WO1997034837A1 - Procede et dispositif pour traiter des eaux usees contenant du selenium - Google Patents

Procede et dispositif pour traiter des eaux usees contenant du selenium Download PDF

Info

Publication number
WO1997034837A1
WO1997034837A1 PCT/JP1997/000876 JP9700876W WO9734837A1 WO 1997034837 A1 WO1997034837 A1 WO 1997034837A1 JP 9700876 W JP9700876 W JP 9700876W WO 9734837 A1 WO9734837 A1 WO 9734837A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
water
ion
treatment
selenite
Prior art date
Application number
PCT/JP1997/000876
Other languages
English (en)
French (fr)
Inventor
Rie Yano
Hideo Nishizawa
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corporation filed Critical Organo Corporation
Priority to US09/142,906 priority Critical patent/US6033572A/en
Priority to EP97907366A priority patent/EP0891951A4/en
Publication of WO1997034837A1 publication Critical patent/WO1997034837A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal

Definitions

  • the present invention relates to a method and an apparatus for treating selenium-containing wastewater such as wastewater from a metallurgical plant, mine drainage, thermal power plant wastewater, and glasshouse wastewater.
  • selenium is normally selenate ion (S e 0 4 2 -: 6 -valent selenium) and Bruno or selenite ions -: Dissolved in the form of (S e O 4-valent selenium) are doing. In this case, these ions may be present alone in the wastewater, but usually both coexist.
  • selenium was newly added as a regulated item by the Amendment to the Water Pollution Control Law in 1993, and the effluent standard was set at 0.1 mg Se. There is a legal background that the value was set to Z1 or less, and since removal was not particularly necessary until then, the fact is that sufficient consideration has not been given.
  • metal salts such as magnesium salts, zinc salts, and ferric salts are added to selenium-containing wastewater to separate and remove selenium as insoluble selenium compounds with these metal salts.
  • the above-mentioned methods (1) to (3) have the following problems, respectively.
  • the insoluble selenium compound in the chemical treatment method of adding an insoluble selenium compound by adding a metal salt such as a magnesium salt, a zinc salt, a ferric salt or the like, the insoluble selenium compound is relatively soluble in the tetravalent ion selenite.
  • a metal salt such as a magnesium salt, a zinc salt, a ferric salt or the like
  • insoluble selenium compound is relatively soluble in the tetravalent ion selenite.
  • insoluble selenium compounds were not easily generated from hexavalent selenate, and hexavalent selenate ions remained in the treated water, making it difficult to remove selenate ions. .
  • the chemical treatment method of adding ferrous salt to insolubilize soluble selenium can remove both selenite ion and selenite ion.
  • sludge insolubilized matter
  • both selenate and selenite ions can be reduced to simple selenium and removed.
  • it was difficult to remove trace amounts of selenium and it was difficult to clear the new effluent standard of 0.1 mg SeZ1 or less.
  • the selenium concentration can be reduced below the wastewater standard value by anaerobic treatment Can be reduced to
  • biological treatment becomes unstable due to load fluctuations and the like.
  • the present invention has been made in view of the above circumstances, and does not use a large amount of chemicals such as metal salts and the like, and does not generate a large amount of sludge. It is highly capable of removing tetravalent selenite, or both, and can therefore meet the wastewater standard of less than 0.1 mg S e / 1, and is cost-effective. disclosure of t invention for the purpose that you provide a processing method and apparatus also advantageous selenium-containing wastewater
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, reduced selenium ion and Z or selenium acid present in selenium-containing wastewater to selenium alone by anaerobic biological treatment.
  • the purpose is effectively achieved by insolubilizing and removing selenate ions and / or selenium ion remaining in the biologically treated water, or by further filtering the treated water.
  • the selenium concentration is further reduced by filtering the treated water after treatment following the above chemical treatment to remove trace amounts of selenium-containing suspensions leaking into the treated water. You can get water.
  • the present invention provides selenium ion and / or selenite ion by reducing selenite ion and / or selenite ion present in the selenium-containing wastewater to selenium simple substance by anaerobic biological treatment and insolubilizing it.
  • a method for treating selenium-containing wastewater is provided.
  • the present invention provides, after the above-mentioned second step, water which has been subjected to the second step. Further, the present invention provides a method for treating selenium-containing wastewater, which comprises performing a third step of performing a filtration treatment.
  • the present invention provides selenium ions and / or selenite ions present in selenium-containing wastewater by reducing and insolubilizing selenium ions and / or selenite ions to simple selenium by anaerobic biological treatment.
  • Biological treatment means to remove;
  • a selenium-containing wastewater treatment device is provided.
  • the present invention provides a treatment device for selenium-containing wastewater, further comprising a filtration means for filtering water which has been treated by the chemical treatment means.
  • the first step of the method of the present invention soluble selenium present in selenium-containing wastewater (raw water) is reduced to single selenium by anaerobic biological treatment and insolubilized. Most of the precipitated elemental selenium is removed together with the excess sludge and removed, and part of the selenium leaks into the treated water.
  • the anaerobic biological treatment in the first step may be performed under facultative anaerobic conditions, and is not required to be performed under absolute anaerobic conditions. That is, it is sufficient that dissolved oxygen does not substantially exist in the water (anoxic state), and oxygen-containing ions such as nitrate ions and nitrite ions may be present.
  • a hydrogen donor is required to convert soluble selenium into simple selenium by anaerobic biological treatment, but the required hydrogen donor (such as organic matter) contains selenium. If there is a shortage in the wastewater (raw water), the shortage of hydrogen donor is added to the water to be treated in the first step to eliminate the shortage. If the raw water contains nitrate ions or sulphate, and if there is a shortage of hydrogen donors required for the reduction of soluble selenium and the reduction of ionic nitrate and sulphate,
  • the shortage is eliminated by adding a shortage of the hydrogen donor to the water to be treated in consideration of the amount of the hydrogen donor necessary for the reduction of nitrate ions and sulfate. This is because hydrogen donors are also consumed in reducing nitrate and sulfate ions.
  • the hydrogen donor examples include alcohols such as methanol and ethanol, organic acids such as acetic acid, organic substances such as saccharides, and other wastewater containing organic substances. It is appropriate that the amount of the hydrogen donor added is such that the amount of the hydrogen donor in the water is at least 1.3 times the stoichiometrically required amount. However, even if the amount of added hydrogen donor is slightly insufficient and soluble selenium is not sufficiently reduced by biological treatment, the present invention has the advantage that soluble selenium can be chemically removed in the second step. There is.
  • the hydrogen donor may be added to the raw water before the biological treatment device, or may be added to the water to be treated in the biological treatment device.
  • a metal compound which forms an insoluble selenium compound (including a hardly soluble selenium compound) or elemental selenium by reacting with selenate ion and Z or selenite ion, A selenate ion and a metal compound which reacts with Z or yell selenite to form an insoluble selenium compound or an ion which forms elemental selenium are added to the water after the first step and remain in the water.
  • the soluble selenium is insolubilized, and the generated insoluble matter is removed by a coagulation precipitation method or a coagulation flotation method.
  • hexavalent selenite ion is reduced to elemental selenium via tetravalent selenite ion, and tetravalent selenite ion is considered to be directly reduced to elemental selenium.
  • metal compound used in the second step there is no particular limitation on the type of metal compound used in the second step, but only tetravalent selenous ion as a soluble selenium remains in the water after the first step as described above.
  • the metal compound in the second step at least one selected from ferric salt, copper salt, silver salt, zinc salt, aluminum salt, magnesium salt, calcium salt and balium salt Metal salts can be suitably used. That is, as described above, it is difficult to insolubilize hexavalent selenate ions with a metal compound other than ferrous salt, but hexavalent selenate ions are present in water after the completion of the first step.
  • metal compounds other than ferrous salts in various ways, for example, easier handling than ferrous salts
  • the metal compound, F e 3 + in water, C u 2 Z n A g A 1 J 'M g 2 +, compounds of generating a C a 2 B a for example, ferric chloride, copper sulfate, zinc sulfate
  • Metal salts such as silver chloride, aluminum chloride, aluminum chloride, aluminum sulfate, magnesium sulfate, magnesium chloride, calcium chloride, and barium chloride; and calcium hydroxide, magnesium hydroxide, and the like.
  • the amount of the above-mentioned metal compound to be added is at least 40 times by weight, especially 50 to 80 times by weight of the amount of residual selenium as a metal such as iron.
  • hexavalent selenate ions will be present in the water after the first step. It may remain.
  • a ferrous salt capable of insolubilizing both hexavalent selenate ion and tetravalent selenite ion.
  • the soluble selenium is reduced by the reduction of soluble selenium to the elemental selenium by the reduction action of F e ”, and the formation of an insoluble selenium compound by the reaction of F e 2 + Is insolubilized, so that the insoluble matter generated is removed by a coagulation sedimentation method or a coagulation flotation method, etc.
  • a ferrous salt when used, a floc of ferrous hydroxide is formed in the second step, Elemental selenium and microorganisms leaking from the first step are also adsorbed and separated by the flocculated floc of iron hydroxide generated in the second step, and when the ferrous salt is used in the second step,
  • any water-soluble ferrous salt such as ferrous sulfate, ferrous chloride, etc. can be used, and the amount of ferrous salt added depends on the amount of residual selenium as iron. It is appropriate that the weight be 40 times by weight or more, especially 50 to 80 times by weight.
  • a pH adjusting agent such as an alkali agent (for example, sodium hydroxide) or an acid agent (for example, hydrochloric acid) is added to the water to be treated together with the metal compound, and the pH of the water to be treated is reacted. It is appropriate to carry out the reaction by adjusting it to an appropriate range.
  • the pH of the water to be treated suitable for the reaction differs depending on the metal compound used.For example, 8.5 to 10 when ferrous salt is used, and 4 to 10 when ferric salt is used. 6 and 10 to 10.5 when a magnesium salt is used.
  • a coagulation aid such as a polymer coagulant is added. It is preferable to perform an aggregation treatment.
  • selenium-containing insolubilized substances (suspension substances) leaking into the water that has been subjected to the second step are removed by filtration, and the treated water having a reduced selenium concentration is obtained. (Filtered water) is obtained.
  • the method of the filtration treatment include a filtration method using a filter medium and a membrane (a microfiltration membrane, an ultrafiltration membrane, etc.). The force is not limited to these.
  • the biological treatment means of the apparatus of the present invention performs the first step.
  • the configuration of the biological treatment means is not limited.For example, from one of biological treatment apparatuses using a fixed-bed biological treatment method, a fluidized-bed biological treatment method, a floating biological treatment method, a sludge blanket biological treatment method, or the like. Or a combination of two or more of the same or different types of devices can be used.
  • Chemical treatment
  • the chemical treatment means of the apparatus of the present invention performs the second step.
  • the configuration of the chemical treatment means is not limited.
  • a coagulation / sedimentation apparatus including a reaction tank equipped with a metal compound addition mechanism, a pH adjustment agent addition mechanism, a stirring mechanism for water to be treated, and a coagulation / sedimentation tank, A coagulation flotation device can be used.
  • FIG. 1 is a front view showing one embodiment of a selenium-containing wastewater treatment apparatus according to the present invention.
  • FIG. 1 is a flowchart showing one embodiment of a selenium-containing wastewater treatment apparatus according to the present invention.
  • a fixed-bed type biological treatment device 2 in the first stage and a fixed-bed type biological treatment device 4 in the second stage which are filled with microbial carriers such as gravel, fired aggregate, and plastics of various shapes, are connected.
  • It comprises a biological treatment means 6, a coagulation sedimentation device 12 comprising a reaction tank ⁇ and a coagulation sedimentation tank 10 (chemical treatment means), and a filtration device 14 such as a sand filter (filtration means).
  • the biological treatment unit 6 reduces the soluble selenium present in the selenium-containing wastewater (raw water) 16 to insoluble simple selenium by anaerobic biological treatment in the biological treatment unit 2 in the first stage and the biological treatment unit 4 in the second stage. And remove it.
  • the biological treatment apparatus may be provided in one stage.
  • the chemical treatment means 12 adjusts the treatment water of the biological treatment means 6 with metal salts such as ferrous chloride and ferric chloride and sodium hydroxide in the reaction tank 8.
  • the insoluble selenium compound or elemental selenium is added by stirring the water to be treated for about 10 to 60 minutes while maintaining the ⁇ ⁇ ⁇ of the water to be treated within a range suitable for the reaction. Alternatively, fine flocs of these selenium insolubilized substances and metal hydroxide are formed.
  • the reaction solution is introduced into the coagulation / sedimentation tank 10, and a polymer flocculant is added to the reaction liquid in the coagulation / sedimentation tank 10 to coarsen fine flocs of insoluble selenium compounds and metal hydroxides in the reaction liquid. And separated by precipitation.
  • the soluble selenium remaining in the treated water of the biological treatment means 6 is insolubilized and removed as a precipitate. And the supernatant water with a reduced selenium concentration can be obtained.
  • the filtration device 14 filters the effluent (supernatant water) of the coagulation sedimentation tank 10 and removes trace amounts of insolubilized substances including selenium remaining in the effluent. It is possible to obtain treated water having a further reduced selenium concentration.
  • Methanol is a hydrogen donor
  • ammonium chloride and dihydrogen phosphate are nutrient sources for microorganisms.
  • Anaerobic biological treatment was performed under facultative anaerobic conditions using a fixed-bed biological treatment device.
  • porous fired aggregate (actilite manufactured by Organo Co., Ltd.) was packed in a cylindrical column with a capacity of about 1.8 liters so as to have an apparent capacity of 1.5 liters.
  • Raw water was continuously passed through this biological treatment apparatus so that the residence time of the treated water was about 5 hours. 2nd culm
  • the water after the first step is put into the reaction tank, and ferric chloride is added to the water so that iron becomes 50 times by weight as iron relative to selenium remaining in the water after the first step.
  • the water to be treated was stirred for 30 minutes while the pH of the water to be treated was adjusted to 5.5 ⁇ 0.5 using sodium hydroxide. This produced flocculated flocs.
  • the flocculated floc was reprecipitated by standing still to obtain supernatant water.
  • the supernatant water obtained in the second step was filtered through N 0.5 c filter paper, and the filtered water was used as the final treated water.
  • the intermediate treated water after the first step, the supernatant water obtained in the second step, and the final treated water after the third step were treated with hexavalent selenate ion (SeO—) and tetravalent selenium suboxide, respectively.
  • the concentration of acid ions (SeO—) or total selenium was measured.
  • the concentration of hexavalent selenate ion was less than 0.02 mg SeZl (below the detection limit).
  • Acid ions remained at a concentration of about 1 mg Se / 1.
  • the total selenium concentration was reduced to 0.05 mgSeno 1 or less.
  • the selenite ion concentration and selenite ion concentration were both reduced to 0.02 mg Se / 1 or less, and the total selenium amount was determined. However, it was below 0.1 mg Se / 1.
  • the water after the first step is put into the reaction tank, and ferrous chloride is added to the water so that iron becomes 50 times by weight of selenium remaining in the water after the first step.
  • the water to be treated was stirred for 30 minutes while the pH of the water to be treated was adjusted to 9.0 ⁇ 0.5 using sodium hydroxide. This produced flocculated flocs.
  • the flocculated floc was reprecipitated by standing still to obtain supernatant water.
  • the supernatant water obtained in the second step was filtered through N 0.5 c filter paper, and the filtered water was used as final treatment water.
  • the same measurement as in Experimental Example 1 was performed.
  • 95% or more of hexavalent selenion was removed, but about 0.4 mg SeZ1 remained.
  • tetravalent selenite ion generated by reduction of selenite ion and ion selenite originally contained in the raw water could not be completely reduced, and about 5 mg Se / 1 remained,
  • the total selenium concentration was reduced to about 0.07 mg Seno 1.
  • the selenite ion concentration and selenite ion concentration were both reduced to 0.02 mg SeZ1 or less, and the total selenium amount was Was below 0.1 mg Se / I.
  • Industrial applicability As described above, according to the present invention, hexavalent selenate ions and / or tetravalent selenite ions, or both of them, can be highly removed from selenium-containing wastewater, and 0.1 mg of the same can be obtained. It is possible to clear the drainage standard of S e 1 or less. Also, since the amount of chemicals added and the amount of sludge generated in the chemical treatment process (second process) can be reduced, running costs and waste disposal costs can be reduced. Therefore, the method and apparatus of the present invention are suitably used for treating selenium-containing wastewater such as metal refinery wastewater, mine wastewater, thermal power plant wastewater, and glass factory wastewater.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

明 細 書 セレン含有排水の処理方法及び装置 技術分野
本発明は、 金厲精鍊工場排水、 鉱山排水、 火力発電所排水、 ガラスェ 場排水等のセレンを含有する排水の処理方法及び処理装置に関する。 背景技術
前述したようなセレン含有排水中において、 セレンは通常、 セレン酸 イオン ( S e 0 4 2— : 6価セレン) 及びノ又は亜セレン酸イオン ( S e O — : 4価セレン) の形で溶存している。 この場合、 これらのイオンが排 水中に単独で存在することもあるが、 通常は、 両者が共存している場合 が多い。 このようなセレン含有排水中に含まれるセレン除去技術に関し ては、 1 9 9 3年の水質汚濁防止法改正によ りセレンが新たに規制項目 に加えられ、 排水基準が 0 . 1 m g S e Z 1 以下とされたという法的背 景があり、 それまでは除去を特に必要としていなかったこ とから、 十分 な検討が行われていないのが実情である。
その中で、 これまでセレン含有排水中に含まれるセレン酸イオン及び 亜セレン酸イオン (以下これらを溶解性セレンということもある) を除 去する方法と して検討されているのは、 下記①〜③の方法である。
①セレン含有排水にマグネシウム塩、 亜鉛塩、 第二鉄塩といった金属塩 を添加して、 セレンをこれら金属塩との不溶性セレン化合物と して分離 除去する方法。
②セレン含有排水に溶解性セレ ンを単体セレン ( S e ) に還元できる第 一鉄塩を添加して、 溶解性セレンを不溶化した後、 生成した不溶化物を 沈殿等によって分離除去する方法。 この方法においては、 F e 2 tの還元 作用による溶解性セレンの単体セレンへの還元による不溶化、 F e 2 +と 溶解性セレンとの反応による不溶性セレン化合物の生成、 さ らには生成 する水酸化フロックによる上記単体セレンあるいは溶解性セレン自体の 共沈及び分離等の種々の反応によ り、 溶解性セレンが不溶化され、 除去 されると考えられる。
③セレン含有排水中に含まれる溶解性セレンを嫌気性生物処理によって 単体セレンに還元した後、 この単体セレンを分離除去する方法。
しかしながら、 前述した①〜③の方法は、 それぞれ次のような問題点 を有するものであった。 すなわち、 マグネシウム塩、 亜鉛塩、 第二鉄塩 等の金属塩を添加して不溶性セレン化合物を生成させる①の化学的処理 法では、 4価の亜セレン酸ィオンからは不溶性セレン化合物が比較的容 易に生成するが、 6価のセレン酸ィォンからは不溶性セレン化合物が生 成しにく く、 したがって 6価のセレン酸イオンが処理水中に残存し、 セ レン酸イオンを除去することが難しかった。
第一鉄塩を添加して溶解性セレンを不溶化する②の化学的処理法では、 セレン酸イオン及び亜セレン酸イオンの両方を除去するこ とが可能であ る力 この方法は第一鉄塩をかなり多量に必要とするとともに、 固液分 離後の不溶化物 (汚泥) が多量に発生するため、 ランニングコス ト、 廃 棄物処理コス卜の点で不利であつた。
溶解性セレンを嫌気性生物処理によ り単体セレンに還元する③の生物 学的処理法では、 セレン酸イオン及び亜セレン酸イオンの両方を単体セ レンに還元して除去することが可能であるが、 セレンを微量にまで除去 するこ とは難しく、 そのため 0 . 1 m g S e Z 1 以下という新たな排水 基準をク リ アするこ とは困難であった。 すなわち、 セレン濃度が低い排 水の場合には、 嫌気性生物処理だけでも、 セレン濃度を排水基準値以下 にまで低減できることも有り得る。 しかし、 本発明者らの検討によれば、 セレンを比較的高濃度で含有する排水や、 セレン濃度が変動する排水の 場合には、 負荷変動等の原因によ り生物処理が不安定になり、 セレンを 常時排水基準値以下に保ち、 安定した処理を行うのは困難であった。
本発明は、 上記事情に鑑みてなされたもので、 金属塩等の薬品を多量 に使用することなく、 また汚泥を多量に発生させることなく、 セレン含 有排水中から 6価のセレン酸イオン又は 4価の亜セレン酸イオン、 若し く はこれらの両方を高度に除去することができ、 したがって 0 . 1 m g S e / 1 以下という排水基準をク リアすることが可能で、 コス ト的にも 有利なセレン含有排水の処理方法及び装置を提供するこ とを目的とする t 発明の開示
本発明者らは、 前記目的を達成するために鋭意検討を行った結果、 セ レン含有排水中に存在するセレン酸ィォン及び Z又は亜セレン酸ィォン を嫌気性生物処理によ り単体セレンに還元して不溶化して除去し、 さ ら にこの生物処理水にセレン酸ィォン及び 又は亜セレン酸イオンとの反 応によ り不溶性セレン化合物も しくは単体セレンを生成する金属化合物 を添加し、 該生物処理水中に残存するセレン酸イオン及び 又は亜セレ ン酸ィォンを不溶化して除去することによ り、 あるいはその処理水をさ らに濾過するこ とによ り、 該目的が効果的に達成されることを知見した すなわち、 まず嫌気性生物処理を行う ことによ り、 セレン含有排水 (原水) 中に存在するセレン酸イオン及び 又は亜セレン酸イオンを単 体セレンに還元して不溶化し、 除去する。 しかし、 前述したように、 セ レンを比較的高濃度で含有する排水や、 セレン濃度が変動する排水の場 合には、 負荷変動等の原因によ り生物処理が不安定になり、 溶解性セレ ンを十分に除去できずに生物処理水の水質が悪化するこ とが考えられる: そこで、 上記生物処理に続いて、 セレン酸イオン及び Z又は亜セレン 酸ィォンとの反応によ り不溶性セレン化合物も しくは単体セレンを生成 する金属化合物を生物処理水に添加し、 生物処理水中に残存しているセ レン酸イオン及び Z又は亜セレン酸イオンを不溶化した後、 沈殿処理あ るいは浮上処理等の固液分離を行って不溶化物を分離除去する。 これに よ り、 装置全体の処理性能の安定化が達成され、 生物処理水の水質が悪 化した場合においても、 生物処理で除去しきれなかった溶解性セレンを 除去することができ、 セレン含有排水中から 6価のセレン酸イオン及び 又は 4価の亜セレン酸ィォンを微量にまで除去するこ とが可能となる。 また、 このような 2段の処理を行った場合、 前段の生物学的還元処理 でセレン酸イオン及びノ又は亜セレン酸イオンの多く を除去できるので、 後段の化学的処理の負荷を、 同様の処理を単独で行う前記①ゃ②の方法 に比べて大きく下げることができ、 そのため後段の化学的処理における 金属化合物の使用量、 固液分離後の汚泥発生量を大幅に低減させること ができるものである。
さらに、 上記化学的処理に続いて処理後の処理水を濾過し、 処理水中 に漏出する微量のセ レン含有懸濁物を除去することによ り、 セ レン濃度 がよ り一層低減された処理水を得ることができる。
したがって、 本発明は、 セレン含有排水中に存在するセレン酸イオン 及び 又は亜セレン酸イオンを嫌気性生物処理により単体セレンに還元 して不溶化することによってセレン酸イオン及び/又は亜セレン酸ィォ ンを除去する第 1工程と、
第 1 工程を終了した水に金属化合物を添加して、 該水中に残存するセ レン酸イオン及び Z又は亜セレン酸イオンを不溶化して除去する第 2ェ 程とからなるこ とを特徴とするセレン含有排水の処理方法を提供する。
また、 本発明は、 上記第 2工程に続いて、 第 2工程を終了した水をさ らに濾過処理する第 3工程を行う ことを特徴とするセレン含有排水の処 理方法を提供する。
本発明は、 セレン含有排水中に存在するセレン酸イオン及びノ又は亜 セレン酸イオンを嫌気性生物処理によ リ単体セレンに還元して不溶化す ることによってセレン酸イオン及び 又は亜セレン酸イオンを除去する 生物学的処理手段と、
生物学的処理手段による処理を終了した水に金属化合物を添加して、 該水中に残存するセレン酸イオン及びノ又は亜セレン酸イオンを不溶化 して除去する化学的処理手段とを具備することを特徴とするセレン含有 排水の処理装置を提供する。
また、 本発明は、 化学的処理手段による処理を終了した水を濾過処理 する濾過手段をさらに備えたこ とを特徴とするセレン含有排水の処理装 置を提供する。
以下、 本発明方法及び装置についてさ らに詳しく説明する。
[本発明方法]
第 1ェ稃
本発明方法の第 1工程では、 セレン含有排水 (原水) 中に存在する溶 解性セレンを嫌気性生物処理によ り単体セ レンに還元して不溶化する。 析出した単体セレンは、 大部分が余剰汚泥とともに引き抜かれて除去さ れ、 一部は処理水中に漏出する。 この場合、 第 1工程での嫌気性生物処 理は、 通性嫌気性条件で行えばよ く、 絶対嫌気性条件までは要求されな い。 すなわち、 水中に溶存酸素が実質的に存在しない状態 (無酸素状態) であればよく、 硝酸イオン、 亜硝酸イオンといった酸素を含むイオン等 は存在していてもよい。
溶解性セレンを嫌気性生物処理により単体セレンに遝元するには水素 供与体を必要とするが、 必要な水素供与体 (有機物など) がセレン含有 排水 (原水) 中に不足している場合、 第 1 工程において不足分の水素供 与体を被処理水に添加して不足を解消する。 また、 原水中に硝酸イオン や硫酸ィォンが存在し、 かつ溶解性セレンの遝元及び硝酸ィォンゃ硫酸 ィォンの還元に必要な水素供与体が原水中に不足している場合には、 第
1工程において硝酸イオンや硫酸ィォンの還元に必要な水素供与体の量 も考慮して不足分の水素供与体を被処理水に添加することによ り、 不足 を解消することが好ましい。 これは、 硝酸イオンや硫酸イオンの還元に も水素供与体が消費されるからである。
水素供与体と しては、 例えば、 メタノール、 エタノール等のアルコー ル類、 酢酸等の有機酸類、 糖類といった有機物、 あるいは有機物を含む 他の排水を挙げることができる。 また、 水素供与体の添加量は、 水中の 水素供与体の量が化学量論的な必要量の 1 . 3倍量以上となるような添 加量とすることが適当である。 ただし、 水素供与体の添加量が多少不足 し、 溶解性セレンが生物処理により十分に還元されない場合でも、 本発 明では第 2工程で溶解性セレンを化学的に除去するこ とができるという 利点がある。 なお、 水素供与体は生物処理装置の手前で原水に添加して もよく、 生物処理装置内で被処理水に添加してもよい。
第 2ェ稈
本発明方法の第 2工程では、 セレン酸イオン及び Z又は亜セレン酸ィ オンとの反応によ り不溶性セレン化合物 (難溶性セレン化合物を含む) 、 もしく は単体セレンを生成する金属化合物、 すなわちセレン酸イオン及 び Z又は亜セレン酸ィォンと反応して不溶性セレン化合物も しく は単体 セレンを生成するイオンを生じさせる金属化合物を第 1 工程を終了した 水に添加して、 該水中に残存する溶解性セレンを不溶化し、 生成した不 溶化物を凝集沈殿法あるいは凝集浮上法等によ リ除去する。
ところで、 本発明者らの検討によれば、 第 1 工程における通性嫌気性 条件下での嫌気性生物処理では、 溶解性セレンのうちの 6価のセレン酸 イオンは生物による還元反応が進行しやすく、 4価の亜セレン酸イオン あるいは単体セレンに還元されて比較的容易に排水基準値以下にまで還 元除去されること、 したがって第 1工程を終了した水の中には 6価のセ レン酸ィォンはほとんど残存せず、 溶解性セレンとしては還元しきれな かった少量の 4価の亜セレン酸イオンのみが残存しているこ とが多いこ とが判明した。 なお、 6価のセレン酸イオンは 4価の亜セレン酸イオン を経由して単体セレンに還元され、 4価の亜セレン酸イオンは直接単体 セレンに還元されると考えられる。
第 2工程で用いる金属化合物の種類に特に限定はないが、 上記のよう に第 1 工程を終了した水の中に溶解性セレンと して 4価の亜セレン酸ィ オンのみが残存している場合には、 第 2工程の金属化合物と して、 第二 鉄塩、 銅塩、 銀塩、 亜鉛塩、 アルミニウム塩、 マグネシウム塩、 カルシ ゥム塩及びバリ ゥム塩から選ばれる 1種以上の金属塩を好適に用いるこ とができる。 すなわち、 前述したように、 第一鉄塩以外の金属化合物で は 6価のセレン酸イオンを不溶化することが困難であるが、 第 1 工程を 終了した水の中に 6価のセレン酸イオンがほとんど存在せず、 4価の亜 セレン酸イオンのみが残存している場合には、 第一鉄塩以外の金属化合 物を用いることが種々の点、 例えば第一鉄塩よ りも取り扱いやすい点、 被処理水の p H調整が容易である点などで有利である。 上記金属化合物 としては、 水中で F e 3 +、 C u 2 Z n A g A 1 J ' M g 2 +、 C a 2 B a を生成する化合物、 例えば塩化第二鉄、 硫酸銅、 硫酸亜鉛、 塩化銀、 塩化アルミニウム、 硫酸アルミニウム、 硫酸マグネシウム、 塩 化マグネシウム、 塩化カルシウム、 塩化バリ ウム等の金属塩や、 水酸化 カルシウム、 水酸化マグネシウム等を用いるもので、 上記金属イオンと 4価の亜セレン酸ィオンとが反応して不溶性セレン化合物を生成するた め、 これを凝集沈殿法あるいは凝集浮上法等によ り除去する。 また、 上 記金属化合物の添加量は、 鉄等の金属と して残留セレン量の 4 0重量倍 以上、 特に 5 0〜 8 0重量倍とすること適当である。
しかし、 第 1工程の生物処理が、 例えば原水の水質変動や流量変動等 の理由によつて不充分となった場合には、 第 1工程を終了した水の中に 6価のセレン酸イオンが残存することもある。 このような場合には、 第 2工程の金属化合物と して、 6価のセレン酸イオン及び 4価の亜セレン 酸イオンの両方を不溶化する能力のある第一鉄塩を使用することが好ま しい。 この場合には、 前述したように、 F e "の還元作用による溶解性 セレンの単体セレンへの還元、 F e 2 +と溶解性セレンとの反応による不 溶性セレン化合物の生成等によって溶解性セレンが不溶化されるため、 生成した不溶化物を凝集沈殿法あるいは凝集浮上法等により除去する。 また、 第一鉄塩を用いた場合、 第 2工程で水酸化第一鉄のフロックが形 成され、 第 1 工程から漏出する単体セレンや微生物も第 2工程で生成す る水酸化鉄の凝集フロックに吸着され、 分離される。 第 2工程で第一鉄 塩を用いる場合、 該第一鉄塩と しては、 硫酸第一鉄、 塩化第一鉄等の任 意の水溶性第一鉄塩を用いるこ とができる。 また、 第一鉄塩の添加量は、 鉄と して残留セレン量の 4 0重量倍以上、 特に 5 0〜 8 0重量倍とする こと適当である。
第 2工程では、 金属化合物と ともにアルカリ剤 (例えば水酸化ナト リ ゥム) や酸剤 (例えば塩酸) 等の P H調整剤を被処理水に添加し、 被処 理水の p Hを反応に適した範囲に調整して反応を行わせることが適当で ある。 反応に適した被処理水の P Hは使用する金属化合物によつて異な り、 例えば、 第一鉄塩を用いた場合には 8 . 5〜 1 0、 第二鉄塩を用い た場合には 4〜 6、 マグネシウム塩を用いた場合には 1 0〜 1 0 . 5で ある、 また、 この第 2工程では、 高分子凝集剤等の凝集助剤を添加して 凝集処理を行うことが好ましい。
第 3工程
本発明方法の第 3工程では、 第 2工程を終了した水の中に漏出するセ レ ンを含有する不溶化物 (懸濁物質) を濾過処理により除去し、 セレン 濃度のより低減された処理水 (濾過水) を得る。 濾過処理の方法と して は、 濾材ゃ膜 (精密濾過膜や限外濾過膜等) を用いた濾過法等が挙げら れる力 これらに限定されるものではなレ、。
[本発明装置]
牛.物学的処理手段
本発明装置の生物学的処理手段は、 前記第 1 工程を行うものである。 生物学的処理手段の構成に限定はなく、 例えば、 固定床式生物処理法、 流動床式生物処理法、 浮遊式生物処理法、 スラッジブランケッ ト式生物 処理法等による生物処理装置の 1 つからなるもの、 あるいは同種又は異 種の装置の 2つ以上を組み合わせたものなどを使用することができる。 化学的処埤手段
本発明装置の化学的処理手段は、 前記第 2工程を行うものである。 化 学的処理手段の構成に限定はなく、 例えば、 金属化合物添加機構、 p H 調整剤添加機構、 被処理水の撹拌機構などを備えた反応槽と凝集沈澱槽 とを備えた凝集沈殿装置や、 凝集浮上装置を用いることができる。
濾過手段
本発明装置では、 化学的処理手段の下流に濾過手段を配置するこ とに より、 セレン濃度のょ リ低減された処理水 (濾過水) を得るこ とができ る。 この場合、 濾過手段と しては、 例えば、 砂等の濾材や、 精密濾過膜. 限外濾過膜等の膜を備えたものを用いることができる。 図面の簡単な説明 第 1 図は、 本発明に係るセレン含有排水処理装置の一実施例を示すフ 口一図である。 発明を実施するための最良の形態
以下、 添付の図面にしたがって本発明をよ リ詳細に説明する。
第 1 図は本発明に係るセレン含有排水処理装置の一実施例を示すフロ 一図である。 本装置は、 内部に砂利、 焼成骨材、 各種形状のプラスチッ ク等の微生物担体を充填してなる前段の固定床式生物処理装置 2 と後段 の固定床式生物処理装置 4 とが接続された生物学的処理手段 6 と、 反応 槽 δ及び凝集沈澱槽 1 0からなる凝集沈殿装置 1 2 (化学的処理手段) と、 砂濾過器等の濾過装置 1 4 (濾過手段) とからなる。
生物学的処理手段 6 は、 前段の生物処理装置 2 と後段の生物処理装置 4においてセレン含有排水 (原水) 1 6中に存在する溶解性セレンを嫌 気性生物処理によ り不溶性単体セレンに還元し、 除去するものである。 なお、 本例では生物処理装置を二段に設けた態様について説明したが、 生物処理装置は一段であってもよいのは勿論である。
化学的処理手段 1 2は、 生物学的処理手段 6の処理水に反応槽 8内に おいて例えば塩化第一鉄、 塩化第二鉄等の金属塩と水酸化ナト リ ウム等 の Ρ Η調整剤とを添加し、 被処理水の ρ Ηを反応に適した範囲に保った 状態で被処理水を 1 0〜 6 0分程度攪拌するこ とによ リ、 不溶性セレン 化合物あるいは単体セレン、 も しくはこれらのセレン不溶化物と金属水 酸化物との微細フロックを生成させる。 次いで、 反応液を凝集沈澱槽 1 0に導入し、 凝集沈澱槽 1 0において反応液中に高分子凝集剤を添加し, 該反応液中の不溶性セレン化合物や金属水酸化物の微細フロックを粗大 化して沈殿分離する。 このような化学的手段により、 生物学的処理手段 6の処理水中に残存する溶解性セレンを不溶化させ、 沈殿物と して除去 することができるとともに、 セレン濃度の低減された上澄水を得ること ができる。
濾過装置 1 4 (濾過手段) は、 凝集沈澱槽 1 0の流出水 (上澄水) を 濾過して該流出水中に残存するセレンを含む微量の不溶化物を除去する ものであり、 これによ りセレン濃度の一層低減された処理水を得ること ができる。 実験例
以下に述べる実験を行って本発明の効果を確認した。
[実験例 1 ]
水道水に下記成分を下記濃度で溶解したセレン含有模擬排水を原水と し、 下記第 1 〜第 3工程の処理を行った。 なお、 メタノールは水素供与 体、 塩化アンモニゥム及びリ ン酸 2水素力リ ゥムは微生物の栄養源であ る。
原水組成
セレン酸ナト リ ウム ( 6価セレン) 1 0 m g S c / 亜セレン酸ナ ト リ ウム ( 4価セレン) 3 m g S e / 塩化ァンモニゥム 1 m g N / リ ン酸 2水素力リ ウム 0 . 2 m g P / メタノール 7 5 m g C H 3 O H / 第 1工程
固定床式生物処理装置を用いて通性嫌気性条件下で嫌気性生物処理を 行った。 生物処理装置と しては、 容量約 1 . 8 リ ッ トルの円筒状カラム に多孔性の焼成骨材 (オルガノ社製ァクチライ ト) を見かけ容量が 1 . 5 リ ッ トルとなるように充填したものを用いた。 この生物処理装置に被 処理水の滞留時間が約 5時間となるように連続的に原水を通水した 第 2ェ稈
第 1工程終了後の水を反応槽に入れ、 この水に塩化第二鉄を第 1 工程 終了後の水中に残留するセレンに対して鉄と して 5 0重量倍となるよう に添加し、 水酸化ナト リ ウムを用いて被処理水の p Hが 5. 5 ± 0. 5 となるように p H調整を行いながら、 被処理水を 3 0分攪拌した。 これ によ り凝集フロックが生成した。 凝集フロックを静置によ リ沈殿させ、 上澄水を得た。
第 3ェ稈
第 2工程で得られた上澄水を N 0. 5 cの濾紙で濾過し、 濾過水を最 終処理水と した。 第 1工程終了後の中間処理水、 第 2工程で得られた上澄水、 第 3工程 終了後の最終処理水について、 それぞれ 6価のセレン酸イオン ( S e O —) 及び 4価の亜セレン酸イオン ( S e O —) の濃度あるいは全セレ ン濃度を測定した。 その結果、 第 1工程終了後の中間処理水においては、 6価のセレン酸イオンの濃度は 0. 0 2 m g S e Z l 以下 (検出限界以 下) となっていた力 4価の亜セレン酸イオンは約 1 m g S e / 1 の濃 度で残留していた。 これに対し、 第 2工程で得られた上澄水においては、 全セレン濃度と して 0. 0 5 m g S eノ 1 以下に低減されていた。 さ ら に、 第 3工程終了後の最終処理水においては、 セレン酸イオン濃度、 亜 セレン酸イオン濃度はともに 0. 0 2 m g S e / 1 以下にまで低減され ていて、 全セレン量と しても 0. l m g S e / 1 以下となっていた。
[実験例 2 ]
メタノール濃度を 5 0 m g C H 3O HZ】 としたこと以外は実験例 1で 用いた模擬排水と同じセレン含有模擬排水を原水と し、 下記第 1 〜第 3 工程の処理を行つた。 第 i 工程
実験例 1 と同様の嫌気性生物処理を行った。 ただし、 生物処理装置に おける被処理水の滞留時間は約 4時間と した。
第 2ェ稈
第 1 工程終了後の水を反応槽に入れ、 この水に塩化第一鉄を第 1 工程 終了後の水中に残留するセレンに対して鉄と して 5 0重量倍となるよう に添加し、 水酸化ナト リ ウムを用いて被処理水の P Hが 9 . 0 ± 0 . 5 となるように P H調整を行いながら、 被処理水を 3 0分攪拌した。 これ により凝集フロックが生成した。 凝集フロックを静置によ リ沈殿させ、 上澄水を得た。
第 3工程
第 2工程で得られた上澄水を N 0 . 5 cの濾紙で濾過し、 濾過水を最 終処理水とした。 実験例 1 と同様の測定を行った。 その結果、 第 1 工程終了後の中間処 理水においては、 6価のセレン酸ィオンは 9 5 %以上が除去されていた が、 約 0 . 4 m g S e Z 1 が残留していた。 また、 セレン酸イオンの還 元によ リ生じた 4価の亜セレン酸イオン及び原水中にもともと含まれて いた亜セレン酸ィオンが還元しきれず、 約 5 m g S e / 1 残留していた, これに対し、 第 2工程で得られた上澄水においては、 全セレン濃度と し て 0 . 0 7 m g S eノ 1 程度に低減されていた。 さらに、 第 3工程終了 後の最終処理水においては、 セレン酸イオン濃度、 亜セレン酸イオン濃 度はともに 0 . 0 2 m g S e Z 1 以下にまで低減されていて、 全セレン 量と しても 0 . l m g S e / I 以下となっていた。 産業上の利用可能性 以上のように、 本発明によれば、 セレン含有排水中から 6価のセレン 酸イオン又は 4価の亜セレン酸イオン、 若しく はその両方を高度に除去 するこ とができ、 0 . 1 m g S e 1 以下という排水基準をクリ アする こ とが可能である。 また、 化学的処理工程 (第 2工程) での薬品添加量 及び汚泥発生量を低減させるこ とができるので、 ランニングコス ト、 廃 棄物処理コス トの削減を図るこ とが可能である。 したがって、 本発明の 方法及び装置は、 金属精鍊工場排水、 鉱山排水、 火力発電所排水、 ガラ ス工場排水等のセレン含有排水の処理に好適に使用される。

Claims

請 求 の 範 囲
1 . セレン含有排水中に存在するセレン酸イオン及び/又は亜セレン酸 ィォンを嫌気性生物処理によ り単体セレンに還元して不溶化することに よってセレン酸イオン及び Z又は亜セレン酸イオンを除去する第 1工程 と、
第 1工程を終了した水に金属化合物を添加して、 該水中に残存するセ レン酸イオン及びノ又は亜セレン酸イオンを不溶化して除去する第 2ェ 程とからなるこ とを特徴とするセレン含有排水の処理方法。
2 . 第 2工程において、 金属化合物と して第二鉄塩、 銅塩、 銀塩、 亜鉛 塩、 アルミニウム塩、 マグネシウム塩、 カルシウム塩及びバリ ウム塩か ら選ばれる 1種以上を用いる請求項 1 に記載の処理方法。
3 . 金属化合物の添加量を、 金属と して第 1工程を終了した水中に残存 するセレン量の 5 0〜 8 0重量倍とする請求項 2に記載の処理方法。
4 , 第 2工程において、 金属化合物と して第一鉄塩を用いる請求項 1 に 記載の処理方法。
5 . 第一鉄塩の添加量を、 鉄と して第 1工程を終了した水中に残存する セレン量の 5 0〜 8 0重量倍とする請求項 4に記載の処理方法。
6 . 第 2工程に続いて、 第 2工程を終了した水をさ らに濾過処理する第 3工程を行う請求項 1 〜 5のいずれか 1項に記載の処理方法。
7 . セレン含有排水中に存在するセレン酸イオン及び/又は亜セ レン酸 ィォンを嫌気性生物処理によ り単体セレンに還元して不溶化することに よってセレン酸イオン及びノ又は亜セレン酸イオンを除去する生物学的 処理手段と、
生物学的処理手段による処理を終了した水に金属化合物を添加して、 該水中に残存するセレン酸ィオン及び/又は亜セレン酸ィォンを不溶化 して除去する化学的処理手段とを具備するこ とを特徴とするセレン含有 排水の処理装置。
8 . 化学的処理手段による処理を終了した水を濾過処理する濾過手段を さらに備えた請求項 7 に記載の処理装置。
9 . 化学的処理手段に、 被処理水に P H調整剤を添加する p H調整剤添 加機構を設けた請求項 7又は 8に記載の処理装置。
PCT/JP1997/000876 1996-03-19 1997-03-18 Procede et dispositif pour traiter des eaux usees contenant du selenium WO1997034837A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/142,906 US6033572A (en) 1996-03-19 1997-03-18 Method and apparatus for treating selenium-containing waste water
EP97907366A EP0891951A4 (en) 1996-03-19 1997-03-18 METHOD AND DEVICE FOR TREATING WASTEWATER CONTAINING SELENIUM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9004596 1996-03-19
JP8/90045 1996-03-19
JP15302796A JP3445901B2 (ja) 1996-03-19 1996-05-24 セレン含有排水の処理方法及び装置
JP8/153027 1996-05-24

Publications (1)

Publication Number Publication Date
WO1997034837A1 true WO1997034837A1 (fr) 1997-09-25

Family

ID=26431562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000876 WO1997034837A1 (fr) 1996-03-19 1997-03-18 Procede et dispositif pour traiter des eaux usees contenant du selenium

Country Status (5)

Country Link
US (1) US6033572A (ja)
EP (1) EP0891951A4 (ja)
JP (1) JP3445901B2 (ja)
CA (1) CA2249433A1 (ja)
WO (1) WO1997034837A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113710621B (zh) * 2019-04-24 2023-12-05 三菱重工动力环保有限公司 废水处理方法和废水处理系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183644B1 (en) * 1999-02-12 2001-02-06 Weber State University Method of selenium removal
US6251283B1 (en) * 1999-09-03 2001-06-26 Perma-Fix Environmental Services, Inc. Methods for removing selenium from a waste stream
JP4114091B2 (ja) * 1999-12-03 2008-07-09 公彦 岡上 液体浄化装置
US7419602B2 (en) * 2005-11-22 2008-09-02 Conocophillips Company Selenium removal from water
US7378022B2 (en) 2006-06-06 2008-05-27 Honeywell International Inc. System and methods for biological selenium removal from water
US7413664B2 (en) * 2006-12-15 2008-08-19 Conocophillips Company Selenium removal process
US9969639B2 (en) 2012-10-12 2018-05-15 Bruce Merrill Thomson Anaerobic suspended growth treatment of contaminated water
US20140263043A1 (en) * 2013-03-15 2014-09-18 Infilco Degremont, Inc. S/m for biological treatment of wastewater with selenium removal
US20140319068A1 (en) * 2013-04-24 2014-10-30 Kemira Oyj Methods for treating metals and metalloids
JP6088378B2 (ja) * 2013-07-25 2017-03-01 オルガノ株式会社 セレン含有水の処理方法およびセレン含有水の処理装置
JP6204146B2 (ja) 2013-10-16 2017-09-27 三菱重工業株式会社 排水処理方法及び排水処理装置
US10745309B2 (en) * 2015-03-11 2020-08-18 Bl Technologies, Inc. Multi-step system for treating selenium-containing wastewater
US9833741B2 (en) 2015-08-24 2017-12-05 Doosan Heavy Industries & Constructions Co., Ltd. Submerged membrane filtration system using reciprocating membrane
CN105236675B (zh) * 2015-10-14 2017-11-14 深圳职业技术学院 一种电镀废水处理的方法及电镀废水处理装置
CN108779007A (zh) * 2016-02-17 2018-11-09 菲利浦66公司 从废水中去除污染物
EP3478637B1 (en) * 2016-06-30 2020-08-05 BL Technologies, Inc. Process for selenium removal with biological, chemical and membrane treatment
JP6976875B2 (ja) * 2018-01-31 2021-12-08 一般財団法人電力中央研究所 水溶性セレンの分析方法並びにそれを利用したセレン含有排水の排水処理システム
JP2019171291A (ja) * 2018-03-28 2019-10-10 栗田工業株式会社 セレン含有水の処理方法及び処理装置
US20220055933A1 (en) * 2018-12-28 2022-02-24 Kemira Oyj Methods and compositions for treating industrial wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830558B1 (ja) * 1970-01-19 1973-09-21
US4725357A (en) * 1985-07-11 1988-02-16 Epoc Limited Removing selenium from water
JPH0578105A (ja) * 1991-07-23 1993-03-30 Mitsubishi Materials Corp セレン含有廃水の処理方法
JPH08267076A (ja) * 1995-03-28 1996-10-15 Dowa Mining Co Ltd セレン含有排水の処理方法
JPH08299986A (ja) * 1995-05-08 1996-11-19 Kurita Water Ind Ltd セレン含有水の処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7211224A (ja) * 1971-08-20 1973-02-22 S Silvestre
US4519913A (en) * 1984-06-01 1985-05-28 Kerr-Mcgee Corporation Process for the removal and recovery of selenium from aqueous solutions
DE3436453A1 (de) * 1984-10-05 1986-04-17 Bayer Ag, 5090 Leverkusen Verfahren zur reinigung von abwasser
US4910010A (en) * 1987-03-20 1990-03-20 Khalafalla S E Method for accelerating recovery of selenium from aqueous streams
US5009786A (en) * 1989-10-30 1991-04-23 The United States Of America As Represented By The Secretary Of The Interior Selenate removal from waste water
JP3799634B2 (ja) * 1995-11-10 2006-07-19 栗田工業株式会社 セレン含有水の処理方法
US5976376A (en) * 1995-11-10 1999-11-02 Mitsubishi Jukogyo Kabushiki Kaisha Sewage treatment process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830558B1 (ja) * 1970-01-19 1973-09-21
US4725357A (en) * 1985-07-11 1988-02-16 Epoc Limited Removing selenium from water
JPH0578105A (ja) * 1991-07-23 1993-03-30 Mitsubishi Materials Corp セレン含有廃水の処理方法
JPH08267076A (ja) * 1995-03-28 1996-10-15 Dowa Mining Co Ltd セレン含有排水の処理方法
JPH08299986A (ja) * 1995-05-08 1996-11-19 Kurita Water Ind Ltd セレン含有水の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0891951A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113710621B (zh) * 2019-04-24 2023-12-05 三菱重工动力环保有限公司 废水处理方法和废水处理系统

Also Published As

Publication number Publication date
US6033572A (en) 2000-03-07
EP0891951A4 (en) 1999-09-29
CA2249433A1 (en) 1997-09-25
JPH09308895A (ja) 1997-12-02
EP0891951A1 (en) 1999-01-20
JP3445901B2 (ja) 2003-09-16

Similar Documents

Publication Publication Date Title
WO1997034837A1 (fr) Procede et dispositif pour traiter des eaux usees contenant du selenium
USRE36915E (en) Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
US6106717A (en) Method for treating organic waste water
JP5128735B2 (ja) 排水中のリンおよび凝集剤回収再利用方法
US5647996A (en) Groundwater total cyanide treatment method
JP2002316173A (ja) 砒素及び過酸化水素を含有する排水の処理方法
US3716484A (en) Process for substantial removal of phosphates from wastewaters
JP3442205B2 (ja) リン含有汚水の処理方法
JPH0366036B2 (ja)
JP2002205077A (ja) 有機性汚水の処理方法及び装置
JP3382766B2 (ja) し尿系汚水の処理方法およびその装置
JPH03270800A (ja) 有機性汚水の処理方法
JP2007117816A (ja) 水質浄化方法および装置
JPH11319889A (ja) セレン含有排水の処理方法及び装置
JPH0720583B2 (ja) 含リン排水の処理方法
JPS6320600B2 (ja)
Convery Treatment techniques for removing phosphorus from municipal wastewaters
JP2601441B2 (ja) 排水処理方法
JPH0679715B2 (ja) 有機性汚水の生物学的処理方法
JP2002326088A (ja) リン、cod含有水の処理方法及び装置
JPH0433518B2 (ja)
JPH10156391A (ja) 下水処理水から回収したリンの処理方法
JPS63258692A (ja) 有機性汚水の処理方法
JPH11128982A (ja) セレン含有排水の処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2249433

Country of ref document: CA

Ref country code: CA

Ref document number: 2249433

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997907366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09142906

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997907366

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997907366

Country of ref document: EP