon Ab L M Printed multi-band patch antenna
US6343208B1 (en) 1998-12-16 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
GB2363911B (en) * 1998-12-16 2003-11-26 Ericsson Telefon Ab L M Printed multi-band patch antenna
EP1018779A2 (de) * 1999-01-05 2000-07-12 Lk-Products Oy Ebene Antenne für zwei Frequenzen und Funkgerät mit einer derartigen Antenne
EP1018779A3 (de) * 1999-01-05 2003-08-06 Filtronic LK Oy Ebene Antenne für zwei Frequenzen und Funkgerät mit einer derartigen Antenne
WO2000057511A1 (de) * 1999-03-24 2000-09-28 Siemens Aktiengesellschaft Multiband-antenne
EP1075043A1 (de) * 1999-08-05 2001-02-07 Alcatel Antenne mit übereinanderliegenden Resonanzstrukturen und Multibandfunkkommunikationsendgerät mit einer derartigen Antenne
FR2797352A1 (fr) * 1999-08-05 2001-02-09 Cit Alcatel Antenne a empilement de structures resonantes et dispositif de radiocommunication multifrequence incluant cette antenne
US6304220B1 (en) 1999-08-05 2001-10-16 Alcatel Antenna with stacked resonant structures and a multi-frequency radiocommunications system including it
SG109428A1 (en) * 1999-08-05 2005-03-30 Cit Alcatel An antenna with stacked resonant structures and a multi-frequency radiocommunications system including it
WO2001018910A1 (en) * 1999-09-03 2001-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Antenna
US6806831B2 (en) 1999-09-03 2004-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Stacked patch antenna
FR2822593A1 (fr) * 2001-03-23 2002-09-27 Hitachi Cable Antenne a plaque plate a fente, et appareil l'incorporant
WO2002101874A1 (fr) * 2001-06-12 2002-12-19 Alcatel Antenne compacte multibande
FR2825837A1 (fr) * 2001-06-12 2002-12-13 Cit Alcatel Antenne compacte multibande
US6930642B2 (en) 2001-06-12 2005-08-16 Alcatel Compact multiband antenna
EP1760833A4 (de) * 2004-06-25 2008-01-16 Sony Corp Antenne und funkkommunikationseinheit
US7511669B2 (en) 2004-06-25 2009-03-31 Sony Corporation Antenna Device and Radio Communication Apparatus
EP1760833A1 (de) * 2004-06-25 2007-03-07 Sony Corporation Antenne und funkkommunikationseinheit
US7800547B2 (en) 2006-02-09 2010-09-21 Marvell World Trade Ltd. Dual band WLAN antenna
US7825864B2 (en) 2006-02-09 2010-11-02 Marvell World Trade Ltd. Dual band WLAN antenna
US7423599B2 (en) 2006-02-09 2008-09-09 Marvell World Trade Ltd. Dual band WLAN antenna
US7423597B2 (en) 2006-02-09 2008-09-09 Marvell World Trade Ltd. Dual band WLAN antenna
US7495621B2 (en) 2006-02-09 2009-02-24 Marvell World Trade Ltd. Dual band WLAN antenna
US7394433B2 (en) 2006-02-09 2008-07-01 Marvell World Trade Ltd. Dual band WLAN antenna
US7872608B2 (en) 2006-02-09 2011-01-18 Marvell World Trade Ltd. Dual band WLAN antenna
WO2007092626A3 (en) * 2006-02-09 2008-01-17 Marvell World Trade Ltd Dual band wlan antenna
WO2007092626A2 (en) * 2006-02-09 2007-08-16 Marvell World Trade Ltd. Dual band wlan antenna
US7403162B2 (en) 2006-02-09 2008-07-22 Marvell World Trade Ltd. Dual band WLAN antenna
WO2010010529A3 (en) * 2008-07-24 2010-03-18 Nxp B.V. An antenna arrangement and a radio apparatus including the antenna arrangement
WO2010010529A2 (en) * 2008-07-24 2010-01-28 Nxp B.V. An antenna arrangement and a radio apparatus including the antenna arrangement
US8638266B2 (en) 2008-07-24 2014-01-28 Nxp, B.V. Antenna arrangement and a radio apparatus including the antenna arrangement
CN101673871B (zh) * 2008-09-09 2012-10-24 智易科技股份有限公司 立体双频天线装置
EP2600466A1 (de) * 2011-12-01 2013-06-05 Sony Mobile Communications AB Niederprofil-Mehrbandantennen und zugehörige drahtlose Kommunikationsvorrichtungen
US8890766B2 (en) 2011-12-01 2014-11-18 Sony Corporation Low profile multi-band antennas and related wireless communications devices
CN108539395A (zh) * 2018-04-18 2018-09-14 深圳市信维通信股份有限公司 适用于5g通信的双频毫米波天线系统及其手持设备
CN108539395B (zh) * 2018-04-18 2023-10-13 深圳市信维通信股份有限公司 适用于5g通信的双频毫米波天线系统及其手持设备

Also Published As

Publication number Publication date
JPH1056320A (ja) 1998-02-24
DE59708915D1 (de) 2003-01-23
EP0795926B1 (de) 2002-12-11
EP0795926A3 (de) 1999-01-07
US5943020A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
EP0795926B1 (de) Flache dreidimensionale Antenne
DE10142384B4 (de) Mikrostripline-Antenne
DE60302955T2 (de) Abstimmbare Mehrband-Planarantenne
DE69835246T2 (de) Doppelresonanzantennenstruktur für mehrere Frequenzbereiche
DE602005006417T2 (de) Chipantenne
DE69404907T2 (de) Streifenleitergruppenantenne
DE60018011T2 (de) Flachantenne
DE60115131T2 (de) Chip-Antennenelement und dieses aufweisendes Nachrichtenübertragungsgerät
DE10124142B4 (de) Planarantenne und damit ausgerüstete Einrichtung für drahtlose Kommunikation
DE69824262T2 (de) Antenne
DE19829714B4 (de) Antenne mit dualer Polarisation
DE60026276T2 (de) Antennenstruktur, Verfahren zur Kopplung eines Signals an die Antennenstruktur, Antenneneinheit und Mobilstation mit einer derartigen Antennenstruktur
DE69222464T2 (de) Mikrostreifenantenne
DE69804023T2 (de) Antenne
DE69524296T2 (de) Gedruckte Antenne mit zwei Strahlrichtungen
DE60315791T2 (de) Chipantenne
EP0952625B1 (de) Antenne für mehrere Funkdienste
EP1576697B1 (de) Antennenvorrichtung
DE102005040499B4 (de) Oberflächenmontierte Antenne und diese verwendende Antennenvorrichtung sowie Drahtloskommunikationsvorrichtung
DE3789161T2 (de) Antenne für Gerät zur drahtlosen Nachrichtenübertragung.
DE69900773T2 (de) Scheibenantenne mit zwei Resonanzfrequenzen
DE602005002046T2 (de) Kompakte mehrband-pifa-antenne mit einem wellenlinienförmigen schlitz bzw. wellenlinienförmigen schlitzen
DE60028899T2 (de) Interne Antenne für ein Gerät
DE69431277T2 (de) Tragbares Funkgerät mit Diversityempfänger
DE60109608T2 (de) Antenne und funkgerät mit einer derartigen antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19990701

17Q First examination report despatched

Effective date: 20010615

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASCOM SYSTEC AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021211

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030121

Year of fee payment: 7

REF Corresponds to:

Ref document number: 59708915

Country of ref document: DE

Date of ref document: 20030123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030311

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20021211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20030912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL