WO1997021660A1 - Procede d'elaboration de diarylesters d'acide oxalique - Google Patents

Procede d'elaboration de diarylesters d'acide oxalique Download PDF

Info

Publication number
WO1997021660A1
WO1997021660A1 PCT/JP1996/003636 JP9603636W WO9721660A1 WO 1997021660 A1 WO1997021660 A1 WO 1997021660A1 JP 9603636 W JP9603636 W JP 9603636W WO 9721660 A1 WO9721660 A1 WO 9721660A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxalate
reaction
disproportionation
distillation column
alkyl
Prior art date
Application number
PCT/JP1996/003636
Other languages
English (en)
French (fr)
Inventor
Keigo Nishihira
Shuji Tanaka
Yuki Nishida
Satoru Fujitsu
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to EP96941854A priority Critical patent/EP0814074B1/en
Priority to DE69612280T priority patent/DE69612280T2/de
Priority to US08/875,823 priority patent/US6018072A/en
Publication of WO1997021660A1 publication Critical patent/WO1997021660A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/02Preparation of carboxylic acid esters by interreacting ester groups, i.e. transesterification

Definitions

  • the present invention provides diphenyl oxalate (for example, diphenyl oxalate: hereafter abbreviated as DP0) by using an alkyl oxalate (for example, alkylphenyl oxalate) as a starting material and disproportionating it.
  • the present invention relates to a process for producing oxalic acid diaryl ester (diaryl oxalate).
  • an alkyl oxalate eg, an alkyl phenyl oxalate
  • a transesterification reaction of a dialkyl oxalate (dialkyl oxalate) with a phenol oxalic acid diaryl esters
  • DP0 disproportionation reaction of the alkyl oxalic ester.
  • Diaryl oxalates such as diphenyl oxalate
  • diphenyl oxalate are extremely important industrial raw materials in the production of chemicals, such as, for example, olebamate.
  • the method (2) or (3) for producing an aryl oxalate by reacting a dialkyl oxalate with an aryl carbonate or an aryl ester of a lower fatty acid is a method in which the raw material diacarbonate is used. It is difficult to produce reels or lower fatty acid aryl esters, which makes them very expensive and difficult to obtain. Since the by-products are produced in a considerably large amount, a very complicated or complicated purification step is required to isolate the diallyl oxalate. Did not. Disclosure of the invention
  • An object of the present invention is to provide a process for producing diaryl oxalate, which uses an alkyl oxalate as a starting material, produces little by-products, has high productivity, and is industrially practical. That is what you do.
  • the above object can be achieved by the method of the present invention.
  • the method for producing diallyl oxalate according to the present invention comprises:
  • alkyl oxalate is subjected to a disproportionation reaction in the presence of a disproportionation catalyst, and diaryl oxalate is formed while removing dialkyl oxalate as a by-product. It does. Further, in the method for producing a diallyl oxalate of the present invention, a dialkyl oxalate and a phenol compound are subjected to a transesterification reaction in the presence of a transesterification catalyst to remove a by-produced aliphatic alcohol. Producing alkyl oxalate ester while removing,
  • the obtained reaction mixture containing alkyl oxalate is used as a disproportionation catalyst, using the transesterification catalyst described in the above A in the reaction mixture.
  • oxalic acid diacid c) ⁇ can be formed.
  • FIG. 1 is a process description for carrying out one embodiment of the production method of the present invention.
  • FIG. 1 A first figure.
  • FIG. 2 is a process explanatory view for carrying out another embodiment of the production method of the present invention.
  • the diaryl oxalate (b) and the oxalate are disproportionated by the disproportionation reaction of the alkyl oxalate (a) starting compound.
  • the acid dialkyl ester (c) is formed.
  • R is an alkyl group, preferably C, -C,. Table showing alkyl groups
  • C Ar is ⁇ Li Lumpur group preferred to rather the phenylalanine group or C, -C 6 alkyl group, C, -C e alkoxy group, two collected by filtration group, and a halogen atom, from other substituents of that Represents a selected at least one-substituted phenyl group)
  • the disproportionation reaction of the alkyl oxalate is preferably carried out in the liquid phase, and the resulting reaction mixture contains unreacted starting materials, for example, METHYLFU XILOXALATE (MP0) and disproportionation catalyst, target compound such as diphenyloxalate (DP0) and by-product dialkyl oxalate such as dimethyloxalate (DM0) And is mainly contained.
  • the target compound for example, difluoroxalate, can be easily separated and collected from such a reaction mixture by a known method, for example, a distillation method.
  • the alkyl oxalate (a) used as a starting compound is, for example, as shown in the following reaction formula (2), a dialkyl oxalate (c) and a phenyl oxalate (c).
  • the reaction can be carried out by subjecting the metal compound (d) to a transesterification reaction while removing the by-produced aliphatic alcohol (e).
  • the alkyl oxalate (a) is obtained by the following reaction formula
  • the transesterification reaction of alkyl oxalate with phenolic compound according to (3) produces diaryl oxalate as a target compound and a by-product aliphatic alcohol.
  • the transesterification according to the reaction formula (3) has a problem that the reaction rate is low, and is not practical.
  • Alkyl groups are methyl, ethyl, n
  • reaction formula (1) substituted full et two Le group represented Ri by the Ar to (3) is a substituent having C, and -C e alkyl group, this C,
  • ⁇ (: 6 alkyl groups should be selected from methyl, ethyl, n- and iso-propyl, ⁇ - and iso-butyl, ⁇ - and iso-pentyl and ⁇ - and iso-hexyl groups And the substituent is
  • the aliphatic alcohol (e) generated by the transesterification reaction corresponds to the R group, and includes, for example, methanol, ethanol, propanol, butanol, and hexanol. And the like.
  • the amount of the disproportionation catalyst used depends on the type of catalyst, the type and size of the reaction apparatus (for example, a multistage distillation column), the type and concentration of each raw material, and the disproportionation reaction. In general, it is preferably about 0.0001 to 50% by weight, particularly preferably 0.001 to 30% by weight, based on the weight of the alkyl oxalate used, although it depends on the reaction conditions. More preferably about 0.005 to 10% by weight Degrees.
  • the concentration (C) of the disproportionation catalyst in the raw material mixture or the reaction mixture is determined by adjusting the concentration of the raw material mixture containing the alkyl oxalate or the reaction product. Is preferably about 0.001 to 45% by weight, particularly preferably 0.005 to 25% by weight, more preferably 0.01 to 10% by weight, based on the weight of the reaction mixture containing %.
  • the reaction conditions in the disproportionation reaction of the production method of the present invention are not particularly limited, but in particular, the reaction temperature is about 50 to 350 ° C, and the reaction pressure is O.OOlmmHg to 10 kgZcm 2.
  • the reaction time (in the case of a distillation column type reactor, this means the residence time of the reaction solution in the column) should be about 0.001 to 100 hours.
  • the alkyl oxalate used in the disproportionation reaction of the production method of the present invention is represented by the following formula (a) as described above.
  • R is an alkyl group, preferably C, -C,.
  • Alkyl group properly favored is La, -C 6 alkyl radical, rather then favored by et, C, represents ⁇ C alkyl group
  • Ar is ⁇ rie group, is preferable and rather phenylpropyl group or represents a full Weniru group having 1 or more substituents, the substituents phenyl groups, C as described above, -C 6 alkyl group, C, -C 6 alkoxy group, two collected by filtration groups, and halogen It is preferable to be selected from atoms.
  • alkyl oxalate to be subjected to the disproportionation reaction include, for example, methylphenyl oxalate, ethylphenyl oxalate, propylphenyl oxalate, and oxalate.
  • Alkylphenyl oxalates such as butylphenyl oxalate, hexylphenyl oxalate, pentylphenyl oxalate, octylphenyl oxalate, and methyl oxalate (P-methylphenyl), methyl oxalate (p -Ethyl oxalate (p-methylphenyl), ethyl oxalate (p-ethylphenyl), methyl oxalate (p-methoxyphenyl), methyl oxalate (p-ethoxyquinyl), Methyl oxalate (p-nitrophenyl), methyl oxalate (p-nitrophenyl), methyl oxalate (p-methyl oxalate (p-methyl oxalate (p-methyl oxalate (p-methyl oxalate (p-methyl oxalate (p-
  • Alkyl oxalate substituted phenyl ester such as chlorophenyl
  • alkyl oxalates can be respectively synthesized by the transesterification reaction between the dialkyl oxalate and the phenol compound.
  • the alkyl oxalate to be subjected to the disproportionation reaction of the method of the present invention includes one ester structure having an alkyl group having about 1 to 4 carbon atoms, a phenyl group (substituent) Does not have)
  • Oxalic acid diesters having one ester structure are suitable, and lower alkyl oxalates such as methylphenyl oxalate, ethylphenyl oxalate, propylphenyl oxalate and butylphenyl oxalate are most preferred.
  • the diaryl oxalate obtained by the production method of the present invention may be any of those represented by the compound (b) in the above-mentioned reaction formula (1), and examples thereof include diphenyl oxalate and oxalate.
  • diphenyl oxalate Bis (p-methylphenyl) oxalate, bis (p-methoxyphenyl) oxalate, bis (oxalate) (p-diphenyl), bis (oxalate) (p-chlorophenyl), etc. are preferred.
  • diphenyl oxalate is preferable.
  • the catalyst used in the disproportionation reaction of the production method of the present invention may be an alkyl oxalate such as alkyl oxalate or the like. There are no restrictions on the type, composition, etc., as long as it can produce a dialkyl oxalate and a diallyl oxalate by a disproportionation reaction.
  • the catalyst used as the disproportionation catalyst is selected from, for example, a transesterification catalyst used in a transesterification reaction between a conventionally known dialkyl dicarboxylate compound and phenols. be able to.
  • the disproportionation reaction catalyst used in the present invention is preferably soluble in a disproportionation reaction system such as a reaction mixture containing an alkyl oxalate and / or a target product.
  • transesterification catalyst used as the disproportionation catalyst include alkali metal, cadmium, and zirconium compounds and complexes thereof, lead-containing compounds, and copper group compounds.
  • Metal-containing compounds, iron-containing compounds, zinc-containing compounds, organotin compounds, and Lewis acid compounds of aluminum, titanium and vanadium can be mentioned, and at least one soluble catalyst is used. It is preferred to use.
  • Examples of the compounds and complexes of the above-mentioned alkali metal, potassium or zirconium include lithium carbonate, sodium carbonate, potassium carbonate, dibutylaminolithium, and lithiumdiacetyla. Examples thereof include selenium toner chelates, cadmium dicetyl cetyl acetate toner chelates, zirconium diacetyl acetate toner chelates, and zirconocene.
  • the lead-containing compound examples include lead sulfide, lead hydroxides, lead salts such as calcium chloride, lead carbonate or a basic salt thereof, lead organic acid salt and a carbonate or basic salt thereof. Salts, as well as tetrabutyl lead, tetrabutyl lead, tributyl lead halogen, triphenyl lead bromo, and triphenyl lead Examples thereof include alkyl or aryl lead compounds such as nil lead, and alkoxy or aryl oxy lead compounds such as dimethoxy lead, methoxy phenyl lead, and difluoro X oxy lead.
  • Examples of the copper group metal-containing compound include copper acetate, copper diacetyl acetate toner chelates, organic acid salts of copper such as copper oleate, alkyl copper compounds such as butyl copper, and alkoxy copper compounds such as dimethoxy copper. And copper compounds such as copper halide, and silver compounds such as silver nitrate, silver bromide, and silver picrate.
  • examples of the iron-containing compound include iron hydroxide, iron carbonate, triacetoxy iron, trimethyoxy iron, and triphenoxy iron.
  • examples of the zinc-containing compound include zinc diacetyl acetate chelate, diacetoxy zinc, dimethoxy zinc, dietine zinc, and diphenoxy zinc.
  • organotin compound examples include (Ph) 4 Sn, (0C0CH 3 ) 4 Sn, (MeO) 4 Sn, (EtO) 4 Sn, (PhO) 4 Sn, (Me) 3 SnOCOCH 3 , (Et) 3 Sn (0C0CH 3 ).
  • Examples of the aluminum ruisic acid compound include AKX)
  • titanium Lewis acid compounds include, for example, Ti (X) 3 , Ti (0C0CH 3 ) 3 , Ti (0 e) 3 , Ti (0Et) 3 ,
  • V (X) 4 can and this include the You.
  • C0CH 3 is Asechiru group
  • M e is methyl
  • E t is Echiru group
  • B u is butyl
  • Ph is phenylalanine group
  • X represents a halogen atom.
  • the disproportionation catalyst used in the production method of the present invention it is particularly preferable to use a lithium compound and a complex thereof, a zirconium complex, an organotin compound, a Lewis acid compound of titanium, and the like. In particular, it is more preferable to use an organic tin compound or a Lewis acid compound of titanium.
  • the disproportionation reaction of the alkyl oxalate can be carried out in the presence of a phenol compound.
  • the molar ratio of the alkyl oxalate ester to the phenol compound is such that the molar ratio of the phenol compound to the alkyl oxalate ester in the feedstock is 1: 0. 01 to 1: preferably 1 000, 1 ... 0.1 to 1: 100 more preferably, more preferably 1: 0.5 to 1 : About 20.
  • a phenol compound which may be used in combination in the disproportionation reaction of the production method of the present invention a phenol compound which can be used in a transesterification reaction between a dialkyl oxalate and a phenol compound described later. You can choose from a group of chemical compounds.
  • the reactor used in the production method of the present invention performs the disproportionation reaction of the alkyl oxalate ester while immediately removing the low-boiling dialkyl oxalate produced as a by-product from the reaction mixture.
  • the distillation column type reactor uses the liquid phase disproportionation reaction of alkyl oxalate and the evaporative removal of by-product dialkyl oxalate.
  • the device can perform the following.
  • the distillation column type reaction device for example, it is preferable to use a reaction device including a multi-stage distillation column (a continuous reaction device or a batch device).
  • the reactor including the multi-stage distillation column described above has a theoretical plate number of at least two or more, especially 5 to 100 plates, especially? It is preferable to use a reaction apparatus having a multi-stage distillation column having up to 50 stages (also referred to as a reactive distillation column).
  • examples of the multi-stage distillation column reactor include a reactor having a tray-type distillation column using a bubble tray tray, a perforated plate tray, a bubble tray or the like; It is possible to use one having a packed distillation column packed with various packing materials such as ring, leasing ring, and pole ring. Further, a reactor including a distillation column having both a tray type and a packed type can be used for the disproportionation reaction of the method of the present invention.
  • the production method of the present invention will be further described with reference to the accompanying drawings.
  • a reactor consisting of a multistage distillation column 1 having a number of trays 2 (particularly a portion where the shelf 2 of the multistage distillation column 1 is installed)
  • the raw material supplied from the raw material supply line 5 is used.
  • the alkyl aryl oxalate is heated to the set temperature, and subjected to the disproportionation reaction represented by the above reaction formula (1) in the presence of the disproportionation catalyst, thereby producing dialkyl oxalate as a by-product.
  • the low-boiling products are withdrawn by a withdrawal line 1b connected to the top 1a of the distillation column by distillation, and are coagulated by a cooler 4 as necessary.
  • the condensate may be refluxed to the upper part 1c of the multistage distillation column via the circulation line 9.
  • the reflux ratio is preferably 20 or less, and more preferably 10 or less. At this time, it is preferable that a part or the whole of the condensed liquid (mainly composed of dialkyl oxalate) condensed in the cooler 4 is removed to the outside of the system via the extraction line 6.
  • the raw material and the catalyst supplied to the disproportionation reaction of the production method of the present invention are supplied from the raw material supply line 5 in a liquid phase.
  • the connection position of the raw material supply line 5 is set at “from the lowest platen in the multistage distillation column i”. It is preferable that the height be in the range from the shelf of about 1 Z 4 above the shelf to the shelf of about 1 Z 20 below the top shelf. More preferably, it is within the range from “central shelf” to ⁇ top shelf from about 110 lower than all shelves.
  • the raw material mixture (or reaction mixture) flows down each of the trays 2 in the distillation section of the first reactive distillation column 1 while disproportionating at each of the tray sections (distillation section) and the bottom of the column. Receive a reaction.
  • a reaction liquid containing diallyl oxalate at a high concentration is accumulated at the bottom 1 d (bottom) of the second reactive distillation column 1.
  • a low-boiling substance containing a dialkyl oxalate by-produced at the same time evaporates in each tray 2, which is led to the upper tray as a vapor phase and goes to the upper tray.
  • the concentration of dialkyl oxalate in the vapor phase rises, is rectified, and is separated and removed from the reaction system.
  • the reaction solution is heated by the heater 3 installed in the circulation line 8 to heat the reaction solution collected at the bottom (bottom) of the multi-stage distillation column 1 and circulated. This can be done by circulating in line 8. Then, the reaction mixture containing the target substance, oxalic acid diallyl ester, is withdrawn from the system from the withdrawal line 7 and sent to a purification step (not shown). Diaryl oxalate is separated and recovered.
  • the reaction temperature is determined from the mixed solution containing each raw material and the reaction product. It is preferable that the reaction temperature is higher than the temperature at which the resulting reaction solution melts, and the temperature is such that the target product, diallyl oxalate, is not thermally decomposed.
  • the reaction temperature of the disproportionation reaction in the method of the present invention is preferably about 50 to 350 ° C, more preferably 80 to 300 ° C, and 100 to 28 ° C. More preferably, it is about 0.
  • reaction pressure of the disproportionation reaction of the method of the present invention may be any of reduced pressure, normal pressure, and pressurized condition, but at a temperature and a pressure at which dialkyl oxalate as a by-product can be removed by evaporation.
  • reaction temperature is from about 50 to 350 ° C
  • reaction pressure is rather to preferred and the Dearuko 0.01mmHg ⁇ 2 kgZcni 2, 0. lmmHg ⁇ 1 kg / cm 2 is more preferable, and more preferably about 50-500 mmHg.
  • the reaction time of the disproportionation reaction (residence time in the distillation column when a multi-stage distillation column is used) varies depending on the reaction conditions, the type of the reactor, and the operating conditions. At ⁇ 350 ° C, the reaction time is preferably from about 0.01 to 50 hours, more preferably from 0.02 to 10 hours, and even more preferably from about 0.05 to 5 hours.
  • the disproportionation reaction described above enables the production of diallyl oxalate in a sufficient yield (high yield), and the formation of the produced oxalate. Satisfies the two requirements that the acid diaryl ester is not consumed by decomposition or polymerization due to high temperature and long-term heat history, for example, at a high rate (decomposition rate) of 1 to 5% by weight.
  • reaction temperature (T) reaction temperature
  • H residence time of the reaction solution
  • concentration of the disproportionation catalyst in the reaction solution (C), etc. concentration of the disproportionation catalyst in the reaction solution
  • the disproportionation reaction temperature (T) of the alkyl aryl oxalate is controlled in the range of 100 ° C to 280 ° C, and the concentration of the disproportionation catalyst (C When the disproportionation reaction of the alkyl oxalate is controlled by controlling the concentration of the catalyst in the reaction mixture to 0.001% by weight to 45% by weight, ( a ) the disproportionation reaction temperature (T) When the temperature is 100 ° C or higher and lower than 220 ° C, control the residence time (H) of the reaction solution at that temperature to 0.01 to 10 hours, preferably 0.05 to 5 hours, and (b) ) If the disproportionation reaction temperature (T) is 220 ° C or higher and lower than 250 ° C, set the residence time (H) of the reaction solution at that temperature to 0.01 to 2 hours, preferably 0.05 to 1 hour.
  • the residence time (H) of the reaction solution at that temperature is preferably 0.01 to 0.5 hours.
  • the yield of the disproportionation reaction of the alkyl oxalate can be kept at a suitable value, and the heat described above can be maintained. The loss (consumption) of diaryl oxalate due to history can be prevented.
  • the disproportionation reaction temperature (T) is 120 ° C. or more and less than 220 ° C., particularly about 125 ° C. to 215 ° C.
  • the concentration of the disproportionation catalyst (C: (Catalyst concentration) is 0.005 to 25% by weight, particularly 0.01 to 10% by weight, and more preferably about 0.05 to 5% by weight
  • the residence time (H) of the reaction solution at this temperature is 0.05 to 10 hours, particularly 0.05 It is industrially optimal that the time is between 5 and 5 hours, more preferably between 0.1 and 5 hours.
  • reaction conditions deviate from the above-mentioned conditions, decomposition of the oxalic acid diaryl ester in the reaction solution and Z or polymerization occur at a high rate, and Since loss may occur, it is not industrially preferable, and if it falls below each lower limit, the rate of the disproportionation reaction decreases, and the reaction may not be completed within a practical time. Not preferred.
  • a dialkyl oxalate and a phenol compound are subjected to a transesterification reaction to produce an alkyl oxalate, and then the reaction solution is subjected to a disproportionation reaction to produce a reaction.
  • Disproportionation of the alkyl oxalate ester in the reaction solution to oxalic acid In the case of producing a diaryl ester, the transesterification reaction between the dialkyl oxalate and the phenol compound in the first step is carried out in the presence of a transesterification catalyst in the presence of a transesterified aliphatic alcohol.
  • alkyl oxalate diesters such as alkyl oxalate
  • disproportionation reaction of the alkyl oxalate as described above.
  • the transesterification reaction capable of producing an acid diaryl ester for example, the transesterification of a dialkyl oxalate (c) with a phenol compound (d) is carried out according to the above reaction formula (2).
  • the alkyl oxalate (a) produced further undergoes a disproportionation reaction to form a diaryl oxalate. Also occurs.
  • the dialkyl oxalate is an oxalate diester having two ester structures having an alkyl group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • dimethyl oxalate, getyl oxalate, dipropyl oxalate, dibutyl oxalate, dihexyl oxalate, dioctyl oxalate, methylethyl oxalate and the like can be mentioned.
  • dialkyl oxalate having about 1 to 4 carbon atoms in the alkyl group is used.
  • an aliphatic alcohol by-produced in the transesterification reaction can be easily removed.
  • the phenolic compound used in the above transesterification reaction includes phenol, an alkyl group having 1 to 6 carbon atoms, an alkoxy group, a nitro group, and a halogen atom having 1 to 6 carbon atoms.
  • a phenol that may have at least i substituents, or the most preferred is a phenol.
  • o-, m- or p-cresole, xylenol (dimethylphenol), dipropylphenol, and methylethylphenol are used as phenol compounds other than phenol.
  • Enol trimethyl phenol, tetramethyl phenol, ethyl propyl, propyl phenol, butyl phenol, hexyl phenol, etc.
  • Alkyl phenols such as rutile phenols, 0—, m— or p—hydroxy phenols, ethoxy phenols, etc., p—Chloro phenols, 3, 5—dibromophenols Examples thereof include norophenols such as phenol and o-, m-, or p-nitrophenols such as nitrophenol.
  • the transesterification catalyst used in the above transesterification reaction is not particularly limited as long as it can generate an alkyl oxalate ester by a transesterification reaction between a dialkyl oxalate and a phenol compound.
  • a transesterification catalyst may be used, or the transesterification catalyst specifically exemplified as the one which can be used in the above-described disproportionation reaction of the alkyl oxalate gestester may be used as it is. it can.
  • the ester exchange reaction of the dialkyl oxalate and the phenol compound and the disproportionation reaction of the alkyl oxalate are carried out.
  • the catalysts used in the reaction are preferably the same type of catalyst (particularly preferably exactly the same catalyst).
  • the reaction solution supplied to the next stage of disproportionation reaction includes the reaction raw materials and the catalyst used for the transesterification reaction, the desired product alkyl oxalate (eg, MP0) and dioxalate. It mainly contains reel esters (eg, DP0) and methyl alcohol, a by-product.
  • the ratio of the dialkyl oxalate to the phenol compound used varies depending on the type and amount of the catalyst and the reaction conditions.
  • the molar ratio of the phenolic compound to the dialkyl ester is preferably from 0.01: 1 to 1000: 1, particularly preferably from 0.1: 1 to 100: 1, and more preferably from 0.5: 1. 1-2: More preferably, it is 1.
  • the amount of the catalyst used in the transesterification reaction varies depending on the type of the catalyst, the type and size of the reaction apparatus (for example, a multistage distillation column), the type and composition of each raw material, and the reaction conditions of the transesterification reaction. Usually, it is preferably about 0.0001 to 50% by weight, more preferably 0.001 to 30% by weight, and more preferably 0.005 to 10% by weight, expressed as a ratio to the total amount of the dialkyl oxalate and the phenol compound. Heavy More preferably, it is about% by volume.
  • the reaction conditions in the transesterification reaction is not particularly limited, a reaction temperature In general about 50 to 350 ° C, the reaction pressure was 0.00 1 hide H g ⁇ 200 kg / cm 2, The reaction time is preferably about 0.001 to 100 hours.
  • the reaction conditions in the transesterification reaction should not adversely affect the subsequent disproportionation reaction of alkyl oxalate.
  • the reaction conditions (catalyst concentration, reaction temperature, etc.) in the disproportionation reaction be very close.
  • the dialkyl oxalate and the phenolic compound are immediately removed from the reaction solution while aliphatic alcohols, which are low-boiling products produced as a by-product of this reaction, are immediately removed.
  • any reactor may be used.
  • a distillation column reactor is used to remove aliphatic alcohol produced as a by-product.
  • the apparatus is capable of performing a transesterification reaction in a reaction solution in a liquid phase while the distillation column-type reaction apparatus is, for example, a reaction in the aforementioned disproportionation reaction.
  • a reactor composed of a continuous multi-stage distillation column can be suitably cited, and the reactor composed of the multi-stage distillation column has a theoretical plate number of at least two or more, especially 5 to 5. It is preferable to use a multistage distillation column type reactor having 100 stages, particularly 7 to 50 stages.
  • Examples of the multistage distillation column-type reactor in the transesterification reaction include, for example, a bubble tray, a perforated plate tray, a bubble tray, and the like, as in the reactor in the disproportionation reaction described above. It is possible to use a tray type distillation column used, or a packed distillation column filled with various packing materials such as Raschling, Lessing ring, and Polling. A distillation column having both a tray type and a packed type can be used.
  • a reaction apparatus shown in FIG. 2 is used to evaporate and remove by-produced aliphatic alcohol in a first distillation reaction column (multistage distillation column) 10 in the presence of a transesterification catalyst.
  • the transesterification catalyst is used as a disproportionation reaction catalyst to evaporate dialkyl oxalate (mainly a by-product) and a phenol compound.
  • dialkyl oxalate mainly a by-product
  • the diaryl oxalate is continuously produced from the dialkyl oxalate and the phenol compound.
  • This method is industrially preferred.
  • the first reactive distillation column (multi-stage distillation column) 10 and the second reactive distillation column (multi-stage distillation column) 1 composed of a multi-stage distillation column are formed at the bottom of the first distillation reaction column 10 (multi-stage distillation column).
  • the bottom is connected by a 1 d can liquid extraction line (pipe) 17 and a supply line 5 to the second reactive distillation column 1.
  • the first reactive distillation column 10 and the second reactive distillation column 1 were used to produce an alkyl oxalate ester by ester exchange reaction and dioxalate by disproportionation reaction.
  • Real ester generation can be performed continuously.
  • the condensate or vapor of the dialkyl oxalate extracted through the extraction line 6 of the multistage distillation column (second reactive distillation column) 1 for the disproportionation reaction is subjected to a transesterification reaction.
  • the first reactive distillation column 10 shown in FIG. 2 a number of distillation trays 12 are arranged, and a dialkyl oxalate and a phenol compound are passed through a raw material supply line 15. And the raw material containing the transesterification catalyst is supplied.
  • a transesterification reaction is carried out, and the by-produced aliphatic alcohol is distilled, withdrawn from the top 10 a via a line 10 b, and condensed by a cooler 14. .
  • This condensate is extracted out of the system by the line 16, and a part of the condensate may be refluxed to the column top 10 c by the line 19 if necessary.
  • the return ratio at this time is preferably 20 or less, and more preferably 10 or less.
  • the raw material (dialkyl oxalate, phenol compound) and the transesterification catalyst supply line 15 supplied to the transesterification reaction are the same as those described in “multi-stage distillation column 10 in FIG.
  • the reaction solution is heated by a heater 13 provided in the circulation line 18 so that the reaction solution collected at the bottom of the multistage distillation column 10 is circulated through the circulation line 18. This can be done by heating while heating.
  • the reaction solution containing the alkyl oxalate formed as a reaction intermediate is extracted from the reaction solution. It was withdrawn from the system from 17 and supplied to the second reactive distillation column via the raw material supply line 5 for the above-mentioned disproportionation reaction in the next step, which was already explained in detail. It can be subjected to a disproportionation reaction (step) to disproportionate the alkyl oxalate to produce the desired diaryl oxalate.
  • the reaction temperature is equal to or higher than the temperature at which the reaction mixture containing each raw material and the reaction product melts.
  • the temperature is preferably within a temperature range in which the product, such as alkyl oxalate, is not thermally decomposed.
  • the reaction temperature of the transesterification reaction is preferably about 50 to 350 ° C, more preferably 100 to 280 ° C, and about 125 to 215 ° C. Even better
  • Phenol, dimethyl oxalate and tetrafluoroethylene are added to the bottom of a 50-stage (actual stage) old-short (multi-stage reactive distillation column) with a column diameter of 32 strokes.
  • a 500-milliliter mixture of enoxycitane (TPT) in a molar ratio of 1.5: 1: 0.002 was charged, and the bottom was placed in a mantle-filled solution for about 19%. (Heating up to TC, refluxed under normal pressure.
  • a liquid having the same composition as above is fed at a flow rate (flow rate) of 300 milliliters per hour on the first and second tiers from the top of the old one, and refluxed.
  • the ratio is set to about 5, and the methanol vapor generated from the top is continuously extracted, and the liquid volume in the old-shoulder bottom is reduced to 500 milliliters.
  • the reaction solution continuously to maintain While extracting, the transesterification reaction was continuously performed for 10 hours. In the transesterification reaction in the above-mentioned Older Show, the residence time of the reaction solution was about 2 hours.
  • the reaction solution of Reference Example 1 is applied hourly to the 12th row from the top of the Older Show.
  • the dimethyl oxalate, phenol and a small amount of methanol, which are supplied at a flow rate (flow rate) of 300 milliliters and evaporate from the top without reflux, are continuously discharged.
  • the disproportionation reaction is continuously performed while continuously withdrawing the reaction liquid from the bottom so as to maintain the volume of the bottom liquid of the old show at 500 milliliters. This was performed for 10 hours.
  • dimethyl oxalate 49.21 weight
  • phenol 50.12% by weight
  • methanol 0.53% by weight
  • methylphenyl oxalate 0.
  • a low-boiling liquid mixture having a composition of 25% by weight was distilled at a flow rate of 190 g Z hr, and from an Older shower bottle, 13.54% by weight of phenol was added.
  • Reaction solution containing 2.55% by weight of dimethyl dimethyl, 18.70% by weight of methylphenyl oxalate, and 6.4.3% by weight of diphenyl oxalate [catalyst concentration (as TPT): Approximately 0.9 wt%], with a force of 125 g / hr.
  • Disproportionation was carried out in the same manner as in Example 1, except that the feed position of the raw material (mixture of phenol, methylphenyl oxalate and TPT) was changed from the 12th stage of the old shot to a bottom. The reaction was performed. In the state where the compositions of the distillate and the withdrawn liquid were stable, the flow rates and compositions of these liquids were as follows.
  • Example 2 The reaction mixture obtained in Example 1 was distilled under reduced pressure (20 mmHg) to distill off phenol and dimethyl oxalate, and then methylphenyl oxalate was separated by distillation to have a purity of about 100. % Of methylphenyl oxalate (containing no catalyst) was obtained.
  • a 500-milliliter three-necked flask was equipped with a stirrer, a thermometer, and a 30 cm long double-grain distillation tube, to which methylphenyl oxalate obtained as described above was used: 300 g and TPT: l. Og were added, and the mixture was heated by immersion in an oil vise, and disproportionation reaction was performed at 180 ° C under normal pressure while extracting dimethyl oxalate.
  • reaction solution [catalyst concentration (as TPT): 0.49% by weight] was composed of dimethyl oxalate: 0.12% by weight, methylphenyl oxalate: 7.73% by weight, and diphenyl oxalate: 93.07% by weight. It had.
  • TPT Disproportionation reaction was carried out in the same manner as in Example 3 except that zirconium acetyl acetate toner l.lg was used instead of l.Og. About 4 hours after the start of extraction, 95 g of dimethyl oxalate was extracted. At this time, the reaction solution (catalyst concentration (as zirconium acetyl acetate): 0.54% by weight) was as follows: dimethyl oxalate: 0.18% by weight, methylphenyl oxalate: 9.61% by weight, diphenyl oxalate: : Had a composition of 91.55% by weight.
  • the disproportionation reaction was carried out in the same manner as in Example 3 except that 0.8 g of tetrafluoroenyltin was used instead of 1.0 g of TPT.
  • reaction solution (catalyst concentration (as tetraphenyltin): 0.39% by weight) was as follows: dimethyl oxalate: 0.09% by weight, methylphenyl oxalate: 5.79% by weight, diphenyl oxalate: It had a composition of 94.59% by weight.
  • the disproportionation reaction was carried out in the same manner as in Example 1 except that the reaction temperature of the disproportionation reaction was 200 ° C and the residence time of the reaction solution in the disproportionation reaction was about 4.5 hours.
  • reaction solution Catalyst concentration (as TPT): 0.92% by weight
  • the reaction solution had a composition of dimethyl oxalate: 1.32% by weight, methylphenyl oxalate: 20.05% by weight, diphenyl oxalate: 73.94% by weight, and phenol 2.2% by weight.
  • the first reactive distillation column and the second reactive distillation column are composed of two old-short (multi-stage reactive distillation columns) with a column diameter of 32 mm, 50 stages (actual stages), and a bottle capacity of 1 liter.
  • Figure 2 shows the reactor connected (with the exception that the condensate from withdrawal line 6 was not connected to the first reactive distillation column). Using the reactor, the transesterification reaction and the disproportionation reaction were performed continuously.
  • phenol, dimethyl oxalate, and tetrafluoroethoxy titan (TPT) were added to the bottom of the Oldershaw (multistage reactive distillation column: the first reactive distillation column) at a molar ratio of 1.5: 1: 500 milliliters of the raw material mixture mixed at a rate of 0.002 was charged, and the bottom was heated to about 190 ° C in a mantle heater to create a reflux state under normal pressure.
  • a raw material mixture having the same composition as above is fed at a flow rate (flow rate) of 300 milliliters per hour on the first and second tiers from the top of the Older Show, and the reflux ratio is adjusted. Adjust the reaction solution to about 5 and continuously extract the generated methanol from the top, and keep the volume of the old shot bottom at 500 milliliters. A transesterification reaction was performed while extracting. When the composition of the distillate and the eluate becomes stable (after about 5 hours from the start of the reaction), almost 100% of methanol power is obtained from the top of the old short shot. The distillate was distilled at a flow rate of 22.7 g / hr.
  • reaction liquid catalyst concentration: 0.34% by weight
  • Nirca 30.74% by weight
  • 6.81% by weight of diphenyl oxalate was withdrawn at a flow rate of 296 g Zhr, and this was subjected to the second reactive distillation.
  • the reaction was once stored in an intermediate vessel to feed the column at a flow rate of 316 g Z hr.
  • the first stage from the top of the Older Shaw (second reactive distillation column) The supply of the above-mentioned ligated reaction solution (ester exchange reaction solution) extracted from the bottom of the first reactive distillation column is started at a flow rate (flow rate) of 300 milliliters per hour and refluxed. While continuously extracting dimethyl oxalate, phenol and a small amount of methanol that evaporate from the uppermost part and remove it, an old shot (second reaction)
  • the reaction liquid (disproportionation reaction liquid) is continuously withdrawn from the bottom of the second reactive distillation tower so that the liquid volume of the bottom liquid in the distillation tower is maintained at 500 milliliters. Meanwhile, the disproportionation reaction was continuously performed at 190 ° C. for 10 hours.
  • the residence time of the reaction solution was about four hours.
  • a mixture of low-boiling substances having the following composition is distilled at a flow rate of about i 90 g and Z hr. From the bottom of the rudder show (second reactive distillation column)
  • reaction solution (catalyst concentration: about 0.90 weight) was withdrawn at a flow rate of 124 g Zhr.
  • the present invention industrially converts diaryl oxalate (particularly diphenyl oxalate), which is important as a raw material for a chemical reaction, from an alkyl oxalate (particularly methylphenyl oxalate) by a disproportionation reaction. It is the first to provide a manufacturing method.
  • the types of by-products are smaller than those of the conventionally known production methods of diallyl oxalate, and the isolation and purification of the objective diaryl oxalate are easy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書 シユウ酸ジァ リ ールエステルの製造法 技術分野
本発明は、 シユウ酸アルキルァ リ ールエステル、 (例えばシユウ 酸アルキルフ エニルエステル) を出発原料と して、 その不均化反応 により、 シユウ酸ジフ ヱニル、 (例えばジフ ヱ二ルォキザレー ト : 以下、 DP0 と略記する) 等のシユウ酸ジァ リ ールエステル (ジァ リ 一ルォキザレー ト) を製造する方法に関する ものである。 本発明方 法において、 シユウ酸ジアルキル (ジアルキルォキザレー ト) とフ ヱ ノ ール類とのエステル交換反応によ り製造されたシユウ酸アルキ ルァ リ ールエステル (例えばシユウ酸アルキルフ ェニルエステル) を出発原料と して用レ、、 こ のシユウ酸アルキルァ リ 一ルエステルの 不均化反応により、 DP0 等のシユウ酸ジァ リ ールエステルを製造す るこ とができる。
シユウ酸ジフ ェニルエステルなどのシユウ酸ジァ リ ールエステル は、 例えば力ルバメー トのような化学薬品などの製造において極め て重要な工業原料である。 背景技術
シユウ酸ジァ リ ールエステルの製法と しては、 ( 1 ) 従来、 シュ ゥ酸とフ エ ノ ール類とをエステル化触媒の存在下、 有機溶剤中で 1 00〜130 °Cに加熱して直接エステル化反応させる方法 (特公昭 52 - 4 3826号公報を参照) 、 シユウ酸ジアルキルエステルと炭酸ジァ リ ー ルエステルとを反応させる方法 (特公昭 56— 8019号公報及び特開昭 49- 42621号公報を参照) 、 および、 ( 3 ) シユウ酸ジ了ルキルエス テルと低級脂肪酸ァ リ ールエステルとをエステル交換反応させる方 法 (特公昭 56— 2541号公報及び特公昭 57- 47658号公報を参照) など が知られていた。
しかし、 シユウ酸とフ エノ ール類とを直接エステル化してシユウ 酸ジァ リ ールエステルを製造する従来の方法 ( 1 ) は、 反応速度が 極めて遅いので、 長時間の反応を要する という問題があり、 工業的 な見地から満足できる方法ではなかった。
また、 シユウ酸ジアルキルエステルと炭酸ジァ リ ールエステル又 は低級脂肪酸ァ リ ールエステルとを反応させてシユ ウ酸ァ リ ールェ ステルを製造する方法 ( 2 ) 又は ( 3 ) は、 原料である炭酸ジァ リ —ル又は低級脂肪酸ァ リ ールエステルの製造が困難であり、 このた め、 これらはかなり高価であるので入手するこ と自体が困難である と言う問題があり、 かつ、 目的物の他に種々 の副生物がかなり多量 に生成するのでシユ ウ酸ジァ リ ールエステルを単離するために極め て煩雑又は複雑な精製工程が必要である という問題があり、 必ずし も工業的に満足できる製法ではなかった。 発明の開示
本発明は、 シユ ウ酸アルキルァ リ ールエステルを出発原料と して 、 副生物の生成が少な く 、 生産性が高く 、 工業的に実用可能なシュ ゥ酸ジァ リ ールエステルの製造法を提供しょう とする ものである。 上記目的は、 本発明方法により達成するこ とができる。 本発明に 係るシユウ酸ジァ リ ールエステルの製造法は、
不均化触媒の存在下にシユウ酸アルキルァ リ 一ルエステルを不均 化反応に供し、 副生するシユウ酸ジアルキルエステルを除去しなが ら、 シユウ酸ジァ リ ールエステルを生成させるこ とを特徴とする も のである。 また、 本発明のシユウ酸ジァ リ ールエステルの製造方法において シユウ酸ジアルキルエステルとフ エノ ール化合物とを、 エステル 交換触媒の存在下に、 エステル交換反応に供して、 副生する脂肪族 アルコールを除去しながらシュ ゥ酸アルキルァ リ 一ルエステルを生 成させ、
得られたシユウ酸アルキルァ リ ールエステルを含有する反応混合 物を、 それに含まれる前 A 記エステル交換触媒を不均化触媒と して用
Γ
o
いて、 不均化反応に供し、 副生するシユ ウ酸ジアルキルエステルを b
除去しながら、 シユウ酸ジァ c) ^リ oールエステルを生成させるこ とがで
A
きる。 Γ
図面の簡単な説明
図 1 は、 本発明の製造法の一実施態様を実施 oc = するための工程説明 o
R
図であり、
図 2 は、 本発明の製造法の他の実施態様を実施するための工程説 明図である。
発明を実施するための最良の形態
本発明方法において、 下記反応式 ( 1 ) に示されているように、 シユウ酸アルキルァ リ ールエステル ( a ) からなる出発化合物の不 均化反応によって、 シユウ酸ジァ リ ールエステル ( b ) およびシュ ゥ酸ジアルキルエステル ( c ) が生成する。
反応式 ( 1 ) :
0 0 0 0 0
II
2 R0C - COA r + ROC 一 ( 1 )
( a ) ( c ) 〔上式中、 Rはアルキル基、 好ま しく は C , 〜 C ,。アルキル基を表
R
o
し、 C Arはァ リ ール基好ま し く はフ エニル基又は C , 〜C 6 アルキル 基、 C , 〜C e アルコキシ基、 ニ ト ロ基、 およびハロゲン原子、 そ の他の置換基から選ばれた少な く とも 1 員によ り置換されたフ エ二 ル基を表す〕
前記の反応式 ( 1 ) に従ってシユウ酸アルキルァ リ ールエステル の不均化反応は液相伏態で行われるこ とが好ま し く 、 その結果得ら れる反応混合液は、 未反応の出発原料、 例えばメ チルフ X二ルォキ ザレー ト(MP0) 及び不均化触媒と、 目的物化合物、 例えばジフ エ二 ルォキザレ一 ト(DP0) 及び副生したシユ ウ酸ジアルキルエステル、 例えばジメチルォキザレー ト(DM0) とを主と して含有している。 こ のよ うな反応混合液から目的化合物、 例えばジフ 二ルォキザレー トを既知の方法、 例えば、 蒸留法など、 により容易に分離捕集する こ とができる。
本発明の製造法において、 出発化合物と して使用されるシユウ酸 ァルキルァ リ ールエステル ( a ) は、 例えば下記反応式 ( 2 ) に示 されているように、 シユウ酸ジアルキルエステル ( c ) とフ エ ノ ー ル化合物 ( d ) とをエステル交換反応に供し、 このとき副生する脂 肪族アルコール ( e ) を除去しながら、 生成させる こ とができる。
反応式 ( 2 ) :
0 0 0 0
COR 十 ArOH ROC-COAr + R0H ( 2 )
( c ) ( d ) ( a ) ( e )
〔上式中、 R, Arは前記定義に同じ)
なお、 シユウ酸アルキルァ リ 一ルエステル ( a ) は、 下記反応式
( 3 ) による 『シユウ酸アルキルァ リ ールエステルとフ エ ノ ール化 合物とのエステル交換反応』 によって、 目的化合物と してシユウ酸 ジァ リ ールエステルと副生物の脂肪族アルコールとを生成させる こ と もできるが、 反応式 ( 3 ) によるエステル交換反応は、 反応速度 が低いという問題点があり、 実用的ではない。
0 0 0 0
II II II II
R0C - C0Ar+ ArOH ~~ ArOC - COAr + R0H ( 3 )
( a ) ( d ) ( b ) ( e )
〔上式中、 R , Arは前記定義に同じ)
上記反応式 ( 1 ) 、 ( 2 ) 及び ( 3 ) において、
Rにより表される C , 〜C ,。アルキル基は、 メチル、 ェチル、 n
—プロ ピル、 イ ソ一プロ ピル、 n —ブチル、 イ ソーブチル、 n —ぺ ンチル、 イ ソ一ペンチル、 n —へキシル、 イ ソ一へキシル、 n —ォ クチル、 ィ ソーォクチルなどから選ぶこ とができる。
又、 反応式 ( 1 ) 〜 ( 3 ) において Arによ り表される置換フ エ二 ル基が置換基と して C , 〜C e アルキル基を有する場合、 この C ,
〜(: 6 アルキル基はメチル、 ェチル、 n —およびイ ソ一プロ ピル、 η —およびイ ソ一ブチル、 η —およびイ ソ—ペンチルおよび η —お よびイ ソ—へキシル基から選ぶこ とができ、 また、 その置換基が、
C 】 〜C e アルコキシ基である場合、 このアルコキシ基はメ トキシ 基、 エ トキシ基、 プロ キシ基、 ブ トキシ基などから選ぶこ とがで きる。
又、 前記エステル交換反応により生成する脂肪族アルコール ( e ) は、 R基に対応する ものであって、 例えば、 メ タ ノ ール、 ェタノ ール、 プロパノ ール、 ブタノ ール、 へキサノ ールなどを包含する。 本発明の製造法の不均化反応において、 不均化触媒の使用量は、 触媒の種類、 反応装置 (例えば多段蒸留塔) の形式及びサイズ、 各 原料の種類及び濃度、 更に不均化反応の反応条件によって異なるが 、 一般に、 使用されるシユウ酸アルキルァ リ ールエステルの重量に 対して、 約0.0001〜50重量%でぁるこ とが好ま しく 特に 0.001〜30 重量%であるこ とが好ま し く 、 更に好ま しく は 0.005〜10重量%程 度である。
又、 本発明方法における不均化反応において、 原料混合物又は反 応混合液中の不均化触媒の濃度 ( C ) は、 シユ ウ酸アルキルァ リ 一 ルエステル等を含有する原料混合液又は反応生成物等を含有する反 応混合液の重量に対して、 約 0.001〜45重量%であるこ とが好ま し く 、 特に 0.005〜25重量%であるこ とが好ま し く 、 更に好ま しく は 0.01〜10重量%程度である。
本発明の製造法の不均化反応における反応条件は、 特に限定され る ものではないが、 特に、 反応温度が約 50〜 350°Cであり、 反応圧 力が O.OOlmmHg〜10kgZcm2 であって、 反応時間 (蒸留塔型の反応 装置の場合には塔内での反応液の滞留時間を言う) が約 0.001〜10 0 時間であればよし、。
本発明の製造法の不均化反応において使用される シユウ酸アルキ ルァ リ ールエステルは、 前述のよう に、 下記式 ( a ) によ り表さ れる ものである。
0 0
II II
R0- C - C - OAr ( a )
上式中 Rは、 アルキル基、 好ま し く は C , 〜 C ,。アルキル基、 さ ら に好ま しく は、 〜C 6 アルキル基、 さ らに好ま し く は、 C , 〜 C アルキル基を表し、 Arは、 ァ リ ール基、 好ま し く はフ エニル基 又は、 1 個以上の置換基を有するフ ヱニル基を表し、 フエニル基の 置換基は、 前述のように C , 〜C 6 アルキル基、 C , 〜C 6 アルコ キシ基、 ニ ト ロ基、 およびハロゲン原子から選ばれる こ とが好ま し い。
本発明方法において、 不均化反応に供されるシユウ酸アルキル了 リ ールエステルの具体例と しては、 例えば、 シユウ酸メチルフ エ二 ル、 シユウ酸ェチルフ エニル、 シユウ酸プロ ピルフ エニル、 シユウ 酸ブチルフ エニル、 シユウ酸へキシルフ ェニル、 シユウ酸ペンチル フ エニル、 シユウ酸ォクチルフ エ二ル等のシユウ酸アルキルフ エ二 ル、 並びに、 シユウ酸メチル ( P — メチルフ エニル) 、 シユ ウ酸メ チル ( p —ェチルフ エニル) 、 シユウ酸ェチル ( p — メチルフ エ二 ル) 、 シユ ウ酸ェチル ( p —ェチルフ エニル) 、 シユウ酸メチル ( p — メ トキシフ エニル) 、 シユウ酸メチル ( p —エ トキンフ ヱニル ) 、 シユウ酸メチル ( p —ニ トロフ エニル) 、 シユウ酸メチル ( p
— ク ロルフ ヱニル) 等のシユウ酸アルキル (置換フ ヱニル) エステ ルなどを挙げるこ とができる。 なお、 これらのシユウ酸アルキル了 リ ールエステルは、 前記のようなシユウ酸ジアルキルエステルとフ ェ ノ ール化合物とのエステル交換反応によりそれぞれ合成するこ と ができる。
本発明方法の不均化反応に供される、 シユウ酸アルキルァ リ ール エステルと しては、 炭素数が 1 〜 4程度のアルキル基を有する 1 個 のエステル構造と、 フ エニル基 (置換基を有していない) を有する
1 個のエステル構造とを有するシユウ酸ジエステルが適当であり、 特にシユウ酸メチルフエニル、 シユウ酸ェチルフ エニル、 シユウ酸 プロ ピルフ ニニル、 シユウ酸ブチルフエニルなどのシユウ酸低級ァ ルキルフ ヱニルエステルが最も好ま しい。
本発明の製造法によって得られるシユウ酸ジァ リ ールエステルと しては、 前記の反応式 ( 1 ) における化合物 ( b ) で示される もの であればよ く 、 例えば、 シユウ酸ジフエ二ル、 シユウ酸ビス ( p — メチルフ エ二ル) 、 シユウ酸ビス ( p — メ トキシフ エ二ル) 、 シュ ゥ酸ビス ( p —二 トロフエニル) 、 シユウ酸ビス ( p — ク ロルフ ヱ ニル) などが好ま しく、 特に、 シユウ酸ジフヱニルが好ま しい。
本発明の製造法の不均化反応で使用される触媒は、 シユ ウ酸アル キルフ ェニルエステルなどのシユウ酸アルキルァ リ 一ルエステルか ら不均化反応により シユウ酸ジアルキルエステル及びシユウ酸ジァ リ ールエステルを生成しう る ものである限り、 その種類、 組成など に制限はない。
本発明方法において、 不均化触媒と して用いられる触媒は、 例え ば従来公知のジカルボン酸ジアルキルエステル化合物とフ エ ノ ール 類とのエステル交換反応に使用されるようなエステル交換触媒から 選ぶこ とができる。 そ して、 本発明において用いられる不均化反応 触媒は、 シユウ酸アルキルァ リ ールエステル及び/又は目的生成物 を含有する反応混合液などの不均化反応系に対して可溶性である こ とが好ま しい。
本発明方法において、 その不均化触媒と して用いられるエステル 交換触媒の具体例と して、 アルカ リ金属、 カ ド ミ ウムおよびジルコ 二ゥムの化合物並びにその錯体、 鉛含有化合物、 銅族金属含有化合 物、 鉄含有化合物、 亜鉛含有化合物、 有機スズ化合物、 並びにアル ミ ニゥム、 チタ ンおよびバナジウムのルイス酸化合物を挙げる こ と ができ、 それらの少な く と も 1 種の可溶性の触媒を使用する こ とが 好ま しい。
前記のアルカル金属、 力 ド ミ ゥム又はジルコニウムの化合物およ び錯体と しては、 炭酸リ チウム、 炭酸ナ ト リ ウム、 炭酸カ リ ウム、 ジブチルァ ミ ノ リ チウム、 リ チウムジァセチルァセ トナー トキレー ト、 カ ド ミ ウムジ了セチルァセ トナー トキレー ト、 ジルコニウムジ ァセチルァセ トナー トキレー ト、 ジルコノセンなどを挙げる こ とが できる。
前記の鉛含有化合物と しては、 硫化鉛、 水酸化鉛類、 塩酸カルシ ゥムなどの鉛酸塩、 鉛の炭酸塩又はその塩基性塩、 鉛の有機酸塩及 びその炭酸塩や塩基性塩、 更に、 テ ト ラブチル鉛、 テ トラフ ヱニル 鉛、 ト リ ブチル鉛ハロゲン、 ト リ フエニル鉛ブロム、 及び ト リ フ エ ニル鉛などのアルキル又はァ リ ール鉛化合物、 並びにジメ トキシ鉛 、 メ トキシフ ヱノキシ鉛、 及びジフ Xノ キシ鉛などのアルコキシ又 はァ リ ールォキシ鉛化合物などを挙げる こ とができる。
前記の銅族金属含有化合物と しては、 酢酸銅、 銅ジァセチルァセ トナー トキレー ト、 及びォレイ ン酸銅などの銅の有機酸塩、 ブチル 銅などのアルキル銅化合物、 ジメ トキシ銅などのアルコキシ銅化合 物、 及びハロゲン化銅などの銅化合物、 硝酸銀、 臭化銀、 及びピク リ ン酸銀などの銀化合物を挙げる こ とができる。 また、 前記鉄含有 化合物と しては、 水酸化鉄、 炭酸鉄、 ト リ ァセ トキシ鉄、 ト リ メ ト シキ鉄、 ト リ フ エ ノ キシ鉄などをあげる こ とができる。 さ らに、 亜 鉛含有化合物と しては、 亜鉛ジァセチルァセ トネー トキレー ト、 ジ ァセ トキシ亜鉛、 ジメ トキシ亜鉛、 ジエ トキン亜鉛、 およびジフエ ノ キシ亜鉛などを挙げる こ とができる。
前記有機スズ化合物と して、 例えば、 (Ph)4Sn, (0C0CH3)4Sn, ( MeO)4Sn, (EtO)4Sn, (PhO)4Sn, (Me) 3SnOCOCH3, (Et) 3Sn(0C0CH3).
(Bu)3Sn(0COSH3), (Et) 3Sn(0Ph), (Me)3 SnOCOPh, (Ph)3Sn(0Me) , (Ph)3SnOCOCH3. (Bu) 2Sn(0C0CH3) 2, (Bu) 2Sn(0Me) 2, (Bu)2Sn(0E t)2. (Bu)2Sn(0Ph)2, (Bu)2SnCl2. (Ph) 2Sn(0Me) 2, (Bu)2SnO, BuS nO(OH), (Et)3SnOH, (Ph)3 SnOH などを挙げるこ とができる。
前記のアル ミ ニウムのルイ ス酸化合物と しては、 例えば AKX)
3. A1(0C0CH3)3, Al(0Me)3, Al(0Et)3. Al(0Bu)3. Al(0Ph)3などを 挙げる こ とができる。 また前記のチタ ンのルイス酸化合物と しては 、 例えば、 Ti (X)3, Ti (0C0CH3)3, Ti (0 e)3 、 Ti (0Et)3, Ti
(0Bu)3, Ti(0Ph)3, Ti(X)4, Ti (0C0CH3)4, TK0Me)4、 Ti COEt)
4 . Ti(0Bu)4. Ti(0Ph> 4 などを挙げる こ とができる、 前記のバナジ ゥムのルイス酸化合物と しては、 例えば、 VO (X)3, VO (OCOCH3) 3 , V0(0ME)3, V0(0Et)3. V0(0Ph)3. V ( X ) 5を挙げる こ とができ る。 但し、 C0CH 3 はァセチル基、 M eはメチル基、 E tはェチル基、 B u はブチル基、 Phはフ エニル基、 Xはハロゲン原子を表す。
本発明の製造法に用いられる不均化触媒と しては、 特に、 リ チウ ム化合物およびその錯体、 ジルコニウムの錯体, 有機スズ化合物、 チタ ンのルイス酸化合物などを用いるこ とが好ま しく 、 特に有機ス ズ化合物、 或いは、 チタ ンのルイス酸化合物を用いる こ とが、 よ り 好ま しい。
本発明の製造法において、 シユウ酸アルキルァ リ ールエステルの 不均化反応は、 フ エ ノ ール化合物の共存下に行う こ ともできる。 こ の場合には、 シユ ウ酸アルキルァ リ ールエステルとフ エノ ール化合 物との使用量比は、 供給原料中のシユウ酸アルキルァ リ ールジエス テルに対するフ ヱ ノ ール化合物のモル比が 1 : 0. 01〜 1 : 1 000であ るこ とが好ま し く 、 1 ·· 0. 1 〜 1 : 1 00 である こ とがより好ま し く 、 更に好ま し く は 1 : 0. 5 〜 1 : 20程度である。
本発明の製造法の不均化反応において併用されてもよいフ ニノ ー ル化合物と しては、 後述のシユウ酸ジアルキルエステルとフエ ノ ー ル化合物とのエステル交換反応において使用 し得るフ Xノ ール化合 物群から選ぶこ とができる。
本発明の製造法に用いられる反応装置は、 シユウ酸アルキルァ リ —ルエステルの不均化反応を、 副生物と して生成する低沸点シユウ 酸ジアルキルエステルを反応混合液から直ちに除去しながら行う こ とができ る限り、 格別の制限はないが、 特に、 蒸留塔型の反応装置 は、 シユ ウ酸アルキルフヱニルエステルの液相不均化反応と、 副生 するシユ ウ酸ジアルキルエステルの蒸発除去とを行う こ とができる 装置であるこ とが好ま しい。 前記蒸留塔型の反応装置と しては、 例 えば、 多段蒸留塔を含む反応装置 (連続反応装置又はバッチ装置) を用いるこ とが好ま しい。 前記の多段蒸留塔を含む反応装置は、 理論段数が少なく とも 2段 以上、 特に 5 〜1 00 段、 特に ?〜 50段である多段蒸留塔を有する反 応装置 (反応蒸留塔ともいう) であることが好ま しい。
本発明の製造法において、 前記の多段蒸留塔型反応装置としては 、 例えば、 泡鐘ト レイ、 多孔板ト レイ、 バブル ト レイなどを用いた 棚段式蒸留塔を有するもの、 或いは、 ラシヒ リ ング、 レッ シングリ ング、 ポールリ ングなどの各種充塡物を充埂した充塡式蒸留塔を有 するものを使用することができる。 更に、 棚段式及び充塡式を併せ もつ蒸留塔を含む反応装置も本発明方法の不均化反応に使用するこ とができる。
本発明の製造法を添付図面を参照してさ らに説明する。 例えば、 図 1 に示す多数の棚段 2を有する多段蒸留塔 1 からなる反応装置内 (特に多段蒸留塔 1 の棚段 2の設置された部分) において、 原料供 給ライ ン 5から供給されたシユウ酸アルキルァリールエステルを設 定温度に加熱して、 不均化触媒の存在下に、 上記の反応式 ( 1 ) で 示される不均化反応に供し、 副生するシユウ酸ジアルキルエステル などの低沸点生成物を蒸留によって蒸留塔の頂部 1 aに連結されて いる抜き出しライ ン 1 bにより抜き出し、 これを必要に応じて冷却 器 4 により凝集する。 その場合には、 この凝縮液を循環ライ ン 9を 経由して多段蒸留塔の上部 1 cへ還流させてもよい。
その際、 還流比は 20以下であるこ とが好ま しく、 1 0以下であるこ とがより好ま しい。 また、 このとき、 前記冷却器 4で凝縮した凝縮 液 (主としてシユウ酸ジアルキルエステルからなる) の一部又は全 部を、 抜き出しライ ン 6 を経て系外へ除去することが好ま しい。
本発明の製造法の不均化反応に供給される原料及び触媒は、 原料 供給ライ ン 5から液相で供給される。 この原料供給ライ ン 5 の連結 位置は、 多段蒸留塔 i における棚段配置部の、 『最下部棚段から全 棚段の 1 Z 4 程度上がった部分の棚段』 から 『最上部の棚段から全 棚段の 1 Z 20程度下がった部分の棚段』 までの範囲內にあるこ とが 好ま し く 、 よ り好ま し く は、 「中央部棚段」 から 〖最上部の棚段か ら全棚段の 1 10程度下がった部分の棚段』 までの範囲内にある。 その原料混合液 (又は反応混合液) は第 1 反応蒸留塔 1 の蒸留部 中の各棚段 2 を通り下方へ流下しながらその塔の各棚段部分 (蒸留 部) 及び底部において不均化反応を受ける。 そ して、 第 2反応蒸留 塔 1 の底部 1 d (ボ トム) に、 シユウ酸ジァ リ ールエステルを高い 濃度で含有する反応液が蓄積される。 このとき、 同時に副生するシ ユ ウ酸ジアルキルエステルを含む低沸点物質が各棚段 2で蒸発して 、 これが蒸気相と してに上方棚段に導かれ、 上方棚段に行く に従つ て蒸気相中のシユウ酸ジアルキルエステルの濃度が上昇し、 精留さ れて反応系から分離 · 除去されるのである。
図 1 の多段蒸留塔 1 において、 反応液の加熱は循環ライ ン 8 に設 けられた加熱器 3 によって多段蒸留塔 1 の底部 (ボ トム) に溜ま つ た反応液を加熱し、 これを循環ライ ン 8 で循環させるこ とによって 行う こ とができる。 そ して、 目的物のシユウ酸ジァ リ ールエステル を含有する反応混合液は、 抜出しライ ン 7から系外へ抜き出され、 精製工程 (図示されていない) に送入され、 こ 、で、 シユ ウ酸ジァ リ ールエステルが分離 · 回収される。
本発明の製造法における不均化反応が液相状態の反応液が多段蒸 留塔を流下しながら行われる場合には、 その反応温度は各原料及び 反応生成物を含有している混合液からなる反応液が溶融する温度以 上の反応温度であって、 しかも、 目的の生成物であるシユウ酸ジァ リ ールエステルが熱分解しないような温度であるこ とが好ま しい。 本発明方法における不均化反応の反応温度は約 50〜 350 °Cであるこ とが好ま しく 、 80〜 300°Cであるこ とがより好ま しく 、 1 00°C〜28 0 程度であるこ とが一層好ま しい。
また本発明方法の不均化反応の反応圧力は、 減圧、 常圧、 加圧の いずれであってもよいが、 副生物であるシユウ酸ジアルキルエステ ルの蒸発除去を可能にする温度及び圧力において不均化反応が行わ れるこ とが好ま しく 、 例えば、 反応温度が約 50〜 350°Cの場合、 反 応圧力は 0.01mmHg〜 2 kgZcni2 であるこ とが好ま し く 、 0. lmmHg〜 1 kg/cm2 であるこ とがより好ま し く 、 50〜500mmHg 程度であるこ とが一層好ま しい。
また、 不均化反応の反応時間 (多段蒸留塔を用いた場合には蒸留 塔内での滞留時間) は、 反応条件や反応装置の形式及び操作条件な どによって異なるが、 反応温度が約 50〜 350°Cの場合、 反応時間は 約 0.01〜 50時間であるこ とが好ま し く 、 0.02〜10時問であるこ とが よ り好ま しく 、 0.05〜 5時間程度であるこ とが一層好ま しい。
本発明の製造法における一実施態様において、 前述の不均化反応 によってシユウ酸ジァ リ ールエステルを充分な生成量 (高収率) で 得るこ とができるようにする こ と、 および生成したシユウ酸ジァ リ ールエステルが高温、 および長時間の熱履歴による分解又は重合に よって、 例えば、 1 〜 5重量%の高い割合 (分解率) で消費される こ とがないこ との二要件を満たすように不均化反応の反応条件 (反 応温度 (T) 、 反応液の滞留時間 ( H) 、 反応液中の不均化触媒濃 度 ( C ) 等を適宜選択するこ とが好ま しく、 特にこれは、 本発明方 法の工業的実施において重要である。
例えば、 本発明方法においては、 シユウ酸アルキルァ リ ールエス テルの不均化反応温度 (T) を 100°C〜 280°Cの範囲にコ ン トロ ー ルし、 かつ不均化触媒の濃度 ( C : 反応液中の触媒濃度) を 0.001 重量%〜45重量%にコ ン トロールして上記のシユウ酸アルキルァ リ ールエステルの不均化反応を行うに際して、 ( a ) 不均化反応温度 ( T) 100°C以上 220°C未満である場合には、 その温度における 反応液の滞留時間 (H) を 0.01〜10時間、 好ま し く は 0.05〜 5時間 にコ ン トロールし、 ( b ) 不均化反応温度 ( T) が 220°C以上 250 で未満である場合には、 その温度における反応液の滞留時間 (H) を 0.01〜 2時間、 好ま し く は 0.05〜 1 時間にコ ン ト ロールし、 かつ 、 ( c ) 不均化反応温度 (T) 250°C以上 280°C以下である場合 には、 その温度における反応液の滞留時間 (H) を 0.01〜 0.5時間 、 好ま し く は 0.05〜 0.2時間にコ ン ト ロールするこ とによ り、 シュ ゥ酸アルキルァ リ ールエステルの不均化反応の収率を好適な値に確 保するこ とができ、 また前述の熱履歴によるシユウ酸ジァ リ ールェ ステルの損失 (消費) を防止するこ とができる。
又、 本発明において、 不均化反 温度 (T) が 120°C以上 220°C 未満、 特に 125°C〜 215°C程度であり、 不均化触媒の濃度 ( C : 反 応液中の触媒濃度) が 0.005〜25重量%、 特に 0.01〜10重量%、 更 に 0.05〜 5 重量%程度であり、 かつ、 この温度における反応液の滞 留時間 ( H) が 0.05〜10時間、 特に 0.05〜 5 時間、 更に 0.1 〜 5時 間であるこ とが工業的に最適である。
本発明の製造法において、 反応条件が前述の条件よ り上方に外れ る と、 反応液中の目的物のシユウ酸ジァ リ ールエステルの分解及び Z又は重合が高い割合で起こ り、 目的物の損失が生じる こ とがある ので工業的に好ま しく な く 、 また、 各下限よ り下方に外れる と不均 化反応の速度が低下して実用時間内に反応が完結しないこ とがある ので、 好ま しく ない。
本発明の製造法において、 シユウ酸ジアルキルエステルとフ エノ ール化合物とをエステル交換反応させてシユウ酸アルキルァ リ ール エステルを生成させ、 続いて、 その反応液を不均化反応に供して反 応液中のシユウ酸アルキルァ リ 一ルエステルを不均化してシユウ酸 ジァ リ ールエステルを製造する場合には、 最初の工程における、 シ ュゥ酸ジアルキルエステルとフ ヱ ノ ール化合物とのエステル交換反 応を、 エステル交換触媒の存在下、 副生する脂肪族アルコールを除 去しながら行う こ とにより、 シユウ酸アルキルフ Xニルエステルな どのシユウ酸アルキルァ リ ールジエステルを生成させ、 続いて、 既 に説明したようにこのシユウ酸アルキルァ リ ールエステルの不均化 反応を行ってシユウ酸ジァ リ ールエステルを製造するこ とができる 前記のエステル交換反応において、 例えば、 前記の反応式 ( 2 ) に従って、 シユウ酸ジアルキルエステル ( c ) とフ エノ ール化合物 ( d ) とがエステル交換反応してシユウ酸アルキルァ リ ールエステ ノレ ( a ) 及び脂肪族アルコール ( e ) が生成する。 なお、 こ のエス テル交換反応では、 前記反応式 ( 1 ) で示すように、 生成したシュ ゥ酸アルキルァ リ ールエステル ( a ) が更に不均化反応してシユウ 酸ジァ リ ールエステルを生成する反応も起こ る。 また、 このエステ ル交換反応では、 前記の反応式 ( 3 ) で示すように、 生成したシュ ゥ酸アルキルァ リ ールエステル ( a ) とフ エ ノ ール化合物 ( d ) と が更に反応してシユウ酸ジァ リ ールエステル ( b ) を生成する反応 も発生する。 これらの反応は液相で行われる こ とが好ま しいが、 い ずれも平衡反応であって、 しかも、 その平衡は原系に偏っている。
前記のシユウ酸ジアルキルエステルは、 炭素数 1 〜10、 好ま し く は炭素数 1 〜 6、 更に好ま しく は炭素数 1 〜 4 のアルキル基を有す る 2個のエステル構造を有する シユウ酸ジエステルである こ とが好 ま しく 、 例えばシユウ酸ジメチル、 シユウ酸ジェチル、 シユウ酸ジ プロ ピル、 シユウ酸ジブチル、 シユウ酸ジへキシル、 シユウ酸ジォ クチル、 シユウ酸メチルェチルなどを挙げるこ とができ、 特にアル キル基の炭素数が 1 〜 4程度であるシユウ酸ジアルキルエステルを 用いる と、 本発明の製造法において、 エステル交換反応において副 生する脂肪族アルコールを容易に除去できる。 特にシユ ウ酸ジメチ ル、 シユウ酸ジェチル、 シユウ酸ジプロ ピル、 シユウ酸ジブチルを 用いる こ とがより好ま しい。
前記のエステル交換反応で使用されるフ エ ノ ール化合物は、 フ エ ノ ール、 および炭素数 1 〜 6 のアルキル基、 炭素数 1 〜 6 のアルコ キシ基、 ニ ト ロ基、 ハロゲン原子などの置換基を少な く とも i 個有 していてもよいフ エ ノ ールであるか、 最も好ま しいものはフ ヱ ノ ー ルである。 本発明ではフ エ ノ ール以外のフヱ ノ ール化合物と して、 o —、 m —又は p — ク レゾ一ル、 キシレノ ール (ジメチルフエ ノ ー ル) 、 ジプロ ピルフ エノ ール、 メチルェチルフ エ ノ ール、 ト リ メチ ルフ エ ノ ール、 テ ト ラ メ チノレフ エ ノ 一ル、 ェチルフ エ ノ ール、 プロ ピルフ エ ノ ール、 ブチルフ エノ ール、 へキシルフ エノ 一ルなどの了 ルキルフ エ ノ ール類、 0—、 m —又は p — ヒ ドロキシァニソ一ル、 エ トキシフ エ ノ ールなどのアルコキシフ エノ ール類、 p — ク ロロフ エ ノ 一ル、 3 , 5 — ジブロモフ エノ ーノレのようなノヽロフ エ ノ ール類 、 o — 、 m —又は p —二 ト ロ フ エ ノ ールなどのニ ト ロ フ エ ノ ール類 を挙げるこ とができる。
前記のエステル交換反応に使用されるエステル交換触媒は、 シュ ゥ酸ジアルキルエステルとフ エ ノ ール化合物とのエステル交換反応 によ り シユウ酸アルキルァ リ ールエステルを生成しう る ものであれ ば、 どのような種類のエステル交換触媒であってもよいか、 前述の シユウ酸アルキルフ エ二ルジェステルの不均化反応に使用 し得る も のと して具体的に例示したエステル交換触媒をそのまま挙げるこ と ができる。
そ して、 シュゥ酸ジアルキルエステル及びフ ェ ノ 一ル化合物のェ ステル交換反応と、 シユウ酸アルキルフ ヱニルエステルの不均化反 応とにおいて使用される各触媒は互いに同種の触媒 (特に好ま しく は全く 同じ触媒) である こ とが好ま しい。
前記のエステル交換反応において、 例えばシユウ酸ジメチル (ジ メチルォキザレー ト) とフヱノ ールとを原料と して使用した場合に は、 反応式 ( 2 ) によってシユ ウ酸メチルフエニル (MP0)と メ 夕ノ —ルとが主と して生成し、 更に、 反応式 ( 1 ) によって少量のシュ ゥ酸ジフヱニルとシユウ酸ジメチルとが生成する。 また反応式 ( 3 ) によって、 シユウ酸ジフ エ二ル(DP0) とメ タノ ールとが少量生成 する。
この場合は、 次段の不均化反応に供給される反応液は、 エステル 交換反応に用いられた反応原料及び触媒と、 目的物のシユウ酸アル キルァ リ ールエステル (例えば MP0)及びシユウ酸ジァ リ ールエステ ル (例えば DP0)と、 副生物であるメチルアルコールとを主と して含 有しているのである。
前記のエステル交換反応において、 シユウ酸ジアルキルエステル とフ エノ ール化合物との使用量比は、 触媒の種類及び量、 並びに反 応条件によって変動する ものであるが、 通常、 供給原料中のシユウ 酸ジアルキルエステルに対するフ エノ ール化合物のモル比が 0.01 : 1〜1000: 1 である こ とが好ま しく 、 特に 0. 1 : 1〜 100 : 1 であ る こ とがよ り好ま しく 、 0.5 : 1〜 2 : 1 である こ とが一層好ま し い。
エステル交換反応において用いられる触媒の使用量は、 触媒の種 類、 反応装置 (例えば多段蒸留塔) の形式及びサイズ、 各原料の種 類及び組成比、 更にエステル交換反応の反応条件によって異なるが 、 シユウ酸ジアルキルエステル及びフ エノール化合物の合計量に対 する割合で表して、 通常、 約 0.0001〜50重量 、 であるこ とが好ま しく、 0.001〜30重量%であるこ とがより好ま しく 、 0.005〜10重 量%程度であるこ とが一層好ま しい。
エステル交換反応における反応条件には、 特に限定はないが、 一 般に反応温度が約 50〜 350 °Cであり、 反応圧力が 0. 00 1隱 H g〜 200 kg / cm 2 であって、 反応時間が約 0. 00 1〜 1 00 時間であるこ とが好 ま しい。
本発明方法において、 エステル交換反応と不均化反応とを連続的 に行う場合、 エステル交換反応における反応条件が、 次のシユウ酸 アルキルァ リ ールエステルの不均化反応に不利な影響を与えないよ う に、 不均化反応における反応条件 (触媒濃度、 反応温度など) と かなり近い条件であるこ とが好ま しい。
前記のエステル交換反応に用いられる反応装置については、 この 反応によ り副生する低沸点生成物である脂肪族アルコールを反応液 から直ちに除去しながらシュゥ酸ジアルキルエステルとフ ェ ノ 一ル 化合物とのエステル交換反応を行う こ とができる限り、 格別の制限 はな く 、 どのような反応装置を使用 してもよいが、 特に蒸留塔型の 反応装置は、 副生する脂肪族アルコールを除去しながら液相状態の 反応液中でエステル交換反応を行う こ とができる装置であるこ とが 好ま し く 、 前記の蒸留塔型の反応装置と しては、 例えば、 前述の不 均化反応における反応装置と同様に、 連続多段蒸留塔からなる反応 装置を好適に挙げる こ とができ、 その多段蒸留塔からなる反応装置 は、 理論段数が少な く とも 2段以上、 特に 5〜 1 00段、 特に 7〜50 段である多段蒸留塔型の反応装置であるこ とが好ま しい。
前記のエステル交換反応における前記の多段蒸留塔型の反応装置 と しては、 前述の不均化反応における反応装置と同様に、 例えば、 泡鐘 ト レイ、 多孔板 ト レイ、 バブル ト レイなどを用いた棚段式蒸留 塔のもの、 或レ、は、 ラシヒ リ ング、 レ ッ シングリ ング、 ポー リ ング などの各種充塡物を充填した充塡式蒸留塔のものを使用するこ とが でき、 更に棚段式及び充塡式を併せもつ蒸留塔も使用できる。
本発明方法において、 図 2 に示す反応装置を用いて、 第 1 蒸留反 応塔 (多段蒸留塔) 1 0において、 エステル交換触媒の存在下、 副生 する脂肪族アルコールを蒸発させて除去しながら、 シユウ酸ジアル キルエステルとフ ヱ ノール化合物とのエステル交換反応を行わせて
、 次に、 第 2蒸留反応塔 (多段蒸留塔) 1 において、 前記エステル 交換触媒を、 不均化反応触媒と して利用し、 シユウ酸ジアルキルェ ステル (主に副生物) 及びフ ノール化合物を蒸発させて除去しな がらシユ ウ酸アルキルァ リ ールエステルの不均化反応を行わせるこ とにより、 シユウ酸ジアルキルエステルとフエ ノ ール化合物とから 、 シユウ酸ジァ リ ールエステルを連続的に製造するこ とができる。 この方法は工業的に好ま しいものである。
図 2 に示す反応装置では、 多段蒸留塔からなる第 1 反応蒸留塔 ( 多段蒸留塔) 1 0と第 2反応蒸留塔 (多段蒸留塔) 1 とは、 第 1 蒸留 反応塔 1 0の底部 (ボ トム) 1 dの缶液の抜き出しライ ン (配管) 1 7 及び第 2反応蒸留塔 1 への供給ライ ン 5で連結されている。
すなわち、 図 2 に示すように、 第 1 反応蒸留塔 1 0及び第 2反応蒸 留塔 1 を用いて、 エステル交換反応によるシユウ酸アルキルァ リ 一 ルジェステルの生成と不均化反応によるシユウ酸ジァ リ ールエステ ルの生成とを連続して行う こ とができる。 この場合には、 前記の不 均化反応のための多段蒸留塔 (第 2反応蒸留塔) 1 の抜き出しライ ン 6 を経て抜き出されたシユウ酸ジアルキルエステルの凝縮液又は 蒸気は、 エステル交換反応のための多段蒸留塔 (第 1 反応蒸留塔) 1 0に供給して循環利用される。
図 2 に示された、 第 1 反応蒸留塔 1 0には、 多数の蒸留用棚段 1 2が 配置されており原料供給ライ ン 1 5を経て、 シユウ酸ジアルキルエス テルとフ ノ ール化合物と、 エステル交換触媒を含む原料が供給さ れ、 この第 1 反応蒸留塔 10において、 エステル交換反応が行われ、 副生した脂肪族アルコールは蒸留され、 塔頂 10a より抜出しラ イ ン 10bを経て抜き出され、 冷却器 14により凝縮せしめられる。 この凝 縮液は、 ライ ン 16により系外に抜き出されるが、 必要によりその一 部が、 ラ イ ン 19により塔頂部 10 c に還流されてもよい。 こ の際の還 流比は、 20以下であるこ とが好ま しく、 10以下であるこ とが一層好 ま しい。
前記のエステル交換反応に供給される原料 (シユウ酸ジアルキル エステル、 フ ヱ ノ ール化合物) 及びエステル交換触媒の供給ラ イ ン 15は、 図 2の多段蒸留塔 10における 『最下部棚段から全棚段の 1 ノ 4程度上がった部分の棚段』 から 『最上部の棚段から全棚段の 1 Z 20程度下がった部分の棚段』 までの範囲内 (更に好ま しく は中央部 棚段から 『最上部の棚段から全棚段の 1 10程度下がつた部分の棚 段』 までの範囲内) に連結される。
その原料混合液 (又は反応液) が蒸留部の各棚段 12を下方へ流下 しながら、 その塔の各棚段部分 (蒸留部) 及び底部でエステル交換 反応を受けると、 第 1反応蒸留塔 10の底部にシユウ酸アルキルァリ ールエステルを高い濃度で含有する反応液が溜まる。 また、 副生す る脂防族アルコールを含む低沸点物質が各棚段 12で蒸発し蒸気相と して上方棚段に導かれるが、 上方棚段に行く に従って脂防族アルコ ールの濃度が高く なり、 それによつて精留されて反応液から分離 ' 除去される。
図 2の第 1 反応蒸留塔 10において、 反応液の加熱は循環ライ ン 18 に設けられた加熱器 13によって多段蒸留塔 10の底部 (ボトム) に溜 まった反応液を循環ライ ン 18を通して循環させながら加熱するこ と によって行うことができる。 また、 反応中間物として生成されるシ ユウ酸アルキルァ リールエステルを含有する反応液は抜出しライ ン 1 7から系外へ抜き出 し、 これを次の工程における前記の不均化反応 のために、 原料供給ラ イ ン 5 を経て第 2 反応蒸留塔へ供給し、 すで に詳し く 説明 した不均化反応 (工程) に供し、 シユウ酸アルキルァ リ 一ルエステルを不均化して、 目的シユ ウ酸ジァ リ 一ルエステルを 製造する こ と もできる。
エステル交換反応が、 液相状態の反応液が多段蒸留塔を流下しな がら行われる場合には、 その反応温度は各原料及び反応生成物を含 有 している反応混合液が溶融する温度以上であって、 しかも、 生成 物である シユウ酸アルキルァ リ ールエステルなどが熱分解しない温 度範囲内にある こ とが好ま しい。 特に、 エステル交換反応の反応温 度は約 50〜 350 °Cである こ とが好ま し く 、 1 00〜 280 Cである こ と がより好ま し く 、 1 25〜 2 1 5 C程度であるこ とがよ り一層好ま しい
実施例
以下に、 参考例および本発明の実施例を具体的 こ例示する。
考例 1 ( シ ユ ウ酸アルキルァ リ ールエステルの調製)
塔径 32画で 50段 (実段) のオールダーシ ョ ー (多段反応蒸留塔) のボ ト ム ( 〗 リ ッ トル) に、 フ ヱ ノ ール、 シユ ウ酸ジ メ チルおよび テ ト ラ フ エ ノ キ シチ タ ン (TPT )をモル比で 1 . 5 : 1 : 0. 002 の割合 で混合した液 500ミ リ リ ッ トルを仕込み、 ボ トムをマ ン ト ルヒー夕 —で約 1 9 (TCにまで加熱して、 常圧下、 還流状態を作った。
続いて、 オールダ一シ ョ 一の上部から 1 2段目に、 上記の組成と同 じ組成を有する液を、 毎時 300ミ リ リ ッ ト ルの流量 (流速) でフ ィ ー ドし、 還流比を 5程度に して、 最上部より生成してく る メ タ ノ ー ル蒸気を連続的に抜き出 しながら、 また、 オールダ一シ ョ ーのボ ト ム内の液量を 500ミ リ リ ッ ト ルに維持するよ う に反応液を連続的に 抜き出 しながら、 エステル交換反応を連続的に 1 0時間行わせた。 前記のオールダ一ショー内でのエステル交換反応において、 反応 液の滞留時間は約 2時間であった。
上述の状態を維持しながらオールダ一ショ ーの ト ツプからの留出 液およびボ トムからの抜き出し液の組成をガスクロマ 卜 グラフ ィ 一 分析で追跡した。
前記のオールダーシ ョ ー内でのエステル交換反応において、 前記 の留出液および抜き出 し液の組成が安定した状態となったとき (反 応開始から約 5 時間後) から 1 0時間後迄のそれらの液の流量および 組成 (平均値) は下記の通りであった。
オールダ一シ ョ ーの ト ップから、 純度ほぼ 1 00 %のメ タノ ール力 22. 5 g / hの流量で留出し、 オールダーショーのボ トムからは、 フ エ ノ 一ルを 36. 6 1 重量 、 シユウ酸ジメチルを 24. 25 重量%、 シュ ゥ酸メチルフ エニルを 28. 97 重量%、 およびシユウ酸ジフ エニルを 9. 83重量%含む反応液が、 294 gノ hの流量で抜き出された。
実施例 1
塔径 32mmで 50段 (実段) のオールダ一ショー (多段反応蒸留塔) のボ トム ( 1 リ ッ トル) に、 参考例 1 で得られた 『エステル交換触 媒、 シユウ酸メチルフ ヱニル等を含有する反応液 (フ ヱノ ール : 36 . 61 重量%、 シユウ酸ジメチル : 24. 25重量%、 シユウ酸メチルフ ェニル : 28. 97重量%、 及びシユウ酸ジフヱニル : 9. 83重量%) 8 00ミ リ リ ツ トル』 を仕込み、 塔頂を真空ライ ンに連結して、 300mm Hgの減圧にした後、 ボ トムをマン トルヒ一夕一で約 1 90 °Cまで加熱 して、 還流をするこ とな く抜き出しを開始した。 抜き出しの開始後 、 オールダーシ ョーのボ トム温度は徐々 に上昇した。
オールダーシ ョーのボ トム液力 s' 500ミ リ リ ッ トルになった時点か ら、 オールダーショーの上部から 12段目に参考例 1 の反応液を毎時 300ミ リ リ ッ トルの流量 (流速) で供給し、 還流するこ とな く 、 最 上部よ り蒸発して出てく るシユウ酸ジメチル、 フ ヱノ ール及び少量 のメ タノ ールを連続的に抜き出しながら、 かつ、 オールダ一ショ ー のボ トム液の液量 500ミ リ リ ッ トルを維持するよう にボ トムから反 応液を連続的に抜き出しつつ、 不均化反応を連続的に 1 0時間行わせ た。
前記のオールダ一ショー内での不均化反応において、 反応液の滞 留時間は約 4 時間であつた。
上述の状態を維持しながらオールダーシ ョ ーの ト ップから留出液 およびボ トムからの抜き出し液の組成をガスク ロマ ト グラフィ 一分 折で追跡した。
前記のオールダーショ ー内での不均化反応において、 前記の留出 液および抜き出し液の組成が安定した状態となったとき (反応開始 から約 5 時間後) から 1 0時間後迄のそれらの液の流量および組成 ( 平均値) は下記の通りであった。
オールダーショ ーの ト ップからは、 シユウ酸ジメチル : 49. 21重 量 、 フ エノ ール : 50. 1 2重量%、 メ タノ ール : 0. 53重量%、 シュ ゥ酸メチルフ エニル : 0. 25重量%の組成を有する低沸物の混合液が 1 90 g Z hrの流量で留出し、 オールダ一シ ョーのボ トムからは、 フ ェ ノ ールが 1 3. 54 重量%、 シユ ウ酸ジ メ チルが 2. 55重量%、 シユ ウ 酸メチルフエニルが 1 8. 70重量 、 およびシユウ酸ジフ エ二ルが 6 4. 30重量%である反応液 〔触媒濃度(TPTと して) : 約 0. 9重量%〕 、 力 1 25 g / hrの流量で抜き出された。
実施例 2
原料 (フヱ ノ ール、 シユウ酸メチルフヱニル及び TPT の混合液) のフィ ー ド位置を、 オールダーシ ョ一の 12段目からボ トムに変えた ほかは、 実施例 1 と同様にして不均化反応を行った。 前記の留出液および抜き出し液の組成が安定した状態において、 これらの液の流量および組成は以下のようであった。
オールダ一シ ョ ーの ト ップからは、 シユウ酸ジメチル : 53.72重 量%、 フ ヱノ ール : 45.62重量%、 及びメ タノ ール : 0.45重量%を 有する低沸物の混合液が 117gZhの流量で留出し、 オールダ一シ ョ 一のボ トムからは、 フ エノ ールカ 31.63重量%、 シユウ酸ジメチ ルが 10.31重量%、 シユウ酸メチルフ ヱニルが 32.90重量%、 およ びシユ ウ酸ジフ ヱニルが 25.41重量%である反応液 〔触媒濃度(TPT と して) : 0.55重量%〕 が 198g Zhrの流量で抜き出された。
実施例 3
実施例 1 で得られた反応液を、 減圧蒸留 (20mmHg) で、 フ ノ 一 ル、 シユウ酸ジメチルを留出させた後、 さ らにシユウ酸メチルフ エ ニルを蒸留分離して純度がほぼ 100 %のシユ ウ酸メ チルフ エニル ( 触媒を含有しない) を得た。
500 ミ リ リ ッ トルの三つ口フラスコに攪拌装置、 温度計及び 30cm の長さのゥ イ グリ ユ ー蒸留管を取り付けて、 これに上述のよう にし て得られたシユ ウ酸メチルフ エニル : 300 gと TPT : l. Og とを入 れ、 さ らに、 オイルバイスに浸けて加熱し、 180°Cで常圧下、 シュ ゥ酸ジメチルを抜き出しながら、 不均化反応を行った。
抜き出し開始から、 約 4時間後までにシユウ酸ジメチルが 96g抜 き出された。 また、 この時の反応液 〔触媒濃度(TPTと して) : 0.49 重量%〕 は、 シユウ酸ジメチル : 0.12重量%、 シユウ酸メチルフ エ ニル : 7.73重量 、 シユウ酸ジフ ヱニル : 93.07重量%の組成を有 する ものであった。
実施例 4
TPT : l. Ogに代えてジルコニウムァセチルァセ トナー ト l. l g を使用 したほかは実施例 3 と同様にして、 不均化反応を行った。 抜き出し開始から、 約 4 時間後までに、 シユウ酸ジメチルが 95 g 抜き出された。 また、 この時の反応液 〔触媒濃度 (ジルコニウムァ セチルァセ トナー ト と して) : 0.54重量%〕 は、 シユウ酸ジメチル : 0. 18重量%、 シユウ酸メチルフヱニル : 9.61重量%、 シユウ酸ジ フ エニル : 91.55重量%の組成を有していた。
実施例 5
TPT 1.0 gに代えてテ トラフ エニル錫 0.8gを使用 したほかは実 施例 3 と同様にして、 不均化反応を行った。
抜き出し開始から、 約 4 時間後までに、 シユウ酸ジメチルが 97g 抜き出された。 また、 この時の反応液 〔触媒濃度 (テ トラフ ェニル 錫と して) : 0.39重量%〕 は、 シユウ酸ジメチル : 0.09重量%、 シ ユウ酸メチルフ エニル : 5.79重量%、 シユウ酸ジフエ二ル : 94.59 重量%の組成を有していた。
実施例 6
不均化反応の反応温度を 200°Cと し、 不均化反応における反応液 の滞留時間を約 4.5時間と してほかは、 実施例 1 と同様にして、 不 均化反応を行った。
抜き出 し開始後、 約 5 時間で反応液 〔触媒濃度(TPTと して) : 0. 92重量%〕 力く 118g抜き出された。 また、 この時の反応液は、 シュ ゥ酸ジメチル : 1.32重量%、 シユウ酸メチルフ エニル : 20.05重量 %、 シユウ酸ジフ エ二ル : 73.94重量%及びフ ヱ ノ ール 2.2重量% の組成を有していた。
実施例 7
塔径 32mmで 50段 (実段) であって、 ボ トムの容量が 1 リ ツ トルの オールダーシ ョ ー (多段反応蒸留塔) 2本を用いて、 第 1 反応蒸留 塔及び第 2反応蒸留塔を図 2のように連結した反応装置 (但し、 抜 き出しライ ン 6 の凝集液は、 第 1 反応蒸留塔と連結しなかった) を 組み立て、 その反応装置を使用 して、 エステル交換反応と不均化反 応を連続して行った。
先ず、 オールダーショー (多段反応蒸留塔 : 第 1 反応蒸留塔) の ボ トムに、 フ エ ノ ール、 シユウ酸ジメチルおよびテ トラフ エノキシ チタ ン (TPT)をモル比で 1 . 5 : 1 : 0. 002 の割合で混合した原料混 合液 500ミ リ リ ッ トルを仕込み、 ボ トムをマン トルヒー夕一で約 1 90 °Cまで加熱して、 常圧下、 還流状態を作った。
続いて、 オールダーショーの上部から 1 2段目に、 上記の組成と同 一組成を有する原料混合液を、 毎時 300ミ リ リ ッ トルの流量 (流速 ) でフィ ー ドし、 還流比を 5程度にして、 最上部より生成してく る メ タノ ールを連続的に抜き出し、 またオールダーシ ョ ーのボ トムの 液量を 500ミ リ リ ッ トルに維持するように反応液を連続的に抜き出 しながら、 エステル交換反応を行わせた。 前記の留出液および抜き 出 し液の組成が安定した状態となったとき (反応開始から約 5時間 後) 、 オールダーシ ョー トの ト ップからはほぼ 1 00 %のメ タ ノ ール 力 22. 7 g / h rの流量で留出し、 オールダ一シ ョ ーのボ トムからは、 フ エ ノ ールが 36. 61重量%、 シユウ酸ジメチルが 25. 81重量%、 シ ユウ酸メチルフ エ二ルカ 30. 74重量%、 およびシユウ酸ジフ エ二ル が 6. 81重量%である反応液 (触媒濃度 : 0. 34重量%) を流量 296 g Z hrで抜き出し、 これを第 2反応蒸留塔へその反応液を 31 6 g Z h r の流量で供給するための中間容器に一旦貯蔵した。
前記のオールダーショ ー (第 1 反応蒸留塔) 内でのエステル交換 反応において、 反応液の滞留時間は約 2時間であった。
一方、 オールダーショ ー (多段反応蒸留塔 : 第 2反応蒸留塔) の ボ トムに、 参考例 1 で得られた 『エステル交換触媒、 シユウ酸メチ ルフヱ二ル等を含有する反応液 800ミ リ リ ッ トル』 を仕込んで、 ボ トムをマン トルヒーターで約 1 90 °Cまで加熱して、 還流をするこ と な く 抜き出 しを開始した。 抜き出 しの開始後、 オールダ一シ ョ ー ( 第 2 反応蒸留塔) のボ トム混合液の温度を徐々 に上昇させた。
オールダーシ ョ ー (第 2 反応蒸留塔) のボ 卜ム液力く 500ミ リ リ ッ トルになつた時に、 オールダ一 シ ョ ー (第 2 反応蒸留塔) の上部か ら 1 2段目に、 第 1 反応蒸留塔のボ トムから抜き出 した前述の紐成の 反応液 (エステル交換反応液) の供給を毎時 300ミ リ リ ッ ト ルの流 量 (流速) で開始し、 還流する こ とな く 最上部より蒸発して出てく る シユ ウ酸ジメ チル、 フ エ ノ ール及び少量のメ 夕 ノ ールを連続的に 抜き出 しながら、 また、 オールダ一シ ョ ー (第 2 反応蒸留塔) のボ ト ム液の液量が 500ミ リ リ ッ ト ルに維持されるよう に第 2 反応蒸留 塔のボ ト ムから反応液 (不均化反応液) を連続的に抜き出 しながら 、 不均化反応を 1 90 °Cで連続的に 1 0時問行わせた。
前記のオールダ一シ ョ ー (第 2 反応蒸留塔) 内での不均化反応に おいて、 反応液の滞留時間は約 4 時問であった。
上述の状態を維持しながらオールダーシ ョ ー (第 2 反応蒸留塔) の 卜 ッ プからの留出液およびボ トムからの抜き出 し液の紐成をガス ク ロマ ト グラフ ィ ー分析で追跡した。
前記のオールダーシ ョ ー (第 2 反応蒸留塔) 内での不均化反応に おいて、 前記の留出液および抜き出 し液の組成が安定した状態とな つたとき (不均化反応の開始から約 5 時問後) から 1 0時 後迄のそ れらの液の流量および組成 (平均値) は下記の通りであった。
オールダ一シ ョ ー (第 2 反応蒸留塔) の ト ップからは、
' シユ ウ酸ジメ チル : 49. 80重量%
' フ ヱ ノ ール : 49. 52J!量%
- メ タ ノ ール : 0. 50重量%
• シユ ウ酸メ チルフ ヱニル : 0. 1 8重量%
の組成を有する低沸物の混合液が約 i 90 g ,Z h rの流量で留出 し、 ォ ルダ一ショ ー (第 2反応蒸留塔) のボ トムからは、
• フ エ ノ ール 12. 88重量%
• シユウ酸ジメチル 1 . 47重量%
• シユウ酸メチルフ エニル 1 9. 55重量%
• シユウ酸ジフ エニル 65. 21重量%
である反応液 (触媒濃度 : 約 0. 90重量 ) が、 1 24 g Z h rの流量で 抜き出された。 産業上の利用可能性
本発明は、 シユウ酸アルキルァ リ ールエステル (特にシユウ酸メ チルフ エニル) から不均化反応により、 化学反応の原料と して重要 なシユウ酸ジァ リ ールエステル (特にシユウ酸ジフ ヱニル) を工業 的に製造する方法を始めて提供するものである。
本発明の製法では、 従来公知のシユウ酸ジァ リ ールエステルの製 造方法と比較して副生物の種類が少な く 、 その目的シユウ酸ジァ リ ールエステルの単離 · 精製などが容易である。

Claims

請 求 の 範 囲
1 . 不均化触媒の存在下に、 シユ ウ酸アルキルァ リ ールエステル を不均化反応に供し、 副生する シユウ酸ジアルキルエステルを除去 しながら、 シユウ酸ジァ リ ールエステルを生成させる こ とを特徴と する シユ ウ酸ジァ リ 一ルエステルの製造法。
2 . シユ ウ酸ジアルキルエステルとフ ヱ ノ ール化合物とを、 エス テル交換触媒の存在下に、 エステル交換反応に供して、 副生する脂 肪族アルコールを除去しながら、 シユ ウ酸アルキルァ リ ールエステ ルを生成させ、
られたシユ ウ酸アルキルァ リ ールエステルを含有する反応混合 物を、 それに まれる前記エステル交換触媒を不均化触媒と して用 いて、 不均化反応に供し、 副生する シユ ウ酸ジアルキルエステルを 除去しながら、 シユ ウ酸ジァ リ ールエステルを生成させる、 こ とを 特徴とする、 請求の範囲第 1 项に 載のシユ ウ酸ジァ リ ールエステ ルの製造法。
3 . 前記副生シユ ウ酸ジアルキルエステルの除去および前記シュ ゥ酸アルキルァ リ ールエステルの不均化反応を反応蒸留塔からなる 反応装置内で行う、 請求の範囲第 I 項又は第 2 項に記載のシ ュ ゥ酸 ジァ リ ールエステルの製造法。
4 . 第 1 反応蒸留塔内において、 前記シユ ウ酸ジアルキルエステ ルとフ ェ ノ 一ル化合物とをエステル交換反応させ、 かつ前記副生脂 肪族アルコ ールを蒸発除去し、
次に、 第 2 反応蒸留塔内において、 前記シユウ酸アルキルァ リ ー ルエステルを不均化反応させ、 、 かつ反応混合液中のシュゥ酸ジァ ルキルエステルおよびフ ヱ ノ 一ル化合物を蒸発除去する、 請求の範 囲第 2項に記載のシユ ウ酸ジァ リ ールエステルの製造法。
5 . 前^第 2 反応蒸留塔から蒸発除去されたシユウ酸ジアルキル エステルおよびフ ユ ノ ール化合物を含む蒸 を冷却液化し、 得られ た混合液を、 前 ¾第 1 反応蒸留塔に還流して前 エステル交換反応 に供する、 請求の範囲第 4 項に記載のシユウ酸ジァ リ ールエステル の製造法。
6 . 前記第 1 反応蒸留塔及び前記第 2 反応蒸留塔の少な く と も一 つが、 多数の棚段を有する蒸留塔を有している、 請求の範囲第 4 項 に記載のシユ ウ酸ジァ リ ールエステルの製造法。
7 . 前 § 、 不均化反応に川い られる不均化触媒が、 アルカ リ 金 m
、 カ ド ミ ウ ム及びジルコニウ ムの化合物および錯体、 鉛含有化合物 、 鉄含有化合物、 銅族金厲含有化合物、 亜鉛 有化合物、 冇機スズ 化合物、 アル ミ ニウ ム含有ルイ ス酸化合物、 チ タ ン含有ルイ ス酸化 合物、 およびバナ ジ ウ ム含有ルイ ス酸化合物から選ばれ、 かつ不均 化反応系に可溶な、 少な く と も 1 種の化合物を含む、 諮求の範囲第 1 ¾乂は第 2 项に記載のシユウ酸ジァ リ 一ルエステルの製造法。
8 . 前記不均化反応が反応蒸留塔において行われ、 こ の反応蒸留 塔内の反応混台液中の前 不均化触媒の濃度 ( C ) が 0. 00 1〜 4 5重 量 5¾の範囲にコ ン ト ロールされ、 かつ前記不均化反応の温度 ( T ) 力く 1 00〜 280 Cの範囲内にコ ン ト ロ ールされる、 求の 酣第 1 ¾ 又は第 2 項に 載のシユ ウ酸ジァ リ ールエステルの製造法。
9 . 前記不均化反応蒸留塔内における シユウ酸アルキルァ リ 一ル エステルの不均化反応において、 ( a ) 前 , 不均化反応温度 ( T ) 力 <、 1 00 °C以上 220 UC未満である場合には、 前^反応混合液の不均 化反応蒸留塔内滞留時間 ( H ) が 0. 0 1〜 1 0時間にコ ン ト ロールされ 、 ( b ) 前記不均化反応温度 ( T ) が、 220 °C以上 250 °C未満であ る場合には、 前記反応混合液の不均化反応蒸留塔内滞留時問 ( H ) 力、、 0. 0 1〜 2 時間にコ ン ト ロールされ、 かつ、 ( C ) 前記不均化反 応温度 ( T ) が 250°C以上 280"C以下である場合には、 前記反応混 合液の不均化反応蒸留塔内滞留時問 ( H ) 、 0.01〜 0.5時問にコ ン ト ロールされる、 請求の範囲第 8項に記載のシユ ウ酸ジァ リ ール エステルの製造法。
10. 前記不均化反応蒸留 内おける シ ユ ウ酸アルキルァ リ ールェ ステルの不均化反応において、 不均化反応温度 ( T ) が 5で〜 2 15°Cにコ ン ト ロールされ、 前記反応混合液中の不均化角虫媒の濃度が 0.005〜 25重量%にコ ン ト ロールされ、 かつ、 前記反応混合液の前 液不均化反応蒸留塔内滞留時間が、 0.01〜 10時間にコ ン ト ロ ールさ れる、 請求の範囲第 8項に記載のシユ ウ酸ジァ リ ールエステルの製 造法。
PCT/JP1996/003636 1995-12-12 1996-12-12 Procede d'elaboration de diarylesters d'acide oxalique WO1997021660A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96941854A EP0814074B1 (en) 1995-12-12 1996-12-12 Process for preparing diaryl esters of oxalic acid
DE69612280T DE69612280T2 (de) 1995-12-12 1996-12-12 Verfahren zur herstellung von diarylestern der oxalsäure
US08/875,823 US6018072A (en) 1995-12-12 1996-12-12 Process for producing a diaryl oxalate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32318195 1995-12-12
JP7/323181 1995-12-12

Publications (1)

Publication Number Publication Date
WO1997021660A1 true WO1997021660A1 (fr) 1997-06-19

Family

ID=18151977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003636 WO1997021660A1 (fr) 1995-12-12 1996-12-12 Procede d'elaboration de diarylesters d'acide oxalique

Country Status (7)

Country Link
US (1) US6018072A (ja)
EP (1) EP0814074B1 (ja)
KR (1) KR100244075B1 (ja)
CN (1) CN1078582C (ja)
DE (1) DE69612280T2 (ja)
ES (1) ES2155214T3 (ja)
WO (1) WO1997021660A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712564B (zh) * 2010-01-20 2016-01-06 宇部兴产株式会社 草酸二芳基酯的制造方法
IT201800010919A1 (it) 2018-12-10 2020-06-10 Sacmi Apparato e metodo per formare un oggetto concavo.
US11780804B2 (en) * 2019-05-24 2023-10-10 Ascend Performance Materials Operations Llc Tricyanohexane purification methods
KR102684557B1 (ko) 2023-03-21 2024-07-11 이대훈 사용의 편의성을 증진시킨 도어용 스토퍼
KR102691795B1 (ko) 2023-07-20 2024-08-05 이대훈 도어용 스토퍼

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942621A (ja) * 1972-08-25 1974-04-22
JPS5082027A (ja) * 1973-11-20 1975-07-03
JPS5243826B1 (ja) * 1969-05-22 1977-11-02

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1283849B (de) * 1963-08-10 1968-11-28 Witten Gmbh Chem Werke Verfahren zur Herstellung von reinen Arylestern von Dicarbonsaeuren
JPS562541A (en) * 1979-06-20 1981-01-12 Matsushita Electric Works Ltd Gas detector
JPS568019A (en) * 1979-07-03 1981-01-27 Matsushita Electric Ind Co Ltd Mixer
JPS6035266B2 (ja) * 1980-09-08 1985-08-13 大日本印刷株式会社 熱硬化性樹脂化粧板の製造法
US4482732A (en) * 1982-09-24 1984-11-13 Occidental Chemical Corporation Process of manufacturing diaryl esters of dicarboxylic acids
US4451664A (en) * 1982-09-24 1984-05-29 Occidental Chemical Corporation Process of manufacturing diaryl esters of dicarboxylic acids
US4482733A (en) * 1982-09-24 1984-11-13 Occidental Chemical Corporation Process of manufacturing diaryl esters of dicarboxylic acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243826B1 (ja) * 1969-05-22 1977-11-02
JPS4942621A (ja) * 1972-08-25 1974-04-22
JPS5082027A (ja) * 1973-11-20 1975-07-03

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0814074A4 *

Also Published As

Publication number Publication date
EP0814074A4 (en) 1999-03-03
EP0814074A1 (en) 1997-12-29
DE69612280D1 (de) 2001-05-03
EP0814074B1 (en) 2001-03-28
KR100244075B1 (ko) 2000-02-01
CN1173861A (zh) 1998-02-18
US6018072A (en) 2000-01-25
KR19980702148A (ko) 1998-07-15
DE69612280T2 (de) 2001-09-06
ES2155214T3 (es) 2001-05-01
CN1078582C (zh) 2002-01-30

Similar Documents

Publication Publication Date Title
JP3413613B2 (ja) ジアルキルカーボネート類からジアリールカーボネート類を連続的に製造する方法
US4410464A (en) Diaryl carbonate process
WO1991009832A1 (fr) Procede de production en continu de carbonate aromatique
CN101084180A (zh) 芳香族碳酸酯的制造方法
US5731453A (en) Process for producing a diaryl carbonate
EP0832872B1 (en) Process for producing diaryl carbonate
JPS6146465B2 (ja)
EP0160427B1 (en) Alcoholysis of esters and metal alcoholates used in this process
WO1997021660A1 (fr) Procede d&#39;elaboration de diarylesters d&#39;acide oxalique
US20060084823A1 (en) Process for producing methacrylic ester
JP2000005503A (ja) 反応蒸留装置および反応蒸留方法
EP0832910B1 (en) Process for producing a polycarbonate
JP2854279B2 (ja) 反応蒸留装置および反応蒸留方法
JP3518211B2 (ja) シュウ酸ジアリールエステルの製造法
JP3518254B2 (ja) 炭酸ジアリールエステルの製造方法
JP3264154B2 (ja) シュウ酸アリールエステルの製法
JP4678575B2 (ja) シュウ酸エステルの製造法
JP3551685B2 (ja) シュウ酸ジアリールの製法
JP3518207B2 (ja) シュウ酸アリールエステルの連続製造方法
JP3852514B2 (ja) 炭酸ジアリールの製造法
JP5170202B2 (ja) シュウ酸エステルの製造法
JP2733035B2 (ja) 炭酸エステルの製造方法
CN111132957B (zh) 制备对苯二甲酸的酯的方法
JP2733036B2 (ja) 炭酸エステルの製造方法
JPH11222459A (ja) シュウ酸アリールエステルの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191891.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996941854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08875823

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970705543

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996941854

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705543

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970705543

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996941854

Country of ref document: EP