WO1997020336A2 - Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor - Google Patents

Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor Download PDF

Info

Publication number
WO1997020336A2
WO1997020336A2 PCT/DE1996/002121 DE9602121W WO9720336A2 WO 1997020336 A2 WO1997020336 A2 WO 1997020336A2 DE 9602121 W DE9602121 W DE 9602121W WO 9720336 A2 WO9720336 A2 WO 9720336A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
gate
structured
electrode
Prior art date
Application number
PCT/DE1996/002121
Other languages
English (en)
French (fr)
Other versions
WO1997020336A3 (de
Inventor
Udo Schwalke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59607846T priority Critical patent/DE59607846D1/de
Priority to JP9520052A priority patent/JP2000501237A/ja
Priority to EP96945866A priority patent/EP0864172B1/de
Priority to AT96945866T priority patent/ATE206558T1/de
Priority to US09/077,476 priority patent/US6037196A/en
Publication of WO1997020336A2 publication Critical patent/WO1997020336A2/de
Publication of WO1997020336A3 publication Critical patent/WO1997020336A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location

Definitions

  • an SOI substrate which comprises a monocrystalline silicon layer, an insulating layer arranged underneath and a carrier wafer arranged underneath.
  • MOS transistors are implemented in the monocrystalline silicon layer of the SOI substrate.
  • the active area of a MOS transistor is completely galvanically isolated from neighboring components by etching away the surrounding silicon. This completely prevents parasitic effects such as latch-up.
  • MOS circuits on an SOI substrate have a significantly lower power consumption at the same switching speed than the corresponding circuit in a monocrystalline silicon wafer.
  • MESA etching of the monocrystalline silicon layer has been proposed for the lateral isolation of the active region of a MOS transistor in an SOI substrate (see, for example, Silicon-on-Insulator Technology, Jean Pierre Colinge, Kluwer Academic 1991, pages 94 to 98) ).
  • the active region of the MOS transistor is isolated by the insulating layer arranged below it.
  • the surface of the MESA structure is provided with a gate oxide. This is a gate electrode made of polysilicon.
  • the gate electrode runs partially over the side wall of the MESA. This requires a gate sidewall control, which causes the undesirable so-called "corner effect". This leads to non-ideal sub-threshold characteristics.
  • thermal oxidation to form the gate dielectric results in oxide thinning at the silicon edges of the mesa structure. These can occur at an early stage Lead to oxide breakthrough.
  • LOCOS processes lead to the formation of a so-called bird beak, which reduces the layer thickness of the monocrystalline silicon layer of the SOI substrate.
  • bird beak reduces the layer thickness of the monocrystalline silicon layer of the SOI substrate.
  • Transistors is recommended, this additionally leads to an increase in resistance at the source / drain contact.
  • JM Hwang et al, VLSI'94, page 33 it has been proposed to compensate for such undesirable but unavoidable thinning of the silicon layer of the SOI substrate by selective growth of silicon.
  • the invention is based on the problem of specifying a method for producing an integrated circuit arrangement with at least one MOS transistor, with which a high packing density of MOS transistors can be achieved without it having to control the gate side walls or an oxide breakdown at gate oxide edges demonstrate.
  • a gate dielectric and a first electrode layer are applied to the monocrystalline silicon layer of a SOI substrate, which together with the monocrystalline silicon layer of the
  • SOI substrate can be structured. This creates a multilayer structure around which the surface of the insulating layer of the SOI substrate is exposed. Insulating spacers are formed on the flanks of the multilayer structure.
  • the first electrode layer is structured in the region of the multilayer structure in such a way that a gate electrode is created.
  • the insulating spacers on the flanks of the multilayer structure on the one hand prevent gate sidewall control, on the other hand they prevent oxide thinning at the edges of the structured monocrystalline silicon layer and thus an early oxide breakthrough at the gate oxide edge.
  • the gate dielectric is only arranged on the surface of the monocrystalline silicon layer and not on its flanks.
  • the second electrode layer is structured at the same time as the gate electrode is formed.
  • the multilayer structure can simultaneously protruding conductive connections for the gate electrode, for example a gate line level, are formed.
  • Additional layers can be provided between the first electrode layer and the second electrode layer, for example to form a floating gate. These further layers can also be structured in the first structuring to form the multilayer structure or in the second structuring to form the gate electrode.
  • the source / drain regions of the MOS transistor are formed in the region of the multilayer structure in the monocrystalline silicon layer on the side of the gate electrode. Since the insulating spacer, which was formed on the flanks of the multilayer structure, is essentially not attacked during the structuring of the gate electrode, a depression is formed between the spacer and the gate electrode. It is within the scope of the invention to provide the flanks of the gate electrode with insulating spacers and to fill the recess by selective epitaxy of silicon. The source / drain regions are then formed in the epitaxially grown silicon and the underlying monocrystalline silicon layer. This has the advantage that the MOS transistor has an essentially planar surface.
  • this measure also has the advantage that more silicon is available in the source / drain regions.
  • This epitaxial filling of the depression is particularly advantageous when metal silicide is formed on the surface of the source / drain regions, since silicon formation occurs during silicide formation and in this way it is prevented that the entire source / drain Area where metal silicide formation is consumed. It is within the scope of the invention to simultaneously form a multiplicity of multilayer structures for a multiplicity of MOS transistors from the first electrode layer, the gate dielectric and the monocrystalline silicon layer in the first structuring step.
  • the doping takes place after the formation of the multilayer structures, for example by masked implantation.
  • the doping of the gate electrodes can differ both in terms of the dopant concentration and in terms of the conductivity type.
  • the method can be used particularly advantageously in the production of complementary MOS transistors with n + -doped and p + -doped gate electrodes, since the doping after the formation of the multilayer structures results in a lateral diffusion of dopant between n + -doped gate electrodes ⁇ the and p + -doped gate electrodes is effectively suppressed.
  • a gate line level for connecting the various gate electrodes is preferably implemented in the structuring of the second electrode layer.
  • the interspaces between adjacent multilayer structures can be filled with insulating material. This has the advantage that the second electrode layer is applied to a planarized surface.
  • FIG. 1 shows an SOI substrate with a gate dielectric, a first electrode layer and a photoresist mask.
  • FIG. 2 shows the SOI substrate after the formation of a multilayer structure and the formation of first insulating spacers on the flanks of the multilayer structures.
  • FIG. 3 shows a top view of FIG. 2.
  • FIG. 4 shows a section through the SOI substrate after deposition of a second electrode layer, a cover layer and formation of a photoresist mask.
  • FIG. 5 shows the SOI substrate after the formation of gate electrodes.
  • FIG. 6 shows a top view of the structure of FIG. 5.
  • FIG. 7 shows a section through the SOI substrate according to FIG.
  • FIG. 8 shows a section through the SOI substrate after silicon has been deposited by selective epitaxy and after formation of source / drain regions, which is designated VIII-VIII in FIG. 6.
  • Figure 9 shows the section designated IX-IX in Figure 6 through the SOI substrate.
  • An SOI substrate comprises a carrier 1, an insulating layer 2 and a monocrystalline silicon layer 3.
  • Carrier 1 consists, for example, of a monocrystalline silicon wafer.
  • the insulating layer 2 consists, for example, of SiO 2 and has a thickness of, for example, 400 nm.
  • the monocrystalline silicon layer 3 is, for example, n-doped and has a thickness of, for example, 60 nm.
  • a gate dielectric 4 is applied to the monocrystalline silicon layer 3.
  • the gate dielectric 4 is formed, for example, by thermal oxidation from SiO 2 with a layer thickness of, for example, 6 nm (see FIG. 1).
  • a first electrode layer 5 is deposited on the gate dielectric 4.
  • the first electrode layer 5 is deposited, for example, from undoped or doped silicon, which is amorphous or polycrystalline, in a layer thickness of 200 nm.
  • a photoresist mask 6 is formed on the surface of the first electrode layer 5 and defines the arrangement of active areas for MOS transistors in the monocrystalline silicon layer 3.
  • the first electrode layer 5, the gate dielectric 4 and the monocrystalline silicon layer 3 are structured using a multi-stage, anisotropic etching process, for example with CHF3 / O2 and BCI3 / HCI.
  • First insulating spacers 8 are formed on the flanks of the multilayer structures by depositing a dielectric layer with an essentially conformal edge covering and anisotropic etching back of the dielectric layer over the entire surface.
  • the first insulating spacers 8 are formed, for example, from SiO 2 or Si3N4.
  • the first insulating spacers 8 each surround the multi-layer structure 7 in a ring (see the top view in FIG. 3). Each multilayer structure 7 is isolated from the carrier 1 by the insulating layer 2 and from neighboring multilayer structures 7 by the first insulating spacers 8. The surface of the insulating layer 2 is exposed outside the first insulating spacer 8.
  • the structured first electrode layer 5 is then doped if it has been deposited undoped. This is done, for example, by implantation with arsenic (5 ⁇ 10 15 cm ⁇ 2 , 50 keV) or by coating from the gas phase.
  • a second electrode layer 9 is deposited over the entire surface.
  • the second electrode layer 9 is formed, for example, from doped, amorphous or polycrystalline silicon, metal silicide, metal such as TiN or W, or from combinations of these materials. It is deposited in a layer thickness of, for example, 50 to 200 nm (see FIG. 4).
  • a cover layer 10 made of, for example, TEOS is deposited on the second electrode layer.
  • the cover layer 10 is formed in a thickness of, for example, 20 nm.
  • the cover layer 10, the second electrode layer 9 and the structured first electrode layer 5 are structured using a photoresist mask 11 (see FIG. 5). This is done by means of multi-stage anisotropic etching, for example with CHF3 / O2 and BCL3 / HCI. 5 gate electrodes 12 are formed from the first electrode layer. Gate lines 9 ′ are formed from the second electrode layer 9 and connect the gate electrodes 12 to one another (see supervision in FIG. 6). The gate lines 9 ′ are connected to the gate electrodes 12 in the area of the active regions.
  • Second insulating spacers 13 are formed on the flanks of the gate electrodes 12 and the cover layer 10 by conformal deposition and subsequent anisotropic etching back of TEOS-SiO 2 or Si 3 N 4.
  • the gate dielectric 4 is removed from the side of the gate electrode 12 and the surface of the monocrystalline silicon layer 3 is exposed in the active regions (see FIG. 7).
  • a silicon region 14 is grown on the exposed surface of the monocrystalline silicon layer 3.
  • the selective epitaxy takes place, for example, with SiHCl.3.
  • the silicon region 14 is preferably grown to such a thickness that it is level with the first insulating spacers 8 (see FIG. 8).
  • n + -doped source / drain regions 15 and p + -doped source / drain regions 16 for NMOS transistors or PMOS- are in a known manner by ion implantation, photo technology (not shown in detail) and tempering. Transistors manufactured.
  • the source / drain regions 15, 16 each extend both in the silicon region 14 and in the portion of the monocrystalline silicon layer 3 underneath.
  • a passivation layer for example from BPSG, is then deposited and planarized. Contact holes to the source / drain regions 15, 16 and the gate electrodes 12 are etched and provided with metallizations. These process steps are not shown in detail.
  • Gate lines 9 ′ are formed from the second electrode layer 9.
  • the gate lines 9 ' run over the first spacers 8 and the exposed surface of the insulating layer 2 outside the active regions for the MOS transistors. Since the surface of the monocrystalline silicon layer 3 is covered with the first insulating spacers 8, side wall control of the MOS
  • an insulating layer for example made of SiO 2
  • the space between adjacent multilayer structures 7 can be filled with insulating material. When etching back, the surface of the first electrode layer 5 is exposed and the structure is planarized. The second electrode layer 9 is then deposited. In this case, the gate lines 9 'run over the surface of the filled insulating material.
  • the method according to the invention can be varied by providing additional electrode layers.
  • This can be both layers above the second electrode layer, which for example improve the conductivity of the second electrode layer or belong to a further connection level, or layers between the first electrode layer and the second electrode layer, for example dielectric layers to form a floating gates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

Zur Herstellung eines MOS-Transistors in einem SOI-Substrat werden zur Bildung eines aktiven Gebietes die Siliziumschicht (3), ein Gatedielektrikum (4) und eine Elektrodenschicht (5) MESA-förmig strukturiert. Die Flanken der MESA-Struktur (7) werden mit isolierenden Spacern (8) versehen. In einem weiteren Strukturierungsschritt wird aus der Elektrodenschicht (5) eine Gateelektrode (12) gebildet. Das Verfahren ermöglicht eine hohe Packungsdichte und vermeidet gleichzeitig das Problem der Gateseitenwandsteuerung sowie des frühzeitigen Durchbruchs an Oxidkanten.

Description

Beschreibung
Verfahren zur Herstellung einer integrierten Schaltungsanord- nung mit mindestens einem MOS-Transistor.
Zur Entwicklung integrierter Schaltungsanordnungen mit MOS- Transistoren, die bei Betriebsspannungen unter 3 Volt betrie¬ ben werden können und die einen verringerten Leistungsver- brauch aufweisen, werden derzeit verschiedene Konzepte ver¬ folgt. Eines dieser Konzepte sieht vor, anstelle der übli¬ cherweise verwendeten monokristallinen Siliziumscheibe alε Substrat ein SOI-Substrat vorzusehen, das eine monokristalli¬ ne Siliziumschicht, eine darunter angeordnete isolierende Schicht und eine darunter angeordnete Trägerscheibe umfaßt.
MOS-Transistoren werden in der monokristallinen Silizium¬ schicht des SOI-Substrats realisiert. Dabei wird das aktive Gebiet eines MOS-Transistors gegenüber benachbarten Bauele- menten durch Wegätzen des umgebenden Siliziums galvanisch vollständig isoliert. Damit werden parasitäre Effekte wie zum Beispiel Latch-up vollständig unterbunden.
MOS-Schaltungen auf einem SOI-Substrat weisen bei gleicher Schaltgeschwindigkeit einen deutlich geringeren Leistungsver- brauch auf als die entsprechende Schaltung in einer monokri¬ stallinen Siliziumscheibe.
Zur lateralen Isolierung deε aktiven Gebietes eines MOS- Transistors in einem SOI-Substrat ist eine MESA-Ätzung der monokristallinen Siliziumschicht vorgeschlagen worden (siehe zum Beispiel Silicon-on-Insulator Technology, Jean Pierre Co- linge, Kluwer Academic 1991, Seiten 94 bis 98) . In vertikaler Richtung ist das aktive Gebiet des MOS-Transistors durch die darunter angeordnete isolierende Schicht isoliert. Zur Reali¬ sierung des MOS-Transistors wird die Oberfläche der MESA- Struktur mit einem Gateoxid versehen. Darauf wird zum Bei- spiel aus Polysilizium eine Gateelektrode aufgebracht. Zur Kontaktierung mit einer Gateleitung verläuft die Gateelektro¬ de teilweise über die Seitenwand des MESA. Das bedingt eine Gate-Seitenwandsteuerung, die den unerwünschten, sogenannten „corner-effect" verursacht. Dieser führt zu nicht idealen Un¬ terschwellenkennlinien. Ferner entstehen bei der thermischen Oxidation zur Bildung des Gatedielektrikums Oxiddünnungen an den Siliziumkanten der Mesastruktur. Diese können zu einem frühzeitigen Oxiddurchbruch führen.
Zur Vermeidung der Seitenwandeffekte ist in J. H. Choi et al, IEDM'94, Seite 645, vorgeschlagen worden, zur lateralen Iso¬ lierung deε aktiven Gebietes eine modifizierte LOCOS- Isolation vorzusehen. Bei dem LOCOS-Verfahren treten mechani- sehe Spannungen in der monokristallinen Siliziumschicht auf. Ferner ist die Schichtkonformität nicht gewährleistet. Schließlich ist die Skalierbarkeit des LOCOS-Prozeß auf Strukturgrößen unter 0,25 um schwierig. Damit ist die erziel¬ bare Packungsdichte begrenzt.
Von P. V. Gilbert et al, VLSI '95, Seite 37, ist zwar ein mo¬ difizierter LOCOS-Prozeß für Dünnfilm-SOI-Technologie vorge¬ schlagen worden, mit dem Strukturgrößen unter 0,5 um erziel¬ bar sind. Der Prozeß ist jedoch aufwendig, da er zusätzliche Schichtabscheidungen und Ätzschritte erfordert.
Ferner führen LOCOS-Prozesse zur Ausbildung eines sogenannten VogelSchnabels, der die Schichtdicke der monokristallinen Si¬ liziumschicht des SOI-Substrates herabsetzt. Bei dünnen Schichtdicken, wie dies für Hochgeschwindigkeits-MOS-
Transistoren empfehlenswert ist, führt dies zusätzlich zu ei¬ ner Widerstandserhöhung beim Source/Drain-Kontakt. In J. M. Hwang et al, VLSI'94, Seite 33, ist vorgeschlagen worden, derartige unerwünschte, aber nicht vermeidbare Dünnungen der Siliziumschicht des SOI-Substrats durch selektives Aufwachsen von Silizium zu kompensieren. Der Erfindung liegt das Problem zugrunde, ein Verfahren zur Herstellung einer integrierten Schaltungsanordnung mit minde¬ εtens einem MOS-Transiεtor anzugeben, mit dem eine hohe Pak- kungsdichte von MOS-Transistoren erzielbar ist, ohne daß die- se eine Gateseitenwandsteuerung oder einen Oxiddurchbruch an Gateoxidkanten zeigen.
Dieses Problem wird erfindungsgemäß gelöst durch ein Verfah¬ ren gemäß Anspruch 1. Weitere Ausgestaltungen der Erfindung gehen auε den übrigen Anεprüchen hervor.
In dem erfindungεgemäßen Verfahren werden auf die monokri- εtalline Siliziumεchicht eineε SOI-Subεtratε zunächst ein Ga¬ tedielektrikum und eine erste Elektrodenschicht aufgebracht, die zusammen mit der monokristallinen Siliziumschicht des
SOI-Substrats εtrukturiert werden. Dabei entsteht eine Mehr- εchichtStruktur, um die herum die Oberfläche der isolierenden Schicht des SOI-Subεtrats freigelegt ist. An den Flanken der Mehrschichtstruktur werden isolierende Spacer gebildet. In einem weiteren Strukturierungsschritt wird die erste Elektro¬ denschicht im Bereich der Mehrschichtstruktur so struktu¬ riert, daß eine Gateelektrode entsteht. Die isolierenden Spacer an den Flanken der Mehrεchichtεtruktur verhindern ei¬ nerseits eine Gateseitenwandsteuerung, andererseits verhin- dern sie Oxiddünnungen an den Kanten der strukturierten mono¬ kristallinen Siliziumschicht und damit einen frühzeitigen Oxiddurchbruch an der Gateoxidkante. Das Gatedielektrikum ist nur an der Oberfläche der monokristallinen Siliziumschicht und nicht an deren Flanken angeordnet.
Es iεt vorteilhaft, nach der Bildung der iεolierenden Spacer an den Flanken der Mehrschichtstruktur ganzflächig eine zwei¬ te Elektrodenschicht aufzubringen. Die zweite Elektroden¬ schicht wird bei der Bildung der Gateelektrode gleichzeitig strukturiert. Bei der Strukturierung der zweiten Elektroden¬ schicht können gleichzeitig über die Mehrschichtstruktur hin- ausragende leitende Verbindungen für die Gateelektrode, zum Beispiel eine Gateleitungsebene, gebildet werden.
Zwischen der ersten Elektrodenschicht und der zweiten Elek¬ trodenschicht können weitere Schichten vorgesehen sein, zum Beispiel zur Bildung eines floatenden Gates. Diese weiteren Schichten können bei der ersten Strukturierung zur Bildung der Mehrschichtstruktur oder bei der zweiten Strukturierung zur Bildung der Gateelektrode mit strukturiert werden.
Die Source/Drain-Gebiete des MOS-Transistors werden im Be¬ reich der Mehrschichtstruktur in der monokristallinen Silizi¬ umschicht seitlich der Gateelektrode gebildet. Da bei der Strukturierung der Gateelektrode der isolierende Spacer, der an den Flanken der Mehrschichtstruktur gebildet wurde, im we¬ sentlichen nicht angegriffen wird, entsteht zwischen Spacer und Gateelektrode eine Vertiefung. Es liegt im Rahmen der Er¬ findung, die Flanken der Gateelektrode mit isolierenden Spacern zu versehen und die Vertiefung durch selektive Epita- xie von Silizium aufzufüllen. Die Source/Drain-Gebiete werden dann in dem epitaktisch aufgewachsenen Silizium und der dar¬ unterliegenden monokristallinen Siliziumschicht gebildet. Dieses hat den Vorteil, daß der MOS-Transistor eine im we¬ sentlichen planare Oberfläche aufweist. Bei Verwendung eines SOI-Substrats mit einer monokriεtallinen Siliziumεchicht mit einer Schichtdicke im Bereich von 20 bis 100 nm, wie es für Hochgeschwindigkeits-MOS-Transistoren im Hinblick auf ein vollständig entleertes (fully depleted) Kanalgebiet vorteil¬ haft ist, hat diese Maßnahme darüber hinaus den Vorteil, daß in den Source/Drain-Gebieten mehr Silizium zur Verfügung steht. Dieses epitaktische Auffüllen der Vertiefung ist ins¬ besondere bei der Bildung von Metallsilizid an der Oberfläche der Source/Drain-Gebiete vorteilhaft, da bei der Silizidbil- dung ein Siliziumverbrauch auftritt und auf dieεe Weiεe ver- hindert wird, daß das gesamte Source/Drain-Gebiet bei der Me- tallsilizidbildung verbraucht wird. Es liegt im Rahmen der Erfindung, aus der ersten Elektroden¬ schicht, dem Gatedielektrikum und der monokristallinen Sili¬ ziumschicht beim ersten Strukturierungsschritt gleichzeitig eine Vielzahl Mehrschichtstrukturen für eine Vielzahl MOS- Transiεtoren zu bilden.
Sollen die Gateelektroden verschiedener MOS-Transistoren un¬ terschiedlich dotiert werden, erfolgt die Dotierung nach der Bildung der MehrschichtStrukturen zum Beispiel durch maskier- te Implantation. Die Dotierung der Gateelektroden kann sich dabei sowohl in Bezug auf die Dotierstoffkonzentration als auch in Bezug auf den Leitfähigkeitstyp unterscheiden. Insbe¬ εondere bei der Herεtellung von komplementären MOS- Tranεiεtoren mit n+-dotierten und p+-dotierten Gateelektroden ist das Verfahren vorteilhaft einsetzbar, da durch die Dotie¬ rung nach der Bildung der Mehrschichtstrukturen eine laterale Diffusion von Dotierstoff zwischen n+-dotierten Gateelektro¬ den und p+-dotierten Gateelektroden wirksam unterdrückt wird.
Eine Gateleitungsebene zur Verbindung der verschiedenen Ga¬ teelektroden wird in diesem Fall vorzugsweise bei der Struk¬ turierung der zweiten Elektrodenschicht realisiert.
Nach der Bildung der Mehrschichtstrukturen können die Zwi- schenräume zwiεchen benachbarten Mehrschichtstrukturen mit isolierendem Material aufgefüllt werden. Das hat den Vorteil, daß die zweite Elektrodenschicht auf eine planarisierte Ober¬ fläche aufgebracht wird.
Im folgenden wird die Erfindung anhand eines Ausführungsbei¬ spiels und der Figuren näher erläutert.
Figur 1 zeigt ein SOI-Substrat mit einem Gatedielektrikum, einer ersten Elektrodenschicht und einer Photolack- maske. Figur 2 zeigt das SOI-Substrat nach Bildung einer Mehr¬ schichtstruktur und Bildung von ersten isolierenden Spacern an den Flanken der Mehrschichtstrukturen.
Figur 3 zeigt eine Aufsicht auf Figur 2.
Figur 4 zeigt einen Schnitt durch das SOI-Substrat nach Ab¬ scheidung einer zweiten Elektrodenschicht, einer Deckschicht und Bildung einer Photolackmaske.
Figur 5 zeigt das SOI-Substrat nach der Bildung von Gateelek¬ troden.
Figur 6 zeigt eine Aufsicht auf die Struktur von Figur 5.
Figur 7 zeigt einen Schnitt durch das SOI-Substrat nach der
Bildung von zweiten isolierenden Spacern an den Flan¬ ken der Gateelektroden, der in Figur 6 mit VII-VII bezeichnet ist.
Figur 8 zeigt einen Schnitt durch das SOI-Substrat nach Ab¬ scheidung von Silizium durch selektive Epitaxie und nach Bildung von Source/Drain-Gebieten, dere in Figur 6 mit VIII-VIII bezeichnet iεt.
Figur 9 zeigt den in Figur 6 mit IX-IX bezeichneten Schnitt durch das SOI-Substrat.
Ein SOI-Substrat umfaßt einen Träger 1, eine isolierende Schicht 2 und eine monokristalline Siliziumschicht 3. Der
Träger 1 besteht zum Beispiel aus einer monokristallinen Si¬ liziumscheibe. Die isolierende Schicht 2 besteht zum Beiεpiel auε Siθ2 und weist eine Dicke von zum Beispiel 400 nm auf. Die monokristalline Siliziumschicht 3 iεt zum Beispiel n- dotiert und weist eine Dicke von zum Beispiel 60 nm auf. Auf die monokristalline Siliziumschicht 3 wird ein Gatedie¬ lektrikum 4 aufgebracht. Das Gatedielektrikum 4 wird zum Bei¬ spiel durch thermische Oxidation aus Siθ2 mit einer Schicht- dicke von zum Beispiel 6 nm gebildet (siehe Figur 1) .
Auf das Gatedielektrikum 4 wird eine erste Elektrodenschicht 5 abgeschieden. Die erste Elektrodenschicht 5 wird zum Bei¬ spiel aus undotiertem oder dotiertem Silizium, das amorph oder polykristallin ist, in einer Schichtdicke von 200 nm ab- geschieden.
Auf der Oberfläche der ersten Elektrodenschicht 5 wird eine Photolackmaske 6 gebildet, die die Anordnung von aktiven Ge¬ bieten für MOS-Tranεiεtoren in der monokriεtallinen Silizium- schicht 3 definiert.
Unter Verwendung eines mehrstufigen, anisotropen Ätzprozes¬ ses, zum Beispiel mit CHF3/O2 und BCI3/HCI werden die erste Elektrodenschicht 5, das Gatedielektrikum 4 und die monokri- stalline Siliziumschicht 3 strukturiert. Dabei entstehen MehrschichtStrukturen 7, die jeweils das aktive Gebiet für einen MOS-Tranεistor umfassen (siehe Figur 2). Durch ganzflä¬ chiges Abscheiden einer dielektrischen Schicht mit im wesent¬ lichen konformer Kantenbedeckung und anisotropeε Rückätzen der dielektrischen Schicht werden an den Flanken der Mehr¬ schichtstrukturen erste isolierende Spacer 8 gebildet. Die ersten isolierenden Spacer 8 werden zum Beispiel aus Siθ2 oder Si3N4 gebildet.
Die ersten iεolierenden Spacer 8 umgeben die Mehrεchicht- struktur 7 jeweils ringförmig (siehe Aufsicht in Figur 3) . Jede Mehrschichtstruktur 7 iεt gegen den Träger 1 durch die isolierende Schicht 2 und gegenüber benachbarten Mehrεchicht- strukturen 7 durch die ersten isolierenden Spacer 8 isoliert. Außerhalb der ersten isolierenden Spacer 8 liegt die Oberflä¬ che der isolierenden Schicht 2 frei. Anschließend wird die strukturierte erste Elektrodenschicht 5 dotiert, falls sie undotiert abgeschieden wurde. Dieses er¬ folgt zum Beispiel durch Implantation mit Arsen (5x 1015cm~2, 50 keV) oder durch Belegung aus der Gasphase.
Es wird ganzflächig eine zweite Elektrodenschicht 9 abge¬ schieden. Die zweite Elektrodenschicht 9 wird zum Beispiel aus dotiertem, amorphem oder polykristallinem Silizium, Me- tallsilizid, Metall wie zum Beispiel TiN oder W oder aus Kom- binationen aus diesen Materialien gebildet. Sie wird in einer Schichtdicke von zum Beispiel 50 bis 200 nm abgeschieden (εiehe Figur 4) .
Auf die zweite Elektrodenschicht wird eine Deckschicht 10 aus zum Beispiel TEOS abgeschieden. Die Deckschicht 10 wird in einer Dicke von zum Beispiel 20 nm gebildet.
Mit Hilfe einer Photolackmaske 11 werden die Deckschicht 10, die zweite Elektrodenschicht 9 und die strukturierte erste Elektrodenschicht 5 strukturiert (siehe Figur 5) . Dieses er¬ folgt mittels mehrstufiger anisotroper Ätzung zum Beispiel mit CHF3/O2 und BCL3/HCI. Dabei werden aus der ersten Elek¬ trodenschicht 5 Gateelektroden 12 gebildet. Aus der zweiten Elektrodenschicht 9 werden Gateleitungen 9' gebildet, die die Gateelektroden 12 miteinander verbinden (siehe Aufsicht in Figur 6). Die Gateleitungen 9' sind im Bereich der aktiven Gebiete selbεtjuεtiert mit den Gateelektroden 12 verbunden.
An den Flanken der Gateelektroden 12 und der Deckschicht 10 werden zweite isolierende Spacer 13 durch konformes Abschei¬ den und anschließendes anisotropes Rückätzen von TEOS-Siθ2 oder Si3N4 gebildet. Bei der Spacerätzung wird seitlich der Gateelektrode 12 das Gatedielektrikum 4 entfernt und die Oberfläche der monokristallinen Siliziumschicht 3 in den ak- tiven Gebieten freigelegt (siehe Figur 7). Durch selektive Epitaxie wird auf der freiliegenden Oberflä¬ che der monokristallinen Siliziumschicht 3 ein Siliziumgebiet 14 aufgewachsen. Die selektive Epitaxie erfolgt zum Beispiel mit SiHCl.3. Das Siliziumgebiet 14 wird vorzugsweise in einer solchen Dicke aufgewachsen, daß es in der Höhe mit den ersten isolierenden Spacern 8 abschließt (εiehe Figur 8) .
Anschließend werden in bekannter Weise durch Ionenimplantati¬ on, Phototechnik (nicht im einzelnen dargestellt) und Tempe- rung n+-dotierte Source/Drain-Gebiete 15 und p+-dotierte Source/Drain-Gebiete 16 für NMOS-Transistoren bzw. PMOS- Transistoren hergeεtellt. Die Source/Drain-Gebiete 15, 16 er- εtrecken εich jeweilε sowohl in dem Siliziumgebiet 14 alε auch in dem darunterliegenden Anteil der monokristallinen Si- liziumschicht 3.
Zur Fertigstellung der Schaltungsanordnung wird anschließend eine Pasεivierungεεchicht zum Beiεpiel aus BPSG abgeεchieden und planarisiert. Eε werden Kontaktlöcher zu den Sour- ce/Drain-Gebieten 15, 16 und den Gateelektroden 12 geätzt und mit Metalliεierungen versehen. Diese Prozeßschritte sind nicht im einzelnen dargestellt.
Aus der zweiten Elektrodenschicht 9 werden Gateleitungen 9' gebildet. Die Gateleitungen 9' verlaufen über die ersten Spacer 8 und die freigelegte Oberfläche der isolierenden Schicht 2 außerhalb der aktiven Gebiete für die MOS- Transistoren. Da die Oberfläche der monokristallinen Silizi¬ umschicht 3 mit den ersten isolierenden Spacern 8 bedeckt ist, wird auf diese Weise eine Seitenwandsteuerung der MOS-
Tranεiεtoren durch die zweite Elektrodenεchicht 9 verhindert. Dünnungen deε Gatedielektrikumε 4 an den Kanten der aktiven Gebiete für die MOS-Transistoren, die zu frühzeitigen Oxid¬ durchbrüchen führen könnten, werden durch die ersten isolie- renden Spacer 8 an den Flanken der aktiven Transistorstruktu¬ ren ebenfalls wirksam verhindert (siehe Figur 9) . Alternativ kann nach der Bildung der ersten Spacer 8 durch Abscheiden und Rückätzen einer isolierenden Schicht zum Bei¬ spiel aus Siθ2 der Zwischenraum zwischen benachbarten Mehr¬ schichtstrukturen 7 mit isolierendem Material aufgefüllt wer¬ den. Beim Rückätzen wird die Oberfläche der ersten Elektro¬ denschicht 5 freigelegt und die Struktur planarisiert. Die zweite Elektrodenschicht 9 wird danach abgeschieden. Die Ga¬ teleitungen 9' verlaufen in diesem Fall über die Oberfläche deε aufgefüllten isolierenden Materials.
Das erfindungsgemäße Verfahren kann dadurch variiert werden, daß zusätzliche Elektrodenschichten vorgesehen werden. Dies können sowohl Schichten oberhalb der zweiten Elektroden¬ schicht εein, die zum Beispiel die Leitfähigkeit der zweiten Elektrodenschicht verbessern oder die einer weiteren Verbin¬ dungsebene angehören, oder Schichten zwischen der ersten Elektrodenschicht und der zweiten Elektrodenschicht, zum Bei¬ spiel dielektrische Schichten zur Bildung eines floatenden Gates.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer integrierten Schaltungsan¬ ordnung mit mindestens einem MOS-Transistor,
- bei dem auf die Oberfläche eines SOI-Substrats, das minde¬ stens eine monokristalline Siliziumschicht (3) und eine darunter angeordnete, isolierende Schicht (2) umfaßt, ein Gatedielektrikum (4) aufgebracht wird,
- bei dem auf das Gatedielektrikum (4) eine erste Elektroden- εchicht (5) aufgebracht wird,
- bei dem die erste Elektrodenschicht (5) , das Gatedielektri- kum (4) und die monokriεtalline Siliziumschicht (3) mit
Hilfe einer erεten Maske (6) so strukturiert werden, daß eine Mehrschichtstruktur (7) entsteht, die ein aktives Ge¬ biet für den MOS-Transistor umfaßt und um die herum die Oberfläche der isolierenden Schicht (2) freigelegt ist,
- bei dem an den Flanken der MehrschichtStruktur (7) erste isolierende Spacer (8) gebildet werden,
- bei dem mit Hilfe einer zweiten Maske (11) die strukturier- te erste Elektrodenschicht (5) so strukturiert wird, daß eine Gateelektrode (12) entsteht,
- bei dem in dem aktiven Gebiet Source/Drain-Gebiete (15, 16) gebildet werden.
2. Verfahren nach Anspruch 1,
- bei dem nach der Bildung der erεten isolierenden Spacer (8) ganzflächig eine zweite Elektrodenschicht (9) aufgebracht wird, - bei dem die zweite Elektrodenschicht (9) mit Hilfe der zweiten Maske (11) bei der Bildung der Gateelektrode (12) strukturiert wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem an den Flanken der Gateelektrode (12) vor der Bildung der Source/Drain-Gebiete (15, 16) zweite isolierende Spacer (13) gebildet werden.
4. Verfahren nach Anspruch 3, bei dem nach der Bildung der zweiten isolierenden Spacer (13) auf der freiliegenden Oberfläche der Siliziumschicht (3) durch selektive Epitaxie Siliziumgebiete (14) aufgewachsen werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem aus der ersten Elektrodenschicht (5), dem Gatedielek¬ trikum (4) und der monokristallinen Siliziumschicht (3) meh¬ rere Mehrschichtstrukturen (7) für mehrere MOS-Transistoren gebildet werden.
6. Verfahren nach Anspruch 5, bei dem nach der Bildung der Mehrschichtstrukturen (7) die strukturierte erste Elektrodenschicht (5) in der Mehr- Schichtstruktur (7) für mindestenε einen MOS-Tranεiεtor an- derε dotiert wird alε die übrigen MOS-Transistoren.
7. Verfahren nach Anspruch 5 oder 6 in Verbindung mit An¬ spruch 2, bei dem die zweite Elektrodenschicht (9) mit Hilfe der zwei¬ ten Maske (11) so strukturiert wird, daß eine Gatelei¬ tungsebene (9') entsteht, die die Gateelektroden (12) von mindestenε zwei MOS-Transistoren miteinander verbindet.
8. Verfahren nach einem der Ansprüche 2 biε 7, - bei dem die erste Elektrodenschicht (5) undotierteε oder dotiertes amorphes oder polykristallines Silizium umfaßt,
- bei dem die zweite Elektrodenschicht (9) mindestens einen der Stoffe amorphes Silizium, polykristallines Silizium, Metallεilizid oder Metall enthält.
PCT/DE1996/002121 1995-11-30 1996-11-07 Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor WO1997020336A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59607846T DE59607846D1 (de) 1995-11-30 1996-11-07 Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor
JP9520052A JP2000501237A (ja) 1995-11-30 1996-11-07 少なくとも1個のmosトランジスタを有する集積回路装置の製造方法
EP96945866A EP0864172B1 (de) 1995-11-30 1996-11-07 Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor
AT96945866T ATE206558T1 (de) 1995-11-30 1996-11-07 Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos- transistor
US09/077,476 US6037196A (en) 1995-11-30 1996-11-07 Process for producing an integrated circuit device with at least one MOS transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19544721.2 1995-11-30
DE19544721A DE19544721C1 (de) 1995-11-30 1995-11-30 Verfahren zur Herstellung einer integrierten Schaltungsanordnung mit mindestens einem MOS-Transistor

Publications (2)

Publication Number Publication Date
WO1997020336A2 true WO1997020336A2 (de) 1997-06-05
WO1997020336A3 WO1997020336A3 (de) 1997-08-28

Family

ID=7778860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/002121 WO1997020336A2 (de) 1995-11-30 1996-11-07 Verfahren zur herstellung einer integrierten schaltungsanordnung mit mindestens einem mos-transistor

Country Status (8)

Country Link
US (1) US6037196A (de)
EP (1) EP0864172B1 (de)
JP (1) JP2000501237A (de)
KR (1) KR100395973B1 (de)
AT (1) ATE206558T1 (de)
DE (2) DE19544721C1 (de)
TW (1) TW313699B (de)
WO (1) WO1997020336A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333205B1 (en) * 1999-08-16 2001-12-25 Micron Technology, Inc. CMOS imager with selectively silicided gates
KR100328710B1 (ko) * 1999-08-23 2002-03-20 박종섭 인덕터 및 그의 제조방법
JP4794782B2 (ja) * 2001-09-18 2011-10-19 セイコーインスツル株式会社 電圧検出回路、及び電子機器
US6649457B2 (en) * 2001-09-24 2003-11-18 Sharp Laboratories Of America, Inc. Method for SOI device isolation
JP4193097B2 (ja) * 2002-02-18 2008-12-10 日本電気株式会社 半導体装置およびその製造方法
US6855988B2 (en) * 2002-07-08 2005-02-15 Viciciv Technology Semiconductor switching devices
DE10248723A1 (de) * 2002-10-18 2004-05-06 Infineon Technologies Ag Integrierte Schaltungsanordnung mit Kondensatoren und mit vorzugsweise planaren Transistoren und Herstellungsverfahren
US6913959B2 (en) * 2003-06-23 2005-07-05 Advanced Micro Devices, Inc. Method of manufacturing a semiconductor device having a MESA structure
US7202123B1 (en) 2004-07-02 2007-04-10 Advanced Micro Devices, Inc. Mesa isolation technology for extremely thin silicon-on-insulator semiconductor devices
JP5337380B2 (ja) * 2007-01-26 2013-11-06 株式会社半導体エネルギー研究所 半導体装置及びその作製方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115131A2 (de) * 1982-12-28 1984-08-08 Kabushiki Kaisha Toshiba MIS-Transistor mit einer abgelagerten und vergrabenen Isolation und Verfahren zu seiner Herstellung
EP0373893A2 (de) * 1988-12-13 1990-06-20 Mitsubishi Denki Kabushiki Kaisha Auf einer Halbleiterschicht gebildeter MOS-Feldeffekttransistor auf einem isolierenden Substrat
EP0442296A2 (de) * 1990-02-16 1991-08-21 Hughes Aircraft Company Hochgeschwindigkeits-SOI-Bauelement und Herstellungsverfahren dafür
US5144390A (en) * 1988-09-02 1992-09-01 Texas Instruments Incorporated Silicon-on insulator transistor with internal body node to source node connection
US5177028A (en) * 1991-10-22 1993-01-05 Micron Technology, Inc. Trench isolation method having a double polysilicon gate formed on mesas
US5294823A (en) * 1990-10-11 1994-03-15 Texas Instruments Incorporated SOI BICMOS process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115131A2 (de) * 1982-12-28 1984-08-08 Kabushiki Kaisha Toshiba MIS-Transistor mit einer abgelagerten und vergrabenen Isolation und Verfahren zu seiner Herstellung
US5144390A (en) * 1988-09-02 1992-09-01 Texas Instruments Incorporated Silicon-on insulator transistor with internal body node to source node connection
EP0373893A2 (de) * 1988-12-13 1990-06-20 Mitsubishi Denki Kabushiki Kaisha Auf einer Halbleiterschicht gebildeter MOS-Feldeffekttransistor auf einem isolierenden Substrat
EP0442296A2 (de) * 1990-02-16 1991-08-21 Hughes Aircraft Company Hochgeschwindigkeits-SOI-Bauelement und Herstellungsverfahren dafür
US5294823A (en) * 1990-10-11 1994-03-15 Texas Instruments Incorporated SOI BICMOS process
US5177028A (en) * 1991-10-22 1993-01-05 Micron Technology, Inc. Trench isolation method having a double polysilicon gate formed on mesas

Also Published As

Publication number Publication date
US6037196A (en) 2000-03-14
DE19544721C1 (de) 1997-04-30
DE59607846D1 (de) 2001-11-08
JP2000501237A (ja) 2000-02-02
KR100395973B1 (ko) 2003-10-17
KR19990071491A (ko) 1999-09-27
EP0864172A2 (de) 1998-09-16
EP0864172B1 (de) 2001-10-04
WO1997020336A3 (de) 1997-08-28
ATE206558T1 (de) 2001-10-15
TW313699B (de) 1997-08-21

Similar Documents

Publication Publication Date Title
DE19711482C2 (de) Verfahren zur Herstellung eines vertikalen MOS-Transistors
DE112005000704B4 (de) Nicht-planarer Bulk-Transistor mit verspanntem Kanal mit erhöhter Mobilität und Verfahren zur Herstellung
DE112013002186B4 (de) Verfahren zum Bilden einer Halbleitereinheit mit flacher Grabenisolierung
DE4340967C1 (de) Verfahren zur Herstellung einer integrierten Schaltungsanordnung mit mindestens einem MOS-Transistor
DE4233486B4 (de) Grabenkondensator-Speicherzelle und Verfahren zu deren Herstellung
DE102006029701A1 (de) Halbleiterbauteil sowie Verfahren zur Herstellung eines Halbleiterbauteils
WO1997003462A1 (de) Verfahren zur herstellung einer integrierten cmos-schaltung
EP1161770A1 (de) Dram-zellenanordnung und verfahren zu deren herstellung
DE19544721C1 (de) Verfahren zur Herstellung einer integrierten Schaltungsanordnung mit mindestens einem MOS-Transistor
EP1282917B1 (de) Vertikaler transistor
DE4211050C2 (de) Verfahren zur Herstellung eines Bipolartransistors in einem Substrat
DE4341667C1 (de) Integrierte Schaltungsanordnung mit mindestens einem CMOS-NAND-Gatter und Verfahren zu deren Herstellung
EP1181723B1 (de) Doppel-gate-mosfet-transistor und verfahren zu seiner herstellung
DE4435461A1 (de) Dünnfilmtransistoren und Verfahren zum Herstellen
DE19749378B4 (de) MOS-Transistor und Verfahren zu dessen Herstellung
DD280851A1 (de) Verfahren zur herstellung von graben-speicherzellen
EP0981833B1 (de) Integrierte cmos-schaltungsanordnung und verfahren zu deren herstellung
DE19812643C1 (de) Schaltungsstruktur mit einem MOS-Transistor und Verfahren zu deren Herstellung
DE69220543T2 (de) Graben-DRAM-Zelle mit Substratplatte
DE4327132A1 (de) Dünnfilmtransistor und Verfahren zu dessen Herstellung
DE19711483C2 (de) Vertikaler MOS-Transistor und Verfahren zu dessen Herstellung
WO2000072377A1 (de) Verfahren zur erzeugung eines vergrabenen kontakts einer speicherzellenanordnung
DE19644972C2 (de) Halbleiterspeicher und Verfahren zur Herstellung eines Halbleiterspeichers
EP0626098B1 (de) Verfahren zur herstellung eines kontaktes zu einer grabenkondensatorelektrode
DE102004049667B3 (de) Herstellungsverfahren für einen Grabenkondensator mit einem Isolationskragen, der über einen vergrabenen Kontakt einseitig mit einem Substrat elektrisch verbunden ist, insbesondere für eine Halbleiterspeicherzelle und entsprechender Grabenkondensator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996945866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980703763

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 520052

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09077476

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996945866

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980703763

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996945866

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980703763

Country of ref document: KR