WO1997033299A1 - Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen - Google Patents

Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen Download PDF

Info

Publication number
WO1997033299A1
WO1997033299A1 PCT/EP1997/001114 EP9701114W WO9733299A1 WO 1997033299 A1 WO1997033299 A1 WO 1997033299A1 EP 9701114 W EP9701114 W EP 9701114W WO 9733299 A1 WO9733299 A1 WO 9733299A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
plasma chamber
coaxial
chamber
coaxial resonator
Prior art date
Application number
PCT/EP1997/001114
Other languages
English (en)
French (fr)
Inventor
Ralf Spitzl
Benedikt Aschermann
Original Assignee
Ralf Spitzl
Benedikt Aschermann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralf Spitzl, Benedikt Aschermann filed Critical Ralf Spitzl
Priority to AU20955/97A priority Critical patent/AU729335C/en
Priority to DE59711791T priority patent/DE59711791D1/de
Priority to US09/142,513 priority patent/US6204603B1/en
Priority to EP97906173A priority patent/EP0885455B1/de
Priority to JP53146697A priority patent/JP3571056B2/ja
Priority to CA002248250A priority patent/CA2248250C/en
Priority to AT97906173T priority patent/ATE271717T1/de
Publication of WO1997033299A1 publication Critical patent/WO1997033299A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber

Definitions

  • Microwave plasmas are used in technical areas such as the manufacture or processing of components, in microelectronics, in coating, in gas decomposition, in substance synthesis or in material cleaning.
  • the microwaves are fed into the plasma chamber with the recipient, if any, located therein.
  • Usable space from a microwave generator, if necessary, via a feed line to a waveguide resonator around the plasma chamber by means of coupling points.
  • Ring resonators are particularly common, i.e. ring-shaped waveguide resonators with a short length along their axis compared to the relatively large diameter of the cross section of the resonator ring.
  • the axis of the ring resonator and the axis of the in this case e.g. Plasma chamber designed as a tube has the same or a common z-axis.
  • the resonator ring has a rectangular cross-section and the coupling points are, for example, slits in the short cross-sectional side.
  • Such devices for generating microwave plasmas have good effectiveness. However, there is a need for more homogeneous and more powerful plasma chambers and a simpler device.
  • the invention relates to a device for generating microwave plasmas, the resonator of which is designed as a coaxial resonator with inner and outer conductors.
  • conductors wholly or partially form the inner and outer boundary of the resonator their shape and the shape of the conductors are arbitrary.
  • Both conductors preferably have a similar, similar, or the same axis direction or a common axis z. Surprisingly, vacuum is not absolutely necessary when the device is in operation.
  • the production is made of hollow profiles, preferably e.g. Rolled profiles, of a stretched type, which are arranged one inside the other as coaxial conductors and can be closed or open at the ends.
  • hollow profiles preferably e.g. Rolled profiles, of a stretched type, which are arranged one inside the other as coaxial conductors and can be closed or open at the ends.
  • Examples that can be easily designed are two tubes or cylinders of any, even square, surface area that are arranged one inside the other.
  • a wire or solid cylinder as the inner conductor is preferred if only the outer conductor is used for coupling.
  • the resonator can have essentially the same axis in the z direction as the plasma chamber, and the resonator and plasma chamber can be of the same length or not of the same length along the z direction.
  • the invention therefore starts from the narrow resonator ring with a different cross section, which surrounds the plasma chamber, which is designed, for example, as a resonator, like a finger ring on the finger of a hand.
  • the coaxial resonator is elongated according to the invention and can, for example, be designed as a sheath like the space of a finger sheath of the glove around the finger over essentially the entire length in the direction of the z-axis.
  • the plasma chamber and resonator are not connected to a specific tied shape of the hollow body.
  • the inner and outer conductor of the coaxial resonator very preferably has essentially the same direction with its long or longest axis, called the z axis.
  • the same direction of the axes of the chamber and the coaxial resonator is preferred, a common or parallel axis, but a small angle or a tilt of up to 90 ° between the axes of the two components is also possible.
  • Coaxial conductors made from flexible metal hoses e.g. as spiral strips or interlocking rings are possible, two hoses arranged in one another or a hose being coiled around e.g. a tubular or egg-shaped chamber as the one conductor that form the resonator.
  • the wall of the plasma chamber can be one of the conductors, the shape of the plasma chamber being arbitrary, but continuous training as a tube, ball or cylinder is preferred.
  • the chamber and resonator can be of equal or unequal length, one or more chambers, one or more coaxial resonators or divided chambers or coaxial resonators, e.g. can be formed perpendicular to the preferred direction.
  • Coupling points as e.g. Antennas or preferably as slots or recesses can be on the walls of the coaxial resonator, i.e. on the walls common to the chamber, in any number, preferably in the number, geometry and arrangement required for the particular plasma mode selected.
  • Coupling points of small dimensions do not significantly disturb the resonance in the coaxial resonator. Such coupling points and a larger number of coupling points enable the often preferred homogeneous formation of the plasma in the plasma chamber and resonance in the chamber if suitable dimensions.
  • the microwave source can be arranged directly, via a possibly regulated feed line or via a further resonator at any point of the coaxial resonator, also at the inner boundary, and can be coupled into one or more plasma chambers.
  • the plasma chamber as well as the coaxial resonator can be entirely or partially a dielectric material such as e.g. Contain ceramic, quartz glass or Te ⁇ flon.
  • An inner chamber arranged wholly or partially in the inner conductor is possible, also an outer chamber and possibly one or more outer chambers and one or more inner chambers, each with a usable space or receptacles with dielectric walls of any shape arranged therein.
  • the coaxial resonator of the invention thus enables a variety of shapes and configurations.
  • the plasma chamber can be an additional resonator or a part thereof. Preferred is the design of the plasma chamber as a cylinder resonator and the associated design of certain modes.
  • a plurality of leads of the microwaves to one or more coaxial resonators can be formed.
  • the preferred coaxial modes TEM or TM nl are optimally formed in the coaxial resonator between two preferably cylindrical, electrically conductive tubes of different diameters. There are also any TE m or TM M field distributions possible.
  • the length of both tubes is preferably a multiple of half the line wavelength of the microwave used.
  • the pipes are then electrically conductively delimited at both ends, for example by a wall, gas-permeable grid or a short-circuit slide.
  • the recipient or recipients can be large-volume according to the invention and can serve different purposes when divided.
  • a metallic end wall is not absolutely necessary.
  • Permanent magnets or coil arrangements e.g. According to Helmholz around the respective outer tube or the metal outer wall, the conditions for electron cyclotron resonance plasmas allow in the chamber.
  • An arrangement of magnets in the inner conductor of the coaxial resonator is also possible.
  • FIG. 1 shows a section through a device along the z-axis
  • FIG. 1b shows the associated top view
  • a device with an inner wall 2 and an outer wall 3 of a tubular coaxial resonator with a microwave source 4, which couples into the resonator between 2 and 3, and receivers 1 is shown.
  • the coaxial resonator and the internal plasma chamber which is designed as a cylinder resonator, have the same length in the z direction.
  • 10 is an optional metallic grid, for example, which divides the plasma chamber into two chambers. In the upper or lower end of the plasma chamber, openings 6 are drawn in for the supply or removal of, for example, process gases.
  • FIG. 2 shows a device similar to FIG. 1, but here the coupling points 5 are arranged as longitudinal slots in the wall of the inner coaxial conductor and thus run parallel to the z-axis of the device.
  • some tuning options of the coaxial resonator and plasma chamber are listed as examples in FIG. 2.
  • the end slide 7 is used to tune the coaxial resonator.
  • the tuning pin or screw 8 serves the same purpose. The location and number of such tuning elements can be varied as required.
  • the tuning pin 9 shows a possibility for tuning the plasma chamber.
  • a closing slide (not shown here) that changes the length of the plasma chamber also has a similar function.
  • the arrows in the figure indicate the direction of movement of the tuning elements.
  • the microwave generator 4 is mounted inside the inner conductor 2 of the coaxial resonator.
  • the coupling points 5 are designed as three azimuthal, partially circumferential coupling slots in the outer wall of the coaxial resonator.
  • FIG. 4 shows further exemplary embodiments of the device, with FIG. 4a showing a section through a device with both an inner plasma chamber 11 and an outer chamber 12. If necessary, the plasma chambers 11, 12 can be equipped with recipients.
  • 4b shows a section through a device in which the microwave is directly coupled into a cylinder resonator 13 and this resonator is coupled to the coaxial resonator via a circumferential azimuthal slot. The coupling into the plasma chamber 11 designed as a further cylinder resonator with recipient 1 takes place via further coupling slots.
  • Fig. 4c shows a section through a device, in which a e.g. helically coaxial resonator with outer conductor 3 and similarly coiled e.g. Inner wire 2, formed as a wire, lies in a cylindrical chamber 12.
  • a e.g. helically coaxial resonator with outer conductor 3 and similarly coiled e.g. Inner wire 2, formed as a wire lies in a cylindrical chamber 12.
  • a design in which the coaxial resonator completely or partially encloses a chamber with the outer conductor in a coiled or wound form, i.e., e.g. a band or a cord wrapped around a chamber is also possible.
  • FIG. 4d shows a section through a device with a spherical plasma chamber 11.
  • the antenna of the microwave generator 4 is connected directly to the inner conductor 2 of the coaxial resonator.
  • the outer conductor 3 is tapered conically towards the microwave generator 4.
  • the microwave power is coupled into the plasma chamber via an azimuthal coupling slot 5.

Abstract

In einer Vorrichtung zur Erzeugung leistungsfähiger Mikrowellenplasmen ist der Resonator als Koaxial-Resonator mit Innen- und Außenleiter ausgebildet. Die Mikrowelleneinkopplung in die Plasmakammer erfolgt über die Abgrenzungen des Koaxial-Resonators.

Description

Vorrichtung zur Erzeugung von leistungsfähigen
Mikrowe11enp1asmen
Mikrowellenplasmen werden in technischen Bereichen wie z.B. der Herstellung bzw. Bearbeitung von Bauteilen, in der Mikroelektronik, bei der Beschichtung, in der Gaszer¬ setzung, der Stoffsynthese oder der Materialreinigung eingesetzt.
In den Vorrichtungen werden die Mikrowellen in die Plas¬ makammer mit dem ggf. darin befindlichen Rezipienten d.h. Nutzraum, aus einem Mikrowellenerzeuger ggf. über eine Zuleitung zu einem Hohlleiterresonator um die Plasmakam¬ mer mittels Koppelstellen geleitet. Üblich sind besonders Ringresonatoren, d.h. ringförmig ausgebildete Hohllei- terresonatoren mit geringer Länge entlang ihrer Achse, verglichen mit dem relativ großen Durchmesser des Quer¬ schnitts des Resonatorrings. Häufig hat die Achse des Ringresonators und die Achse des in diesem Falle z.B. als Rohr ausgebildeten Plasmakammer die gleiche oder eine ge¬ rneinsame z-Achse.
Nach DE 196 00 223.0 - 33 hat der Resonatorring einen rechteckigen Querschnitt und die Koppelstellen liegen z.B. als Schlitze in der kurzen Querschnittsseite. Solche Vorrichtungen zur Erzeugung von Mikrowellenplasmen besit¬ zen gute Wirksamkeit. Es besteht jedoch Bedarf nach homo¬ generen und leistungsfähigeren Plasmakammern und einfa¬ cher gestalteten Vorrichtung. Gegenstand der Erfindung ist ein Vorrichtung zur Erzeu¬ gung von Mikrowellenplasmen, deren Resonator als Koaxial- Resonator mit Innen- und Außenleiter ausgebildet ist. So¬ weit Leiter ganz oder teilweise die Innen- und Außβnab- grenzung des Resonators bilden, ist deren Form und die Form der Leiter beliebig. Beide Leiter haben bevorzugt eine ähnliche, gleichartige, oder gleiche Achsenrichtung oder eine gemeinsame Achse z. Vakuum ist bei Betrieb der Vorrichtung überraschend nicht unbedingt notwendig.
Die Fertigung erfolgt aus Hohlprofilen, vorzugsweise z.B. Walzprofilen, gestreckter Art, die als koaxialer Leiter ineinander angeordnet sind und an den Enden abgeschlossen oder offen sein können. Einfach gestaltbare Beispiele sind zwei Rohre bzw. Zylinder beliebiger, auch eckiger Grundfläche, die ineinander angeordnet sind. Ein Draht oder massiver Zylinder als Innenleiter ist bevorzugt, wenn nur über den Außenleiter gekoppelt wird.
Der Resonator kann im wesentlichen die gleiche Achse in z-Richtung wie die Plasmakammer besitzen und Resonator und Plasmakammer können entlang der z-Richtung gleich lang oder nicht gleich lang ausgebildet sein.
Alle Bauteile können auch mehrfach in der Apparatur ent¬ halten sein.
Die Erfindung geht also ab vom schmal ausgebildeten Reso¬ natorring mit verschiedenem Querschnitts, der die Plasma¬ kammer, die z.B. als Resonator ausgebildet ist, wie ein Fingerring den Finger einer Hand umfaßt. Statt dessen ist der Koaxial-Resonator erfindungsgemäß langgestreckt und kann z.B. als Hülle wie der Raum einer Fingerhülle des Handschuhs um den Finger auf im wesentlichen ganzer Länge in Richtung der z-Achse ausgebildet sein. Plasmakammer und Resonator sind erfindungsgemäß nicht an eine bestimm- te Form der Hohlkörper gebunden. Der Innen- und Außenlei- ter des Koaxial-Resonators besitzt sehr bevorzugt im we¬ sentlichen mit ihrer langen oder längsten Achse, genannt z-Achse, im wesentlichen die gleiche Richtung. Bevorzugt ist die gleiche Richtung der Achsen von Kammer und Koa- xial-Resonator, eine gemeinsame oder parallele Achse, je¬ doch ist auch ein geringer Winkel oder eine Verkippung bis zu 90° zwischen den Achsen beider Bauteile möglich.
Koaxiale Leiter, aus flexiblen Metallschläuchen herge¬ stellt, z.B. als Wendelstreifen oder ineinander greifen¬ den Ringen sind möglich, wobei zwei ineinander angeordne¬ te Schläuche oder ein Schlauch gewendelt um z.B. eine rohrförmige oder eiförmige Kammer als der eine Leiter, den Resonator bilden. Die Wand der Plasmakammer kann der eine Leiter sein, wobei die Form der Plasmakammer belie¬ big ist, aber stetige Ausbildung als Rohr, Kugel oder Zy¬ linder bevorzugt sind.
In allen Fällen können Kammer und Resonator gleich oder ungleich lang sein, wobei eine oder auch mehrere Kammern, ein oder mehrere Koaxial-Resonatoren oder geteilte Kam¬ mern oder Koaxial-Resonatoren z.B. senkrecht zur Vorzugs¬ richtung ausgebildet sein können.
Koppelstellen als z.B. Antennen oder bevorzugt als Schlitze bzw. Aussparungen können an den Wandungen des Koaxial-Resonators, d.h. an den mit der Kammer gemeinsa¬ men Wänden, in beliebiger Zahl, bevorzugt in der für die jeweils gewählte Plasmamode benötigten Zahl, Geometrie und Anordnung angeordnet sein.
Koppelstellen von kleinen Dimensionen stören die Resonanz im Koaxial-Resonator nicht wesentlich. Solche Koppelstel¬ len und eine größere Anzahl von Koppelstellen ermöglichen die vielfach bevorzugte homogene Ausbildung des Plasmas in der Plasmakammer und eine Resonanz in der Kammer im Falle geeigneter Dimensionen.
Die Mikrowellenguelle kann direkt, über ggf. geregelte Zuleitung oder über einen weiteren Resonator an einer be¬ liebigen Stelle des Koaxial-Resonators, auch an der In¬ nenabgrenzung, angeordnet sein und in ein oder mehrere Plasmakammern einkoppeln. Die Plasmakammer wie auch der Koaxialresonator kann ganz oder auch teilweise ein die¬ lektrisches Material wie z.B. Keramik, Quarzglas oder Te¬ flon enthalten.
Gemäß dieser Erfindung besteht nicht mehr die Notwendig¬ keit, die Kammer nur innerhalb des Resonators anzuordnen. Eine im Innenleiter ganz oder teilweise angeordnete In¬ nenkammer ist möglich, auch eine Außenkammer und ggf. so¬ wohl eine oder mehrere Außenkammern und ein oder mehrere Innenkammern mit jeweils darin angeordnetem Nutzraum bzw. Rezipienten mit dielektrischen Wandungen von beliebiger Gestalt.
Der Koaxial-Resonator der Erfindung ermöglicht somit eine Vielfalt der Gestalt und Ausbildung. Die Plasmakammβr kann ein zusätzlicher Resonator oder dessen Teil sein. Bevorzugt ist hierbei die Ausbildung der Plasmakammer als Zylinderresonator und die damit verbundene Ausbildung be¬ stimmter Moden. Mehrere Zuleitungen der Mikrowellen an eine oder mehrere Koaxialresonatoren können ausgebildet sein.
Für die Moden der jeweiligen Art sind bestimmte apparati¬ ve und geometrische Ausbildungen der Vorrichtung beson¬ ders geeignet. Die bevorzugten Koaxialmoden TEM- oder TMnl bildet sich im Koaxial-Resonator optimal zwischen zwei bevorzugt zylindrischen elektrisch leitenden Rohren von unterschiedlichem Durchmesser. Darin sind auch beliebige TEm oder TMM Feldverteilungen möglich. Die Länge beider Rohre beträgt bevorzugt ein vielfaches der halben Lei¬ tungs-Wellenlänge der verwendeten Mikrowelle. An beiden Enden sind dann die Rohre elektrisch leitend begrenzt, z.B. durch eine Wand, gasdurchläßiges Gitter oder einen Kurzschlußschieber.
Der bzw. die Rezipienten, wie üblich aus dielektrischem Material, können gemäß der Erfindung großvolumig sein und bei Teilung verschiedenen Aufgaben dienen. Im Falle eines großräumigen außen angeordneten Rezipienten ist eine me¬ tallische Abschlußwand nicht zwingend erforderlich.
Permanentmagnete oder Spulenanordnungen z.B. nach Helm¬ holz um das jeweils äußere Rohr oder die metallene Außen¬ wand ermöglichen in der Kammer die Bedingungen für Elek¬ tronen Zyklotron Resonanz Plasmen. Eine Anordnung von Ma¬ gneten im Innenleiter des Koaxial-Resonators ist ebenso möglich.
Fig.l zeigt in Fig.la einen Schnitt durch eine Vorrich¬ tung entlang der z-Achse, Fig. lb die dazugehörige Auf¬ sicht. Dargestellt ist eine Vorrichtung mit Innenwand 2 und Außenwand 3 eines rohrförmigen Koaxial-Resonators mit Mikrowellenquelle 4, die in den Resonator zwischen 2 und 3 einkoppelt, und Rezipienten 1. In Fig.l sind zwei Kop¬ pelschlitze 5 als umlaufende Schlitze in der Innenwand 2 ausgeführt; diese stehen somit senkrecht zur z-Achse der Vorrichtung. Koaxial-Resonator und innenliegende Plasma¬ kammer, die als Zylinderresonator ausgeführt ist, zeigen in diesem Ausführungsbeispiel gleiche Länge in z- Richtung. 10 ist ein optionales z.B. metallisches Gitter, welches die Plasmakammer in zwei Kammern aufteilt. Im oberen bzw. unteren Abschluß der Plasmakammer sind Öffnungen 6 für die Zu- bzw. Abfuhr von z.B. Prozessgasen eingezeichnet.
Fig.2 zeigt eine ähnliche Vorrichtung wie Fig.l, jedoch sind hier die Koppelstellen 5 als Längsschlitze in der Wand des inneren Koaxialleiters angeordnet und verlaufen somit parallel zur z-Achse der Vorrichtung. Weiterhin sind in Fig. 2 einige Abstimmöglichkeiten von Koaxial- Resonator und Plasmakammer exemplarisch aufgeführt. Der Abschlußschieber 7 dient zur Abstimmung des Koaxial- Resonators. Der Abstimm-Stift bzw. Schraube 8 dient dem gleichen Zweck. Die Lage und Anzahl solcher Abstimmele- mente kann nach Bedarf variiert werden. Der Abstimm-Stift 9 zeigt eine Abstimmöglichkeit für die Plasmakammer. Eine ähnliche Funktion hat auch ein hier nicht gezeigter Ab¬ schlußschieber, der die Länge der Plasmakammer verändert. Die Pfeile in der Figur geben die Bewegungsrichtung der Abstimmelemente an.
Fig. 3 zeigt einen Ausschnitt einer Vorrichtung mit au- ßenliegender, hier nicht vollständig dargestellter Plas¬ makammer. Der Mikrowellenerzeuger 4 ist im Inneren des Innenleiters 2 des Koaxial-Resonators angebracht. Die Koppelstellen 5 sind als drei azimutale, teilweise umlau¬ fende Koppelschlitze in der Außenwand des Koaxial- Resonators ausgeführt.
In Fig.4 sind weitere Ausfühungsbeispiele der Vorrichtung skizziert, wobei in Fig. 4a ein Schnitt durch eine Vor¬ richtung mit sowohl innerer Plasmakammer 11 als auch au- ssenliegender Kammer 12 dargestellt ist. Bei Bedarf kön¬ nen die Plasmakammern 11, 12 mit Rezipienten ausgestattet werden. Fig. 4b zeigt einen Schnitt durch eine Vorrichtung, bei der die Mikrowelle in einen Zylinderresonator 13 direkt eingekoppelt wird und dieser Resonator über einen umlau¬ fenden azimuthalen Schlitze mit dem Koaxial-Resonator ge¬ koppelt ist. Die Einkopplung in die als weiterer Zylin¬ derresonator ausgebildete Plasmakammer 11 mit Rezipient 1 erfolgt über weitere Koppelschlitze.
Fig. 4c zeigt einen Schnitt durch eine Vorrichtung, worin ein z.B. schraubenförmig gewendelter Koaxial-Resonator mit Außenleiter 3 und gleichartig gewendeltem z.B. als Draht ausgebildeter Innenleiter 2 in einer zylindrischen Kammer 12 liegt. Eine Bauform, bei der der Koaxial- Resonator in gewendelter bzw gewickelter Form mit dem Au- ssenleiter eine Kammer ganz oder teilweise umschließt, d.h wie z.B. eine Band oder eine Schnur eine Kammer um¬ wickelt ist ebenfalls möglich.
Fig. 4d zeigt einen Schnitt durch eine Vorrichtung, mit kugelförmiger Plasmakammer 11. Die Antenne des Mikrowel¬ lenerzeugers 4 ist direkt mit dem Innenleiter 2 des Koa¬ xial-Resonators verbunden. Der Aussenleiter 3 ist zum Mikrowellenerzeuger 4 hin kegelförmig verjüngt. Über ei¬ nen azimutalen Koppelschlitz 5 wird die Mikrowellenlei¬ stung in die Plasmakammer gekoppelt.

Claims

P A T E N T A N S P R Ü C H E
1. Vorrichtung zur Erzeugung von Mikrowellenplasmen mit Mikrowellenerzeuger, zuleitendem Resonator mit Koppel- stellen, Plasmakammer und ggf. Rezipienten, bestehend aus einem Resonator, dessen Außen- und Innenabgrenzung als Außen- und Innenleiter eines Koaxial-Resonators mit oder ohne geometrische Vorzugsrichtung ausgebildet sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Plasmakammer vom Resonator ganz oder teilweise umfaßt ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Resonator von der Plasmakammer ganz oder teilwei¬ se umfaßt ist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß innerhalb und/oder außerhalb des Resonators eine oder mehr Kammern angeordnet sind, bzw. die Plasmakammer ge¬ teilt ist.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Koaxial-Resonator und die Plasmakammer gleiche Vorzugsrichtung gleich lang oder verschieden lang ausge¬ bildet sind.
6. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Koppelstellen für die Ein- bzw. Auskopplung der Mikrowellen von dem Resonator in bzw. an den Wandungen des Koaxial-Resonators bzw. in oder an der gemeinsamen Wand von Kammer und Resonator an¬ geordnet sind.
7. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Koppelstellen Stabanten¬ nen oder/und Schlaufen oder/und Schlitze oder/und Ausspa¬ rungen sind.
PCT/EP1997/001114 1996-03-08 1997-03-03 Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen WO1997033299A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU20955/97A AU729335C (en) 1996-03-08 1997-03-03 Device for the production of powerful microwave plasmas
DE59711791T DE59711791D1 (de) 1996-03-08 1997-03-03 Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen
US09/142,513 US6204603B1 (en) 1996-03-08 1997-03-03 Coaxial resonator microwave plasma generator
EP97906173A EP0885455B1 (de) 1996-03-08 1997-03-03 Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen
JP53146697A JP3571056B2 (ja) 1996-03-08 1997-03-03 強力マイクロ波プラズマ発生装置
CA002248250A CA2248250C (en) 1996-03-08 1997-03-03 Device for generating powerful microwave plasmas
AT97906173T ATE271717T1 (de) 1996-03-08 1997-03-03 Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608949.2 1996-03-08
DE19608949A DE19608949A1 (de) 1996-03-08 1996-03-08 Vorrichtung zur Erzeugung von leistungsfähigen Mikrowellenplasmen

Publications (1)

Publication Number Publication Date
WO1997033299A1 true WO1997033299A1 (de) 1997-09-12

Family

ID=7787582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001114 WO1997033299A1 (de) 1996-03-08 1997-03-03 Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen

Country Status (9)

Country Link
US (1) US6204603B1 (de)
EP (1) EP0885455B1 (de)
JP (1) JP3571056B2 (de)
KR (1) KR100458080B1 (de)
AT (1) ATE271717T1 (de)
CA (1) CA2248250C (de)
DE (2) DE19608949A1 (de)
ES (1) ES2225953T3 (de)
WO (1) WO1997033299A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726663A1 (de) * 1997-06-23 1999-01-28 Sung Spitzl Hildegard Dr Ing Vorrichtung zur Erzeugung von homogenen Mikrowellenplasmen
DE19847848C1 (de) * 1998-10-16 2000-05-11 R3 T Gmbh Rapid Reactive Radic Vorrichtung und Erzeugung angeregter/ionisierter Teilchen in einem Plasma
DE19928876A1 (de) * 1999-06-24 2000-12-28 Leybold Systems Gmbh Vorrichtung zur lokalen Erzeugung eines Plasmas in einer Behandlungskammer durch Mikrowellenanregung
DE10114115A1 (de) * 2001-03-22 2002-10-02 Muegge Electronic Gmbh Anordnung zur Erzeugung von Plasma in einem Behandlungsraum
DE10138693A1 (de) * 2001-08-07 2003-07-10 Schott Glas Vorrichtung zum Beschichten von Gegenständen
US20050212626A1 (en) * 2002-05-07 2005-09-29 Toshiyuki Takamatsu High frequency reaction processing system
DE10322367A1 (de) * 2003-05-13 2004-12-02 Dreyer, Dietmar, Dipl.-Ing. (FH) Speicherbatterie auf der Basis eines Hochfrequenzplasmas
DE10358329B4 (de) * 2003-12-12 2007-08-02 R3T Gmbh Rapid Reactive Radicals Technology Vorrichtung zur Erzeugung angeregter und/oder ionisierter Teilchen in einem Plasma und Verfahren zur Erzeugung ionisierter Teilchen
DE102006062339A1 (de) * 2006-12-22 2008-07-03 TRüTZSCHLER GMBH & CO. KG Mikrowellenresonator für eine oder an einer Textilmaschine, insb. Karde, Strecke, Kämmmaschine o. dgl.
EP2101547B1 (de) * 2008-03-11 2014-03-05 Vita Zahnfabrik H. Rauter GmbH & Co. KG Dental-Sinterofen sowie Verfahren zum Sintern keramischer Dental-Elemente
GB0902784D0 (en) 2009-02-19 2009-04-08 Gasplas As Plasma reactor
NO339087B1 (no) 2010-08-17 2016-11-14 Gasplas As Anordning, system og fremgangsmåte for fremstilling av hydrogen
DE102011051542B4 (de) * 2011-07-04 2013-04-25 Jenoptik Katasorb Gmbh Mikrowellenreaktor zur mikrowellenunterstützten Erwärmung eines Mediums
DE102014016380A1 (de) 2014-11-06 2016-05-12 Brückner Maschinenbau GmbH & Co. KG Plasma Abgasreinigung
US9736920B2 (en) * 2015-02-06 2017-08-15 Mks Instruments, Inc. Apparatus and method for plasma ignition with a self-resonating device
US10748745B2 (en) * 2016-08-16 2020-08-18 Applied Materials, Inc. Modular microwave plasma source
US10707058B2 (en) 2017-04-11 2020-07-07 Applied Materials, Inc. Symmetric and irregular shaped plasmas using modular microwave sources
US11037764B2 (en) 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
DE102018000401A1 (de) 2018-01-19 2019-07-25 Ralf Spitzl Mikrowellenplasmavorrichtung
US11081317B2 (en) 2018-04-20 2021-08-03 Applied Materials, Inc. Modular high-frequency source
US11393661B2 (en) 2018-04-20 2022-07-19 Applied Materials, Inc. Remote modular high-frequency source
US10504699B2 (en) 2018-04-20 2019-12-10 Applied Materials, Inc. Phased array modular high-frequency source
EP4129504A4 (de) * 2020-03-23 2024-04-03 Sst Inc Hochfrequenzreaktionsbehandlungsvorrichtung und hochfrequenzreaktionsbehandlungssystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577207A (en) * 1969-05-07 1971-05-04 Vladimir Pavlovich Kirjushin Microwave plasmatron
US4559099A (en) * 1984-08-24 1985-12-17 Technics Gmbh Europa Etching device
FR2668676A2 (fr) * 1986-06-06 1992-04-30 Univ Bordeaux 1 Dispositif perfectionne pour l'application de micro-ondes.
EP0564359A1 (de) * 1992-04-03 1993-10-06 Commissariat A L'energie Atomique Mikrowellenstrahler und Plasmareaktor unter Verwendung dieser Einrichtung
US5487875A (en) * 1991-11-05 1996-01-30 Canon Kabushiki Kaisha Microwave introducing device provided with an endless circular waveguide and plasma treating apparatus provided with said device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1960022B2 (de) 1969-11-29 1973-09-27 Grundig E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig, 8510 Fuerth Schaltungsanordnung zur Anzeige der Senderfeldstarke am Signaleingang eines Empfangers für Frequenzmoduherte Hochfrequente Schwingungen
FR2147497A5 (de) * 1971-07-29 1973-03-09 Commissariat Energie Atomique
FR2631199B1 (fr) * 1988-05-09 1991-03-15 Centre Nat Rech Scient Reacteur a plasma
US5134965A (en) * 1989-06-16 1992-08-04 Hitachi, Ltd. Processing apparatus and method for plasma processing
DE4113142A1 (de) * 1991-03-14 1992-09-17 Leybold Ag Vorrichtung zur erzeugung von glimmentladungen
DE4235914A1 (de) * 1992-10-23 1994-04-28 Juergen Prof Dr Engemann Vorrichtung zur Erzeugung von Mikrowellenplasmen
DE19507077C1 (de) * 1995-01-25 1996-04-25 Fraunhofer Ges Forschung Plasmareaktor
US9476968B2 (en) * 2014-07-24 2016-10-25 Rosemount Aerospace Inc. System and method for monitoring optical subsystem performance in cloud LIDAR systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577207A (en) * 1969-05-07 1971-05-04 Vladimir Pavlovich Kirjushin Microwave plasmatron
US4559099A (en) * 1984-08-24 1985-12-17 Technics Gmbh Europa Etching device
FR2668676A2 (fr) * 1986-06-06 1992-04-30 Univ Bordeaux 1 Dispositif perfectionne pour l'application de micro-ondes.
US5487875A (en) * 1991-11-05 1996-01-30 Canon Kabushiki Kaisha Microwave introducing device provided with an endless circular waveguide and plasma treating apparatus provided with said device
EP0564359A1 (de) * 1992-04-03 1993-10-06 Commissariat A L'energie Atomique Mikrowellenstrahler und Plasmareaktor unter Verwendung dieser Einrichtung

Also Published As

Publication number Publication date
DE59711791D1 (de) 2004-08-26
AU2095597A (en) 1997-09-22
KR100458080B1 (ko) 2005-04-06
ES2225953T3 (es) 2005-03-16
EP0885455B1 (de) 2004-07-21
KR19990087630A (ko) 1999-12-27
AU729335B2 (en) 2001-02-01
US6204603B1 (en) 2001-03-20
JP3571056B2 (ja) 2004-09-29
CA2248250C (en) 2003-07-08
JP2001508226A (ja) 2001-06-19
ATE271717T1 (de) 2004-08-15
CA2248250A1 (en) 1997-09-12
EP0885455A1 (de) 1998-12-23
DE19608949A1 (de) 1997-09-11

Similar Documents

Publication Publication Date Title
WO1997033299A1 (de) Vorrichtung zur erzeugung von leistungsfähigen mikrowellenplasmen
DE3915477C2 (de) Vorrichtung zur Erzeugung eines Plasmas mit Mikrowellen
EP0916153B1 (de) Vorrichtung zur erzeugung von plasma
EP0872164B1 (de) Vorrichtung zur erzeugung von plasmen mittels mikrowellen
DE19726663A1 (de) Vorrichtung zur Erzeugung von homogenen Mikrowellenplasmen
EP0961528B1 (de) Vorrichtung zur Erzeugung von Plasma
DE102010027619B3 (de) Mikrowellenplasmaquelle mit einer Vorrichtung zur Zuführung von Mikrowellenenergie
DE4230029A1 (de) Becherfoermige endzufuehrungen fuer elektrodenlose hochfrequenzlampen
DE1673268C3 (de) Sonde für Resonanzspektrometer
DE102021111188A1 (de) Hohlleiter-Einkoppeleinheit
DE102018000401A1 (de) Mikrowellenplasmavorrichtung
DD263648A1 (de) Verfahren und einrichtung zur erzeugung von mikrowellenplasmen mit grosser ausdehnung und homogenitaet
DE4125655C2 (de) Resonatoranordnung für die Elektronenspinresonanz-Spektroskopie
DE19801366B4 (de) Vorrichtung zur Erzeugung von Plasma
DE2014545A1 (de) Vorrichtung zur Unterdrückung störender Höchstfrequenzwellentypen
EP0204104B1 (de) Resonatoranordnung
DE19848022A1 (de) Vorrichtung zur Erzeugung von Plasma
DE10019990A1 (de) Probenkopf für Kernresonanzmessungen
DE3343747A1 (de) Gyrotron-oszillator
DE10109489A1 (de) Spinresonanzgerät mit einem statischen Magnetfeld
DE19523374C1 (de) Mikrowellen-Bandpaßfilter
DE2136074B2 (de) Abstimmbarer Leitungsresonator
DE1766147C (de) Mikrowellenfensteranordnung
WO2002015217A1 (de) Innenleiter eines koaxialen gyrotrons mit um den umfang gleichverteilten axialen korrugationen
DE10358329A1 (de) Vorrichtung zur Erzeugung angeregter und/oder ionisierter Teilchen in einem Plasma und Verfahren zur Erzeugung ionisierter Teilchen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997906173

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 531466

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2248250

Country of ref document: CA

Ref country code: CA

Ref document number: 2248250

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019980707082

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97531466

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997906173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09142513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97531466

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1997531466

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1019980707082

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997906173

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980707082

Country of ref document: KR