USRE36915E - Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals - Google Patents

Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals Download PDF

Info

Publication number
USRE36915E
USRE36915E US08/032,581 US3258193A USRE36915E US RE36915 E USRE36915 E US RE36915E US 3258193 A US3258193 A US 3258193A US RE36915 E USRE36915 E US RE36915E
Authority
US
United States
Prior art keywords
stream
ferrous
sulfide
ion
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/032,581
Inventor
Dan F. Suciu
Penny M. Wikoff
John M. Beller
Charles J. Carpenter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Priority to US08/032,581 priority Critical patent/USRE36915E/en
Application granted granted Critical
Publication of USRE36915E publication Critical patent/USRE36915E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • Y10S210/913Chromium

Definitions

  • the present invention relates to a method for treating industrial waste waters containing high levels of hexavalent chromium and other heavy metals, and more particularly to a method for efficient reduction of hexavalent chromium to trivalent chromium in a waste treatment process wherein acceptable sludge levels are produced as compared to processes known in the art.
  • Additional methods of Cr +6 reduction include use of ferrous sulfate, sodium sulfide, a combination of both ferrous sulfate and sodium sulfide, and use of sodium borohydride.
  • the Cr +6 usually exists as HCrO 4 -
  • hexavalent chromium exists as CrO 4 -2 .
  • Reduction with ferrous ion, such as with ferrous sulfate, at acidic pH proceeds as,
  • the rate of Cr +6 reduction using an amount of ferrous ion substantially in excess of the stoichiometric amount proceeds faster than using a stoichiometric amount.
  • the rate is based upon the reaction of HCrO 4 - .
  • Sulfur compounds (S +4 ) can reduce Cr +6 at pH less than 3, the rate slowing logarithmically with increased pH.
  • H 2 S is the predominant specie at acidic conditions, while at neutral or alkaline pH conditions, the predominant species are HS - and CrO 2 -2 .
  • ferrous ion is present as ferrous sulfate
  • Cr +6 is rapidly reduced at neutral and alkaline pH. The ferrous ion appears to catalyze the sulfide reaction.
  • ferrous ion is not efficient by itself in reducing Cr +6 since only one electron is available per iron atom. A large quantity of iron hydroxide sludge is therefore produced. Ferrous ion and sulfide would appear to be the best combination for reducing and precipitating Cr +6 at neutral or near neutral conditions.
  • the free sulfide reacts with a heavy metal to form a precipitate.
  • the metal sulfides that precipitate by this process can form extremely fine colloidal particles (pin floc). Under alkaline operating conditions, evolution of hydrogen sulfide gas is minimal.
  • the insoluble sulfide (SulfexTM) process uses freshly precipitated ferrous sulfide to precipitate heavy metals from a metal finishing waste stream.
  • the freshly precipitated ferrous sulfide has substantially more reactive sites than pulverized iron sulfide and results in Cr +6 reduction and precipitation in one step (see U.S. Pat. Nos. 3,740,331 and 4,102,784).
  • a process for treating industrial waste water containing hexavalent chromium (Cr +6 ) and other heavy metals which comprises reduction of Cr +6 to Cr +3 and the precipitation thereof with other heavy metals by addition of sulfide ion and ferrous ion to the waste stream at a pH of about 7 to 9.
  • Polymers are added to the solution to assist flocculation and clarification of the waste stream.
  • the invention comprises adding sulfide ion in a sulfide to hexavalent chromium ratio of about 0.7-2.5:1 and adding ferrous ion in a ferrous to hexavalent chromium ratio of about 0.5-5.0:1.
  • the waste stream pH is preferably maintained in the range of about 7.2 to 7.5.
  • Sludge production by the process of the invention is substantially less than that characteristic of prior art processes.
  • the sludge bed may be used as a filter to remove floccules from the waste stream after precipitation of heavy metals. A portion of the sludge may be recirculated through the waste water stream to aid flocculation and clarification. Use of ultrasonic energy enhanced the Cr +6 to Cr +3 reduction rate.
  • FIG. 1 depicts a bench scale industrial waste treatment plant for illustration of the process of the invention
  • FIG. 2 shows graphs of Cr +6 remaining in test solution after partial or total reduction to Cr +3 as functions of ferrous concentration at various sulfide concentrations
  • FIG. 3 is a graph of Cr +6 remaining in test solution after partial reduction to Cr +3 as a function of pH
  • FIG. 4 is a graph of Cr +6 remaining in test solution after partial reduction to Cr +3 as a function of sulfide concentration in the presence of added heavy metals;
  • FIG. 5 shows graphs of Cr +6 remaining in electroplating waste solution after partial or total reduction to Cr +3 as a function of ferrous concentration at various sulfide concentrations
  • FIG. 6 is a graph of Cr +6 remaining in electroplating waste solution after partial or total reduction to Cr +3 as a function of pH
  • FIG. 7 shows graphs of Cr +6 remaining in a waste treatment plant influent stream after partial or total reduction to Cr +3 as a function of ferrous concentration at various sulfide concentrations
  • FIG. 8 shows graphs of total chromium remaining in solution as a function of ferrous concentration at various sulfide concentrations
  • FIG. 9 depicts a pilot scale waste treatment plant used in demonstration of the invention.
  • FIG. 10 depicts a solids contact clarifier of FIG. 8 used in demonstration of the invention.
  • FIG. 11 shows graphs of Cr +6 remaining in solution as a function of pH at two different S:Fe:Cr +6 ratios
  • FIG. 12 is a graph of optimum process operational ranges of the invention.
  • FIG. 13 is a graph of Cr +6 reduction versus time with and without application of ultrasonic energy.
  • the commercially available SulfexTM process is intended for precipitation of heavy metals, (not Cr +6 reduction) and produces a greater quantity of sludge than the conventional acid/SO 2 /lime process.
  • the process described in U.S. Pat. No. 4,705,639 referred to above is directed to a waste treatment scheme similar to that described herein; that prior process assumes 90-100% efficiency in transfer of electrons from a donor source to a selective recipient in a waste water stream containing many different and competitive ions. Such a process efficiency is not practical, and substantial excesses over stoichiometric quantities of treatment constituents may be required to effectively precipitate most heavy metal.
  • the invention can be illustrated by the following examples performed in demonstration of the invention and in definition of the process parameters thereof.
  • the appropriate volume of a 1,000 mg/L ferrous solution (as FeSO 4 /7H 2 O) was added. It may be noted here that in the practice of the invention described herein the ferrous ion may be added in the form either as sulfate or chloride. The volume was brought to 1,000 ml with distilled water and pH adjusted again while the solutions were stirred at 100 rpm. After six minutes, mixing was slowed to 20 rpm for two minutes, during which period final pH adjustments were made. Stirring was stopped and the solutions were allowed to stand for two minutes. If required, the solution was filtered using a funnel with a cotton plug.
  • Sludge production was determined using four-liter volumes of the appropriate solution. Sufficient sodium sulfide and ferrous sulfate were added and the pH was adjusted with nitric acid to 7.2-7.5. Flocculant was added and mixing ceased. The floc was allowed to settle before vacuum filtering through a #4 Whatman filter paper. Wet and dry weights were determined by weighing the dry filter paper and the wet filter paper before and after filtering and after drying overnight at 103° C.
  • FIG. 1 shown therein is a schematic of bench scale plexiglass system 10, simulating an existing ALC industrial waste treatment plant, which was used for dynamic tests in demonstration of the invention.
  • Sodium sulfide solution 19 was added through pipe 21 into mixer 11.
  • Ferrous sulfate solution 23 was added through pipe 25 into mixer 12 and cationic polymers 27 were added through pipe 29 into mixer 13.
  • Effluent 31 of mixer 13 was fed using pump 32 through conduit 33 into clarifier 35.
  • Nitric acid was added to mixer 12 to maintain the pH therein at about 7.2-7.5.
  • Anionic polymers 37 were fed into conduit 33 in front of clarifier 35 as at inlet 39.
  • Effluent 31 from mixer 13 was fed to the center of clarifier 35 where it flowed upwardly through sludge blanket 41.
  • Sample ports 43 were provided for withdrawing samples from either sludge blanket 41 or solution 45 thereabove.
  • the uppermost sample port 43 functioned as a continuous outlet for solution 45.
  • Outlet 47 allowed discharge of sludge 46 from sludge blanket 41.
  • FIG. 2 shown therein are graphs of Cr +6 remaining in solution after partial or total reduction to Cr +3 as functions of ferrous concentration at the various designated sulfide concentrations. At relatively low ferrous concentrations, little or no reduction of Cr +6 occurred, even at high sulfide concentrations. Although high concentrations of sulfide were shown to be more efficient in reducing Cr +6 than lower concentrations (see discussion infra re FIG. 5), relatively high sulfide concentrations resulted in fine precipitates and solutions which remained cloudy after filtering through cotton.
  • FIG. 2 shown therein are graphs of Cr +6 remaining in solution after partial or total reduction to Cr +3 as functions of ferrous concentration at the various designated sulfide concentrations. At relatively low ferrous concentrations, little or no reduction of Cr +6 occurred, even at high sulfide concentrations. Although high concentrations of sulfide were shown to be more efficient in reducing Cr +6 than lower concentrations (see discussion infra re FIG. 5), relatively
  • Residual Cr +6 as a function of pH at optimum sulfide and ferrous concentrations is shown in FIG. 3 and illustrates that Cr +6 can be removed to TABLE I limits between pH 7 and 9. At higher pH (above 9) a black precipitate formed.
  • Jar tests on electroplating waste were conducted similarly to those of EXAMPLE I. Day-to-day concentration variations in the waste was ameliorated somewhat by collecting 40 gallons of electroplating waste from the subject ALC plant. Cr +6 concentration in the waste was extremely high (about 350 mg/L). Sufficient waste was diluted with distilled water to form a 100 liter solution of 55 mg/L Cr +6 for use in the tests in order to simulate average electroplating waste. One liter of the diluted waste solution was placed in a beaker and the pH adjusted to 7.2-7.5 with caustic (initial pH was 4.0). The solutions were stirred at 100 rpm while the desired volume of a 2,000 mg/L sulfide solution was added.
  • Sulfide and ferrous ion requirements for reduction and precipitation of the electroplating wastes are shown in FIG. 5.
  • Optimum reagent requirements for 55 mg/L Cr +6 are shown as 56 mg/L sulfide and 50.0 mg/L ferrous ion as determined by the theoretical sludge production shown in TABLE V.
  • ferrous and sulfide ions in higher-than-optimal concentrations although effective to a degree in reducing Cr +6 , result in black water (a fine suspension of FeS that does not filter out or precipitate with the floccules) and corresponding high concentrations of soluble metals in the solutions.
  • FIG. 6 shows Cr +6 remaining in solution to be below TABLE I limits between pH 7.2 and 8.2 but to increase dramatically above pH 9.0.
  • Waste water typically comprising influent to the subject ALC waste treatment plant was collected for jar testing. Analysis of the influent is shown in TABLE VI.
  • the pH was lowered from 9.5 to 7.3 with nitric acid and beakers were filled with one liter of the resulting solution. Each solution was stirred at 100 rpm as the desired volume of 1,000 mg/L sulfide solution was added and stirring was continued for six minutes. The appropriate volume of 1,000 mg/L ferrous solution was added, pH adjusted, and stirring continued for six minutes at 100 rpm. Stirring was slowed to 20 rpm for two minutes to allow floc formation, pH adjustments were made, and stirring was stopped. The solutions sat undisturbed for two minutes, and if necessary were filtered through cotton.
  • TABLE IX Data on the jar tests conducted in demonstration of the invention are summarized in TABLE IX.
  • Data of TABLE IX show that the chemistry of Cr +6 reduction to Cr +3 according to the process of the invention is concentration dependent for several species, particularly Fe +2 and HS - .
  • FIG. 7 shows that high sulfide concentration are efficient in reducing Cr +6 , but that too high a concentration hinders floccule precipitation, as suggested in FIG. 8.
  • a pilot scale field verification test unit was constructed at the subject ALC industrial waste treatment plant, designed to replicate flow characteristics and retention times of the on-site waste treatment facility in demonstration of the process of the
  • the pilot plant 50 is shown in FIG. 9 and comprises an equalization tank 51, mixer tanks 53, 54, 55, chemical feed tanks 57, a 330-gallon solids contact clarifier 59, activated sludge bed 61 and final clarifier 63.
  • equalization tank 51 In order to minimize effects on the operation of pilot plant 50 of day-to-day perturbations in the effluent from the electroplating facility (not shown in FIG. 9), waste therefrom was held in reservoir 52 and periodically pumped to equalization tank 51. Sulfuric acid and caustic were used to control pH of waste influent in tank 51.
  • Mixer tanks 53, 54, 55 were operated similarly to that suggested for the FIG.
  • FIG. 10 shown is a solids contact clarifier 59 typical of that usable in the system of FIG. 9 in demonstration of the invention.
  • Influent 70 from mixer 55 (FIG. 9) fed into center well 71 of clarifier 59 is integrated with anionic polymer 73 (e.g. Betz 1120) and external sludge flow 74 which is circulated from sludge bed 85 through opening 75 in the bottom of clarifier 59 and through valved conduit and pump means 77.
  • Waste stream 70, polymer 73 and external sludge flow 74 are mixed in mixing chamber 79.
  • An internal sludge flow 80 is moved into mixing chamber 79 and mixed using mixer 81.
  • Liquid 82 with entrained floc and metal spills through openings 83 into mixing chamber 79 internally of intermediate skirt 84 and onto sludge bed 85. Fluids within skirt 84 percolate through the sludge bed, which percolation filters out floc, and flows as substantially clear effluent 86 from under the wall defining skirt 84 and into collecting chamber 87. Effluent 86 is collected in weir 89 and withdrawn through conduit 90 to activated sludge bed 61 (FIG. 9).
  • Rake 91 moving at slow speed (typically 3 rpm) around the bottom of clarifier 59 moves sludge to the sludge outlets and prevents channeling of sludge bed 85 by effluent 86.
  • Ferrous solutions were made using ferrous sulfate heptahydrate while sulfide solutions were prepared from stock sodium sulfide. Concentrated sulfuric acid was added to each batch to decrease the amount of ferrous oxidized to ferric ion.
  • FIG. 11 shows the effect of pH using a feed ratio into mixer tank 54 of 1.75 mg/L sulfide to 1 mg/L ferrous to 1 mg/L Cr +6 and a ratio of 2.0 mg/L sulfide to 1.5 mg/L ferrous to 1 mg/L Cr +6 .
  • FIG. 12 illustrates preferred operational ranges for the process of the invention.
  • the ratios of S -2 and Fe +2 to Cr +6 are expressed in mg/L per mg/L Cr +6 .
  • the optimum process operational ranges are from about 1.3-1.7 mg/L S -2 per mg/L Cr +6 and from about 0.85-3.00 mg/L Fe +2 per mg/L Cr +6 at pH of 7.2-8.4. While the process of the invention will operate outside the preferred ranges, FIG. 12 defines operating conditions wherein operation of the process is unexpectedly efficient in accordance with an underlying principle of the invention.
  • the invention therefore provides an improved method for treating industrial waste waters containing high levels of hexavalent chromium and other heavy metals by reduction of hexavalent chromium to trivalent chromium in the waste treatment process and wherein acceptably small amounts of sludge are produced. It is understood that modifications to the invention may be made as might occur to one with skill in the field of the invention within the scope of the appended claims. All embodiments contemplated hereunder which achieve the objects of the invention have therefore not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or the scope of the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A process for treating industrial waste water containing hexavalent chromium (Cr+6) and other heavy metals is disclosed which comprises reduction of Cr+6 to trivalent chromium (Cr+3) and the precipitation thereof with other heavy metals by addition of sulfide ion and ferrous ion to the waste stream at a pH of about 7 to 9 under conditions such that sludge production by the process of the invention is substantially less than that characteristic of prior art processes. Polymers are added to the solution to assist flocculation and clarification of the waste stream. More specifically, the invention comprises adding sulfide ion in a sulfide to hexavalent chromium ratio of about 0.7-2.5:1 and adding ferrous ion in a ferrous to hexavalent chromium ratio of about 0.5-5.0:1. The waste stream pH is preferably maintained in the range of about 7.2 to 7.5.

Description

RIGHTS OF THE GOVERNMENT
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating industrial waste waters containing high levels of hexavalent chromium and other heavy metals, and more particularly to a method for efficient reduction of hexavalent chromium to trivalent chromium in a waste treatment process wherein acceptable sludge levels are produced as compared to processes known in the art.
Industrial waste treatment plants downstream from electroplating facilities are generally subjected to industrial wastes which contain relatively high levels of numerous toxic heavy metals in concentrations which often fail to meet National Pollutant Discharge Elimination Permit levels. Therefore, such waste water must be treated to reduce the levels of heavy metals to within discharge permit limits. The metals typically contained in these waste waters include chromium, cadmium, copper, lead, zinc, nickel and aluminum. Presently known processes for the treatment of such waste waters produce large quantities of metal-bearing sludges which are classified as hazardous wastes requiring special and costly handling and transport and disposal in hazardous waste landfills. While numerous processes exist for the precipitation of most heavy metals, hexavalent chromium (Cr+6) cannot conveniently be precipitated without first reducing the Cr+6 to trivalent chromium (Cr+3). The process for reducing Cr+6 to Cr+3 presently being used by a number of electroplating facilities utilizes sulfur dioxide in the reaction,
2CrO.sub.4.sup.-2 +3SO.sub.2 +2H.sub.2 SO.sub.4 →2Cr.sup.+3 +5SO.sub.4.sup.-2 +2H.sub.2 O                             (1)
Other methods of acidic reduction of Cr+6 include use of sodium sulfite, sodium bisulfite and ferrous compounds. For example, the reaction utilizing sodium sulfite is,
2CO.sub.4.sup.-2 +3Na.sub.2 SO.sub.3 +5H.sub.2 SO.sub.4 →2Cr.sup.-3 +8SO.sub.4.sup.-2 +5H.sub.2 O+6Na.sup.+                   (2)
Additional methods of Cr+6 reduction include use of ferrous sulfate, sodium sulfide, a combination of both ferrous sulfate and sodium sulfide, and use of sodium borohydride. At acidic pH, the Cr+6 usually exists as HCrO4 -, while at alkaline pH, hexavalent chromium exists as CrO4 -2. Reduction with ferrous ion, such as with ferrous sulfate, at acidic pH proceeds as,
3FeSO.sub.4 +HCrO.sub.4.sup.- +7H.sup.+ →3Fe.sup.+3 +Cr.sup.+3 +4H.sub.2 O+3SO.sub.4.sup.-2                              (3)
The rate of Cr+6 reduction using an amount of ferrous ion substantially in excess of the stoichiometric amount proceeds faster than using a stoichiometric amount. The rate is based upon the reaction of HCrO4 -. Sulfur compounds (S+4) can reduce Cr+6 at pH less than 3, the rate slowing logarithmically with increased pH. H2 S is the predominant specie at acidic conditions, while at neutral or alkaline pH conditions, the predominant species are HS- and CrO2 -2. When ferrous ion is present as ferrous sulfate, Cr+6 is rapidly reduced at neutral and alkaline pH. The ferrous ion appears to catalyze the sulfide reaction. However, ferrous ion is not efficient by itself in reducing Cr+6 since only one electron is available per iron atom. A large quantity of iron hydroxide sludge is therefore produced. Ferrous ion and sulfide would appear to be the best combination for reducing and precipitating Cr+6 at neutral or near neutral conditions.
Metal precipitation by soluble sulfides require a sulfide source more soluble than the metal to be precipitated. Sodium sulfide dissociates readily into sodium and sulfide ions:
Na.sub.2 S+H.sub.2 O→2Na.sup.+ +S.sup.-2 +H.sub.2 O (4)
The free sulfide reacts with a heavy metal to form a precipitate. The metal sulfides that precipitate by this process can form extremely fine colloidal particles (pin floc). Under alkaline operating conditions, evolution of hydrogen sulfide gas is minimal.
It was previously proposed in U.S. Pat. No. 4,705,639 (Nov. 10, 1987) that a ferrous/sulfide process for reduction of Cr+6 and precipitation of Cr+3 and other heavy metals was possible in heavy metal contaminated waste water at pH of from about 8-10, and using about 90% stoichiometric sulfide and about 10-20% stoichiometric ferrous ion.
The insoluble sulfide (Sulfex™) process uses freshly precipitated ferrous sulfide to precipitate heavy metals from a metal finishing waste stream. The freshly precipitated ferrous sulfide has substantially more reactive sites than pulverized iron sulfide and results in Cr+6 reduction and precipitation in one step (see U.S. Pat. Nos. 3,740,331 and 4,102,784).
It is therefore a principle object of the invention to provide an improved industrial waste treatment process.
It is another object of the invention to provide an improved waste water treatment process for removing heavy metals therefrom.
It is yet another object of the invention to provide a waste water treatment process for reducing contained hexavalent chromium to trivalent chromium and precipitation thereof from the waste water along with other heavy metals.
It is yet another object of the invention to provide a waste water treatment process for removing chromium and other heavy metals from the waste water with the accompanying generation of minimum amounts of sludge.
These and other objects of the invention will become apparent as the detailed description of representative embodiments proceeds.
SUMMARY OF THE INVENTION
In accordance with the foregoing principles and objects of the present invention, a process for treating industrial waste water containing hexavalent chromium (Cr+6) and other heavy metals is disclosed which comprises reduction of Cr+6 to Cr+3 and the precipitation thereof with other heavy metals by addition of sulfide ion and ferrous ion to the waste stream at a pH of about 7 to 9. Polymers are added to the solution to assist flocculation and clarification of the waste stream. More specifically, the invention comprises adding sulfide ion in a sulfide to hexavalent chromium ratio of about 0.7-2.5:1 and adding ferrous ion in a ferrous to hexavalent chromium ratio of about 0.5-5.0:1. The waste stream pH is preferably maintained in the range of about 7.2 to 7.5.
Sludge production by the process of the invention is substantially less than that characteristic of prior art processes. In practicing the invention, the sludge bed may be used as a filter to remove floccules from the waste stream after precipitation of heavy metals. A portion of the sludge may be recirculated through the waste water stream to aid flocculation and clarification. Use of ultrasonic energy enhanced the Cr+6 to Cr+3 reduction rate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts a bench scale industrial waste treatment plant for illustration of the process of the invention;
FIG. 2 shows graphs of Cr+6 remaining in test solution after partial or total reduction to Cr+3 as functions of ferrous concentration at various sulfide concentrations;
FIG. 3 is a graph of Cr+6 remaining in test solution after partial reduction to Cr+3 as a function of pH;
FIG. 4 is a graph of Cr+6 remaining in test solution after partial reduction to Cr+3 as a function of sulfide concentration in the presence of added heavy metals;
FIG. 5 shows graphs of Cr+6 remaining in electroplating waste solution after partial or total reduction to Cr+3 as a function of ferrous concentration at various sulfide concentrations;
FIG. 6 is a graph of Cr+6 remaining in electroplating waste solution after partial or total reduction to Cr+3 as a function of pH;
FIG. 7 shows graphs of Cr+6 remaining in a waste treatment plant influent stream after partial or total reduction to Cr+3 as a function of ferrous concentration at various sulfide concentrations;
FIG. 8 shows graphs of total chromium remaining in solution as a function of ferrous concentration at various sulfide concentrations;
FIG. 9 depicts a pilot scale waste treatment plant used in demonstration of the invention;
FIG. 10 depicts a solids contact clarifier of FIG. 8 used in demonstration of the invention;
FIG. 11 shows graphs of Cr+6 remaining in solution as a function of pH at two different S:Fe:Cr+6 ratios;
FIG. 12 is a graph of optimum process operational ranges of the invention; and
FIG. 13 is a graph of Cr+6 reduction versus time with and without application of ultrasonic energy.
DETAILED DESCRIPTION OF THE INVENTION
While the invention will be described primarily as related to processing waste streams from an electroplating facility, it will be appreciated that the process is useful for any waste stream containing appreciable amounts of heavy metal in order to minimize sludge generation. The reduction of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), while important in treating waste water comprising electroplating effluent, is not by itself the primary point of invention herein. The thrust of the invention is the treatment of metal bearing waste water in a novel process wherein significantly lower quantities of sludge are produced than is possible using conventional waste water treating processes.
Environmental Protection Agency (EPA) imposed limits for heavy metal concentrations in effluent from waste treatment plants at the Air Logistics Centers (ALCs) are set forth in TABLE 1.
              TABLE I                                                     
______________________________________                                    
                 Concentration                                            
Constituent      (mg/L)                                                   
______________________________________                                    
Cadmium. Total    0.03                                                    
Chromium. Total  1.0                                                      
Chromium. Hexavalent                                                      
                 0.1                                                      
Copper. Total    0.1                                                      
Lead. Total      0.1                                                      
Nickel. Total    1.0                                                      
Zinc. Total      1.0                                                      
______________________________________                                    
Since 1980, the EPA has classified sludges bearing concentrations of such metals above permit limits as hazardous wastes and have required disposal in hazardous waste landfills, typically at a cost greater than $168 per ton. While certain processes, such as sludge dewatering, have been implemented to reduce the amount of sludge produced, no processes to date have been effective to reduce appreciably the amounts of generated sludge.
The commercially available Sulfex™ process is intended for precipitation of heavy metals, (not Cr+6 reduction) and produces a greater quantity of sludge than the conventional acid/SO2 /lime process. The process described in U.S. Pat. No. 4,705,639 referred to above is directed to a waste treatment scheme similar to that described herein; that prior process assumes 90-100% efficiency in transfer of electrons from a donor source to a selective recipient in a waste water stream containing many different and competitive ions. Such a process efficiency is not practical, and substantial excesses over stoichiometric quantities of treatment constituents may be required to effectively precipitate most heavy metal.
The invention can be illustrated by the following examples performed in demonstration of the invention and in definition of the process parameters thereof.
EXAMPLE I
Analyses were made of Cr+6 reduction and heavy metal removal in distilled water and electroplating wastes. Jar tests were conducted using Phipps and Bird six-paddle stirrer with an illuminated base. Beakers were filled with 800 ml of distilled water and 10 ml of a 2,000 milligrams per liter (mg/L) Cr+6 solution. The pH of each solution was adjusted with either caustic or lime. Appropriate volumes of 1,000 mg/L S-2 solution (Na2 S/9H2 O) was added to each beaker. The solutions were stirred at 100 rpm while the pH of each was adjusted as desired. After six minutes of stirring, the appropriate volume of a 1,000 mg/L ferrous solution (as FeSO4 /7H2 O) was added. It may be noted here that in the practice of the invention described herein the ferrous ion may be added in the form either as sulfate or chloride. The volume was brought to 1,000 ml with distilled water and pH adjusted again while the solutions were stirred at 100 rpm. After six minutes, mixing was slowed to 20 rpm for two minutes, during which period final pH adjustments were made. Stirring was stopped and the solutions were allowed to stand for two minutes. If required, the solution was filtered using a funnel with a cotton plug.
Cr+6 was determined using the 1,5-diphenyl carbohydrazide method and standard Hach Chemical Company procedures. Ferrous concentration was determined using the Hach procedures for the 1,10-phenanthroline method. Sulfide was determined using the Hach procedure for the methylene blue method for low concentrations and the Orion Specific ion electrode for high concentrations (above 150 mg/L S-2). Metal concentrations were determined using a Perkin Elmer 4000 atomic absorption spectrophotometer.
Sludge production was determined using four-liter volumes of the appropriate solution. Sufficient sodium sulfide and ferrous sulfate were added and the pH was adjusted with nitric acid to 7.2-7.5. Flocculant was added and mixing ceased. The floc was allowed to settle before vacuum filtering through a #4 Whatman filter paper. Wet and dry weights were determined by weighing the dry filter paper and the wet filter paper before and after filtering and after drying overnight at 103° C.
Referring now to FIG. 1, shown therein is a schematic of bench scale plexiglass system 10, simulating an existing ALC industrial waste treatment plant, which was used for dynamic tests in demonstration of the invention. Three mixers 11, 12 13 arranged in sequence, were fed a mixture 15 of metals including Cr+6 through inlet 17. Sodium sulfide solution 19 was added through pipe 21 into mixer 11. Ferrous sulfate solution 23 was added through pipe 25 into mixer 12 and cationic polymers 27 were added through pipe 29 into mixer 13. Effluent 31 of mixer 13 was fed using pump 32 through conduit 33 into clarifier 35. Nitric acid was added to mixer 12 to maintain the pH therein at about 7.2-7.5. Anionic polymers 37 were fed into conduit 33 in front of clarifier 35 as at inlet 39. Effluent 31 from mixer 13 was fed to the center of clarifier 35 where it flowed upwardly through sludge blanket 41. Sample ports 43 were provided for withdrawing samples from either sludge blanket 41 or solution 45 thereabove. The uppermost sample port 43 functioned as a continuous outlet for solution 45. Outlet 47 allowed discharge of sludge 46 from sludge blanket 41.
Referring now to FIG. 2 shown therein are graphs of Cr+6 remaining in solution after partial or total reduction to Cr+3 as functions of ferrous concentration at the various designated sulfide concentrations. At relatively low ferrous concentrations, little or no reduction of Cr+6 occurred, even at high sulfide concentrations. Although high concentrations of sulfide were shown to be more efficient in reducing Cr+6 than lower concentrations (see discussion infra re FIG. 5), relatively high sulfide concentrations resulted in fine precipitates and solutions which remained cloudy after filtering through cotton. FIG. 2 illustrates that for residual Cr+6 remaining in solution after 15 minutes was dependent upon the level of sulfide used, to attain EPA (TABLE I) levels of Cr+6 (0.1 mg/L), doubling the sulfide concentration (from 24.7 to 50.0 mg/L) resulted in an almost halving of the ferrous ion requirement (from about 17 mg/L to about 9 mg/L). Excess sulfide concentrations, however, hindered floccule precipitation (see discussion infra re FIG. 8, TABLE IX). Chromium reduction was found to be optimum when sulfide was added to the Cr+6 solution prior to addition of the ferrous ion.
Residual Cr+6 as a function of pH at optimum sulfide and ferrous concentrations is shown in FIG. 3 and illustrates that Cr+6 can be removed to TABLE I limits between pH 7 and 9. At higher pH (above 9) a black precipitate formed.
The jar tests for theoretical sludge production indicate that optimum sulfide and ferrous iron concentrations are 24.7 mg/L and 20.0 mg/L, respectively (for a 20 mg/L Cr+6 solution), as shown in TABLE II.
These optimums correspond to a pH within the range 7.2 to 7.5 for optimum polymer flocculant concentrations. Of the polymers tested, high molecular weight powder flocculants produced the best floc and settled without leaving pin floc in suspension.
              TABLE II                                                    
______________________________________                                    
STOICHIOMETRY AND THEORETICAL SLUDGE                                      
PRODUCTION (DISTILLED WATER).sup.a                                        
                                       Theore-                            
       Electrons         Electrons                                        
                                Electrons                                 
                                       tical                              
S.sup.-2                                                                  
       Available                                                          
                Fe.sup.+2                                                 
                         Available                                        
                                Excess Sludge                             
(mg/L) (mole).sup.b                                                       
                (mg/L)   (mole) (mole) (lb/day).sup.c                     
______________________________________                                    
24.7   0.0015   20.0     0.0004 0.0007 640                                
31.0   0.0019   20.0     0.0004 0.0011 679                                
37.3   0.0023   15.0     1.0003 0.0014 659                                
37.3   0.0023   20.0     0.0004 0.0015 718                                
50.0   0.0031   10.0     0.0002 0.0021 678                                
50.0   0.0031   15.0     0.0003 0.0022 738                                
50.0   0.0031   20.0     0.0004 0.0023 797                                
______________________________________                                    
 .sup.a 20 mg/L Cr.sup.+6 (0.0012 moles e.sup.-  required)                
 .sup.b 2 electrons per mole of sulfide                                   
 .sup.c 750,000 gal/day                                                   
The effect of additional metal ions on chromium reduction and reagent requirements were determined. The metals of TABLE III, when added to the Cr+6 solution, increased the sulfide requirement for Cr+6 reduction below TABLE I limits from 24.7 mg/L to 28.0 mg/L, as shown in FIG. 4.
              TABLE III                                                   
______________________________________                                    
       Metal Concentration                                                
       Added (mg/L)                                                       
______________________________________                                    
       Ni    2.0                                                          
       Cd    0.1                                                          
       Cu    0.2                                                          
       Pb    0.4                                                          
       Zn    0.4                                                          
       Al    1.5                                                          
       Cr.sup.+6                                                          
             20.0                                                         
______________________________________                                    
When treating a distilled water solution containing 20 mg/L Cr+6 in system 10 of FIG. 1, Cr+6 was reduced to less than 0.06 mg/L using optimal concentrations of 24.7 mg/L sulfide and 20.0 mg/L ferrous ion. System 10 was operated at 40 ml/min, 60 ml/min and 100 ml/min which correspond to flows of 500,000, 800,000 and 1,250,000 gallons per day through the clarifier of the subject ALC plant. Samples taken from clarifier 35 reported in TABLE IV indicate that total chromium carried through clarifier 35 and into the plant effluent was well below TABLE I requirement of 1.0 mg/L.
              TABLE IV                                                    
______________________________________                                    
TOTAL CHROMIUM CARRYOVER                                                  
AS A FUNCTION OF FLOW RATE                                                
Flowrate Port 4       Port 6   Port 8                                     
(ml/min) Cr mg/L      Cr mg/L  Cr mg/L                                    
______________________________________                                    
40       0.06         0.06     0.06                                       
64       0.15         0.16     0.15                                       
100      0.36         0.28     0.20                                       
______________________________________                                    
EXAMPLE II
Jar tests on electroplating waste were conducted similarly to those of EXAMPLE I. Day-to-day concentration variations in the waste was ameliorated somewhat by collecting 40 gallons of electroplating waste from the subject ALC plant. Cr+6 concentration in the waste was extremely high (about 350 mg/L). Sufficient waste was diluted with distilled water to form a 100 liter solution of 55 mg/L Cr+6 for use in the tests in order to simulate average electroplating waste. One liter of the diluted waste solution was placed in a beaker and the pH adjusted to 7.2-7.5 with caustic (initial pH was 4.0). The solutions were stirred at 100 rpm while the desired volume of a 2,000 mg/L sulfide solution was added. Stirring continued for six minutes, at which time the appropriate volume of a 2,000 mg/L ferrous solution was added. The pH was adjusted and stirring continued for six minutes at 100 rpm. Stirring was slowed to 20 rpm for two minutes to allow floc formation; stirring was then stopped and the solutions were left undisturbed for two minutes. If necessary, resulting solutions were filtered through cotton.
Sulfide and ferrous ion requirements for reduction and precipitation of the electroplating wastes are shown in FIG. 5. Optimum reagent requirements for 55 mg/L Cr+6 are shown as 56 mg/L sulfide and 50.0 mg/L ferrous ion as determined by the theoretical sludge production shown in TABLE V. As suggested above relative to the EXAMPLE I tests, ferrous and sulfide ions in higher-than-optimal concentrations, although effective to a degree in reducing Cr+6, result in black water (a fine suspension of FeS that does not filter out or precipitate with the floccules) and corresponding high concentrations of soluble metals in the solutions.
The effect of pH on Cr+6 reduction in the electroplating waste was determined using the optimum reagent concentration. FIG. 6 shows Cr+6 remaining in solution to be below TABLE I limits between pH 7.2 and 8.2 but to increase dramatically above pH 9.0.
              TABLE V                                                     
______________________________________                                    
STOICHIOMETRY AND THEORETICAL SLUDGE                                      
PRODUCTION (ELECTROPLATING WASTE).sup.a                                   
                                       Theore-                            
       Electrons                                                          
                Electrons                                                 
                         Electrons     tical                              
S.sup.-2                                                                  
       Available                                                          
                Fe.sup.+2                                                 
                         Available                                        
                                Excess Sludge                             
(mg/L) (mole).sup.b                                                       
                (mg/L)   (mole) (mole) (lb/day).sup.c                     
______________________________________                                    
56.0   0.0035   50.0     0.0009 0.0012 1626                               
56.0   0.0035   60.0     0.0011 0.0014 1746                               
70.0   0.0044   40.0     0.0007 0.0019 1594                               
70.0   0.0044   50.0     0.0009 0.0021 1713                               
70.0   0.0044   60.0     0.0011 0.0023 1833                               
84.0   0.0053   30.0     0.0005 0.0026 1562                               
84.0   0.0053   40.0     0.0007 0.0028 1681                               
84.0   0.0053   50.0     0.0009 0.0030 1801                               
84.0   0.0053   60.0     0.0011 0.0032 1920                               
______________________________________                                    
 .sup.a 35 mg/L Cr.sup.+6 (0.0032 moles e.sup.-  required)                
 .sup.b 2 electrons per mole of sulfide                                   
 .sup.c 750,000 gal/day                                                   
EXAMPLE III
Waste water typically comprising influent to the subject ALC waste treatment plant was collected for jar testing. Analysis of the influent is shown in TABLE VI. The pH was lowered from 9.5 to 7.3 with nitric acid and beakers were filled with one liter of the resulting solution. Each solution was stirred at 100 rpm as the desired volume of 1,000 mg/L sulfide solution was added and stirring was continued for six minutes. The appropriate volume of 1,000 mg/L ferrous solution was added, pH adjusted, and stirring continued for six minutes at 100 rpm. Stirring was slowed to 20 rpm for two minutes to allow floc formation, pH adjustments were made, and stirring was stopped. The solutions sat undisturbed for two minutes, and if necessary were filtered through cotton.
              TABLE VI                                                    
______________________________________                                    
Metal         Concentration                                               
Constituent   (mg/L)                                                      
______________________________________                                    
Cr.sup.+6     9.00                                                        
Cr            9.10                                                        
Fe            1.42                                                        
Cd            0.10                                                        
Cu            0.02                                                        
Ni            0.97                                                        
Pb            0.15                                                        
Zn            0.13                                                        
______________________________________                                    
The corresponding theoretical sludge production shown in TABLE VII and the graphs of Cr+6 remaining in the influent stream after partial or total reduction to Cr+3 as functions of ferrous concentration at various sulfide concentrations of in FIG. 7 indicate that optimum requirements were 12,36 mg/L sulfide and 10.0 mg/L ferrous ion.
A summary of optimum conditions for reduction of Cr+6 to less than 0.1 mg/L for the three experimental waste streams described in EXAMPLES I, II, III is presented in TABLE VIII.
Data on the jar tests conducted in demonstration of the invention are summarized in TABLE IX. Data of TABLE IX show that the chemistry of Cr+6 reduction to Cr+3 according to the process of the invention is concentration dependent for several species, particularly Fe+2 and HS-. For example, FIG. 7 shows that high sulfide concentration are efficient in reducing Cr+6, but that too high a concentration hinders floccule precipitation, as suggested in FIG. 8.
              TABLE VII                                                   
______________________________________                                    
STOICHIOMETRY AND THEORETICAL SLUDGE                                      
PRODUCTION (WASTEWATER).sup.a                                             
                                       Theore-                            
       Electrons         Electrons                                        
                                Electrons                                 
                                       tical                              
S.sup.-2                                                                  
       Available                                                          
                Fe.sup.+2                                                 
                         Available                                        
                                Excess Sludge                             
(mg/L) (mole).sup.b                                                       
                (mg/L)   (mole) (mole) (lb/day).sup.c                     
______________________________________                                    
10.40  0.00065  12.0     0.00021                                          
                                0.00034                                   
                                       461                                
10.40  0.00065  14.0     0.00025                                          
                                0.00038                                   
                                       515                                
12.36  0.00077  10.0     0.00018                                          
                                0.00043                                   
                                       582                                
12.36  0.00077  12.0     0.00021                                          
                                0.00046                                   
                                       623                                
12.36  0.00077  14.0     0.00025                                          
                                0.00050                                   
                                       678                                
______________________________________                                    
 .sup.a 9 mg/L Cr.sup.+6 (0.00052) moles e.sup.-  required)               
 .sup.b 2 electrons per mole of sulfide                                   
 .sup.c 750,000 gal/day                                                   
              TABLE VIII                                                  
______________________________________                                    
SUMMARY OF OPTIMUM CONDITIONS                                             
FOR GIVEN Cr.sup.+6 CONCENTRATIONS                                        
          EXAMPLE I  EXAMPLE II  EXAMPLE III                              
Parameter (20 mg/L)  (55 mg/L)   (9 mg/L)                                 
______________________________________                                    
S.sup.-2 (mg/L)                                                           
          24.7       56.0        12.4                                     
Fe.sup.+2 (mg/L)                                                          
          20.0       55.0        10.0                                     
pH        7.2-9.0    7.2-8.1     7.2-7.5                                  
Polymer   Betz 1120.sup.R                                                 
                     Betz 1120.sup.R                                      
                                 Betz 1195.sup.R                          
          (1.0 mg/L) (1.0 mg/L)  (15 mg/L)                                
                                 Betz 1120.sup.R                          
                                 (0.5 mg/L)                               
______________________________________                                    
EXAMPLE IV
A pilot scale field verification test unit was constructed at the subject ALC industrial waste treatment plant, designed to replicate flow characteristics and retention times of the on-site waste treatment facility in demonstration of the process of the
              TABLE IX                                                    
______________________________________                                    
REACTION CONDITIONS AND RESULTS OF JAR                                    
TESTS WITH HEXAVALENT CHROMIUM,                                           
SODIUM SULFIDE AND FERROUS SULFATE                                        
Initial Conditions                                                        
             Final Conditions                                             
(a,b,c)      (d)                                                          
Run                  Cr.sup.-0                                            
                          Cr    Fe.sup.+2                                 
                                     Fe   S.sup.-2                        
                                               Floc                       
Number S.sup.-2                                                           
             Fe.sup.+1                                                    
                     (e)  (f)   (g)  (f)  (h)  wt (i)                     
______________________________________                                    
1      0     0       21   22    0.0  0.0  0    None                       
2      0     10      18   21    4.4  7.8  0    100                        
3      0     20      13   9     0.1  6.0  0    660                        
4      0     30      11   11    0.2  6.3  0    --                         
5      0     40      8    7     0.0  2.3  0    250                        
6      10    0       19   22    0.0  0.0  10   None                       
7      10    10      8    1     0.0  2.0  1    470                        
8      10    20      2    4     0.2  0.8  1    750                        
9      10    30      0    3     0.2  1.0  1    970                        
10     10    40      0    3     0.0  0.8  1    1170                       
11     20    0       17   20    0.0  0.8  19   None                       
12     20    10      6    8     0.1  1.0  7    530                        
13     20    20      0    3     0.0  1.0  1    830                        
14     20    30      0    3     0.0  1.0  1    830                        
15     20    40      0    3     0.0  0.8  1    1280                       
16     30    0       15   22    0.0  0.0  16   None                       
17     30    10      3    7     0.0  2.3  8    620                        
18     30    20      0    1     0.0  0.8  5    820                        
19     30    30      0    1     0.3  2.7  2    1140                       
20     30    40      0    1     1.2  2.9  2    1250                       
21     40    0       12   11    0.0  0.0  22   240                        
22     40    10      0    3     0.5  1.2  15   640                        
23     40    20      0    2     0.2  2.8  11   870                        
24     40    30      0    1     0.9  4.4  5    1000                       
25     40    40      0    1     0.1  0.8  2    1400                       
26     50    0       13   15    0.0  0.0  41   200                        
27     50    10      0    4     0.0  2.0  22   620                        
28     50    20      0    17    2.2  16.8 16   560                        
29     50    30      0    22    2.1  27.8 3    560                        
30     50    40      0    16    3.0  35.4 2    990                        
______________________________________                                    
 (a) Concentrations are in ppm.                                           
 (b) Initial Cr.sup.-0 concentration was 20.0 ppm.                        
 (c) PH adjusted with H.sub.2 SO.sub.4 or NaOH to 7.2-7.5 after Fe.sup.-  
 added.                                                                   
 (d) After the initial reagents had been mixed for 5 minutes.             
 (e) As determined by Hach method for Cr.sup.-0 total chromium or iron.   
 (f) As determined by A.A.S.                                              
 (g) As determined by Hach method for Fe.sup.+2.                          
 (h) As determined by Hach method for S.sup.-2.                           
 (i) Dry weight of floc.                                                  
invention. The pilot plant 50 is shown in FIG. 9 and comprises an equalization tank 51, mixer tanks 53, 54, 55, chemical feed tanks 57, a 330-gallon solids contact clarifier 59, activated sludge bed 61 and final clarifier 63. In order to minimize effects on the operation of pilot plant 50 of day-to-day perturbations in the effluent from the electroplating facility (not shown in FIG. 9), waste therefrom was held in reservoir 52 and periodically pumped to equalization tank 51. Sulfuric acid and caustic were used to control pH of waste influent in tank 51. Mixer tanks 53, 54, 55 were operated similarly to that suggested for the FIG. 1 system, wherein effluent from mixer 11 flowed over the top of a weir to mixer 12 and similarly to mixer 13 to prevent back mixing. Sodium sulfide was added to mixer tank 53, ferrous sulfate and sulfuric acid were added to mixer tank 54 and a cationic polymer was added to mixer tank 55. Anionic polymer was added between mixer tank 55 and clarifier 59 as at 65. Clarifier 59 had a retention time of 2.75 hours at a flow rate of 2 gallons per minute.
Referring now to FIG. 10, shown is a solids contact clarifier 59 typical of that usable in the system of FIG. 9 in demonstration of the invention. Influent 70 from mixer 55 (FIG. 9) fed into center well 71 of clarifier 59, is integrated with anionic polymer 73 (e.g. Betz 1120) and external sludge flow 74 which is circulated from sludge bed 85 through opening 75 in the bottom of clarifier 59 and through valved conduit and pump means 77. Waste stream 70, polymer 73 and external sludge flow 74 are mixed in mixing chamber 79. An internal sludge flow 80 is moved into mixing chamber 79 and mixed using mixer 81. Liquid 82 with entrained floc and metal spills through openings 83 into mixing chamber 79 internally of intermediate skirt 84 and onto sludge bed 85. Fluids within skirt 84 percolate through the sludge bed, which percolation filters out floc, and flows as substantially clear effluent 86 from under the wall defining skirt 84 and into collecting chamber 87. Effluent 86 is collected in weir 89 and withdrawn through conduit 90 to activated sludge bed 61 (FIG. 9). Rake 91 moving at slow speed (typically 3 rpm) around the bottom of clarifier 59 moves sludge to the sludge outlets and prevents channeling of sludge bed 85 by effluent 86. Ferrous solutions were made using ferrous sulfate heptahydrate while sulfide solutions were prepared from stock sodium sulfide. Concentrated sulfuric acid was added to each batch to decrease the amount of ferrous oxidized to ferric ion.
The effect of pH on Cr+6 reduction was studied by holding pH of the influent to mixer tank 54 (FIG. 9) at 8.0 while varying pH within tank 54. FIG. 11 shows the effect of pH using a feed ratio into mixer tank 54 of 1.75 mg/L sulfide to 1 mg/L ferrous to 1 mg/L Cr+6 and a ratio of 2.0 mg/L sulfide to 1.5 mg/L ferrous to 1 mg/L Cr+6. At the higher sulfide and ferrous ratios, Cr+6 was reduced to less than TABLE I levels between pH of 7.2-8.4; in accordance with a governing principle of the invention, however, Cr+6 was substantially completely reduced only at pH 7.2-7.5 For the lower sulfide to ferrous ratio TABLE I levels were achieved only at pH 7.2-7.6 and Cr+6 was substantially completely reduced only at pH 7.2.
Typical electroplating waste stream metals fed to clarifier 59 were removed by precipitation as shown in TABLE X.
              TABLE X                                                     
______________________________________                                    
                Influent                                                  
                        Effluent                                          
Metal           (mg/L)  (mg/L)                                            
______________________________________                                    
Cr.sup.+6       0.50     0.00*                                            
Cr (Total)      3.37    0.15                                              
Ni              3.71    0.38                                              
Cd              0.96    0.02                                              
Cu              0.77     0.00*                                            
Fe              1.31    1.93                                              
Zn              0.59    0.05                                              
______________________________________                                    
 *Below detection limits                                                  
Because floc formed in the sodium sulfide/ferrous sulfate process is extremely fine, effluent 86 quality, as judged by clarity, is difficult to achieve, even at optimized parameters, without filtration. Therefore, the process of the invention appears optimized with sufficient sludge depth within bed 85 at least a few inches above the bottom of skirt 84 as suggested in FIG. 10, which requires effluent 86 to flow through sludge bed 85 so as to filter out pin floc produced by the process.
The effect of suspended solids in mixing chamber 79 (FIG. 10) on turbidity of effluent 86 was determined. In order to increase concentration of suspended solids, external sludge recirculation 74 was initiated. With insufficient sludge recirculation 74, proper sludge depth within sludge bed 85 was difficult to maintain. As external sludge recirculation 74 rate increased to about 10-20% of influent 70 flow (1,320-2,640 mil/min) turbidity decreased markedly and heavy metal precipitation increased. It was also determined that relatively high (95° F.) and low (41° F.) temperatures had no significant effect on metal precipitation in clarifier 59 within TABLE I levels. In the use of Na3 PO4, no appreciable effect on Cr+6 reduction was noticed with concentrations as high as 176 mg/L PO4 -3. Adding EDTA (a typical chelating agent in electroplating baths) up to 50 mg/L caused no change in effluent quality from clarifier 59. Cyanide, typically used in metal stripping prior to electroplating, may contaminate the waste water. The sodium sulfide/ferrous sulfate process will not eliminate cyanide, but it may complex with metals in the waste water and not be presented at full strength to the activated sludge when introduced into influent 70. Levels as high as 10 mg/L cyanide were reduced to 1.85 mg/L in clarifier 59 and to 0.5 mg/L in activated sludge bed 61, where it apparently had little or no effect.
FIG. 12 illustrates preferred operational ranges for the process of the invention. The ratios of S-2 and Fe+2 to Cr+6 are expressed in mg/L per mg/L Cr+6. The optimum process operational ranges are from about 1.3-1.7 mg/L S-2 per mg/L Cr+6 and from about 0.85-3.00 mg/L Fe+2 per mg/L Cr+6 at pH of 7.2-8.4. While the process of the invention will operate outside the preferred ranges, FIG. 12 defines operating conditions wherein operation of the process is unexpectedly efficient in accordance with an underlying principle of the invention.
In a test to observe the effect of ultrasonic energy on the reduction of Cr+6 in the presence of sodium sulfide, a marked increase in the rate of reduction of Cr+6 to Cr+3. As shown in FIG. 13, the reduction Cr+6 to Cr+3 proceeded about seven times faster with about 20 KHz of ultrasonic energy at about 25 watts/cm2 imparted to a 235 ml vessel containing an aqueous solution of 20 mg/L Cr+6 and 40 mg/L sulfide.
The invention therefore provides an improved method for treating industrial waste waters containing high levels of hexavalent chromium and other heavy metals by reduction of hexavalent chromium to trivalent chromium in the waste treatment process and wherein acceptably small amounts of sludge are produced. It is understood that modifications to the invention may be made as might occur to one with skill in the field of the invention within the scope of the appended claims. All embodiments contemplated hereunder which achieve the objects of the invention have therefore not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or the scope of the appended claims.

Claims (9)

We claim:
1. A process of reducing hexavalent chromium to trivalent chromium and precipitating the trivalent chromium from a waste water stream to form a sludge for disposal, said process comprising the steps of:
(a) adding soluble sulfide ion to said stream in a ratio of sulfide ion to hexavalent chromium of from about 0.7 to 2.5;
(b) adding soluble ferrous ion to said stream in a ratio of ferrous ion to hexavalent chromium of from about 0.5 to 5.0;
(c) thereafter adjusting pH of said stream to about 7.2 to .[.7.5.]..Iadd.8.4.Iaddend.;
(d) adding a flocculating polymer to said stream to promote formation of a floc comprising precipitated trivalent chromium;
(e) forming a sludge bed comprising sad precipitated trivalent chromium; and
(f) thereafter filtering the floc from said stream using said sludge bed containing said precipitated trivalent chromium.
2. The process of claim 1 wherein said ferrous ion is added from a material selected from the group consisting of ferrous sulfate and ferrous chloride.
3. The process of claim 1 further comprising the step of recirculating sludge from said sludge bed into said stream at a rate of about 10 to 20 percent by volume of the flow rate of said stream to promote clarification of said stream.
4. The process of claim 1 further comprising the step of introducing ultrasonic energy into said stream in the presence of said sulfide ion and said ferrous ion to enhance the rate of reduction of hexavalent chromium to trivalent chromium.
5. A process of reducing hexavalent chromium to trivalent chromium and precipitating the trivalent chromium and other heavy metals from a waste water stream to form a sludge for disposal, said process comprising the steps of:
(a) adding soluble sulfide to said stream in a ratio of sulfide to hexavalent chromium of from about 0.7 to 2.5;
(b) thereafter adding soluble ferrous ion to said stream in a ratio of ferrous ion to hexavalent chromium of about 0.5 to 5.0;
(c) thereafter adjusting pH of said stream to about 7.2 to .[.7.5.]..Iadd.8.4.Iaddend.;
(d) adding a flocculating polymer to said stream to promote formation of a floc comprising precipitated trivalent chromium and other heavy metals and to aid in removal of said floc from said stream by forming a sludge bed containing said precipitated trivalent chromium and other heavy metals therein;
(e) filtering the floc from said stream using said sludge bed;
(f) recirculating sludge into said stream to aid in removal of said floc therefrom; and
(g) introducing ultrasonic energy into said stream in the presence of said sulfide ion and said ferrous ion to enhance the rate of reduction of hexavalent chromium to trivalent chromium.
6. The process of claim 5 wherein said ferrous ion is added from a material selected from the group consisting of ferrous sulfate and ferrous chloride.
7. A process of operating a solids contact clarifier having a mixer chamber disposed within a sludge bed, said process being effective to reduce hexavalent chromium to trivalent chromium and to precipitate the trivalent chromium and other heavy metals from a waste water stream into the sludge bed, said process comprising the steps of:
(a) adding soluble sulfide to said stream to provide a ratio of sulfide ion to hexavalent chromium of about 0.7:1 to 2.5:1;
(b) thereafter adding soluble ferrous ion to said stream to provide a ration of ferrous ion to hexavalent chromium of about 0.5:1 to 5.0:1;
(c) adjusting pH of said stream to about 7.2 to .[.7.5.]..Iadd.8.4.Iaddend.;
(d) adding a flocculating polymer to said stream to promote formation of a floc comprising precipitated trivalent chromium and other heavy metals and clarification of said stream;
(e) forming a sludge bed comprising said precipitated trivalent chromium and other heavy metals separated from the stream; and
(f) recirculating sludge into said stream at a rate of about 10 to 20 percent by volume of the flow rate of said stream to aid in removal of said floc therefrom.
8. The process of claim 7 wherein said ferrous ion is added from a material selected from the group consisting of ferrous sulfate and ferrous chloride.
9. The process of claim 7 further comprising the step of introducing ultrasonic energy into said stream in the presence of said sulfide ion and said ferrous ion to enhance the rate of reduction of hexavalent chromium to trivalent chromium.
US08/032,581 1988-10-26 1993-03-17 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals Expired - Lifetime USRE36915E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/032,581 USRE36915E (en) 1988-10-26 1993-03-17 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/263,161 US5000859A (en) 1988-10-26 1988-10-26 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals
US08/032,581 USRE36915E (en) 1988-10-26 1993-03-17 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/263,161 Reissue US5000859A (en) 1988-10-26 1988-10-26 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Publications (1)

Publication Number Publication Date
USRE36915E true USRE36915E (en) 2000-10-17

Family

ID=23000651

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/263,161 Ceased US5000859A (en) 1988-10-26 1988-10-26 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals
US08/032,581 Expired - Lifetime USRE36915E (en) 1988-10-26 1993-03-17 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/263,161 Ceased US5000859A (en) 1988-10-26 1988-10-26 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Country Status (1)

Country Link
US (2) US5000859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884352B1 (en) 2002-03-07 2005-04-26 Lonnie G. Kennedy Treating toxic solvents and heavy metal contaminants in groundwater and soil using iron sulfides microbial geochemical treatment zone
US6896817B2 (en) 2002-04-15 2005-05-24 Gregory S. Bowers Essentially insoluble heavy metal sulfide slurry for wastewater treatment
US20050289659A1 (en) * 2004-05-18 2005-12-29 Jacks E T Cre-lox based method for conditional RNA interference

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8902870A (en) * 1989-11-21 1991-06-17 Leonardus Mathijs Marie Nevels METHOD FOR PROCESSING REMAINING BATHS
MX9100106A (en) * 1991-07-08 1993-01-01 Oscar Mario Guagnelli Hidalgo IMPROVEMENTS IN THE SYSTEM FOR CONTINUOUS MIXING IN SOLID, LIQUID AND / OR GASEOUS PARTICLES IN ALL ALTERNATIVES.
US5868495A (en) * 1991-07-08 1999-02-09 Hidalgo; Oscar Mario Guagnelli Method for treating fluent materials
US5368703A (en) * 1992-05-12 1994-11-29 Anco Environmental Processes, Inc. Method for arsenic removal from wastewater
US5192163A (en) * 1992-05-29 1993-03-09 Fleming Joseph W Correction method for contaminated sites
US5308501A (en) * 1993-04-02 1994-05-03 Eckert C Edward Treatment system for alkaline or acidic solution containing heavy metals
US6153108A (en) * 1998-06-11 2000-11-28 Texaco Inc. Method for removal of heavy metals from water
US6607651B2 (en) 1998-09-10 2003-08-19 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
US6770483B2 (en) * 2000-12-15 2004-08-03 Irving Lyon Determination of multi-valent metal contamination and system for removal of multi-valent metal contaminants from water
US20030209449A1 (en) * 2001-01-23 2003-11-13 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
WO2003022744A2 (en) 2001-09-06 2003-03-20 Gannett Fleming, Inc. In-situ process for detoxifying hexavalent chromium in soil and groundwater
US6833124B2 (en) 2002-01-31 2004-12-21 University Of Dayton Recovery process for wastes containing hexavalent chromium
US6878280B2 (en) * 2002-04-16 2005-04-12 Brentwood Industries, Inc. Wastewater clarification methods and apparatus
WO2006031590A1 (en) * 2004-09-10 2006-03-23 Redox Solutions, Llc. Methods of treatment of chromite ore processing residue
US8192705B2 (en) * 2006-10-16 2012-06-05 Redox Solutions, LLC Methods of treatment of chromite ore processing residue
US20070098501A1 (en) * 2005-11-02 2007-05-03 Higgins Thomas E In-situ treatment of in ground contamination
US20070098502A1 (en) * 2005-11-02 2007-05-03 Higgins Thomas E In-situ treatment of in ground contamination
US7645092B2 (en) * 2005-11-02 2010-01-12 Ch2M Hill, Inc. Treatment of in ground chromium ore processing residue
WO2008067246A2 (en) * 2006-11-27 2008-06-05 Ch2M Hill, Inc. Water treatment using de-supersaturation
CN101519241B (en) * 2009-04-07 2010-12-08 同济大学 Method for deoxidizing hexavalent chromium in wastewater by using sludge
EP2386377B1 (en) 2010-05-12 2017-05-31 Industria de Turbo Propulsores S.A. Method of getting reusable electrolyte from electrochemical machining of parts made up of nickel, iron and chromium.
US10441900B1 (en) * 2011-11-01 2019-10-15 Robert M. Davis Water treatment system
US9550084B2 (en) 2012-05-23 2017-01-24 University Of Wyoming Removal of elements from coal fly ash
CN104829018B (en) * 2015-04-21 2017-06-20 四川天艺生态园林集团股份有限公司 A kind of chromium containing waste water treatment method
CN108854803A (en) * 2018-06-21 2018-11-23 郑州天舜电子技术有限公司 Wastewater treatment equipment is used in a kind of production of electronic product
CN109574358A (en) * 2018-12-30 2019-04-05 江门市崖门新财富环保工业有限公司 The recycling and water body reuse technology of chromium in a kind of chromate waste water
CN113044946B (en) * 2021-03-10 2022-07-12 四川大学 Method for treating chromium in tanning dyeing and finishing wastewater

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1932531A (en) * 1932-01-05 1933-10-31 Herschel C Parker Apparatus for extracting gold from solutions
US2110187A (en) * 1933-08-23 1938-03-08 Dudley A Willams Method of treating chrome liquors
US2346320A (en) * 1941-04-24 1944-04-11 Nat Lead Co Clarification and purification of industrial liquors
US2977202A (en) * 1956-07-02 1961-03-28 Pfaulder Permutit Inc Apparatus for conditioning precipitates and separating same from liquids
US3023089A (en) * 1958-07-28 1962-02-27 Int Minerals & Chem Corp Reaction vessel
US3027321A (en) * 1959-11-09 1962-03-27 Wilson & Company Treatment of chromate solutions
US3218252A (en) * 1962-08-31 1965-11-16 Coal Industry Patents Ltd Process for the bacteriological oxidation of ferrous salts in acidic solution
US3294680A (en) * 1964-11-18 1966-12-27 Lancy Lab Treatment of spent cooling waters
US3575853A (en) * 1968-12-24 1971-04-20 Lab Betz Inc Waste water treatment
US3740331A (en) * 1971-06-23 1973-06-19 Sybron Corp Method for precipitation of heavy metal sulfides
JPS4916714A (en) * 1972-06-02 1974-02-14
US4102784A (en) * 1976-04-27 1978-07-25 Schlauch Richard M Colloid free precipitation of heavy metal sulfides
US4362629A (en) * 1980-10-08 1982-12-07 Murata Manufacturing Co., Ltd. Method for processing solution including heavy metal
US4705639A (en) * 1985-05-10 1987-11-10 The United States Of America As Represented By The Secretary Of The Air Force Ferrous and sulfide treatment of electroplating wastewater

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1932531A (en) * 1932-01-05 1933-10-31 Herschel C Parker Apparatus for extracting gold from solutions
US2110187A (en) * 1933-08-23 1938-03-08 Dudley A Willams Method of treating chrome liquors
US2346320A (en) * 1941-04-24 1944-04-11 Nat Lead Co Clarification and purification of industrial liquors
US2977202A (en) * 1956-07-02 1961-03-28 Pfaulder Permutit Inc Apparatus for conditioning precipitates and separating same from liquids
US3023089A (en) * 1958-07-28 1962-02-27 Int Minerals & Chem Corp Reaction vessel
US3027321A (en) * 1959-11-09 1962-03-27 Wilson & Company Treatment of chromate solutions
US3218252A (en) * 1962-08-31 1965-11-16 Coal Industry Patents Ltd Process for the bacteriological oxidation of ferrous salts in acidic solution
US3294680A (en) * 1964-11-18 1966-12-27 Lancy Lab Treatment of spent cooling waters
US3575853A (en) * 1968-12-24 1971-04-20 Lab Betz Inc Waste water treatment
US3740331A (en) * 1971-06-23 1973-06-19 Sybron Corp Method for precipitation of heavy metal sulfides
JPS4916714A (en) * 1972-06-02 1974-02-14
US4102784A (en) * 1976-04-27 1978-07-25 Schlauch Richard M Colloid free precipitation of heavy metal sulfides
US4362629A (en) * 1980-10-08 1982-12-07 Murata Manufacturing Co., Ltd. Method for processing solution including heavy metal
US4705639A (en) * 1985-05-10 1987-11-10 The United States Of America As Represented By The Secretary Of The Air Force Ferrous and sulfide treatment of electroplating wastewater

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
"Alkaline Chromium (VI) Reduction by Ferrous Iron and Sulfide", Thomas E. Higgins et al, Arizona State University Rept No ERC-R-81028 (Oct. 1981).
"An EPA Demonstration Plant for Heavy Metals Removal by Sulfide Precipitation", Murray C. Scott, Second Conference on Advanced Pollution Control for the Metal Finishing Industry, Rept No EPA-600/8-79-014, pp. 106-113 (Jun. 1979).
"Combined Removal of Cr, Cd and Ni by Alkaline Reduction, Precipitation and Upflow Filtration", Thomas E. Higgins et al, Arizona State University, Rept No CR-R-83015 (Mar. 1983).
"Ferrous and Sulfide Treatment of Industrial Wastewater at OC-ALC", CENTEC Applied Technologies (Oct. 15, 1985).
"Final Report, Research and Development Design and Evaluation Report, Ferrous and Sulfide Treatment of Hexavalent Chromium", CENTEC Corporation (Jan. 1986).
"Final Report--Ferrous and Sulfide Treatment of Industrial Wastewater at OC-ALC", CENTEC Corporation (Dec. 16, 1985).
"Pilot Field Verification Studies of the Sodium Sulfide/Ferrous Sulfate Treatment Process", P.M. Wikoff et al (unpublished), dated Aug. 1988.
"Potential Transformations of Chromium in Natural Waters", David C. Schroeder and G. Fred Lee, Water, Air, and Soil Pollution 4:3/4 (Jul./Aug. 1975).
"Rate Studies on the Primary Step of the Reduction of Chromium (VI) by Iron (II)", James H. Espenson, J Am Chem Soc 92:7 (Apr. 8, 1970).
"Sludge Generation from Ferrous/Sulfide Chromium Treatment", J.R. Aldrich, Rept No ESL-TR-84-27 (Aug. 1984).
"Sodium Sulfide/Ferrous Sulfate Treatment of Hexavalent Chromium and Other Heavy Metals at Tinker AFB", P.M. Wikoff et al, Rept No ESL-TR-87-39 (Mar. 1988).
"Sulfide Process Removes Metals, Produces Disposable Sludge", M.C. Scott, Industrial Wastes (Jul./Aug. 1979).
"Sulfide vs Hydroxide Precipitation of Heavy Metals From Industrial Wastewater", A.K. Robinson, 1st Annual Conference on Advanced Pollution Control for the Metal Finishing Industry, Jan. 1978, Rept No EPA-600/8-78-010, pp. 59-65 (May 1978).
"Summary Report--Control and Treatment Technology for the Metal Finishing Industry--Sulfide Precipitation", Rept No EPA-625/8-80-003 (Apr. 1980).
"Treatment of Electroplating Wastewaters by Alkaline Ferrous Reduction of Chromium & Sulfide Precipitation", Thomas E. Higgins et al, Rept No ESL-TR-83-21 (Jun 1983).
"Treatment of Metal Finishing Wastes by Sulfide Precipitation", Richard M. Schlauch and Arthur C. Epstein, Rept No EPA600/2-77-049 (Feb. 1977).
"Treatment of Plating Wastewaters by Ferrous Reduction, Sulfide Precipitation, Coagulation and Upflow Filtration", Thomas E. Higgins, Arizona State Univ Rept No ERC-R-81014 (May 1981).
Alkaline Chromium (VI) Reduction by Ferrous Iron and Sulfide , Thomas E. Higgins et al, Arizona State University Rept No ERC R 81028 (Oct. 1981). *
An EPA Demonstration Plant for Heavy Metals Removal by Sulfide Precipitation , Murray C. Scott, Second Conference on Advanced Pollution Control for the Metal Finishing Industry, Rept No EPA 600/8 79 014, pp. 106 113 (Jun. 1979). *
Combined Removal of Cr, Cd and Ni by Alkaline Reduction, Precipitation and Upflow Filtration , Thomas E. Higgins et al, Arizona State University, Rept No CR R 83015 (Mar. 1983). *
Espenson et al., Kinetics and Mechanisms of Reactions of Chromium(VI) & Iron(II) Species in Acidic Solutions, J Am. Chem Soc. 85(21) 3328 33, 1963. *
Espenson et al., Kinetics and Mechanisms of Reactions of Chromium(VI) & Iron(II) Species in Acidic Solutions, J Am. Chem Soc. 85(21) 3328-33, 1963.
Ferrous and Sulfide Treatment of Industrial Wastewater at OC ALC , CENTEC Applied Technologies (Oct. 15, 1985). *
Final Report Ferrous and Sulfide Treatment of Industrial Wastewater at OC ALC , CENTEC Corporation (Dec. 16, 1985). *
Final Report, Research and Development Design and Evaluation Report, Ferrous and Sulfide Treatment of Hexavalent Chromium , CENTEC Corporation (Jan. 1986). *
Peters et al. Removal of Heavy Metals form Industrial Plating Waste Waters by Sulfide Precip., Proc. Ind. Waste Sympos. 5th Wate Pollution Fed. Ann. Conf. 1984. *
Pilot Field Verification Studies of the Sodium Sulfide/Ferrous Sulfate Treatment Process , P.M. Wikoff et al (unpublished), dated Aug. 1988. *
Potential Transformations of Chromium in Natural Waters , David C. Schroeder and G. Fred Lee, Water, Air, and Soil Pollution 4:3/4 (Jul./Aug. 1975). *
Rate Studies on the Primary Step of the Reduction of Chromium (VI) by Iron (II) , James H. Espenson, J Am Chem Soc 92:7 (Apr. 8, 1970). *
Scott, "Sulflex™--A New Process Technology For Removal of Heavy Metals From Waste Streams," Proc. 32nd Ind Waste Conf. Purdue Univ. May 1977.
Scott, Sulflex A New Process Technology For Removal of Heavy Metals From Waste Streams, Proc. 32nd Ind Waste Conf. Purdue Univ. May 1977. *
Sludge Generation from Ferrous/Sulfide Chromium Treatment , J.R. Aldrich, Rept No ESL TR 84 27 (Aug. 1984). *
Sodium Sulfide/Ferrous Sulfate Treatment of Hexavalent Chromium and Other Heavy Metals at Tinker AFB , P.M. Wikoff et al, Rept No ESL TR 87 39 (Mar. 1988). *
Sulfide Process Removes Metals, Produces Disposable Sludge , M.C. Scott, Industrial Wastes (Jul./Aug. 1979). *
Sulfide vs Hydroxide Precipitation of Heavy Metals From Industrial Wastewater , A.K. Robinson, 1st Annual Conference on Advanced Pollution Control for the Metal Finishing Industry, Jan. 1978, Rept No EPA 600/8 78 010, pp. 59 65 (May 1978). *
Summary Report Control and Treatment Technology for the Metal Finishing Industry Sulfide Precipitation , Rept No EPA 625/8 80 003 (Apr. 1980). *
Treatment of Electroplating Wastewaters by Alkaline Ferrous Reduction of Chromium & Sulfide Precipitation , Thomas E. Higgins et al, Rept No ESL TR 83 21 (Jun 1983). *
Treatment of Metal Finishing Wastes by Sulfide Precipitation , Richard M. Schlauch and Arthur C. Epstein, Rept No EPA600/2 77 049 (Feb. 1977). *
Treatment of Plating Wastewaters by Ferrous Reduction, Sulfide Precipitation, Coagulation and Upflow Filtration , Thomas E. Higgins, Arizona State Univ Rept No ERC R 81014 (May 1981). *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884352B1 (en) 2002-03-07 2005-04-26 Lonnie G. Kennedy Treating toxic solvents and heavy metal contaminants in groundwater and soil using iron sulfides microbial geochemical treatment zone
US6896817B2 (en) 2002-04-15 2005-05-24 Gregory S. Bowers Essentially insoluble heavy metal sulfide slurry for wastewater treatment
US20050173350A1 (en) * 2002-04-15 2005-08-11 Bowers Gregory S. Essentially insoluble heavy metal sulfide slurry for wastewater treatment
US20050289659A1 (en) * 2004-05-18 2005-12-29 Jacks E T Cre-lox based method for conditional RNA interference

Also Published As

Publication number Publication date
US5000859A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
USRE36915E (en) Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals
US5298168A (en) Ferrous dithionite process and composition for removing dissolved heavy metals from water
Terashima et al. Removal of dissolved heavy metals by chemical coagulation, magnetic seeding and high gradient magnetic filtration
CN102234160B (en) Method for treating low-concentration arsenic-containing wastewater
US5976383A (en) Recycle process for removing dissolved heavy metals from water with aluminum particles
US4943377A (en) Method for removing dissolved heavy metals from waste oils, industrial wastewaters, or any polar solvent
KR0140976B1 (en) Pulp mill wastewater color removal
MXPA04010045A (en) Essentially insoluble heavy metal sulfide slurry for wastewater treatment.
JP3445901B2 (en) Method and apparatus for treating selenium-containing wastewater
WO1990015027A2 (en) Methods for removing substances from aqueous solutions
US6110379A (en) Method for treating water containing sulfate
Randtke et al. Removing soluble organic contaminants by lime‐softening
Brewster et al. Use of electrochemical iron generation for removing heavy metals from contaminated groundwater
CA2006512A1 (en) Water treatment method
CN109942139A (en) It can be quickly by the method and device of heavy metal wastewater thereby recycling
Narkis et al. Inhibition of flocculation processes in systems containing organic matter
Higgins et al. Combined removal of Cr, Cd, and Ni from wastes
Ku et al. Innovative uses from carbon adsorption of heavy metals from plating wastewaters: I. Activated carbon polishing treatment
Amer Treating metal finishing wastewater
CN105293659A (en) Stabilization method for emergently treating sediment of heavy metal pollutants in water body
US5281339A (en) Removal of contaminants
JPS61161191A (en) Treatment of heavy metal ion-containing solution
CN110981076A (en) Immersed ultrafiltration process for treating common sewage in automobile factory
Hussain et al. Chemical Methods of Heavy Metal Management: Coagulation, Flocculation, and Floatation
Suciu et al. Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals