WO1997017759A1 - Tuning control system - Google Patents

Tuning control system Download PDF

Info

Publication number
WO1997017759A1
WO1997017759A1 PCT/JP1996/001097 JP9601097W WO9717759A1 WO 1997017759 A1 WO1997017759 A1 WO 1997017759A1 JP 9601097 W JP9601097 W JP 9601097W WO 9717759 A1 WO9717759 A1 WO 9717759A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
tuning
phase shift
signal
input
Prior art date
Application number
PCT/JP1996/001097
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ikeda
Tadataka Ohe
Akira Okamoto
Original Assignee
Takeshi Ikeda
Tadataka Ohe
Akira Okamoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeshi Ikeda, Tadataka Ohe, Akira Okamoto filed Critical Takeshi Ikeda
Priority to KR1019980703018A priority Critical patent/KR100350400B1/en
Priority to AU53481/96A priority patent/AU5348196A/en
Priority to JP51804597A priority patent/JP3764483B2/en
Publication of WO1997017759A1 publication Critical patent/WO1997017759A1/en
Priority to HK99100745A priority patent/HK1015979A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • H03D13/003Circuits for comparing the phase or frequency of two mutually-independent oscillations in which both oscillations are converted by logic means into pulses which are applied to filtering or integrating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/06Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges
    • H03J3/08Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges by varying a second parameter simultaneously with the tuning, e.g. coupling bandpass filter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J1/00Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general

Definitions

  • the present invention relates to a tuning control method for passing only a predetermined frequency signal.
  • an intermediate-frequency amplifier circuit of a superheterodyne receiver includes a function as a filter, and this intermediate-frequency amplifier circuit generally uses a plurality of sets of intermediate-frequency transformers (IFTs) and capacitors to achieve a desired function. Realizes frequency characteristics. For example, in the case of an AM receiver, a center frequency of 455 kHz is set, and a predetermined amount of attenuation is set when the center frequency is detuned by 9 kHz. I have. In some cases, a single ceramic filter is used instead of a plurality of sets of intermediate frequency transformers to achieve desired frequency characteristics.
  • IFTs intermediate-frequency transformers
  • the configuration of the intermediate frequency amplifier circuit which is a filter for tuning, includes an intermediate frequency transformer and a ceramics filter. It was difficult to integrate on top.
  • the local oscillation circuit combined with this intermediate frequency amplifier circuit is simply realized by an LC oscillator using a local oscillation transformer, and when it is of high accuracy, realized by a PLL configuration using crystal oscillation. .
  • the local oscillation circuit has a PLL configuration, it is difficult to integrate the local oscillation circuit because it includes a voltage-controlled oscillator (VCO) that performs sine wave oscillation, and the hybrid IC is used in part.
  • VCO voltage-controlled oscillator
  • the present invention has been conceived to solve such a problem, and an object thereof is to provide a new tuning control method suitable for integration.
  • the tuning control method includes two cascade-connected all-pass type phase shift circuits, and the output of the subsequent phase shift circuit is fed back to the input side of the preceding phase shift circuit as a feedback signal.
  • a tuning circuit that adds the feedback signal and the input signal and inputs the feedback signal and the input signal to the phase shift circuit at the preceding stage, and passes only a signal near a predetermined frequency; and a tuning circuit near the predetermined frequency to the tuning circuit.
  • the tuning frequency By controlling the phase difference between the input and output signals of one of the phase shift circuits included in the tuning circuit to be, for example, 90 °, the tuning frequency always changes following the frequency of the input signal. And both frequencies can be matched.
  • FIG. 1 is a configuration diagram of a tuning mechanism which is an embodiment to which a tuning control method of the present invention is applied,
  • FIG. 2 is a circuit diagram showing a detailed configuration of the tuning circuit
  • FIG. 3 is a circuit diagram extracted from the configuration of the previous phase shift circuit shown in FIG. 2, and FIG. 4 is a diagram showing input / output voltages and voltages appearing in the capacity shift circuit and the like of the phase shift circuit shown in FIG. Vector diagram showing the relationship between
  • Fig. 5 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit shown in Fig. 2, and Fig. 6 is the relationship between the input / output voltage of the latter phase shift circuit and the voltage appearing in the capacity and the like.
  • FIG. 7 is a circuit diagram in which the whole of the two phase shift circuits and the voltage divider circuit shown in FIG. 2 are replaced with a circuit having a transfer function K 1,
  • FIG. 8 is a circuit diagram obtained by converting the circuit shown in FIG. 7 by Miller's theorem
  • FIG. 9 is a diagram showing tuning characteristics of the tuning circuit shown in FIG. 2
  • Fig. 10 is a diagram showing the phase relationship between the signals input to and output from the two phase shift circuits.
  • Fig. 11 is a diagram in which the tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit. Diagram showing the phase relationship between input and output signals of each phase shift circuit in the case,
  • FIG. 12 is a diagram showing the phase relationship between input and output signals of each phase shift circuit when the tuning frequency is lower than the signal frequency input to the preceding phase shift circuit
  • FIG. 13 is a circuit diagram showing a configuration of a frequency control circuit
  • FIG. 14 is a timing chart in the case where the tuning frequency of the tuning circuit is higher than the frequency of the signal input to the tuning circuit
  • FIG. 15 is a timing chart when the tuning frequency of the tuning circuit is lower than the frequency of the signal input to the tuning circuit
  • FIG. 16 is a circuit diagram showing another configuration example of the frequency control circuit.
  • FIG. 17 is a timing diagram when the tuning frequency is higher than the frequency of the signal input to the tuning circuit shown in FIG. 16,
  • FIG. 18 is a timing chart in the case where the tuning frequency is lower than the frequency of the signal input to the tuning circuit shown in FIG. 16,
  • Fig. 19 is a diagram showing the configuration of the tuning mechanism that also serves as FM detection.
  • FIG. 20 is a circuit diagram showing a detailed configuration of the frequency control circuit shown in FIG. 19,
  • FIG. 21 is a diagram showing a configuration of an FM receiver using the tuning mechanism shown in FIG. 22 is a diagram showing the configuration of a tuning mechanism using AM detection by synchronous rectification,
  • FIG. 23 is a diagram showing the detailed configuration of the synchronous rectifier circuit shown in FIG. 22,
  • FIG. 24 is a diagram showing a configuration of an AM receiver using the tuning mechanism shown in FIG. 22,
  • FIG. 25 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
  • FIG. 26 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG. 25 and the voltage appearing in the capacity and the like.
  • FIG. 27 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and
  • FIG. 28 is a diagram showing the input / output voltage of the phase shift circuit shown in FIG. Vector diagram showing the relationship of
  • FIG. 29 is a circuit diagram showing a second modification of the tuning circuit
  • FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit
  • FIG. 31 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit
  • FIG. 32 is a circuit diagram showing a fourth modification of the tuning circuit
  • FIG. 33 is a circuit diagram showing a fifth modification of the tuning circuit
  • FIG. 34 is a circuit diagram showing a sixth modification of the tuning circuit
  • FIG. 35 is a circuit diagram showing a seventh modification of the tuning circuit
  • FIG. 36 is a circuit diagram showing an eighth modification of the tuning circuit
  • Fig. 37 is a circuit diagram extracted from the configuration of the previous phase shift circuit shown in Fig. 36
  • Fig. 38 is the input / output voltage and capacity of the phase shift circuit shown in Fig. 37.
  • Vector diagram showing the relationship with the voltage appearing in
  • Fig. 39 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit shown in Fig. 36.
  • Fig. 40 is the input / output voltage and capacity of the phase shift circuit shown in Fig. 39.
  • Vector diagram showing the relationship with the voltage appearing in
  • FIG. 41 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit
  • Fig. 42 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 41 and the voltage appearing in the capacity, etc.
  • FIG. 43 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit.
  • FIG. 44 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG. 43 and the voltage appearing in the capacity and the like.
  • FIG. 45 is a circuit diagram showing a tenth modification of the tuning circuit
  • FIG. 46 is a circuit diagram showing a first modification of the tuning circuit
  • FIG. 47 is a circuit diagram showing a twelfth modification of the tuning circuit.
  • Fig. 48 is a circuit diagram extracted from the configuration of the previous phase shift circuit shown in Fig. 47.
  • Fig. 49 is the input / output voltage and capacity of the phase shift circuit shown in Fig. 48.
  • Vector diagram showing the relationship with the voltage appearing in FIG. 50 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit shown in FIG. 47.
  • FIG. 51 is an input / output voltage and capacity of the phase shift circuit shown in FIG. 50.
  • FIG. 52 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit
  • Fig. 53 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 52 and the voltage appearing in the inductor and the like.
  • FIG. 54 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit
  • FIG. 55 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG. 54 and the voltage appearing in the inductor and the like.
  • FIG. 56 is a circuit diagram showing a fourteenth modification of the tuning circuit
  • FIG. 57 is a circuit diagram showing a fifteenth modification of the tuning circuit.
  • FIG. 58 is a circuit diagram of a tuning circuit in which the variable resistor in the phase shift circuit shown in FIG. 3 is formed by a MOS type FET,
  • Fig. 59 is a circuit diagram of a tuning circuit that changes the overall tuning frequency by changing the capacitance of the capacitance.
  • FIG. 60 is a circuit diagram of a tuning circuit using an element other than FET as a variable resistor in each phase shift circuit shown in FIG. 2,
  • FIG. 61 is a circuit diagram in which a part necessary for the operation of the phase shift circuit in the configuration of the operational amplifier is extracted.
  • the tuning control method of the present invention when the time constants of the two phase shift circuits included in the tuning circuit are set to the same value, the phase difference between the input and output signals of each of the two phase shift circuits is 90%. Paying attention to the fact that the phase shift amount becomes 90 ° or 270 °, the phase shift amount of one phase shift circuit is set to 90 when an AC signal of a certain frequency is input. Alternatively, by controlling the tuning frequency to approach It is characterized in that it is controlled to match the frequency of the signal.
  • FIG. 1 is a diagram showing a configuration of a tuning mechanism according to an embodiment to which a tuning control method of the present invention is applied.
  • the tuning mechanism shown in FIG. 1 includes a tuning circuit 1 that functions as a filter that passes a signal near a certain frequency, and a frequency control circuit 2 that controls a pass center frequency of the tuning circuit 1.
  • Tuning circuit 1 includes two phase shifting circuits, takes out the output of the subsequent phase shifting circuit as the output of tuning circuit 1, and feeds back this signal via a feedback resistor. By adding the input signal that is input and the feedback signal that is fed back via the feedback resistor and inputting the result to the previous phase shift circuit, the total phase shift amount of the two phase shift circuits becomes 360 °. A predetermined tuning operation is performed at a frequency.
  • the phase shift amount in each phase shift circuit is 90 °.
  • the tuning frequency will be adjusted to the frequency of the input signal. Can be matched.
  • the tuning circuit 1 has a configuration in which the tuning frequency can be arbitrarily set within a certain range by changing the amount of phase shift between the two phase shift circuits by a control signal input from the outside. The detailed configuration and detailed operation of the tuning circuit 1 will be described later.
  • the frequency control circuit 2 receives two types of signals that are input / output to one of the phase shift circuits included in the tuning circuit 1, and when the phase difference between these two signals is shifted from 90 °, The tuning frequency of the tuning circuit 1 is controlled so as to eliminate this deviation.
  • the frequency control circuit 2 includes a phase difference detection circuit 3 and a control voltage generation circuit 4.
  • the phase difference detection circuit 3 has a duty ratio of 50% and a phase shift amount of 90% when the phase shift amount of the other phase shift circuit included in the tuning circuit 1 is 90 °. When it deviates from that, a rectangular wave signal whose duty ratio deviates from 50% is output in accordance with the deviation.
  • the control voltage generation circuit 4 generates a voltage corresponding to the duty ratio of the rectangular wave signal output from the phase difference detection circuit 3, and adds the generated voltage to a predetermined bias voltage.
  • the adjusted voltage is output to the tuning circuit 1 as a control signal.
  • phase difference detection circuit 3 and the control voltage generation circuit 4 included in the frequency control circuit 2 will be described later.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the tuning circuit 1.
  • the tuning circuit 1 shown in the figure shifts the phase of each input AC signal by a predetermined amount, so that a total of 360 is obtained at a predetermined frequency.
  • a voltage divider consisting of two phase shifters 110 C and 130 C, and a resistor 16 2 and 16 4 provided on the output side of the subsequent phase shift circuit 130 C Circuit 160 and that of feedback resistor 170 and input resistor 174 (input resistor 174 has n times the resistance of feedback resistor 170)
  • it is configured to include an adding circuit for adding the divided output (feedback signal) of the voltage dividing circuit 160 and the signal (input signal) input to the input terminal 190 at a predetermined ratio. ing.
  • FIG. 3 shows a configuration extracted from the phase shift circuit 110C of the preceding stage shown in FIG.
  • the phase shift circuit 110C at the front stage shown in the figure shifts the phase of the AC signal input to the input terminal 122 by a predetermined amount from the operational amplifier 112, which is a type of differential amplifier.
  • the resistances of the resistor 118 and the resistor 120 are set to be the same.
  • the resistance of the variable resistor 116 can be changed according to an external control voltage.For example, as shown in FIG. 3, an FET channel is used as a resistor, and a control input shown in FIG. 2 is used.
  • the resistance value is set by applying a control voltage supplied from the outside via a terminal 194 to the gate.
  • the vector obtained by adding the voltage VC1 across the resistor 118 to the input voltage Ei is the voltage (divided output) E o 'at the connection point between the resistors 121 and 123.
  • FIG. 4 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 110 C at the preceding stage and the voltage appearing in the capacity and the like.
  • the input voltage Ei and the divided voltage Eo ' differ only in the direction in which the voltage VC1 is synthesized. Its absolute value will be equal. Therefore, the relationship between the input voltage E i and the magnitude and phase of the divided output E o 'is represented by an isosceles triangle with the input voltage E i and the divided output E o' as the hypotenuse and the base of which is twice the voltage VC1. It can be seen that the amplitude of the divided voltage output E o 'is the same as the amplitude of the input signal regardless of the frequency, and the phase shift amount is expressed by 01 shown in FIG. The phase shift amount 01 changes from 180 ° to 360 ° in the clockwise direction (phase lag direction) based on the input voltage E i according to the frequency.
  • FIG. 5 shows an extracted configuration of the phase shift circuit 130C at the subsequent stage shown in FIG.
  • the phase-shift circuit 130C at the subsequent stage shown in the figure shifts the phase of the signal input to the operational amplifier 1332, which is a type of differential amplifier, and the input terminal 142 by a predetermined amount.
  • the variable resistor 1 3 6 to be input to the non-inverting input terminal of the operational amplifier 13 2 and the resistor inserted between the input terminal 14 2 and the inverting input terminal of the operational amplifier 13 2 1 3 8, resistors 14 1 and 14 3 connected to the output terminal of the operational amplifier 13 2 to form a voltage divider circuit, and the output terminal of this voltage divider circuit and the inverting input terminal of the operational amplifier 13 2 And a resistor 140 connected between them.
  • the resistances of the resistor 1 38 and the resistor 140 are set to be the same.
  • the resistance of the variable resistor 1336 can be changed according to an external control voltage, and a control voltage supplied from the outside via a control input terminal 1995 shown in FIG. 2 is applied to the gate. By doing so, the resistance value is set.
  • FIG. 6 is a vector diagram showing the relationship between the input / output voltage of the subsequent phase shift circuit 130 C and the voltage appearing in the capacity and the like.
  • the input voltage E i and the divided output E o ' differ only in the direction in which the voltage VR2 is synthesized. Its absolute value will be equal. Therefore, the relationship between the input voltage E i and the magnitude and phase of the divided output E o 'is represented by an isosceles triangle with the input voltage E i and the divided output E o' as the hypotenuse and the base twice the voltage VR2. It can be seen that the amplitude of the divided voltage output E o 'is the same as the amplitude of the input signal regardless of the frequency, and that the phase shift amount is expressed by ⁇ zi 2 shown in FIG.
  • a gain greater than 1 can be obtained by adjusting the values of R41 and R43, and the amplitude of the output voltage Eo is constant even if the frequency changes, as shown in Fig. 6, and only the phase is adjusted by a predetermined amount. Can be shifted.
  • phase of each of the two phase shift circuits 110C and 130C is shifted by a predetermined amount, and as shown in FIGS. 4 and 6, the phase of the entire tuning circuit 1 is changed.
  • the shift amount is 360 ° at a predetermined frequency.
  • the output of the subsequent phase shift circuit 130 C is taken out from the output terminal 192 as the output of the tuning circuit 1 as shown in FIG. 2, and the output of the phase shift circuit 130 C is divided by a voltage dividing circuit.
  • the signal passed through 160 is fed back to the input side of the previous phase shift circuit 110 C via the feedback resistor 170. Then, the signal that has been fed back and the signal that is input via the input resistor 174 are added, and the added signal is input to the phase shift circuit 110C at the preceding stage.
  • the total amount of phase shift at a predetermined frequency is 360 ° by the two phase shift circuits 110 C and 130 C, and at this time, the two phase shift circuits 110 C, 130 C,
  • the loop gain of the feedback loop by the voltage dividing circuit 160 and the feedback resistor 170 is set to 1 or less.
  • the gain can be given to the tuning circuit 1 itself.
  • the signal amplitude can be amplified simultaneously with the tuning operation.
  • FIG. 7 is a circuit diagram in which the entirety of the two phase shift circuits 110 C and 130 C and the voltage divider circuit 160 having the above-described configuration is replaced with a circuit having a transfer function K1, and the transfer function K1
  • a feedback resistor 170 having a resistor R0 is connected in parallel with a circuit having a resistor R0, and an input resistor 174 having a resistance value (nRO) n times as large as the feedback resistor 170 is connected in series.
  • FIG. 8 is a circuit diagram obtained by converting the circuit shown in FIG. 7 by Miller's theorem, and the transfer function A of the whole system after the conversion is
  • K2 ⁇ a, (1 ⁇ T, s) / (l + Tis)... (2)
  • the transfer function ⁇ 3 of the subsequent phase shift circuit 130 C is ⁇ 2
  • K3 a, (1 -T2 s) / (1 + T, s) ⁇ ⁇ ⁇ ⁇ (3)
  • a 2 is the gain of the phase shift circuit 130C
  • a 2 (1 + R41 / R43)> 1.
  • the signal amplitude is 1 / a through the voltage divider circuit 160! Assuming that it attenuates to a 2, the overall transfer function K1 when two phase shift circuits 110 C and 130 C and a voltage divider circuit 160 are cascaded is
  • K1 - ⁇ 1 + (T s) 2 - 2 T s ⁇ / ⁇ 1 + (Ts) 2 +2 T s ⁇
  • phase shift circuit 1 1 1 by changing each resistance value of the variable resistor 1 16 in the preceding phase shift circuit 110 C and the variable resistor 1 36 included in the subsequent phase shift circuit 130 C, the phase shift circuit 1 1 1 1
  • the time constant of each CR circuit included in 0 C and 130 C can be changed, and the tuning frequency ⁇ can be changed arbitrarily within a certain range.
  • a voltage dividing circuit is formed by the feedback resistor 170 and the input impedance of the all-pass circuit.
  • the loop gain of the feedback loop including the all-pass circuit is smaller than the absolute value of the transfer function K1.
  • the input impedance of the all-pass circuit is the input impedance of the previous stage phase shift circuit 110 C, which consists of the input resistance 1 18 of the operational amplifier 1 12 and the variable resistance 1 16 and the capacity 1 1 4 This is nothing but the input impedance formed by connecting the series impedance of the CR circuit in parallel. Therefore, to compensate for the loss of the loop gain of the feedback loop due to the input impedance of the all-pass circuit, it is necessary to set the gain of the all-pass circuit itself to 1 or more.
  • the gain when the phase shift circuit 1 10 C operates as an inverting amplifier is — R 20 no R 18,
  • the gain is always 1 irrespective of the resistance ratio of resistor 118 and resistor 120, so the resistance ratio of resistor 118 and resistor 120 is not 1.
  • phase shift circuit 110 C it is possible to set the gain of the phase shift circuit 110 C to 1 or more while maintaining the resistance ratio of the resistors 1 18 and 120 to 1.
  • a voltage divider consisting of resistors 141 and 1443 is added to the output side of the phase shifter 130C, and feedback to the inverting input terminal of the operational amplifier 132 is performed via this voltage divider. This makes it possible to set the gain of the phase shift circuit 130 C to 1 or more while maintaining the resistance ratio of the resistances 1338 and 140 to 1.
  • ⁇ 2 tan ⁇ 2 ⁇ 2 / (1 - ⁇ 2 ⁇ , 2 ) ⁇ ⁇ ⁇ ⁇ (7)
  • FIG. 10 is a diagram showing the phase relationship between the signals input to and output from the two phase shift circuits 110C and 130C, and the signals input to the preceding phase shift circuit 110C. This shows the case where the frequency is equal to the tuning frequency.
  • FIG. 11 is a diagram showing the phase relationship between input and output signals of each phase shift circuit when the tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit 110C.
  • the case where the tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit 110C is the case where the frequency of the input signal is relatively lower than the tuning frequency.
  • the phase shift amount 0 1 of the first-stage phase shift circuit 110 C is smaller than 270 °
  • the phase shift amount of the second-stage phase shift circuit 130 C is 130 °.
  • the shift amount 02 is smaller than 90 °. Therefore, 0 1 and 02 are represented as shown in Fig. 11 (A) and Fig. 11 (B), respectively, and when two phase shift circuits 110 C and 130 C are connected in cascade. As shown in FIG. 11 (C), the sum of the phase shift amounts becomes smaller than 360 °.
  • FIG. 2 is a diagram showing the phase relationship between input and output signals of each phase shift circuit when the tuning frequency is lower than the signal frequency input to the preceding phase shift circuit 110C.
  • the case where the tuning frequency is lower than the frequency of the signal input to the preceding phase shift circuit 110C is the case where the frequency of the input signal is relatively higher than the tuning frequency.
  • the phase shift amount 0 1 of the preceding phase shift circuit 110 C is 270.
  • the phase shift amount 02 of the subsequent phase shift circuit 130 C becomes larger than 90 °. Therefore, 0 1 and 02 are represented as shown in Fig. 12 ( ⁇ ) and Fig. 12 ( ⁇ ), respectively, and when two phase shift circuits 1 1 0 C and 1 3 0 C are cascaded.
  • the sum of the phase shift amounts of the two is shown in Fig. 12 (C). Thus, it is larger than 360 °.
  • the absolute values of 01 and 02 described above may be reduced, and more specifically, the tuning shown in FIG.
  • the voltage VR1 across the resistor 1 16 and the voltage VR2 across the variable resistor 1 36 may be reduced.
  • the variable resistors 1 16 and 1 36 are formed by n-channel FETs, it is sufficient to increase the gate voltage and reduce the channel resistance.c
  • the tuning circuit 1 described above Set the resistance values of the resistors 118 and 120 in the phase shift circuit 110C to the same value, and set the resistance of the resistor 130 and the resistor 140 in the phase shift circuit 130C to the same value.
  • the values are set to the same value, it is possible to prevent amplitude fluctuations when the tuning frequency is changed, and to obtain a tuning output having a substantially constant amplitude.
  • the amplitude fluctuation of the tuning output it is possible to increase the value of Q of the tuning circuit 1 by increasing the resistance ratio n described above.
  • the resistance ratio n cannot be set to a very large value to prevent such oscillation, and the value of Q of the tuning circuit 1 also becomes small.
  • the tuning output of the tuning circuit 1 since the tuning output of the tuning circuit 1 does not cause amplitude fluctuation even if the resistance ratio n is set to a large value, the resistance value n is increased and the value of Q is increased. can do.
  • a signal attenuated through the voltage dividing circuit 160 is used as a feedback signal, and a signal before being input to the voltage dividing circuit 160 is taken out as an output of the tuning circuit 1 so that a predetermined signal can be selected from the input signals.
  • a predetermined amplification can be performed on the extracted signal.
  • one of the voltage dividing circuits connected to the output terminals of the operational amplifiers 112 and 132 in each phase shift circuit included in the tuning circuit 1 One of the voltage dividing circuits may be omitted, or the voltage dividing ratio may be set to 1.
  • the output terminal of the operational amplifier 112 may be directly connected to one end of the resistor 120 without omitting the voltage dividing circuit in the phase shift circuit 110C.
  • the voltage divider is omitted for one of the two cascaded phase shifters.
  • a gain setting of 1 Te by setting the gain of the other phase shift circuit 1 1 0 C to a value greater than 1, c
  • the same tuning operation as the tuning circuit 1 shown in FIG. 2 is performed, If the amplification operation is not required, the voltage dividing circuit 160 at the subsequent stage of the phase shift circuit 130 C may be omitted, and the output of the phase shift circuit 130 C may be directly fed back to the preceding stage.
  • the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
  • FIG. 13 is a circuit diagram showing the configuration of the frequency control circuit 2, and shows the detailed configurations of the phase difference detection circuit 3 and the control voltage generation circuit 4 included in the frequency control circuit 2.
  • the phase difference detection circuit 3 shown in FIG. 13 includes a buffer 30 such as a source follower, two voltage comparators 31 and 32, and an EX-OR (exclusive OR) gate 33. It is configured.
  • the inverting input terminals of the two voltage comparators 31 and 32 are both grounded, and the non-inverting input terminal of one of the voltage comparators 31 has a signal output from the control output terminal 196 of the tuning circuit 1.
  • the input signal of the subsequent phase shift circuit 130 C is input through the buffer 30, and the non-inverting input terminal of the other voltage comparator 32 is the control output terminal 19 9 7 of the tuning circuit 1.
  • Output signal of the subsequent phase shift circuit 130 C is input.
  • Each of the voltage comparators 31 and 32 outputs a square wave signal having a positive or negative voltage level depending on whether the voltage level of the signal input to the non-inverting input terminal is higher or lower than 0 V. That is, the voltage comparators 31 and 32 respectively output rectangular wave signals having the same frequency and phase as the signals output from the control output terminals 196 and 197 of the tuning circuit 1.
  • EX—OR gate 33 receives the square wave signals output from each of the voltage comparators 31 and 32 as inputs, and sets the positive voltage level of each square wave signal to logic H and negative polarity The voltage level of these two inputs is made to correspond to logic L, and the exclusive OR of these two inputs is calculated.
  • the control voltage generation circuit 4 shown in FIG. 13 includes a low-pass filter including a resistor 40 and a capacitance 41, a variable resistor 42 for generating a predetermined bias voltage, an operational amplifier 44, and a resistor. And an amplifier including a resistor 45 and a resistor 46.
  • the low-pass filter removes high-frequency components from the square wave signal output from the EX-OR gate 33 according to the time constant determined by the resistor 40 and the capacity 41. Therefore, the output voltage of the low-pass filter gradually increases when the duty ratio of the square wave signal output from the EX-OR gate 33 is larger than 50% (when the relative ratio of logic H is large). When the duty ratio of the square wave signal output from the EX-OR gate 33 is smaller than 50% (when the relative ratio of logic L is large), it gradually decreases.
  • the single-pass filter shown in FIG. 13 is inserted before the amplifier, it may be formed integrally with the amplifier by connecting a capacitor in parallel with the feedback resistor of the amplifier.
  • a resistor 45 is connected between the output terminal of the operational amplifier 44 and the inverting input terminal, and the inverting input terminal is grounded via the resistor 46.
  • the operational amplifier 44 functions as an amplifier having an amplification degree corresponding to the resistance ratio of the resistors 45 and 46.
  • the voltage amplified by the operational amplifier 44 is added to a predetermined bias voltage to generate a control voltage as described below, and then input to the tuning circuit 1.
  • a movable terminal of a variable resistor 42 having two fixed terminals connected to a positive power supply Vdd and a negative power supply V ss is connected via a resistor 43. Therefore, the bias circuit including the variable resistor 42 sets the voltage at the output terminal of the operational amplifier 44 to a predetermined bias voltage.
  • this variable resistance 42 is actually formed on a semiconductor substrate, it can be formed using an active element such as FET.
  • This bias circuit matches the tuning frequency of tuning circuit 1 with the frequency of the input signal.
  • the variable resistor 1 16 included in one phase shift circuit 110 C of the tuning circuit 1 and the variable resistor 13 included in the other phase shift circuit 130 C of the tuning circuit 1 It is provided to set the voltage to be applied to each gate of No. 6.
  • variable resistors 1 16 and 1 36 are configured using FETs, even if the same gate voltage is applied to each FET, if the source potential of each FET is different, the resistance values will be equal. May not be. For this reason, when actually constructing a circuit, the distributor 5 that generates two kinds of gate voltages that can be varied in conjunction with each other according to the output voltage of the control voltage generator 4 is synchronized with the control voltage generator 4. It is desirable to connect between circuit 1. Alternatively, the FETs may be selected so that the resistance values become equal when the same gate voltage is applied, and if such a selection is performed, the distributor 5 shown in FIG. 13 can be omitted. .
  • the frequency control circuit 2 of the present embodiment has such a detailed configuration. Next, the detailed operation will be described with different cases.
  • Fig. 14 is a timing chart when the tuning frequency of the tuning circuit 1 is higher than the frequency of the signal input to the tuning circuit 1, and shows the input / output timing of each component in the frequency control circuit 2.
  • 13A to 13F correspond to reference numerals A to F shown in the circuit diagram of FIG.
  • the phase shift amount 02 of the subsequent phase shift circuit 130 C becomes smaller than 90 °. Therefore, the two signals output from the two control output terminals 196 and 197 of the tuning circuit 1 are the control output ⁇ ⁇ shown in Fig. 14 (A) and the control output 1 shown in Fig. 14 (B), respectively. It has a phase relationship like the control output ⁇ shown in Fig. 1.
  • One voltage comparator 31 in the phase difference detection circuit 3 outputs an H-level signal when the voltage level of the control output ⁇ ⁇ is higher than 0 V. Therefore, the voltage comparator 31 outputs a signal having the same frequency and phase as the control output 1 as shown in FIG. 14 (C), that is, an H level when the voltage level of the control output ⁇ is positive, Conversely, when the voltage level of the control output ⁇ is negative, a rectangular wave signal that becomes L level is output. Similarly, the other voltage comparator 32 in the phase difference detection circuit 3 outputs an H-level signal when the voltage level of the control output is higher than 0 V. Therefore, from the voltage comparator 32, as shown in FIG.
  • EX—OR gate 33 outputs a square wave signal that goes high when the logic of each output of the two voltage comparators 31 and 32 is different, and goes low when the logic of each output is the same. .
  • the tuning frequency is higher than the frequency of the input signal of the tuning circuit 1
  • the phase shift amount 2 of the subsequent phase shift circuit 130 C becomes smaller than 90 °, and therefore, FIG. As shown in the figure, a rectangular wave signal with a duty ratio smaller than 50% is output.
  • the square-wave signal output from the EX-OR gate 33 is input to the non-inverting input terminal of the operational amplifier 44 via a single-pass filter composed of a resistor 40 and a capacitor 41 in the control voltage generating circuit 4. Is done.
  • This low-pass filter is used to remove high-frequency components from the input rectangular wave signal. If the duty ratio of the input rectangular wave signal is smaller than 50%, the low-pass filter shown in FIG. As shown in (F), the output voltage of the low-pass filter is lower than 0 V.
  • the output voltage of this low-pass filter is amplified at a predetermined amplification degree by an amplifier including an operational amplifier 44, and a predetermined bias voltage set by the variable resistor 42 is added. Then, by applying the added voltage to the distributor 5, each control voltage applied to the control input terminals 194 and 195 of the tuning circuit 1 is generated. Therefore, when the duty ratio of the rectangular wave signal output from the EX-OR gate 33 is smaller than 50%, these control voltages also change to lower ones.
  • Fig. 15 is a timing diagram when the tuning frequency of the tuning circuit 1 is lower than the frequency of the signal input to the tuning circuit 1, and shows the input / output timing of each component in the frequency control circuit 2. Have been. Similarly to FIG. 14, FIGS. 15 (A) to 15 (F) correspond to reference numerals A to F shown in the circuit diagram of FIG.
  • the phase shift amount 02 of the subsequent phase shift circuit 130C becomes larger than 90 ° as shown in FIG. Therefore, when observing the two signals output from the two control output terminals 196 and 197 of the tuning circuit 1, the control output ⁇ ⁇ shown in Fig. 15 (A) and the control output 1 shown in Fig. 15 (B) The phase relationship is like the control output 2 shown in Fig.
  • the voltage comparator 31 in the phase difference detection circuit 3 outputs a square wave signal which becomes H level when the voltage level of the control output ⁇ ⁇ is higher than 0 V (FIG. 15 (C)).
  • the voltage comparator 32 outputs a square wave signal which becomes H level when the voltage level of the control output ⁇ ⁇ is higher than 0 V (FIG. 15 (D)).
  • the EX-OR gate 33 outputs a rectangular wave signal which becomes H level when the logic of each output of these two voltage comparators 31 and 32 is different, and which becomes L level when the logic is the same. Therefore, when the tuning frequency is lower than the frequency of the input signal of the tuning circuit 1, the phase shift amount 2 of the subsequent phase shift circuit 130 C is 90. As shown in FIG. 15 (E), the duty ratio of the square wave signal output from the EX-OR gate 33 becomes larger than 50%.
  • the output voltage of the single-pass filter in the control voltage generation circuit 4 becomes higher than 0 V as shown in FIG. 15 (F), and the control voltage generation circuit 4 passes through the distributor 5 accordingly. Therefore, the control voltage applied to the tuning circuit 1 also changes to a higher value.
  • the tuning frequency of the tuning circuit 1 is changed to a higher value. Such control is repeated until there is no difference between the frequency of the input signal of the tuning circuit 1 and the tuning frequency, and after a predetermined time, the tuning frequency matches the frequency of the input signal.
  • control is performed such that the phase difference between the input and output signals of one phase shift circuit 13 ° C. of the tuning circuit 1 is 90 °.
  • the number always changes according to the frequency of the input signal, and both frequencies always match. Therefore, when the tuning mechanism of this embodiment is applied to, for example, a superheterodyne receiver, the tuning frequency can be easily matched to the frequency of a carrier such as an input broadcast wave.
  • the tuning circuit 1 and the frequency control circuit 2 included in the tuning mechanism of the present embodiment are configured by a voltage comparator, a gate, an operational amplifier, a capacitor, a resistor, and the like. Therefore, the entire tuning mechanism or the entire tuning mechanism and its peripheral circuits can be integrated on a semiconductor substrate.
  • the tuning frequency of the tuning circuit 1 changes so as to follow an input signal having a predetermined frequency, so that even if the characteristics of the circuit elements vary, the actual tuning characteristics are not affected, and are always Stable tuning characteristics are obtained.
  • the human control signal is always output. Since the control is performed so as to match the frequency, appropriate feedback is applied even when various element constants change, and the difference between the frequency of the human input signal and the tuning frequency is eliminated.
  • the phase difference detection circuit 3 in the frequency control circuit 2 whose detailed configuration is shown in FIG. 13 is configured using the EX-0 R gate 33, but may be configured using other elements. it can.
  • FIG. 16 is a detailed circuit diagram showing another configuration example of the frequency control circuit, which has a configuration in which the phase difference detection circuit 3 shown in FIG. 13 is replaced with a phase difference detection circuit 3A.
  • the phase difference detection circuit 3A shown in FIG. 16 has a buffer 30, two voltage comparators 31 and 32, and a tri-state circuit whose operation is controlled according to the output of one of the voltage comparators 31. And an external buffer 34.
  • This phase difference detection circuit 3A replaces the EX-OR gate 33 in the phase difference detection circuit 3 shown in FIG. 13 with a tri-state buffer 34, and also uses two voltage comparators 32 It has a configuration in which the connections of the input terminals are interchanged.
  • the tri-state buffer 34 may be replaced with an analog switch.
  • FIG. 17 is a timing chart in the case where the tuning frequency is higher than the frequency of the signal input to the tuning circuit 1 shown in FIG. 16, and the phase difference detection circuit 3 constituting the frequency control circuit is shown in FIG. The input / output timing of each of the configuration of the A and the control voltage generation circuit 4 is shown. 17 (A) to (F) correspond to reference signs A to F shown in the circuit diagram of FIG.
  • FIGS. 17 (A) to (C) The timing shown in FIGS. 17 (A) to (C) is the same as the timing shown in FIGS. 14 (A) to (C), and the timing of the tristate buffer 34 will be mainly described below. A description will be given focusing on the operation.
  • the output signal of one voltage comparator 31 is input to the control terminal of the tri-state buffer 34, and the tri-state buffer 34 is connected to the voltage comparator 32 according to the voltage level of this control terminal. Pass or cut off the output. For example, when the output signal of the voltage comparator 31 is at the H level, the signal output from the other voltage comparator 32 is passed as it is, and when the output of the voltage comparator 31 is at the L level, It goes into an impedance state.
  • the tristate buffer 34 operates as a buffer, that is, when the output of one of the voltage comparators 31 is at the H level
  • the output of the other voltage comparator 32 is longer in the L level period than in the H level period.
  • the output of the tristate buffer 34 is longer in the L level period than in the H level period.
  • the output voltage of the single-pass filter composed of the resistor 40 and the capacity 41 in the control voltage generation circuit 4 becomes lower than 0 V as shown in FIG. 17 (F). Accordingly, the control voltage fed back to the tuning circuit 1 also changes to a lower value.
  • the output of the tri-state buffer 34 is always 0 V in one half of one cycle, the output is detected as compared to the case using the EX-OR gate 33 as shown in Fig. 13.
  • the sensitivity is low, and the response speed of the control is slow.
  • FIG. 18 is a timing chart when the tuning frequency is lower than the frequency of the signal input to the tuning circuit 1 shown in FIG. 16, and the phase difference detection circuit 3 A constituting the frequency control circuit is shown in FIG. Also, the input / output timing of each configuration of the control voltage generation circuit 4 is shown. 18 (A) to 18 (F) correspond to reference signs A to F shown in the circuit diagram of FIG.
  • the output level of the tristate buffer 34 when the output of the voltage comparator 31 is at the H level is different from that described above. That is, when the output of the voltage comparator 31 is at the H level, the output of the tristate buffer 34 is longer in the H level period than in the L level period. When the output of the voltage comparator 31 is at the L level, the output of the tristate buffer 34 is always 0 V.
  • the output of the tristate buffer 34 is longer in the H level period than in the L level period.
  • the output voltage of the low-pass filter composed of the resistor 40 and the capacitor 41 becomes higher than 0 V as shown in Fig. 18 (F), and is fed back to the tuning circuit 1 accordingly.
  • the control voltage also changes to the higher one.
  • the control voltage to be fed back decreases and the tuning frequency is changed to a lower value.
  • the control voltage to be fed back increases and the tuning frequency is changed to a higher value. Therefore, the control is performed so that the tuning frequency always matches the frequency of the input signal.
  • this control voltage includes the same frequency component as the frequency change of the input signal of the tuning circuit 1, that is, the FM signal when the FM signal is considered as the input signal.
  • this frequency component is extracted as an FM detection signal.
  • FIG. 19 is a diagram showing a configuration of a tuning mechanism that also serves as FM detection.
  • the control voltage generation circuit 4 in the frequency control circuit 2 shown in FIG. 1 is replaced with a control voltage generation circuit 4A, and control is performed so that the control voltage generation circuit 4A feeds back to the tuning circuit 1.
  • the FM detection signal is extracted in parallel with the voltage.
  • FIG. 20 is a circuit diagram showing a detailed configuration of the frequency control circuit 2 shown in FIG. 19 c. A detailed configuration of the phase difference detection circuit 3 forming the frequency control circuit 2 is shown in FIG. The configuration of the control voltage generation circuit 4A is slightly different from that of the control voltage generation circuit 4 shown in FIG.
  • the control voltage generating circuit 4 A includes a port formed by a resistor 40 and a capacitor 41, a path-fill circuit, an operational amplifier 44, and an amplifier formed by resistors 45 and 46,
  • the point that the bias voltage of the control voltage applied to the tuning circuit 1 from the control voltage generating circuit 4 A can be arbitrarily changed by operating the variable resistor 42 is the same as the control voltage generating circuit 4 shown in FIG. .
  • the control voltage generation circuit 4A has the same configuration as the control voltage generation circuit shown in FIG. 13 and additionally has a second port-pass filter composed of a resistor 47 and a capacity 48. And a second amplifier composed of an operational amplifier 49 and resistors 50 and 51.
  • the first oral pass filter composed of the resistor 40 and the capacity 41 is provided for removing high-frequency components from the rectangular wave signal output from the phase difference detection circuit 3. From the first mouth-to-pass filter, a signal whose DC voltage level changes gradually according to the duty ratio of the rectangular wave signal described above is output.
  • the second low-pass filter composed of the resistor 47 and the capacity 48 is about 20 kHz or more from the square wave signal output from the phase difference detection circuit 3. Is provided to remove the high frequency components of From the second low-pass fill, an FM modulation signal such as an FM sound is output as an FM detection signal.
  • This FM detection signal is amplified by an amplifier including an operational amplifier 49 and the like, and is taken out of the control voltage generation circuit 4A.
  • FIG. 21 is a diagram showing a configuration of an FM receiver using the tuning mechanism shown in FIG.
  • the FM receiver shown in FIG. 21 is composed of the tuning circuit 1 and the frequency control circuit 2, the high-frequency amplifier circuit 10, the low-frequency amplifier circuit 12, and the spin circuit 1 shown in FIGS. 19 and 20. —Consists of force 14 and antenna 16.
  • the high frequency amplifier circuit 10 amplifies the FM wave received by the antenna 16 at a high frequency and inputs the amplified FM wave to the tuning circuit 1.
  • the tuning circuit 1 controls the tuning frequency to match the frequency of the input FM wave according to the control voltage from the frequency control circuit 2.
  • the low-frequency amplification circuit 12 performs low-frequency amplification on the FM detection signal output from the control voltage generation circuit 4A in the frequency control circuit 2, and outputs sound from the speaker 14. Instead of using the speaker 14, the sound may be converted into a sound by an earphone or the like.
  • the FM receiver shown in Fig. 21 uses the tuning circuit 1 to directly extract the FM wave of the desired frequency without using an LC circuit with a variable condenser and a single antenna at the input from the antenna 16.
  • the design of the input part becomes easy. Therefore, the antenna 16 can be formed of a short rod-shaped or string-shaped conductive material, and FM waves can be received efficiently. Specifically, it is possible to receive a desired FM wave with high sensitivity simply by forming an antenna 16 with a rod antenna used for a car radio or using the lead of an earphone as the antenna 16.
  • the bar antenna which has been indispensable in the past, can be eliminated.
  • the FM receiver since it is not necessary to use a bar antenna, almost all the components of the FM receiver including the tuning circuit 1, the frequency control circuit 2, the high-frequency amplifier circuit 10, etc. can be integrated on a semiconductor substrate. This makes it possible to form constituent circuits on one chip. Thus, by adjusting the time constant of the low-pass filter included in the control voltage generation circuit 4 A, it is possible to easily extract only the FM modulation signal from the FM-modulated signal input to the tuning circuit 1. If the tuning mechanism shown in Fig. 19 is applied to an FM receiver, an FM detection circuit separately provided after the tuning mechanism is not required, and the circuit configuration can be simplified.
  • a limiting circuit was provided between the tuning mechanism and the FM detection circuit to remove the effect of amplitude fluctuations and then perform FM detection, but the tuning mechanism shown in Fig. 20 Since the two voltage comparators in the phase difference detection circuit 3 convert the signal into a rectangular wave signal, there is no influence of the amplitude fluctuation, and the limit circuit that was conventionally required is not required.
  • FIGS. 19 and 20 illustrate the case where the FM detection signal is extracted from the control voltage generation circuit 4A in the frequency control circuit 2, but naturally, as in the case of the conventional receiver, the tuning is performed.
  • a limiter circuit and an FM detection circuit using various detection methods may be connected to the subsequent stage of the circuit 1 so as to obtain an FM detection signal.
  • the tuning circuit 1 of the present embodiment performs a total of 360 ° phase shift by the entire two phase shift circuits 110 C and 130 C during tuning. Therefore, by performing synchronous rectification on the input signal using the output signal of the tuning circuit 1 as a reference signal, only the same frequency component as the tuning frequency is extracted from various frequency components included in the input signal, and this synchronous rectified output is obtained. It can be used as an AM detection signal.
  • FIG. 22 is a diagram showing a configuration of a tuning mechanism using AM detection by synchronous rectification.
  • the tuning mechanism shown in the figure includes a synchronous rectifier circuit 6 and a low-pass filter (LPF) 6 connected to the subsequent stage in addition to the tuning circuit 1 and the frequency control circuit 2 shown in FIG. I have.
  • LPF low-pass filter
  • an operation of switching an input signal in synchronization with a certain reference signal can be said to be equivalent to mixing the reference signal and the input signal.
  • the frequency of the reference signal be: fr.
  • Performing synchronous rectification on an input signal using such a reference signal is equivalent to multiplying each signal that can be expressed by a trigonometric function.
  • the frequencies fl and f2 of the input signal and the frequency of the reference signal are obtained.
  • f 1 + fr the frequency components of f 1 one fr appears by multiplying the first signal in the input signal and the reference signal, the input signal
  • fl + Af + fr and f1 + ⁇ -fr frequency components appear.
  • each frequency component of 2 f 1 and 0 appears by multiplying the first signal by the reference signal, and 2 f + by multiplying the second signal by the reference signal.
  • the component of the frequency “0_ is a DC component, and since this DC component actually contains a modulation signal, this DC component and the other AC components (2 f + Af, 2 fl, ⁇ f ) To extract only the DC component, detection using synchronous rectification and tuning separation can be performed simultaneously.
  • FIG. 23 is a diagram showing a detailed configuration of the synchronous rectifier circuit 6 shown in FIG.
  • the synchronous rectifier circuit 6 shown in the figure includes a voltage comparator 60 and an analog switch (AS) 61.
  • the voltage comparator 60 In the voltage comparator 60, the inverting input terminal is grounded, and the output signal of the tuning circuit 1 is input to the non-inverting input terminal. Therefore, the voltage comparator 60 has a predetermined positive voltage when the output signal of the tuning circuit 1 is at a voltage level higher than 0 V, and has a predetermined negative voltage when the output signal is at a voltage level lower than 0 V. Outputs a rectangular wave signal with voltage.
  • the analog switch 61 switches the switching state according to the voltage level of the rectangular wave signal output from the voltage comparator 60. That is, output from the voltage comparator 60
  • the input rectangular wave signal has a predetermined positive voltage
  • the input signal of the tuning circuit 1 is passed, and when the input rectangular wave signal has a predetermined negative voltage, the input signal of the tuning circuit 1 is cut off.
  • the output of the analog switch 61 is input to the mouth-pass filter 7, and only the frequency component equal to the tuning frequency is extracted by the low-pass filter 7, and an AM detection signal is obtained.c
  • the tuning circuit 1 used in this embodiment is As described with reference to the detailed configuration shown in FIG. 2, the signal amplitude is theoretically not attenuated, and an output signal having a constant amplitude can always be obtained even when the tuning frequency changes.
  • the output amplitude slightly changes due to the change in the tuning frequency, and the type and variable FET of the variable resistors 1 16 and 1 36 Depending on the width, the output signal may be distorted.
  • the influence on the AM detection signal due to amplitude fluctuation and distortion caused by passing through the tuning circuit 1 is eliminated.
  • An AM detection signal having a good SN ratio can be extracted.
  • the tuning mechanism shown in Fig. 22 is particularly effective when integrated.
  • FIG. 24 is a diagram showing a configuration of an AM receiver using the tuning mechanism shown in FIG.
  • the AM receiver shown in Fig. 24 consists of a tuning circuit 1, a frequency control circuit 2, a synchronous rectifier circuit 6 and a low-pass filter 7, and a high-frequency amplifier circuit 10 and a single-pass filter 7 shown in Fig. 22. , Including low frequency amplifier circuit 12, speaker 14 and antenna 16 It is composed of
  • the AM wave received by the antenna 16 is high-frequency amplified by the high-frequency amplifier circuit 10 and then input to the tuning circuit 1.
  • the tuning frequency of the tuning circuit 1 is controlled by the frequency control circuit 2.
  • synchronous rectification is performed using the signal output from the tuning circuit 1, and the AM detection signal is output from the low-pass filter 7.
  • This AM detection signal is output from the speaker 14 after being amplified by the low frequency amplifier circuit 12.
  • each of the phase shift circuits 110C and 130C was configured to include a CR circuit, but the CR circuit was replaced with an LR circuit consisting of a resistor and an inductor.
  • a tuning circuit can also be configured using a phase circuit.
  • FIG. 25 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, showing a configuration that can be replaced with the phase shift circuit 110C preceding the tuning circuit 1 shown in FIG. I have.
  • the phase shift circuit 110L shown in the figure is a CR circuit consisting of the capacitor 114 and the variable resistor 116 in the phase shift circuit 110C shown in FIG. 3, and is composed of a variable resistor 116 and an inductor 117. It has a configuration replaced with an LR circuit.
  • the relationship between the input / output voltage and the like of the phase shift circuit 110 L shown in FIG. 25 is obtained by changing the voltage VC1 shown in FIG.
  • the voltage VR1 shown in FIG. 4 can be replaced by the voltage VR1 shown in FIG.
  • FIG. 27 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and shows a configuration that can be replaced with the phase shift circuit 130C at the subsequent stage of the tuning circuit 1 shown in FIG. .
  • the phase shifter 130L shown in the figure replaces the CR circuit consisting of the variable resistor 136 and the capacitor 134 in the phase shifter 130C shown in Fig. 5 with an LR circuit consisting of an inductor 137 and a variable resistor 136. Configuration.
  • the voltage VC2 shown in Fig. 6 is applied to the voltage VR2 across the variable resistor 136, and the voltage VR2 shown in Fig. 6 is applied to the voltage VL2 across the inductor 137. You can think of it as a replacement.
  • each of the phase shift circuit 110 L shown in FIG. 25 and the phase shift circuit 130 L shown in FIG. 27 is different from the phase shift circuit 110 C, 130 L shown in FIG. 3 or FIG.
  • the phase shift circuit 110 C of the preceding stage is replaced with the phase shift circuit 110 L shown in FIG.
  • the tuning frequency of the tuning circuit including the phase shift circuits 1 10L and 130L is, for example, proportional to the reciprocal R / L of the time constant of the LR circuit in each phase shift circuit 110L and 130L. Since the inductance L can be easily reduced by integration, etc., the tuning frequency can be increased by integrating the entire tuning circuit including the two phase shifters 110 L and 130 L. It will be easier.
  • phase shift circuits 110 C and 130 C shown in FIG. 2 are replaced with the phase shift circuit 110 L shown in FIG. 25 and the phase shift circuit 130 L shown in FIG. 27, respectively.
  • the gate voltage of the FETs forming resistors 1 16 and 136 is changed, the direction of change of each phase shift amount is opposite, so the EX-OR gate in phase difference detection circuit 3 shown in Fig. 13 It is necessary to reverse the direction of the control voltage change by replacing 33 with an EX-NOR (exclusive. NOR) gate or exchanging one of the two inputs of either of the voltage comparators 31 and 32 shown in Fig. 13. There is.
  • EX-NOR exclusive. NOR
  • phase shift circuits 110 C and 130 C in the tuning circuit 1 shown in FIG. 2 are replaced with phase shift circuits 110 L and 130 L, the operation in each phase shift circuit is performed. Either of the voltage dividing circuits connected to the output terminal of the amplifier 112 or 132 may be omitted. Alternatively, omitting both voltage dividers and adjusting the resistance ratio of resistors 118 and 120 and the resistance ratio of resistors 138 and 140 Thus, the loss generated in the feedback loop of the tuning circuit 1 may be compensated.
  • the voltage dividing circuit 160 in the subsequent stage of the subsequent phase shift circuit may be omitted, and the output of the subsequent phase shift circuit may be directly fed back to the previous stage.
  • the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
  • FIG. 29 is a circuit diagram showing a second modification of the tuning circuit.
  • the tuning circuit 1A shown in the figure has two shifts in which a phase shift of a total of 360 ° is performed at a predetermined frequency by shifting a phase of an input AC signal by a predetermined amount.
  • Phase circuit 210 C, 230 C, feedback resistor 170 and input resistor 174 (input resistor 174 has n times the resistance of feedback resistor 170)
  • the output (feedback signal) of the subsequent phase shift circuit 230 C and the signal (input signal) input to the input terminal 190 are added at a predetermined ratio by passing through each of these.
  • an adder circuit for performing the operation is performed.
  • the resistance of the input AC signal is set by setting the resistances of the resistors 118 and 120 in the preceding phase shift circuit 110C to the same value.
  • the gain of the phase shift circuit 110 It is set to a large value.
  • the gain of the phase shift circuit 210C is set to a value greater than 1 by setting the resistance of the resistor 120 'to a large value.
  • the gain of the phase shift circuit 230 C is increased. It is set to a value greater than 1.
  • the output terminal of the phase shift circuit 230 C is connected to the feedback resistor 170, the output terminal 192, and the resistor 178.
  • the output of the subsequent phase shift circuit 230C is directly fed back, but the voltage divider circuit is provided further downstream of the subsequent phase shift circuit 230C. And the divided output may be fed back via the feedback resistor 170.
  • the phase shift circuit 210C becomes an inverting amplifier, so the gain at this time is -m times (m is the resistance ratio between the resistors 120 'and 118'), and the input is
  • the gain of the phase shift circuit 210C also changes, and the amplitude of the output signal fluctuates.
  • Such amplitude fluctuations can be suppressed by connecting a resistor 119 to the inverting input terminal of the operational amplifier 112 and matching the gains when the frequency of the input signal is low and high.
  • the resistance value of the resistance 1 18 ′ is r and the resistance value of the resistance 1 20 ′ is mr
  • the resistance value of the resistance 1 19 is set to mr / (m ⁇ 1). Accordingly, the gains of the phase shift circuit 210C when the frequency of the input signal is 0 and infinity can be matched.
  • the phase shift circuit 230C by connecting the resistor 139 having a predetermined resistance value to the inverting input terminal of the operational amplifier 132, the amplitude fluctuation of the output signal can be suppressed.
  • one end of the resistors 119 and 139 may be connected to a fixed potential other than the ground level.
  • FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit, and shows a configuration that can be replaced with the phase shift circuit 210C preceding the tuning circuit 1A shown in FIG. It has been.
  • the phase shift circuit 210L shown in the figure is a CR circuit consisting of the capacitor 114 and the variable resistor 116 in the preceding phase shift circuit 210C shown in FIG. It has a configuration in which it is replaced with an LR circuit consisting of 1 16 and inductor 1 17.
  • FIG. 31 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, which can be replaced with the phase shift circuit 230 C at the subsequent stage of the tuning circuit 1 A shown in FIG.
  • the configuration is shown.
  • the phase shift circuit 230 L shown in FIG. It has a configuration in which the CR circuit consisting of the variable resistor 1336 and the capacitor 1334 in the path 230C is replaced by an LR circuit consisting of an inductor 1337 and a variable resistor 1336.
  • the phase shift circuit 210L shown in FIG. 30 is equivalent to the phase shift circuit 210C of the preceding stage shown in FIG. 29, and is provided in the stage preceding the tuning circuit 1A shown in FIG.
  • phase shift circuit 210C With the phase shift circuit 210L shown in FIG.
  • phase shift circuit 230 L shown in FIG. 31 is equivalent to the phase shift circuit 230 C of the subsequent stage shown in FIG. 29, and the tuning circuit 1 A shown in FIG. It is possible to replace the subsequent phase shift circuit 230C with the phase shift circuit 230L shown in FIG.
  • phase shift circuits 2 10 C and 230 C are replaced with phase shift circuits 210 L and 230 L, the entire tuning circuit is integrated to increase the tuning frequency. It becomes easy to frequency.
  • phase shift circuits 210 C and 230 C shown in FIG. 29 are respectively connected to the phase shift circuit 210 L shown in FIG. 30 and the phase shift circuit 230 L shown in FIG. 31.
  • the EX-OR gate 33 in the phase difference detection circuit 3 is replaced with an EX-NOR (exclusive NOR) gate, or one of the two voltage comparators 31 1 and 3 2 shown in Fig. 13 is used. It is necessary to reverse the direction of the change in the control voltage by, for example, changing the input.
  • the tuning circuit 1A shown in Fig. 29 can adjust the tuning frequency by connecting two phase shift circuits, 210C and 230C, and a resistor 11 9 or 13 9 to it.
  • the tuning circuit can be configured by removing the above-mentioned resistors 119 and 139.
  • a tuning circuit can be formed by removing only one of the resistors 11 9 or 13 9.
  • the loss of the loop gain of the feedback loop composed of the entire area passing circuit including the two phase shift circuits 110C and the feedback resistor 170 is caused by the phase shift circuit 1 1 Because it is caused by the input impedance such as 0 C, the phase shift circuit in the preceding stage such as 110 C Further, a follower circuit by a transistor may be inserted in the previous stage, and the signal to be fed back may be input to the preceding phase shift circuit (for example, 110 C or 110 L) through the follower circuit. .
  • FIG. 32 is a circuit diagram showing an example of a tuning circuit including a follower circuit therein.
  • the tuning circuit 1B shown in the figure differs from the tuning circuit 1 shown in FIG. 2 in that a follower circuit 150 using a transistor is inserted in the preceding stage of the phase shifting circuit 110C in the preceding stage.
  • the follower circuit 150 shown in FIG. 32 is constituted by a so-called source follower circuit, but may be constituted by an emitter follower circuit.
  • FIG. 32 by setting the voltage dividing ratio of the voltage dividing circuit 160 to 1, or omitting the voltage dividing circuit 160 itself, the amplification operation is not performed by the entire tuning circuit, and the voltage is simply increased. Only the tuning operation may be performed.
  • a hologram circuit 150 composed of transistors is connected in cascade to the preceding stage of the preceding phase shift circuit 11 ⁇ C, etc., compared with the tuning circuit 1 etc. in FIG.
  • the resistance value of the input resistance 174 can be increased.
  • the entire tuning circuit is integrated on a semiconductor substrate, if the resistance value of the feedback resistor 170 is reduced, the area occupied by the element must be increased. It is desirable that the value is large. Therefore, it is effective to connect a follower circuit 50 as shown in FIG.
  • the combined phase shift amount of the two phase shift circuits 110 C and 130 C is 360 °, but the phase shift circuit 1 1 A tuning circuit may be constructed by connecting a non-inverting circuit that does not shift the phase to 0 C and 130 C.
  • FIG. 33 is a circuit diagram showing a configuration of a tuning circuit 1C in which a non-inverting circuit 350 is connected in front of two phase shift circuits.
  • the tuning circuit 1C is composed of a phase shift circuit 310C having a configuration in which the resistors 121 and 123 are omitted from the phase shift circuit 110C shown in FIG.
  • the phase shift circuit 330C having a configuration in which the resistors 141 and 144 are omitted from the phase shift circuit 130C shown in FIG. 5 and a phase shift circuit 310C connected in front of the phase shift circuit 310C.
  • the phase shift circuit 3 10 C shown in Fig. 33, 3 0 C is the operational amplifier 1 1 2 or 1
  • the non-inverting circuit 350 has an operational amplifier 3502 in which an AC signal is input to the non-inverting input terminal and the inverting input terminal is grounded via a resistor 350, and an inverting input terminal of the operational amplifier 3502 and an output. It is composed of a resistor 356 connected to the terminal.
  • the operational amplifier 352 has a predetermined amplification determined by the resistance ratio of the two resistors 354, 356.
  • the gain of the phase shift circuit 310C is 1 because the resistances of the resistors 118 and 120 are the same.
  • the gain of the phase shift circuit 33 0 C is 1 because the resistances of the resistors 1 38 and 140 are the same. Therefore, in the above-mentioned tuning circuit 1C, the gain of the above-mentioned non-inverting circuit 350 is set to a value larger than 1 instead of gaining each phase shift circuit.
  • the non-inverting circuit 350 having such a configuration outputs the input signal without changing the phase, and by adjusting the gain, the signal amplitude is attenuated by the voltage dividing circuit 16 ° and is generated in the feedback loop. It is easy to make up for the loss.
  • the non-inverting circuit 350 also functions as a buffer connected to the preceding stage of the preceding phase shifting circuit 310C, similarly to the above-described transistor-based hollow circuit.
  • the non-inverting circuit 350 shown in FIG. 33 may be connected to the preceding stage of the tuning circuits 1 and 1 A shown in FIGS. 2 and 29, and the like.
  • FIG. 34 is a circuit diagram showing a sixth modification of the tuning circuit.
  • a phase shift circuit 310 C is connected in place of the phase shift circuit 330 C in the latter stage of FIG.
  • a phase inversion circuit 380 is connected in place of the inversion circuit 350.
  • the phase inverting circuit 380 includes an operational amplifier 382 in which an input AC signal is input to an inverting input terminal via a resistor 384 and a non-inverting input terminal is grounded. It is composed of a resistor 386 connected between the inverting input terminal and the output terminal.
  • a signal having an inverted phase is output from the output terminal of the operational amplifier 382.
  • the signal is input to the preceding phase shift circuit 310C.
  • the phase inversion circuit 380 has a predetermined amplification determined by the resistance ratio of the two resistors 384 and 386, and the resistance 380 is determined by the resistance value of the resistor 384. A gain greater than 1 can be obtained by increasing the resistance value of.
  • the phase shift circuit 310 C shifts clockwise from 180 ⁇ to 360 ° with reference to the input voltage E i.
  • the phase shift amount in each case is 270 °.
  • the gain of the phase inverting circuit 380 is set to a value larger than 1 instead of gaining each phase shift circuit. It is easy to compensate for the signal amplitude attenuation due to 60 and the loss generated in the feedback loop (
  • the tuning circuit 1 D shown in FIG. 34 shows an example in which the phase shift circuits 3 10 C are cascaded, but the phase shift circuit 3 D shown in FIG. 33 is cascaded. In this case, the tuning operation can be performed.
  • FIG. 35 is a circuit diagram showing a seventh modification of the tuning circuit. Tuning shown in the figure The path 1E is a cascade connection of the phase shift circuit 330C in place of the phase shift circuit 310C in FIG.
  • the phase shift circuit 330 C shifts from 0 ° to 180 ° clockwise with respect to the input voltage E i.
  • phase inverting circuit 380 connected in front of the two phase shift circuits 330 C, and the phase shifts as a whole to reduce the phase shift amount by 36
  • the signal at 0 ° is output from the subsequent phase shift circuit 330C.
  • the gain of the phase inversion circuit 3 The value is set to a value, which makes it easy to compensate for the attenuation of the signal amplitude due to the voltage dividing circuit 160 and the loss generated in the feedback loop.
  • the tuning circuits 1C, 1D, and IE shown in FIGS. 33 to 35 each have two phase shift circuits that include a CR circuit, but are configured to include an LR circuit. May be used.
  • the preceding phase shift circuit 310 C is replaced with the phase shift circuit 110 L shown in FIG.
  • the subsequent phase shift circuit 330C may be replaced with a phase shift circuit in which the voltage dividing circuit is omitted from the phase shift circuit 130L shown in FIG.
  • a voltage dividing circuit 160 May be omitted. Further, a voltage dividing circuit may be connected to at least one output terminal of the operational amplifier in the two phase shift circuits. For example, in the tuning circuit 1 C shown in FIG.
  • the configuration is the same as the configuration in which the non-inverting circuit 350 is connected further to the preceding stage of the phase shifting circuit 110 C of the preceding stage in the tuning circuit 1 shown in FIG. Become.
  • the tuning circuits 1C, 1D, IE, etc. shown in FIGS. 33 to 35 are composed of two phase shift circuits and a non-inverting circuit, or two phase shifting circuits and a phase inverting circuit.
  • a predetermined tuning operation is performed by setting the total phase shift to 360 ° at a predetermined frequency by a total of the three connected circuits. Therefore, focusing only on the amount of phase shift, there is a certain degree of freedom in the order in which the three circuits are connected, and the connection order can be determined as necessary.
  • All of the first to seventh modifications of the tuning circuit described above include an op-amp inside the phase shift circuit, but it is also possible to configure the phase shift circuit using transistors instead of the operational amplifier. is there.
  • the tuning circuit 1F shown in FIG. 36 has a phase shift of a total of 360 ° at a predetermined frequency by shifting the phase of the input AC signal by a predetermined amount.
  • a voltage divider circuit 16 composed of resistors 16 2 and 16 4 provided at the subsequent stage of 45 0, a feedback resistor 17 0 and an input resistor 17 4 (input resistor 1 ⁇ 4 is a feedback resistor 17 It is assumed that it has a resistance value that is n times as large as 0), through which the divided voltage output of the voltage divider circuit 160 (feedback signal) and the signal input to the input terminal 190 (input And an adder circuit for adding the signals at a predetermined ratio.
  • Both the capacitor 170 connected in series with the feedback resistor 170 and the capacitor 170 inserted between the input resistor 170 and the input terminal 190 are used to block DC current.
  • the impedance is extremely small at the operating frequency, that is, has a large capacitance.
  • FIG. 37 shows an extracted configuration of the phase shift circuit 410C in the preceding stage shown in FIG.
  • the phase shift circuit 410C at the front stage shown in the figure is composed of a FET 412 whose gate is connected to the input terminal 122, and a capacitor connected in series between the source and drain of this FET 412. E 4 1 4 and the variable resistor 4 16, the resistor 4 18 connected between the drain of the FET 4 12 and the positive power supply, and the source of the FET 4 1 2 and ground. And a resistor 420 connected therebetween. Note that at least one of the FET 412 and the FET 432 described later may be replaced with a bipolar transistor.
  • the resistance values of the two resistors 418 and 420 connected to the source and the drain of the FET 412 are set to be substantially equal, and when focusing on the AC component of the input voltage applied to the input terminal 122, the phase is The matched signal is output from the source of the FET 412, and the signal whose phase is inverted (the phase is shifted by 180 °) is output from the drain of the FET 412.
  • the resistor 426 in the phase shift circuit 410 shown in FIG. 36 is for applying an appropriate bias voltage to the FET 412.
  • the variable resistor 416 uses a channel formed between the source and drain of a junction type FET as a resistor, as shown in FIG. 37, for example, and varies the gate voltage to change the resistance value. Can be arbitrarily changed within a certain range.
  • phase shift circuit 410C having such a configuration, when a predetermined AC signal is input to the input terminal 122, that is, when a predetermined AC voltage (input voltage) is applied to the gate of the FET 412, the source of the FET 412 In this case, an AC voltage having the same phase as the input voltage appears, and an AC voltage having a phase opposite to that of the input voltage and having the same amplitude as the voltage appearing at the source appears at the drain of the FET 412.
  • the amplitude of the AC voltage appearing at the source and drain is Ei.
  • FIG. 38 is a vector diagram showing the relationship between the input / output voltage of the preceding phase shift circuit 410C and the voltage appearing in the capacity and the like.
  • the potential difference between the source and the drain (AC component) is 2Ei.
  • the voltage VC1 appearing across the capacitor 414 and the voltage VR1 appearing across the variable resistor 416 are 90 ° out of phase with each other. The vectorwise combination of these is equal to the source-drain voltage 2 Ei of the FET 412.
  • the double side of the voltage Ei is defined as the hypotenuse
  • the voltage VC1 across the capacitance 414 and the voltage VR1 across the variable resistor 416 form a right-angled triangle forming two sides orthogonal to each other. Become. For this reason, when the amplitude of the input signal is constant and only the frequency changes, the voltage VC1 across the capacitor 414 and the voltage VR1 across the variable resistor 416 are determined along the circumference of the semicircle shown in FIG. Changes.
  • this output voltage Eo starts from the center point in the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where voltage VC1 and voltage VR1 intersect, and its magnitude is equal to the radius Ei of the semicircle. Moreover, even if the frequency of the input signal changes, the end point of this vector merely moves on the circumference, so that a stable output whose output amplitude does not change according to the frequency can be obtained.
  • the phase difference between the input voltage applied to the gate of the FET 412 and the voltage VR1 is theoretically As the frequency ⁇ changes from 0 to ⁇ , 270 clockwise with respect to the voltage Ei in phase with the input voltage. To 360 °. Then, the phase shift amount 05 of the entire phase shift circuit 410C changes from 180 ° to 360 ° according to the frequency. Moreover, by varying the resistance value of the variable resistor 416, the phase shift amount 05 can be changed.
  • FIG. 39 shows only the configuration of the subsequent phase shift circuit 430C shown in FIG. 36.
  • the subsequent phase shift circuit 430 C shown in the figure is a FET 432 whose gate is connected to the input terminal 142 and the source and drain of this FET 432.
  • the resistor 446 in the phase shift circuit 430 C shown in FIG. 36 is for applying an appropriate bias voltage to the FET 432.
  • the capacitor 148 provided on the input side of the phase shift circuit 430 C is for blocking DC current that removes the DC component from the output of the phase shift circuit 410 C, and only the AC component is input to the phase shift circuit 430 C. Is done.
  • the phase shift circuit 430 C having such a configuration, when a predetermined AC signal is input to the input terminal 142, that is, when a predetermined AC voltage (input voltage) is applied to the gate of the FET 432, At the source, an AC voltage having the same phase as this input voltage appears.
  • an AC voltage having a phase opposite to that of the input voltage and equal in amplitude to the voltage appearing at the source appears.
  • the amplitude of the AC voltage appearing at the source and drain is Ei.
  • FIG. 40 is a vector diagram showing a relationship between the input / output voltage of the subsequent phase shift circuit 430C and the voltage appearing in the capacity and the like.
  • the source and the drain of the FET 432 show an AC voltage having the same and opposite phases as the input voltage and the voltage amplitude of Ei, the potential difference between the source and the drain is 2 Ei. Also, the voltage VR2 appearing at both ends of the variable resistor 436 and the voltage VC2 appearing at both ends of the capacitor are 90 ° out of phase with each other, and the vectorwise addition of these results in a difference between the source and drain of the FET432. Is equal to 2 Ei. Therefore, as shown in Fig. 40, twice the voltage Ei is the hypotenuse, and the variable resistance 4
  • the voltage VR2 between both ends 36 and the voltage VC2 between both ends of the capacitor 434 form a right-angled triangle forming two orthogonal sides. For this reason, when the amplitude of the input signal is constant and only the frequency changes, the voltage VR2 across the variable resistor 436 and the voltage between the capacitor 1 34 along the circumference of the semicircle shown in FIG. The voltage between both ends VC2 changes.
  • this output voltage Eo is the center point of the semicircle shown in Fig. 40.
  • the end point of this vector only moves on the circumference, so that a stable output whose output amplitude does not change according to the frequency can be obtained.
  • the input voltage applied to the gate of the FET 432 and the voltage VC2 changes from 0 ° to 90 ° as the frequency ⁇ changes from 0 to ⁇ .
  • the phase shift amount 06 of the entire phase shift circuit 430C changes from 0 ° to 180 ° according to the frequency.
  • the shift amount ⁇ 6 is also the same as 02 shown in the above equation (7).
  • the phase is shifted by a predetermined amount in each of the two phase shift circuits 410C and 4300C, and is shifted to a predetermined frequency as shown in FIGS. 38 and 40.
  • a signal having a total phase shift amount of 360 ° is output by the entire two phase shift circuits 410C and 430C.
  • the non-inverting circuit 450 shown in FIG. 36 has a resistor between the drain and the positive power supply.
  • 4 5 4 is a FET 4 52 with a resistor 4 56 connected between the source and ground, and a base is connected to the drain of the FET 4 52 and the collector is a resistor. It is configured to include a transistor 458 connected to the source of the FET 452 via an anti-460 and a resistor 462 for applying an appropriate bias voltage to the FET 452. .
  • the capacitor 164 provided before the non-inverting circuit 450 shown in FIG. 36 is for blocking DC current that removes the DC component from the output of the subsequent phase shift circuit 430C. Yes, only the AC component is input to the non-inverting circuit 450.
  • F ET 452 When an AC signal is input to the gate, F ET 452 outputs a signal of the opposite phase from the drain. Also, when the opposite phase signal is input to the base of the transistor 458, the transistor 458 is further inverted in phase, that is, the in-phase signal is considered based on the phase of the signal input to the gate of the FET 452. Is output from the collector, and this in-phase signal is output from the non-inverting circuit 450.
  • the output of the non-inverting circuit 450 is taken out from the output terminal 192 as the output of the tuning circuit 1F, and the output of the non-inverting circuit 450 is passed through the voltage dividing circuit 160 to generate a signal.
  • the signal is fed back to the input side of the phase shift circuit 410 C in the preceding stage via the feedback resistor 170. Then, the feedback signal and the signal input via the input resistor 174 are added, and the voltage of the added signal is input to the input terminal of the preceding phase shift circuit 410C (FIG. 37). Is applied to the input terminals 1 2 2
  • the gain of the above-described non-inverting circuit 450 is determined by the resistance values of the above-described resistors 45 4, 45 6, and 46 0. Compensates for the attenuation caused by the two phase shift circuits 4 10 C, 4 3 0 C or the voltage divider circuit 160 shown in the figure, and the loss generated in the feedback loop, and reduces the gain of the entire tuning circuit to 1 or less. It is set as follows.
  • the gain is applied to the tuning circuit 1F itself.
  • the signal amplitude can be amplified simultaneously with the tuning operation.
  • the tuning circuit shown in Fig. 36 includes a CR circuit inside each of the phase shift circuits 410C and 330C, but the CR circuit has been replaced with an LR circuit consisting of a resistor and an inductor. It is also possible to configure a tuning circuit using a phase shift circuit.
  • FIG. 41 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit.
  • a configuration that can be replaced with the phase shift circuit 410C preceding the tuning circuit 1F shown is shown.
  • the phase shift circuit 410 L shown in the figure is a CR circuit comprising the capacity 414 and the variable resistor 416 in the preceding phase shift circuit 410 C shown in FIG. 36, and an LR comprising the variable resistor 416 and the inductor 417.
  • the circuit is replaced with a circuit, and the resistances of the resistor 418 and the resistor 420 are set to the same value.
  • the capacitor 419 inserted between the inductor 417 and the drain of the FET 412 is for blocking DC current.
  • the relationship between the input / output voltage and the like of the phase shift circuit 410 L described above is obtained by replacing the voltage VC1 shown in FIG. 38 with the voltage VR1 across the variable resistor 416,
  • the voltage VR1 shown in (1) can be replaced with the voltage VL1 across the inductor 417.
  • phase shift circuit 410 L shown in FIG. 41 is basically equivalent to the phase shift circuit 410 C shown in FIG. 37, and the phase shift circuit 410 C shown in FIG. It can be replaced by the phase shift circuit 410 L shown.
  • FIG. 43 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and shows a configuration that can be replaced with the phase shift circuit 430C after the tuning circuit 1F shown in FIG. 36. I have.
  • the resistance values of 438 and 440 are set to the same value.
  • a capacitor 439 inserted between the variable resistor 436 and the drain of the FET 432 is for blocking DC current.
  • the relationship between the input / output voltage and the like of the phase shift circuit 430 L described above is obtained by converting the voltage VR2 shown in FIG.
  • the voltage VC2 shown in FIG. 40 can be replaced with the voltage VR2 across the variable resistor 436.
  • T 2 L / R
  • L, (3) to K3 as it can be applied as shown formula (However, a 2 ° 1) the phase shift amount 08 shown in FIG. 44 also described above (7) It is the same as 02 shown in the formula.
  • phase shift circuit 430 L shown in FIG. 43 is basically equivalent to the phase shift circuit 430 C shown in FIG. 39, and the phase shift circuit 430 C shown in FIG. 39 is shown in FIG. 43.
  • Phase shift circuit 430 L Phase shift circuit 430 L.
  • phase shift circuits 410 C and 430 C shown in FIG. 36 With the phase shift circuits 410 L and 430 L shown in FIGS. 41 and 43. By integrating the entire tuning circuit, it is easy to increase the tuning frequency. Note that if the phase shift circuits 4 10 C and 430 C shown in FIG. 36 are replaced with the phase shift circuit 410 L shown in FIG. 41 and the phase shift circuit 430 L shown in FIG. 43, respectively, Since the direction of change of each phase shift amount when the gate voltage of the FET forming the variable resistors 4 16 and 436 is changed is opposite, the EX in the phase difference detection circuit 3 shown in Fig.
  • phase shift circuits 4 10 C and 430 C shown in FIG. 36 are replaced with phase shift circuits 410 L and 430 L, respectively, the voltage divider circuit 160 is omitted and the phase shift circuit in the subsequent stage is omitted. May be directly fed back to the preceding stage.
  • the resistor 162 in the voltage dividing circuit 160 may be removed and only the resistor 164 may be used. If the voltage dividing circuit 160 is omitted, or if the resistor 162 is removed, only the tuning operation can be performed.
  • FIG. 45 is a circuit diagram showing another modification of the tuning circuit.
  • the tuning circuit 1G shown in the figure is composed of two phase shift circuits 4 10 that perform a total of 180 ° phase shift at a predetermined frequency by shifting the phase of the input AC signal by a predetermined amount.
  • C the subsequent phase shift circuit 4 10 0
  • the phase inversion circuit 480 that further inverts the phase of the output signal of C, and the output from the phase inversion circuit 480 by passing through the feedback resistor 170 and the input resistor 1 ⁇ 4 And a signal (input signal) input to the input terminal 190 at a predetermined ratio.
  • each phase shift circuit 410C and the phase relationship between input and output are as described with reference to FIGS. 37 and 38.
  • the phase inverting circuit 480 has a predetermined resistance connected to the gate of the FET 482 and the FET 482 each having a resistor 484 connected between the drain and the positive power supply and a resistor 486 between the source and the ground. And a resistor 488 for applying a bias voltage.
  • a signal having a reversed phase is output from the drain of the FET 482.
  • the phase inversion circuit 480 has a predetermined gain determined by the resistance ratio of the two resistors 484 and 486. As described above, at a predetermined frequency, the phase is shifted by 180 ° by the two phase shift circuits 410C, and the phase is inverted by the phase inverting circuit 480 connected at the subsequent stage.
  • the total amount of phase shift is 360 °. Therefore, the output of the phase inversion circuit 480 is fed back to the input side of the previous phase shift circuit 4 10 C via the feedback resistor 170, and the signal input via the input resistor 1 ⁇ 4 is added to this feedback signal. At the same time, by adjusting the gain of the phase inversion circuit 480, the same tuning operation as that of the tuning circuit 1 shown in FIG. 2 is performed.
  • the output of the phase inversion circuit 480 was directly fed back via the feedback resistor 1 ⁇ 0, but like the tuning circuit 1F shown in FIG. 36, A voltage dividing circuit 160 may be connected to the subsequent stage of the phase inverting circuit 480 to return the divided voltage output.
  • FIG. 46 is a circuit diagram showing another modified example of the tuning circuit, which is configured to include the latter-stage phase shift circuit 4300 shown in FIG. 36 as opposed to FIG. 45. .
  • the tuning circuit 1H shown in FIG. 46 has a total of 180 at a predetermined frequency by shifting the phase of the AC signal to which it is input by a predetermined amount.
  • Two phase shift circuits 4300C that perform the phase shift of the following, a phase inversion circuit 480 that further inverts the phase of the output signal of the subsequent phase shift circuit 430C, and a feedback resistor 170 And a signal (feedback signal) output from the phase inversion circuit 480 and a signal (input signal) input to the input terminal 190 at a predetermined ratio by passing through each of the input resistors 174.
  • an adding circuit for adding is a signal for adding.
  • each phase shift circuit 430C and the phase relationship between input and output are as described with reference to FIGS. 39 and 40.
  • the phase is shifted by 180 ° by the two phase shift circuits 430 C, and the phase is inverted by the phase inverting circuit 480 connected at the subsequent stage.
  • the total phase shift amount is 360 °.
  • the output of the phase inversion circuit 480 is fed back to the input side of the preceding phase shift circuit 430 C via the feedback resistor 170, and the feedback signal is input via the input resistor 174.
  • a voltage dividing circuit 160 is connected downstream of the phase inverting circuit 480. Amplification may be performed simultaneously with tuning.
  • the various tuning circuits 1F, 1G, 1H, etc. described above are composed of two phase shift circuits and a non-inverting circuit or two phase shift circuits and a phase inverting circuit, and the three connected
  • a predetermined tuning operation is performed by setting the total phase shift amount to 360 ° at a predetermined frequency by the entire circuit. Therefore, focusing only on the amount of phase shift, the order in which the three circuits are connected is uncertain. There is a certain degree of freedom, and the connection order can be determined as necessary.
  • a CR circuit is included inside the phase shift circuit.
  • a phase shift circuit including an LR circuit is connected in cascade.
  • a tuning circuit instead of the two phase shift circuits 410C of the tuning circuit 1G shown in FIG. 45, a phase shift circuit 410L shown in FIG. 41 may be connected.
  • a phase shift circuit 430L shown in FIG. 43 may be connected in place of the two phase shift circuits 430C of the tuning circuit 1H shown in FIG.
  • phase shift circuit including the CR circuit when the phase shift circuit including the CR circuit is replaced with a phase shift circuit including the LR circuit, the amount of each phase shift when the gate voltage of the FET forming the variable resistors 416 and 436 is changed Since the direction of change is opposite, the EX-OR gate 33 in the phase difference detection circuit 3 shown in FIG. 13 is replaced with an EX-NOR (exclusive 'NOR) gate, or as shown in FIG. It is necessary to invert the direction of the control voltage change by exchanging one of the two inputs of the voltage comparator 31 or 32.c In the tuning circuits 1F, 1G, and 1H described above, although the phase shift circuit is configured using 12 or FET 432, the phase shift circuit may be configured using a bipolar transistor instead of FET.
  • FIG. 47 is a circuit diagram showing a twelfth modification of the tuning circuit.
  • the tuning circuit 1 J shown in the figure is composed of a non-inverting circuit 550 that outputs the input AC signal without changing the phase, and that shifts the phase of the input signal by a predetermined amount to obtain a total at a predetermined frequency.
  • Phase shift circuit that performs a 360 ° phase shift at 5 ° C. 5 C and 530 C, and a voltage divider 1 consisting of resistors 1 62 and 1 64 provided further downstream of the subsequent phase shift circuit 530 C 60 and the feedback resistor 170 and the input resistor 174 (the input resistor 174 has a resistance value n times as large as the feedback resistor 170).
  • the non-inverting circuit 550 is, for example, ⁇ It is composed of a circuit and a source follower circuit. When the element constants of each element such as the feedback resistor 170 are selected so as to minimize the loss and the like when directly connected, the non-inverting circuit 550 is omitted and the tuning circuit is configured. May be.
  • FIG. 48 shows a configuration extracted from the phase shift circuit 5100 at the preceding stage shown in FIG.
  • the phase shift circuit 510C at the preceding stage shown in the figure is a differential amplifier 511 that amplifies the differential voltage of two inputs with a predetermined amplification and outputs the amplified signal, and a signal input to the input terminal 122. Shifts the phase of the signal by a predetermined amount, and inputs the same to the non-inverting input terminal of the differential amplifier 512. It is configured to include resistors 518 and 520 which divide the voltage level to about 1/2 without any change and input to the inverting input terminal of the differential amplifier 5122.
  • variable resistor 516 uses a channel formed between the source and the drain of a junction type FE as a resistor, as shown in FIG. 48, for example, and the gate voltage is varied by changing the gate voltage.
  • the resistance value can be arbitrarily changed within a certain range.
  • the signal appearing at the connection point between the capacitor 5 14 and the variable resistor 5 16 is input to the non-inverting input terminal of the differential amplifier 5 12. Is done. Since an input signal is input to one end of the CR circuit composed of the capacitance circuit 5 14 and the variable resistor 5 16, the voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by this CR circuit is different. It is applied to the non-inverting input terminal of the operational amplifier 5 1 2.
  • the differential amplifier 512 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals at a predetermined amplification degree in this manner.
  • FIG. 49 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 510 C shown in FIG. 48 and the voltage appearing in the capacity and the like.
  • the voltage VR1 appearing at both ends of the variable resistor 516 and the voltage VC1 appearing at both ends of the capacitor 514 are 90 ° out of phase with each other.
  • the result is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the variable resistance is set along the circumference of the semicircle shown in Fig. 49.
  • the voltage VR1 between both ends of 516 and the voltage VC1 between both ends of the capacitor 514 change.
  • the voltage applied to the non-inverting input terminal of the differential amplifier 5 12 (voltage VR1 across the variable resistor 5 16) is applied to the voltage applied to the inverting input terminal (voltage E i / 2 across the resistor 5 20). ) Is the difference voltage E o '.
  • This differential voltage E 0 ′ is represented by a vector whose center point is the start point and whose end point is a point on the circumference where voltage VR1 and voltage VC1 intersect in the semicircle shown in FIG. 49. And its size is equal to the radius of the semicircle E i / 2.
  • the output voltage Eo of the differential amplifier 512 is obtained by amplifying the difference voltage Eo 'with a predetermined amplification factor. Therefore, in the above-described phase shift circuit 5110C, the output voltage E0 is constant regardless of the frequency of the input signal, and operates as an all-pass circuit. Further, as is clear from FIG. 49, since the voltage VR1 and the voltage VC1 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VR1 varies from the frequency ⁇ of 0 to ⁇ . Then, the angle changes from 270 ° to 360 ° in the clockwise direction (phase lag direction) based on the input voltage E i. Then, the phase shift amount 09 of the entire phase shift circuit 5110C changes from 180 ° to 360 ° according to the frequency.
  • FIG. 50 shows a configuration extracted from the phase shift circuit 530C at the subsequent stage shown in FIG. 47.
  • the phase shift circuit 530C at the subsequent stage shown in the figure is a differential amplifier 532 that amplifies the differential voltage of the two inputs at a predetermined amplification level and outputs the amplified signal, and a signal that is input to the input terminal 142.
  • the variable resistor 5336 and the capacitor 5334 input to the non-inverting input terminal of the differential amplifier 532 after shifting the phase of the signal by a predetermined amount, and the phase of the signal input to the input terminal 1422 And the resistors 538 and 540 which divide the voltage level to about 1/2 without changing the voltage and input to the inverting input terminal of the differential amplifier 532.
  • the voltage E i applied to the input terminal 14 2 is connected to the inverting input terminal of the differential amplifier 5 32 by a resistor.
  • a voltage divided to about 172 is applied by 538 and the resistor 540.
  • the signal appearing at the connection point between the variable resistor 5 36 and the capacitor 5 34 is input to the non-inverting input terminal of the differential amplifier 5 32. Is done. Since an input signal is input to one end of the CR circuit composed of the variable resistor 536 and the capacitor 5334, the phase of the input signal is determined by this CR circuit. The voltage of the signal that has been shifted is applied to the non-inverting input terminal of the differential amplifier 532. The differential amplifier 532 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals at a predetermined amplification degree in this manner.
  • FIG. 51 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 530 C and the voltage appearing in the capacity and the like.
  • the voltage VC2 appearing at both ends of the capacitor 534 and the voltage VR2 appearing at both ends of the variable resistor 536 are 90 degrees out of phase with each other.
  • the sum is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage VC2 across the capacitor 534 and the voltage across the variable resistor 536 along the circumference of the semicircle shown in Fig. 51 VR2 changes.
  • the voltage applied to the non-inverting input terminal of the differential amplifier 532 (the voltage VC2 across the capacitor 534) is applied to the voltage applied to the inverting input terminal (the voltage E i / 2 across the resistor 540).
  • the vector obtained by subtracting the vector is the differential voltage E o '.
  • the difference voltage E o ' is represented by a vector whose center point is the starting point and whose end point is a point on the circumference where voltage VC2 and voltage VR2 intersect in the semicircle shown in Fig. 51. And its size is equal to the radius of the semicircle E i / 2.
  • the output voltage Eo of the differential amplifier 532 is obtained by amplifying the difference voltage Eo 'with a predetermined amplification factor. Therefore, in the above-described phase shift circuit 530 C, the output voltage E 0 is constant regardless of the frequency of the input signal, and operates as an all-pass circuit.
  • the phase difference between the input voltage Ei and the voltage VC2 varies from a frequency ⁇ of 0 to ⁇ . The angle changes from 0 ° to 90 ° as required. Then, the phase shift amount 010 of the entire phase shift circuit 530C is 0 according to the frequency. To 180 °.
  • phase of each of the two phase shift circuits 510C and 530C is shifted by a predetermined amount, and as shown in FIGS. 49 and 51, at a predetermined frequency.
  • a signal having a total phase shift amount of 360 ° is output by the entire two phase shift circuits 510C and 530C.
  • the output of the subsequent phase shift circuit 530 C is taken out from the output terminal 192 as the output of the tuning circuit 1 J, and the output of the phase shift circuit 530 C is divided by the voltage divider circuit 16
  • the signal passed through 0 is fed back to the input side of the non-inverting circuit 550 via the feedback resistor 170.
  • the feedback signal and the signal input via the input resistor 174 are added, and the added signal is supplied to the preceding phase shift circuit 510 C via the non-inverting circuit 550. Has been entered.
  • the two phase shift circuits 510C, 530C It is set so that the attenuation caused by the voltage divider circuit 160 and the loss generated in the feedback loop are compensated, and the loop gain of the entire tuning circuit is 1 or less.
  • the non-inverting circuit 550 may have a gain of 1 or more and adjust this value.
  • the output of the phase shift circuit 530 C before being input to the voltage dividing circuit 160 is taken out from the output terminal 1992 of the tuning circuit 1 J, the gain is given to the tuning circuit 1 J itself. Therefore, the signal amplitude can be amplified simultaneously with the tuning operation.
  • the voltage divider circuit 160 may be omitted and the output of the phase shift circuit 530C may be directly fed back to the preceding stage. Good.
  • the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
  • each of the phase shift circuits 510C and 530C was configured to include a CR circuit, but the CR circuit was replaced with an LR circuit consisting of a resistor and an inductor.
  • a tuning circuit can also be configured using a phase shift circuit.
  • FIG. 52 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and is a configuration that can be replaced with the phase shift circuit 510 C preceding the tuning circuit 1 J shown in FIG. 47. It is shown.
  • the phase shift circuit 5 10 L shown in the figure is a CR circuit consisting of the capacity 5 1 4 and the variable resistor 5 16 in the phase shift circuit 5 10 C shown in FIG. It has a configuration in which it is replaced with an LR circuit consisting of 6 and Inductor 5 17.
  • the capacitor 5 19 connected in series with the inductor 5 17 is for blocking DC current, and its impedance is set to be extremely small at the operating frequency, that is, it has a large capacitance. I have.
  • FIG. 53 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 5101 L and the voltage appearing in the inductor and the like.
  • FIG. 54 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and shows a configuration that can be replaced with the phase shift circuit 530C at the subsequent stage of the tuning circuit 1J shown in FIG.
  • the phase shift circuit 53 0 L shown in the figure is a CR circuit consisting of the variable resistor 536 and the capacitor 534 in the phase shift circuit 530 C shown in FIG. 50, and an LR consisting of the inductor 53 7 and the variable resistor 536. It has a configuration replaced with a circuit.
  • the capacitor 539 connected in series with the inductor 537 is for blocking DC current, and its impedance is set to be extremely small at the operating frequency, that is, it has a large capacitance.
  • FIG. 55 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 530 L and the voltage appearing in the inductor and the like.
  • the phase shift circuits 510 C and 530 C shown in FIG. 47 are replaced with the phase shift circuit 510 L shown in FIG. 52 and the phase shift circuit 530 L shown in FIG.
  • each of the phase shift circuit 510 L shown in FIG. 52 and the phase shift circuit 530 L shown in FIG. 54 is different from the phase shift circuit 510 L shown in FIG. 48 or FIG. 530 C in the tuning circuit 1 J shown in FIG. 47, and the phase shift circuit 510 C of the preceding stage is shifted to the phase shift circuit 510 L shown in FIG. Route 530 C fifth 4 are possible which it replaces it in the phase shift circuit 5 3 0 L shown in FIG. C 2 two phase shifting circuits 5 1 0 C, 5 3 0 C 0 phase shift circuit 5 1 both L
  • the tuning frequency can be easily increased by integrating the entire tuning circuit.
  • the tuning circuit 1 J shown in FIG. 47 includes two phase shifting circuits having different phase shift directions from each other, but a tuning circuit is formed by combining two phase shifting circuits having basically the same configuration. You can also.
  • FIG. 56 is a circuit diagram showing another configuration of the tuning circuit.
  • the tuning circuit 1K shown in the figure is composed of a phase inverting circuit 580 that inverts the phase of an input AC signal and outputs the inverted signal, and a phase shift circuit that shifts the phase of the input AC signal by a predetermined amount.
  • Two phase shift circuits 510 C that perform a total of 180 ° phase shift at a predetermined frequency, and resistors 16 2 and 16 that are provided further downstream of the subsequent phase shift circuit 510 C
  • the voltage divider circuit 160 consists of four components, the feedback resistor 170 and the input resistor 174 pass through the voltage divider circuit 160 (divided output (feedback signal) and input terminal 190).
  • c of the signal which is input (input signal) is configured to include an adder circuit for adding at a predetermined ratio to
  • the detailed configuration of the two phase shift circuits 5 10 C and the phase relationship between the input and output signals are as described with reference to FIGS. 48 and 49.
  • the two phase shift circuits 5 At a predetermined frequency, the two phase shift circuits 5 The total phase shift amount of the entire 100 C is 180 °.
  • an emitter ground circuit ⁇ source as this c realized by a circuit that combines a ground circuit or an operational amplifier resistor, at a predetermined frequency, phase by two phase shifting circuits 5 1 0 C is 1 8 0 ° shifted, it is further connected to the preceding stage
  • the phase is inverted by the phase inverting circuit 580, and the total phase shift amount of the three circuits as a whole is 360 °.
  • the output of the subsequent phase shift circuit 5100C is taken out from the output terminal 1992 as the output of the tuning circuit 1K, and the output of the subsequent phase shift circuit 5100C is divided by the voltage divider circuit 160 Through the feedback resistor 170 to the input side of the phase inverter 580 Have been.
  • the signal that is fed back and the signal that is input via the input resistor 174 are added, and the added signal is input to the phase inversion circuit 580.
  • the output of the voltage dividing circuit 160 is fed back to the input side of the phase inverting circuit 580 via the feedback resistor 170, and the signal input via the input resistor 174 is applied to this feedback signal.
  • the gain of the two phase shift circuits 5 10 C may be adjusted.
  • the voltage divider circuit 160 is omitted, and the output of the phase shift circuit 5100C is directly fed back to the previous stage. Is also good.
  • the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
  • FIG. 57 is a circuit diagram showing another modification of the tuning circuit, which is configured to include a subsequent-stage phase shift circuit 530C shown in FIG. 47 contrary to FIG. .
  • the tuning circuit 1L shown in Fig. 57 has a total of 180 ° phase shift at a given frequency by shifting the phase of the input AC signal by a given amount.
  • each phase shift circuit 530 C and the phase relationship between the input and output are as described with reference to FIGS. 50 and 51.
  • the phase is shifted by 180 ° by the two phase shift circuits 530C at a predetermined frequency, and furthermore, The phase is inverted by the phase inverting circuit 580 connected in the preceding stage, and the total phase shift amount of the three circuits as a whole is 360 °.
  • the above-mentioned tuning circuit 1 L feeds back the output of the voltage dividing circuit 160 to the input side of the phase inverting circuit 580 via the feedback resistor 170, and adds the input resistor 1 74 to this feedback signal.
  • the signals input via the input terminals are added together, and the gain of the two phase shift circuits 530 C is adjusted to adjust the gain of the voltage divider circuit 160 and the connection between the feedback resistor 1 ⁇ 0 and the input resistor 174, etc.
  • the same tuning operation and amplification operation as those of the tuning circuit 1K shown in FIG. 56 can be performed.
  • the tuning circuits 1K and 1L shown in Fig. 56 and Fig. 57 are connected in cascade with a phase shift circuit that includes a CR circuit, but the LR circuit is internally connected for both phase shift circuits. May be included.
  • the two phase shift circuits 5100C may be replaced with the phase shift circuit 5101L shown in FIG.
  • the two phase shift circuits 530C may be replaced with the phase shift circuit 530L shown in FIG.
  • the various points when the gate voltage of the FE ⁇ that forms the variable resistor 116 or 136 are changed Since the direction of the phase shift change is opposite, the EX-OR gate 33 in the phase difference detection circuit 3 shown in FIG. 13 can be replaced with an EX-NOR (exclusively NOR) gate. It is necessary to reverse the direction of change of the control voltage by exchanging either of the two inputs of the voltage comparators 31 and 32 shown in FIG.
  • the tuning circuits 1 J, 1 K, and 1 L described above include a non-inverting circuit and two phase shifting circuits or a phase inverting circuit and two phase shifting circuits, and are connected to three connected circuits.
  • phase shift circuit including the CR circuit when replacing the phase shift circuit including the CR circuit with the phase shift circuit including the LR circuit, only one of the two cascade-connected phase shift circuits is connected to the LR It may be replaced with a phase shift circuit including a circuit.
  • the control direction of the resistance value of the variable resistor 116 in the preceding phase shift circuit is opposite to the control direction of the resistance value of the variable resistor 116 in the subsequent phase shift circuit. Therefore, it is necessary to slightly modify the circuit, such as inverting the output level of the distributor 5 shown in FIG.
  • phase shift circuit including the CR circuit and the phase shift circuit including the LR circuit are cascaded to form a tuning circuit, and when the entire tuning circuit is integrated, the tuning frequency due to temperature change is reduced. So-called temperature compensation that prevents fluctuations is possible.
  • the phase difference between the input and output signals of the subsequent phase shift circuit is detected, but the phase difference between the input and output signals of the preceding phase shift circuit may be detected.
  • the direction of change of the phase shift amount is opposite to that in the case where the phase difference between the input and output signals of the subsequent phase shift circuit is detected.
  • variable resistors 1 16 in the two phase shift circuits constituting the tuning circuit are formed by using the junction type FET.
  • the variable resistor may be formed of another element.
  • the tuning circuit 1M shown in Fig. 58 is a variable circuit in which the variable resistors 1 16 and 1 36 in the phase shift circuits 110 C and 130 C shown in Fig. 3 are formed by MOS type FETs. These are replaced by resistors 1 1 5 and 1 3 5 respectively.
  • a channel formed between the source and the drain of the MOS FET can be used as a resistor. In this case, since the channel resistance of the FET can be changed by changing the control voltage applied to the gate, the tuning frequency of the tuning circuit 1 can be arbitrarily changed within a certain range.
  • phase shift circuit 110C and the like are connected in series with the capacity 114 and the like.
  • the overall tuning frequency was changed by changing the phase shift amount by changing the resistance value of the variable resistor 116 etc., but the overall tuning was changed by changing the capacitance of the capacitor 114 etc. The frequency may be changed.
  • FIG. 59 is a diagram showing the configuration of a tuning circuit in which the overall tuning frequency is changed by changing the capacitance of the capacitance.
  • the tuning circuit 1N shown in the figure is configured based on the phase shift circuits 110C and 130C shown in FIG. 2, but the various phase shift circuits shown in FIG. 29 and FIG. 46 etc. You may comprise based on a circuit.
  • the capacitors 128 and 148 connected in series to the variable capacitance diodes 127 and 147 are for blocking DC current when applying a reverse bias voltage to the variable capacitance diodes, and the impedance thereof is extremely low at the operating frequency. It is small, that is, has a large capacitance.
  • the capacitance was varied using a variable capacitance diode as a variable capacitance element, but the gate capacitance could be changed within a certain range according to the control voltage applied to the gate Any FET may be used as the variable capacitance element.
  • FIG. 60 is a circuit diagram showing an example in which an element other than FET is used as a variable resistor in the phase shift circuits 110 C and 130 C shown in FIG.
  • the phase shift circuit 110C ⁇ shown in FIG. 60 includes a variable resistor 116 formed by using the FET in the phase shift circuit 110C shown in FIG. 2, and a CdS comprising a CdS photosensor and a light emitting diode. It has a configuration replaced with an S-photo power brush 177.
  • the CdS photosensor included in the photo-force bra 177 has such a characteristic that the resistance value decreases as the amount of light emitted from the light-emitting diode increases, so that such a CdS photo-bra 177 is externally controlled. It can be used as a variable resistor whose resistance value can be changed according to the current.
  • phase shift circuit 130 C ⁇ shown in FIG. 60 includes a variable resistor 136 formed using FET in the phase shift circuit 130 C shown in FIG. 2, and a CdS photosensor and a light emitting diode.
  • control voltage generating circuit 4 B shown in c FIG. 60 having a structure obtained by replacing the CdS photo force bra 179 made from, have a configuration in which a control voltage generation circuit 4 shown in FIG. 13 partially deformed Variable resistance to the control voltage generation circuit 4. The difference is that the bias circuit including the resistor 42 and the resistor 43 is removed.
  • the voltage-to-current conversion circuit 200 shown in FIG. 60 includes an operational amplifier 204 in which the control voltage output from the control voltage generation circuit 4B is input to the inverting input terminal via the resistor 202. And a variable resistor 206 used to generate a variable bias voltage.
  • the two light emitting diodes in the photocouplers 1777 and 1779 described above are connected in series between the output terminal and the inverting input terminal, and the non-inverting input terminal is grounded. . Therefore, when the output voltage (control voltage) of the control voltage generation circuit 4B is determined, a predetermined current determined by the resistance ratio between the resistor 202 and the variable resistor 206 is generated by the photovoltaic motors 17 7 and 17
  • the CdS photosensor that flows to each light emitting diode in the light emitting diode 9 and forms a pair with this light emitting diode has a certain resistance value corresponding to the light emission amount of the light emitting diode.
  • the tuning frequency of the tuning circuit shown in FIG. Conversely, by increasing the output voltage of the control voltage generation circuit 4B, the value of the current flowing through the light emitting diode increases, the amount of light emission increases, and the resistance value of the CdS photosensor decreases. Tuning frequency increases. This relationship is the same as the relationship between the variable resistor formed by FET and the control voltage described above, and the tuning frequency of the tuning circuit 1 can be made to match the frequency of the input signal by exactly the same control procedure.
  • the tuning circuit that realizes the tuning mechanism of the above-described embodiment can also be configured by using the photo power blurs 1777 and 179 as the variable resistors.
  • the photo power blurs 1777 and 179 are used as variable resistors, a constant resistance value is always obtained regardless of the voltage at both ends of the variable resistor, so that a tuning output with little distortion can be easily obtained.
  • the photocouplers 177 and 179 connect individual components to connection lines and the like. Will be used for connection.
  • a phase shift circuit 110 C using an operational amplifier Although high stability can be achieved by configuring the tuning circuit 1 with 130 C, offsetting is required when using the phase shift circuits 110 C and 130 C of the present embodiment. Since a high-performance voltage and voltage gain are not required, a differential amplifier having a predetermined amplification may be used instead of the operational amplifier in each phase shift circuit.
  • FIG. 61 is a circuit diagram in which a part necessary for the operation of the phase shift circuit is extracted from the configuration of the operational amplifier, and the whole operates as a differential amplifier having a predetermined amplification degree.
  • the differential amplifier shown in the figure includes a differential input stage 100 composed of FETs, a constant current circuit 102 for supplying a constant current to the differential input stage 100, and a constant current circuit 102.
  • a differential input stage 100 connected to a differential input stage 100, and a bias circuit 104 for applying a predetermined bias voltage to the differential input stage 100.
  • the multistage amplifier circuit for gaining the voltage gain included in the actual operational amplifier is omitted, so that the configuration of the differential amplifier can be simplified and a wider band can be achieved.
  • the upper limit of the operating frequency can be increased.
  • the upper limit of the tuning frequency of the tuning circuit 1 configured using this differential amplifier must be increased accordingly. Can be.
  • the present invention is not limited to the various embodiments described above, and various modifications can be made within the scope of the present invention.
  • the tuning circuit 1 whose detailed configuration is shown in Fig. 2 uses a feedback resistor 170 as a feedback impedance element and an input resistor 174 as an input impedance element. Since it is sufficient that the signals can be added without changing the phase relationship of the input signals, the feedback impedance element and the input impedance element are formed by a capacitor instead of a resistor, or the real number of impedance is formed by combining a resistor and a capacitor. The ratio of the minute and the imaginary number may be adjusted simultaneously. Further, at least one of the feedback resistor 170 and the input resistor 174 may be constituted by a variable resistor so that the tuning bandwidth in the tuning amplifier 1 or the like can be varied.
  • variable resistor 1 16 is composed of one FET, but the p-channel FET and the n-channel FET are connected in parallel.
  • One variable resistor may be configured.
  • the tuning control method of the present invention performs feedback control of the tuning frequency of the tuning circuit so that there is no deviation between the frequency of the input signal of the tuning circuit and the tuning frequency. Can be reliably matched. Therefore, when the entire tuning mechanism is integrated, the tuning characteristics do not vary even if the frequency characteristics vary among the manufactured chips. In addition, the tuning frequency does not change even if the element constant of each element that determines the tuning frequency fluctuates due to temperature or the like, so that it is suitable for integration.

Abstract

A tuning mechanism is provided with a tuning circuit (1) constituted by cascade-connecting two phase shifting circuits to each other and a frequency control circuit (2) incorporating a phase difference detecting circuit (3) and a control voltage generating circuit (4). The circuit (3) converts the input and output signals of either of the two phase shifting circuits into rectangular-wave signals, calculates the exclusive OR of the rectangular-wave signals, and outputs the exclusive OR to the circuit (4). The circuit (4) smoothes and amplifies the output of the circuit (3) and adds a prescribed bias voltage to the amplified output to generate a control voltage for determining the tuning frequency of the tuning circuit (1). The control voltage is inputted to the two phase shifting circuits. The circuit (1), keeping the time constants of the phase shifting circuits equal to each other, adjusts the phase shift base on the control signal and equalizes the tuning frequency to the frequency of the input signal of the tuning circuit (1).

Description

明 細 書 同調制御方式 技術分野  Description Tuning control method Technical field
本発明は、 所定の周波数信号のみを通過させる同調制御方式に関する。 背景技術  The present invention relates to a tuning control method for passing only a predetermined frequency signal. Background art
従来のフィル夕あるいは同調回路として、 L C共振等を利用した各種の構成が 知られている。 例えば、 スーパ一ヘテロダイン受信機の中間周波増幅回路がフィ ル夕としての機能を包含するが、 この中間周波増幅回路は一般には複数組の中間 周波トランス ( I F T ) とキャパシ夕とを用いて所望の周波数特性を実現してい る。 例えば、 A M受信機の場合には、 4 5 5 k H zの中心周波数が設定されてい るとともに、 この中心周波数から 9 k H z離調した場合に所定の減衰量となるよ うに設定されている。 また、 複数組の中間周波トランス等の代わりに 1個のセラ ミクスフィル夕を用いて所望の周波数特性を実現しているものもある。  Various configurations utilizing LC resonance or the like are known as conventional filter circuits or tuning circuits. For example, an intermediate-frequency amplifier circuit of a superheterodyne receiver includes a function as a filter, and this intermediate-frequency amplifier circuit generally uses a plurality of sets of intermediate-frequency transformers (IFTs) and capacitors to achieve a desired function. Realizes frequency characteristics. For example, in the case of an AM receiver, a center frequency of 455 kHz is set, and a predetermined amount of attenuation is set when the center frequency is detuned by 9 kHz. I have. In some cases, a single ceramic filter is used instead of a plurality of sets of intermediate frequency transformers to achieve desired frequency characteristics.
ところで、 上述したスーパ一ヘテロダイン方式を適用した従来技術においては、 同調を行うフィル夕である中間周波増幅回路の構成に中間周波卜ランスやセラミ クスフィル夕が含まれるため、 これらを含む全体を半導体基板上に集積化するこ とが困難であった。  By the way, in the prior art to which the above-mentioned super heterodyne method is applied, the configuration of the intermediate frequency amplifier circuit, which is a filter for tuning, includes an intermediate frequency transformer and a ceramics filter. It was difficult to integrate on top.
また、 この中間周波増幅回路と組み合わされる局部発振回路は、 簡単なもので は局部発振トランスを利用した L C発振器により実現され、 高精度のものになる と水晶発振を利用した P L L構成により実現される。 特に、 局部発振回路を P L L構成とした場合には、 正弦波発振を行う電圧制御型発振器 (V C O ) を含むた め集積化が難しく、 一部にハイプリヅ ド I Cを用いていた。  In addition, the local oscillation circuit combined with this intermediate frequency amplifier circuit is simply realized by an LC oscillator using a local oscillation transformer, and when it is of high accuracy, realized by a PLL configuration using crystal oscillation. . In particular, when the local oscillation circuit has a PLL configuration, it is difficult to integrate the local oscillation circuit because it includes a voltage-controlled oscillator (VCO) that performs sine wave oscillation, and the hybrid IC is used in part.
このように、 フィルタとして動作する中間周波増幅回路のみならずこれと組み 合わせて同調機構を構成する局部発振回路までを含む全体を集積化することは困 難であり、 同調機構の全体を集積化することができる同調制御方式が望まれてい た。 また、 仮に従来から存在するフィルタの全体あるいはこのフィル夕を含む回 路の全体を集積化したとしても、 回路定数に大きなばらつきが生じるため、 製造 したチップ毎に異なる特性を有することになる。 あるいは、 中心周波数が温度等 によって大きく変化する場合も考えられるため、 集積化した場合であっても確実 に所期の周波数特性を達成することができる同調制御方式が必要となる。 発明の開示 Thus, it is difficult to integrate not only the intermediate frequency amplifier circuit that operates as a filter, but also the local oscillator circuit that constitutes the tuning mechanism in combination with the intermediate frequency amplifier circuit. There was a need for a tuning control method that could be used. In addition, if the filter that exists conventionally or the filter that includes this filter is Even if the entire circuit is integrated, large variations occur in circuit constants, and each manufactured chip will have different characteristics. Alternatively, since the center frequency may greatly change depending on the temperature, etc., a tuning control method that can reliably achieve the desired frequency characteristics even when integrated is required. Disclosure of the invention
本発明は、 このような課題を解決するために考えられたものであり、 その目的 は集積化に適した新たな同調制御方式を提供することにある。  The present invention has been conceived to solve such a problem, and an object thereof is to provide a new tuning control method suitable for integration.
本発明の同調制御方式は、 縦続接続された全域通過型の 2つの移相回路と、 後 段の前記移相回路の出力を帰還信号として前段の前記移相回路の入力側に帰還さ せるとともに前記帰還信号と入力信号とを加算して前段の前記移相回路に入力す る加算回路とを含み、 所定の周波数近傍の信号のみを通過させる同調回路と、 前記同調回路に前記所定の周波数近傍の周波数を有する信号が入力されたとき に、 前記同調回路に含まれる一方の移相回路の入出力信号間の位相差に基づいて、 前記同調回路の同調周波数を前記同調回路の入力信号の周波数に一致させる周波 数制御回路と、 を備える。  The tuning control method according to the present invention includes two cascade-connected all-pass type phase shift circuits, and the output of the subsequent phase shift circuit is fed back to the input side of the preceding phase shift circuit as a feedback signal. A tuning circuit that adds the feedback signal and the input signal and inputs the feedback signal and the input signal to the phase shift circuit at the preceding stage, and passes only a signal near a predetermined frequency; and a tuning circuit near the predetermined frequency to the tuning circuit. When a signal having the following frequency is input, based on the phase difference between the input and output signals of one of the phase shift circuits included in the tuning circuit, the tuning frequency of the tuning circuit is changed to the frequency of the input signal of the tuning circuit. And a frequency control circuit for matching.
そして、 同調回路に含まれる一方の移相回路の入出力信号間の位相差が例えば 9 0 ° となるように制御を行うことにより、 同調周波数は常に入力信号の周波数 に追従して変化するようになり、 両周波数を一致させることができる。 図面の簡単な説明  By controlling the phase difference between the input and output signals of one of the phase shift circuits included in the tuning circuit to be, for example, 90 °, the tuning frequency always changes following the frequency of the input signal. And both frequencies can be matched. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の同調制御方式を適用した一実施形態である同調機構の構成 図、  FIG. 1 is a configuration diagram of a tuning mechanism which is an embodiment to which a tuning control method of the present invention is applied,
第 2図は、 同調回路の詳細な構成を示す回路図、  FIG. 2 is a circuit diagram showing a detailed configuration of the tuning circuit,
第 3図は、 第 2図に示す前段の移相回路の構成を抜き出して示した回路図、 第 4図は、 第 3図に示す移相回路の入出力電圧とキャパシ夕等に現れる電圧と の関係とを示すべク トル図、  FIG. 3 is a circuit diagram extracted from the configuration of the previous phase shift circuit shown in FIG. 2, and FIG. 4 is a diagram showing input / output voltages and voltages appearing in the capacity shift circuit and the like of the phase shift circuit shown in FIG. Vector diagram showing the relationship between
第 5図は、 第 2図に示す後段の移相回路の構成を抜き出して示した回路図、 第 6図は、 後段の移相回路の入出力電圧とキャパシ夕等に現れる電圧との関係 を示すべクトル図、 Fig. 5 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit shown in Fig. 2, and Fig. 6 is the relationship between the input / output voltage of the latter phase shift circuit and the voltage appearing in the capacity and the like. A vector diagram,
第 7図は、 第 2図に示す 2つの移相回路および分圧回路の全体を伝達関数 K 1 を有する回路に置き換えた回路図、  FIG. 7 is a circuit diagram in which the whole of the two phase shift circuits and the voltage divider circuit shown in FIG. 2 are replaced with a circuit having a transfer function K 1,
第 8図は、 第 7図に示す回路をミラーの定理によって変換した回路図、 第 9図は、 第 2図に示した同調回路の同調特性を示す図、  FIG. 8 is a circuit diagram obtained by converting the circuit shown in FIG. 7 by Miller's theorem, FIG. 9 is a diagram showing tuning characteristics of the tuning circuit shown in FIG. 2,
第 1 0図は、 2つの移相回路に入出力される信号間の位相関係を示す図、 第 1 1図は、 前段の移相回路に入力される信号の周波数より同調周波数の方が 高い場合の各移相回路の入出力信号間の位相関係を示す図、  Fig. 10 is a diagram showing the phase relationship between the signals input to and output from the two phase shift circuits. Fig. 11 is a diagram in which the tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit. Diagram showing the phase relationship between input and output signals of each phase shift circuit in the case,
第 1 2図は、 前段の移相回路に入力される信号周波数より同調周波数の方が低 い場合の各移相回路の入出力信号間の位相関係を示す図、  FIG. 12 is a diagram showing the phase relationship between input and output signals of each phase shift circuit when the tuning frequency is lower than the signal frequency input to the preceding phase shift circuit,
第 1 3図は、 周波数制御回路の構成を示す回路図、  FIG. 13 is a circuit diagram showing a configuration of a frequency control circuit,
第 1 4図は、 同調回路に入力される信号の周波数に比べて同調回路の同調周波 数が高い場合のタイミング図、  FIG. 14 is a timing chart in the case where the tuning frequency of the tuning circuit is higher than the frequency of the signal input to the tuning circuit,
第 1 5図は、 同調回路に入力される信号の周波数に比べて同調回路の同調周波 数が低い場合のタイミング図、  FIG. 15 is a timing chart when the tuning frequency of the tuning circuit is lower than the frequency of the signal input to the tuning circuit,
第 1 6図は、 周波数制御回路の他の構成例を示す回路図、  FIG. 16 is a circuit diagram showing another configuration example of the frequency control circuit.
第 1 7図は、 第 1 6図に示す同調回路に入力される信号の周波数に比べて同調 周波数が高い場合のタイミング図、  FIG. 17 is a timing diagram when the tuning frequency is higher than the frequency of the signal input to the tuning circuit shown in FIG. 16,
第 1 8図は、 第 1 6図に示す同調回路に入力される信号の周波数に比べて同調 周波数が低い場合のタイミング図、  FIG. 18 is a timing chart in the case where the tuning frequency is lower than the frequency of the signal input to the tuning circuit shown in FIG. 16,
第 1 9図は、 F M検波を兼ねた同調機構の構成を示す図、  Fig. 19 is a diagram showing the configuration of the tuning mechanism that also serves as FM detection.
第 2 0図は、 第 1 9図に示す周波数制御回路の詳細構成を示す回路図、 第 2 1図は、 第 1 9図に示す同調機構を利用した F M受信機の構成を示す図、 第 2 2図は、 同期整流による A M検波を併用した同調機構の構成を示す図、 第 2 3図は、 第 2 2図に示す同期整流回路の詳細構成を示す図、  FIG. 20 is a circuit diagram showing a detailed configuration of the frequency control circuit shown in FIG. 19, FIG. 21 is a diagram showing a configuration of an FM receiver using the tuning mechanism shown in FIG. 22 is a diagram showing the configuration of a tuning mechanism using AM detection by synchronous rectification, FIG. 23 is a diagram showing the detailed configuration of the synchronous rectifier circuit shown in FIG. 22,
第 2 4図は、 第 2 2図に示す同調機構を利用した A M受信機の構成を示す図、 第 2 5図は、 L R回路を含む移相回路の構成を示す回路図、  FIG. 24 is a diagram showing a configuration of an AM receiver using the tuning mechanism shown in FIG. 22, FIG. 25 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
第 2 6図は、 第 2 5図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべク トル図、 第 2 7図は、 L R回路を含む移相回路の他の構成を示す回路図、 第 2 8図は、 第 2 7図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべク トル図、 FIG. 26 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG. 25 and the voltage appearing in the capacity and the like. FIG. 27 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and FIG. 28 is a diagram showing the input / output voltage of the phase shift circuit shown in FIG. Vector diagram showing the relationship of
第 2 9図は、 同調回路の第 2の変形例を示す回路図、  FIG. 29 is a circuit diagram showing a second modification of the tuning circuit,
第 3 0図は、 L R回路を含む移相回路の構成を示す回路図、  FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
第 3 1図は、 L R回路を含む移相回路の他の構成を示す回路図、  FIG. 31 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit,
第 3 2図は、 同調回路の第 4の変形例を示す回路図、  FIG. 32 is a circuit diagram showing a fourth modification of the tuning circuit,
第 3 3図は、 同調回路の第 5の変形例を示す回路図、  FIG. 33 is a circuit diagram showing a fifth modification of the tuning circuit,
第 3 4図は、 同調回路の第 6の変形例を示す回路図、  FIG. 34 is a circuit diagram showing a sixth modification of the tuning circuit;
第 3 5図は、 同調回路の第 7の変形例を示す回路図、  FIG. 35 is a circuit diagram showing a seventh modification of the tuning circuit,
第 3 6図は、 同調回路の第 8の変形例を示す回路図、  FIG. 36 is a circuit diagram showing an eighth modification of the tuning circuit;
第 3 7図は、 第 3 6図に示す前段の移相回路の構成を抜き出して示した回路図、 第 3 8図は、 第 3 7図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべクトル図、  Fig. 37 is a circuit diagram extracted from the configuration of the previous phase shift circuit shown in Fig. 36, and Fig. 38 is the input / output voltage and capacity of the phase shift circuit shown in Fig. 37. Vector diagram showing the relationship with the voltage appearing in
第 3 9図は、 第 3 6図に示す後段の移相回路の構成を抜き出して示した回路図、 第 4 0図は、 第 3 9図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべク トル図、  Fig. 39 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit shown in Fig. 36. Fig. 40 is the input / output voltage and capacity of the phase shift circuit shown in Fig. 39. Vector diagram showing the relationship with the voltage appearing in
第 4 1図は、 L R回路を含む移相回路の構成を示す回路図、  FIG. 41 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
第 4 2図は、 第 4 1図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべクトル図、  Fig. 42 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 41 and the voltage appearing in the capacity, etc.
第 4 3図は、 L R回路を含む移相回路の他の構成を示す回路図、  FIG. 43 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit,
第 4 4図は、 第 4 3図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべクトル図、  FIG. 44 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG. 43 and the voltage appearing in the capacity and the like.
第 4 5図は、 同調回路の第 1 0の変形例を示す回路図、  FIG. 45 is a circuit diagram showing a tenth modification of the tuning circuit;
第 4 6図は、 同調回路の第 1 1の変形例を示す回路図、  FIG. 46 is a circuit diagram showing a first modification of the tuning circuit,
第 4 7図は、 同調回路の第 1 2の変形例を示す回路図、  FIG. 47 is a circuit diagram showing a twelfth modification of the tuning circuit.
第 4 8図は、 第 4 7図に示す前段の移相回路の構成を抜き出して示した回路図、 第 4 9図は、 第 4 8図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべク トル図、 第 5 0図は、 第 4 7図に示す後段の移相回路の構成を抜き出して示した回路図、 第 5 1図は、 第 5 0図に示す移相回路の入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべクトル図、 Fig. 48 is a circuit diagram extracted from the configuration of the previous phase shift circuit shown in Fig. 47. Fig. 49 is the input / output voltage and capacity of the phase shift circuit shown in Fig. 48. Vector diagram showing the relationship with the voltage appearing in FIG. 50 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit shown in FIG. 47. FIG. 51 is an input / output voltage and capacity of the phase shift circuit shown in FIG. 50. Vector diagram showing the relationship with the voltage appearing in
第 5 2図は、 L R回路を含む移相回路の構成を示す回路図、  FIG. 52 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit,
第 5 3図は、 第 5 2図に示す移相回路の入出力電圧とインダク夕等に現れる電 圧との関係を示すべクトル図、  Fig. 53 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 52 and the voltage appearing in the inductor and the like.
第 5 4図は、 L R回路を含む移相回路の他の構成を示す回路図、  FIG. 54 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit,
第 5 5図は、 第 5 4図に示す移相回路の入出力電圧とインダクタ等に現れる電 圧との関係を示すべクトル図、  FIG. 55 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG. 54 and the voltage appearing in the inductor and the like.
第 5 6図は、 同調回路の第 1 4の変形例を示す回路図、  FIG. 56 is a circuit diagram showing a fourteenth modification of the tuning circuit,
第 5 7図は、 同調回路の第 1 5の変形例を示す回路図、  FIG. 57 is a circuit diagram showing a fifteenth modification of the tuning circuit.
第 5 8図は、 第 3図に示した移相回路内の可変抵抗を M O S型の F E Tで形成 した同調回路の回路図、  FIG. 58 is a circuit diagram of a tuning circuit in which the variable resistor in the phase shift circuit shown in FIG. 3 is formed by a MOS type FET,
第 5 9図は、 キャパシ夕の静電容量を変えることにより全体の同調周波数を変 化させるようにした同調回路の回路図、  Fig. 59 is a circuit diagram of a tuning circuit that changes the overall tuning frequency by changing the capacitance of the capacitance.
第 6 0図は、 第 2図に示した各移相回路内の可変抵抗として F E T以外の素子 を用いた同調回路の回路図、  FIG. 60 is a circuit diagram of a tuning circuit using an element other than FET as a variable resistor in each phase shift circuit shown in FIG. 2,
第 6 1図は、 オペアンプの構成の中で移相回路の動作に必要な部分を抽出した 回路図である。 発明を実施するための最良の形態  FIG. 61 is a circuit diagram in which a part necessary for the operation of the phase shift circuit in the configuration of the operational amplifier is extracted. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の同調制御方式の一実施形態について、 図面を参照しながら具体 的に説明する。  Hereinafter, an embodiment of the tuning control method of the present invention will be specifically described with reference to the drawings.
〔A . 同調機構の全体構成および動作〕  [A. Overall configuration and operation of the tuning mechanism]
本発明の同調制御方式は、 同調回路に含まれる 2つの移相回路の各時定数を同 じに設定したときに 2つの移相回路のそれそれにおいて、 入出力信号間の位相差 が 9 0 ° 、 すなわち位相シフト量が 9 0 ° あるいは 2 7 0 ° になることに着目し、 ある周波数の交流信号が入力されたときに一方の移相回路の位相シフト量を 9 0 。 あるいは 2 7 0 ° に近づけるように制御することにより、 同調周波数が入力信 号の周波数に一致するように制御することに特徴がある。 According to the tuning control method of the present invention, when the time constants of the two phase shift circuits included in the tuning circuit are set to the same value, the phase difference between the input and output signals of each of the two phase shift circuits is 90%. Paying attention to the fact that the phase shift amount becomes 90 ° or 270 °, the phase shift amount of one phase shift circuit is set to 90 when an AC signal of a certain frequency is input. Alternatively, by controlling the tuning frequency to approach It is characterized in that it is controlled to match the frequency of the signal.
第 1図は、 本発明の同調制御方式を適用した- 実施形態である同調機構の構成 を示す図である。  FIG. 1 is a diagram showing a configuration of a tuning mechanism according to an embodiment to which a tuning control method of the present invention is applied.
同図に示す同調機構は、 ある周波数近傍の信号を通過させるフィル夕として機 能する同調回路 1 と、 この同調回路 1の通過中心周波数の制御を行う周波数制御 回路 2とを含んでいる。  The tuning mechanism shown in FIG. 1 includes a tuning circuit 1 that functions as a filter that passes a signal near a certain frequency, and a frequency control circuit 2 that controls a pass center frequency of the tuning circuit 1.
同調回路 1は、 2つの移相回路を含んでおり、 後段の移相回路の出力を同調回 路 1の出力として取り出すとともに、 この信号を帰還抵抗を介して帰還させ、 入 力抵抗を介して入力される入力信号と帰還抵抗を介して帰還される帰還信号とを 加算して前段の移相回路に入力することにより、 2つの移相回路全体の位相シフ ト量が 3 6 0 ° となる周波数で所定の同調動作を行うようになっている。  Tuning circuit 1 includes two phase shifting circuits, takes out the output of the subsequent phase shifting circuit as the output of tuning circuit 1, and feeds back this signal via a feedback resistor. By adding the input signal that is input and the feedback signal that is fed back via the feedback resistor and inputting the result to the previous phase shift circuit, the total phase shift amount of the two phase shift circuits becomes 360 °. A predetermined tuning operation is performed at a frequency.
しかも、 各移相回路の時定数を同じに設定した場合には各移相回路における位 相シフ ト量が 9 0 ° となる。 見方を変えれば、 各移相回路の時定数を同じに設定 するとともにいずれか一方の移相回路の位相シフ ト量が 9 0 ° となるように制御 すれば、 入力信号の周波数に同調周波数を一致させることができる。  Moreover, when the time constant of each phase shift circuit is set to be the same, the phase shift amount in each phase shift circuit is 90 °. In other words, if the time constant of each phase shift circuit is set to the same value and the phase shift of one of the phase shift circuits is controlled to 90 °, the tuning frequency will be adjusted to the frequency of the input signal. Can be matched.
なお、 同調回路 1は、 外部から入力される制御信号によって、 2つの移相回路 の位相シフ ト量を変えることにより同調周波数をある範囲で任意に設定可能な構 成を有している。 同調回路 1の詳細構成および詳細動作については後述する。 周波数制御回路 2は、 同調回路 1に含まれる一方の移相回路に入出力される 2 種類の信号が入力されており、 これら 2信号間の位相差が 9 0 ° からずれている 場合に、 このずれを無くすように同調回路 1の同調周波数を制御する。  The tuning circuit 1 has a configuration in which the tuning frequency can be arbitrarily set within a certain range by changing the amount of phase shift between the two phase shift circuits by a control signal input from the outside. The detailed configuration and detailed operation of the tuning circuit 1 will be described later. The frequency control circuit 2 receives two types of signals that are input / output to one of the phase shift circuits included in the tuning circuit 1, and when the phase difference between these two signals is shifted from 90 °, The tuning frequency of the tuning circuit 1 is controlled so as to eliminate this deviation.
このような制御を行うために、 周波数制御回路 2は位相差検出回路 3と制御電 圧発生回路 4とを含んで構成されている。  To perform such control, the frequency control circuit 2 includes a phase difference detection circuit 3 and a control voltage generation circuit 4.
位相差検出回路 3は、 同調回路 1に含まれる- 方の移相回路の位相シフト量が 9 0 ° のときにデューティ比が 5 0 %となり、 位相シフ ト量が 9 0。 からずれた ときにはそのずれに対応してデューティ比が 5 0 %からずれた矩形波信号を出力 する。  The phase difference detection circuit 3 has a duty ratio of 50% and a phase shift amount of 90% when the phase shift amount of the other phase shift circuit included in the tuning circuit 1 is 90 °. When it deviates from that, a rectangular wave signal whose duty ratio deviates from 50% is output in accordance with the deviation.
制御電圧発生回路 4は、 位相差検出回路 3から出力される矩形波信号のデュー ティ比に応じた電圧を発生し、 この発生した電圧と所定のバイアス電圧とを加算 した電圧を制御信号として同調回路 1に向けて出力する。 The control voltage generation circuit 4 generates a voltage corresponding to the duty ratio of the rectangular wave signal output from the phase difference detection circuit 3, and adds the generated voltage to a predetermined bias voltage. The adjusted voltage is output to the tuning circuit 1 as a control signal.
なお、 上述した周波数制御回路 2を構成する位相差検出回路 3と制御電圧発生 回路 4の詳細な構成および動作については後述する。  The detailed configuration and operation of the phase difference detection circuit 3 and the control voltage generation circuit 4 included in the frequency control circuit 2 will be described later.
C B . 同調回路の詳細構成および動作〕 次に、 第 1図に示した同調回路 1の詳細について説明する。 第 2図は、 同調回 路 1の詳細な構成を示す回路図である。 同図に示す同調回路 1は、 それぞれが入 力される交流信号の位相を所定量シフ トさせることにより所定の周波数において 合計で 3 6 0。 の位相シフ トを行う 2つの移相回路 1 1 0 C、 1 3 0 Cと、 後段 の移相回路 1 3 0 Cの出力側に設けられた抵抗 1 6 2および 1 6 4からなる分圧 回路 1 6 0と、 帰還抵抗 1 7 0および入力抵抗 1 7 4 (入力抵抗 1 7 4は帰還抵 抗 1 7 0の抵抗値の n倍の抵抗値を有しているものとする) のそれそれを介する ことにより分圧回路 1 6 0の分圧出力 (帰還信号) と入力端子 1 9 0に入力され る信号 (入力信号) とを所定の割合で加算する加算回路とを含んで構成されてい る。  C B. Detailed Configuration and Operation of Tuning Circuit] Next, details of the tuning circuit 1 shown in FIG. 1 will be described. FIG. 2 is a circuit diagram showing a detailed configuration of the tuning circuit 1. The tuning circuit 1 shown in the figure shifts the phase of each input AC signal by a predetermined amount, so that a total of 360 is obtained at a predetermined frequency. A voltage divider consisting of two phase shifters 110 C and 130 C, and a resistor 16 2 and 16 4 provided on the output side of the subsequent phase shift circuit 130 C Circuit 160 and that of feedback resistor 170 and input resistor 174 (input resistor 174 has n times the resistance of feedback resistor 170) Through this, it is configured to include an adding circuit for adding the divided output (feedback signal) of the voltage dividing circuit 160 and the signal (input signal) input to the input terminal 190 at a predetermined ratio. ing.
第 3図は、 第 2図に示した前段の移相回路 1 1 0 Cの構成を抜き出して示した ものである。 同図に示す前段の移相回路 1 1 0 Cは、 差動増幅器の一種であるォ ペアンプ 1 1 2と、 入力端 1 2 2に入力された交流信号の位相を所定量シフ トさ せてオペアンプ 1 1 2の非反転入力端子に入力する可変抵抗 1 1 6およびキャパ シ夕 1 1 4と、 入力端 1 2 2とオペアンプ 1 1 2の反転入力端子との間に挿入さ れた抵枋 1 1 8と、 オペアンプ 1 1 2の出力端子に接続されて分圧回路を構成す る抵抗 1 2 1および 1 2 3と、 この分圧回路の出力端子とオペアンプ 1 1 2の反 転入力端子との間に接続された抵抗 1 2 0とを含んで構成されている。  FIG. 3 shows a configuration extracted from the phase shift circuit 110C of the preceding stage shown in FIG. The phase shift circuit 110C at the front stage shown in the figure shifts the phase of the AC signal input to the input terminal 122 by a predetermined amount from the operational amplifier 112, which is a type of differential amplifier. A variable resistor 1 16 and capacitor 1 1 4 input to the non-inverting input terminal of the operational amplifier 1 1 2 and a fan inserted between the input terminal 1 2 2 and the inverting input terminal of the operational amplifier 1 1 2 1 1 8 and resistors 1 2 1 and 1 2 3 connected to the output terminal of the operational amplifier 1 1 2 to form a voltage divider circuit, and the output terminal of this voltage divider circuit and the inverted input terminal of the operational amplifier 1 1 2 , And a resistor 120 connected between them.
このような構成を有する移相回路 1 1 0 Cにおいて、 抵抗 1 1 8と抵抗 1 2 0 の抵抗値は同じに設定されている。 また、 可変抵抗 1 1 6は外部からの制御電圧 に応じて抵抗値が変更可能であり、 例えば、 第 3図に示すように F E Tのチヤネ ルを抵抗体として用い、 第 2図に示す制御入力端子 1 9 4を介して外部から供給 される制御電圧をゲートに印加することにより抵抗値が設定されるようになって いる。  In the phase shift circuit 110C having such a configuration, the resistances of the resistor 118 and the resistor 120 are set to be the same. The resistance of the variable resistor 116 can be changed according to an external control voltage.For example, as shown in FIG. 3, an FET channel is used as a resistor, and a control input shown in FIG. 2 is used. The resistance value is set by applying a control voltage supplied from the outside via a terminal 194 to the gate.
第 3図に示す入力端 1 2 2に所定の交流信号が入力されると、 オペアンプ 1 1 2の非反転入力端子には、 可変抵抗 1 1 6の両端に現れる電圧 VR1が印加される ( また、 抵抗 1 1 8の両端には、 コンデンサ 1 1 4の両端に現れる電圧 VC1と同じ 電圧 VC1が現れる。 2つの抵抗 1 1 8、 1 2 0には同じ電流 Iが流れ、 しかも、 上述したように抵抗 1 1 8と抵抗 1 2 0の各抵抗値は等しいので、 抵抗 1 2 0の 両端にも電圧 VC1が現れる。 オペアンプ 1 1 2の反転入力端子 (電圧 VR1) を基 準にして考えると、 抵抗 1 1 8の両端電圧 VC1をべク トル的に加算したものが入 力電圧 E i に、 抵抗 1 2 0の両端電圧 VC1をべク トル的に減算したものが抵抗 1 2 1 と抵抗 1 2 3の接続点の電圧 (分圧出力) E o ' になる。 When a predetermined AC signal is input to the input terminals 1 2 2 shown in FIG. 3, the operational amplifier 1 1 The voltage VR1 appearing across the variable resistor 1 16 is applied to the non-inverting input terminal of 2 ( and the same voltage VC1 appears across the capacitor 1 14 across the resistor 1 18 The same current I flows through the two resistors 1 1 8 and 1 2 0, and since the values of the resistors 1 1 8 and 1 2 0 are equal as described above, both ends of the resistor 1 2 0 The voltage VC1 also appears at the input voltage Ei. Based on the inverting input terminal (voltage VR1) of the operational amplifier 112, the vector obtained by adding the voltage VC1 across the resistor 118 to the input voltage Ei In addition, the voltage obtained by subtracting the voltage VC1 between both ends of the resistor 120 from the vector is the voltage (divided output) E o 'at the connection point between the resistors 121 and 123.
第 4図は、 前段の移相回路 1 1 0 Cの入出力電圧とキャパシ夕等に現れる電圧 との関係を示すべク トル図である。  FIG. 4 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 110 C at the preceding stage and the voltage appearing in the capacity and the like.
上述したように、 オペアンプ 1 1 2の非反転入力端子に印加される電圧 VR1を 基準に考えると、 入力電圧 E i と分圧電圧 E o ' とは電圧 VC1を合成する方向が 異なるだけでありその絶対値は等しくなる。 したがって、 入力電圧 E i と分圧出 力 E o ' の大きさと位相の関係は、 入力電圧 E i および分圧出力 E o ' を斜辺と し、 電圧 VC1の 2倍を底辺とする二等辺三角形で表すことができ、 分圧出力 E o ' の振幅は周波数に関係なく入力信号の振幅と同じであって、 位相シフ ト量は第 4図に示す 0 1 で表されることがわかる。 この位相シフ ト量 01 は、 周波数に応 じて、 入力電圧 E i を基準として時計回り方向 (位相遅れ方向) に 1 8 0 ° から 3 6 0 ° まで変化する。  As described above, when considering the voltage VR1 applied to the non-inverting input terminal of the operational amplifier 112, the input voltage Ei and the divided voltage Eo 'differ only in the direction in which the voltage VC1 is synthesized. Its absolute value will be equal. Therefore, the relationship between the input voltage E i and the magnitude and phase of the divided output E o 'is represented by an isosceles triangle with the input voltage E i and the divided output E o' as the hypotenuse and the base of which is twice the voltage VC1. It can be seen that the amplitude of the divided voltage output E o 'is the same as the amplitude of the input signal regardless of the frequency, and the phase shift amount is expressed by 01 shown in FIG. The phase shift amount 01 changes from 180 ° to 360 ° in the clockwise direction (phase lag direction) based on the input voltage E i according to the frequency.
また、 移相回路 1 1 0 Cの出力端 1 2 4はオペアンプ 1 1 2の出力端子に接続 されているため、 抵抗 1 2 1の抵抗値を R21、 抵抗 1 2 3の抵抗値を R23とする と、 出力電圧 E o と上述した分圧出力 E o ' との間には、 抵抗 1 2 0の抵抗値に 対して R 21および R23が十分小さいときは、 E o = ( 1 + R 21/R23) E o ' の 関係がある。 したがって、 R21および R 23の値を調整することにより 1より大き な利得が得られ、 しかも第 4図に示すように周波数が変化しても出力電圧 E o の 振幅は一定であり、 位相のみを所定量シフ トさせることができる。  Also, since the output terminal 1 2 4 of the phase shift circuit 1 1 0 C is connected to the output terminal of the operational amplifier 1 1 2, the resistance value of the resistor 1 21 is R21 and the resistance value of the resistor 1 2 3 is R23. Then, between the output voltage E o and the above-mentioned divided output E o ′, when R 21 and R 23 are sufficiently small with respect to the resistance value of the resistor 120, E o = (1 + R 21 / R23) There is a relationship of E o '. Therefore, a gain greater than 1 can be obtained by adjusting the values of R21 and R23, and the amplitude of the output voltage Eo is constant even if the frequency changes, as shown in Fig. 4, and only the phase is changed. A predetermined amount can be shifted.
同様に、 第 5図は第 2図に示した後段の移相回路 1 3 0 Cの構成を抜き出して 示したものである。 同図に示す後段の移相回路 1 3 0 Cは、 差動増幅器の一種で あるオペアンプ 1 3 2と、 入力端 1 4 2に入力された信号の位相を所定量シフ ト させてオペアンプ 1 3 2の非反転入力端子に入力するキャパシ夕 1 3 4および可 変抵抗 1 3 6と、 入力端 1 4 2とオペアンプ 1 3 2の反転入力端子との間に挿入 された抵抗 1 3 8と、 オペアンプ 1 3 2の出力端子に接続されて分圧回路を構成 する抵抗 1 4 1および 1 4 3と、 この分圧回路の出力端子とオペアンプ 1 3 2の 反転入力端子との間に接続された抵抗 1 4 0とを含んで構成されている。 Similarly, FIG. 5 shows an extracted configuration of the phase shift circuit 130C at the subsequent stage shown in FIG. The phase-shift circuit 130C at the subsequent stage shown in the figure shifts the phase of the signal input to the operational amplifier 1332, which is a type of differential amplifier, and the input terminal 142 by a predetermined amount. And the variable resistor 1 3 6 to be input to the non-inverting input terminal of the operational amplifier 13 2 and the resistor inserted between the input terminal 14 2 and the inverting input terminal of the operational amplifier 13 2 1 3 8, resistors 14 1 and 14 3 connected to the output terminal of the operational amplifier 13 2 to form a voltage divider circuit, and the output terminal of this voltage divider circuit and the inverting input terminal of the operational amplifier 13 2 And a resistor 140 connected between them.
このような構成を有する移相回路 1 3 0 Cにおいて、 抵抗 1 3 8と抵抗 1 4 0 の抵抗値は同じに設定されている。 また、 可変抵抗 1 3 6は外部からの制御電圧 に応じて抵抗値が変更可能であり、 第 2図に示す制御入力端子 1 9 5を介して外 部から供給される制御電圧をゲートに印加することにより抵抗値が設定されるよ うになつている。  In the phase shift circuit 130 C having such a configuration, the resistances of the resistor 1 38 and the resistor 140 are set to be the same. The resistance of the variable resistor 1336 can be changed according to an external control voltage, and a control voltage supplied from the outside via a control input terminal 1995 shown in FIG. 2 is applied to the gate. By doing so, the resistance value is set.
第 5図に示した入力端 1 4 2に所定の交流信号が入力されると、 オペアンプ 1 3 2の非反転入力端子には、 コンデンサ 1 3 4の両端に現れる電圧 VC2が印加さ れる。 また、 抵抗 1 3 8の両端には、 可変抵抗 1 3 6の両端に現れる電圧 VR2と 同じ電圧 VR2が現れる。 2つの抵抗 1 3 8、 1 4 0には同じ電流 Iが流れ、 しか も、 上述したように抵抗 1 3 8と抵抗 1 4 0の各抵抗値が等しいので、 抵抗 1 4 0の両端にも電圧 VR2が現れる。 オペアンプ 1 3 2の反転入力端子 (電圧 VC2) を基準にして考えると、 抵抗 1 3 8の両端電圧 VR2をべク トル的に加算したもの が入力電圧 E i に、 抵抗 1 4 0の両端電圧 VR2をべク トル的に減算したものが抵 抗 4 1と抵抗 4 3の接続点の電圧 (分圧出力) E o ' になる。  When a predetermined AC signal is input to the input terminal 142 shown in FIG. 5, a voltage VC2 appearing across the capacitor 134 is applied to the non-inverting input terminal of the operational amplifier 132. The same voltage VR2 appears at both ends of the resistor 1338 as the voltage VR2 appearing at both ends of the variable resistor 1336. The same current I flows through the two resistors 1 3 8 and 1 4 0. However, since the values of the resistors 1 3 8 and 1 4 are equal as described above, both ends of the resistor 1 4 0 are also equal. Voltage VR2 appears. Considering the inverting input terminal (voltage VC2) of the operational amplifier 1332 as a reference, the vectorial addition of the voltage VR2 across the resistor 1338 to the input voltage Ei and the voltage across the resistor 140 The vector subtraction of VR2 becomes the voltage (divided voltage output) E o 'at the connection point between the resistor 41 and the resistor 43.
第 6図は、 後段の移相回路 1 3 0 Cの入出力電圧とキャパシ夕等に現れる電圧 との関係を示すべク トル図である。  FIG. 6 is a vector diagram showing the relationship between the input / output voltage of the subsequent phase shift circuit 130 C and the voltage appearing in the capacity and the like.
上述したように、 オペアンプ 1 3 2の非反転入力端子に印加される電圧 VC2を 基準に考えると、 入力電圧 E i と分圧出力 E o ' とは電圧 VR2を合成する方向が 異なるだけでありその絶対値は等しくなる。 したがって、 入力電圧 E i と分圧出 力 E o ' の大きさと位相の関係は、 入力電圧 E i および分圧出力 E o ' を斜辺と し、 電圧 VR2の 2倍を底辺とする二等辺三角形で表すことができ、 分圧出力 E o ' の振幅は周波数に関係なく入力信号の振幅と同じであって、 位相シフ ト量は第 6図に示す <zi 2 で表されることがわかる。 この位相シフ 卜量 02 は、 周波数に応 じて、 入力電圧 E i を基準として時計回り方向に 0 ° から 1 8 0。 まで変化する。 また、 移相回路 1 30 Cの出力端 144はオペアンプ 132の出力端子に接続 されているため、 抵抗 14 1の抵枋値を R41、 抵抗 143の抵抗値を R43とする と、 出力電圧 Eo と上述した分圧出力 Eo ' との間には、 抵抗 140の抵抗値に 対して R41および R43が十分小さいときは、 Eo = ( 1 +R41/R43) Eo ' の 関係がある。 したがって、 R41および R43の値を調整することにより 1より大き な利得が得られ、 しかも第 6図に示すように周波数が変化しても出力電圧 Eo の 振幅が一定であり、 位相のみを所定量シフ トすることができる。 As described above, when considering the voltage VC2 applied to the non-inverting input terminal of the operational amplifier 1 32, the input voltage E i and the divided output E o 'differ only in the direction in which the voltage VR2 is synthesized. Its absolute value will be equal. Therefore, the relationship between the input voltage E i and the magnitude and phase of the divided output E o 'is represented by an isosceles triangle with the input voltage E i and the divided output E o' as the hypotenuse and the base twice the voltage VR2. It can be seen that the amplitude of the divided voltage output E o 'is the same as the amplitude of the input signal regardless of the frequency, and that the phase shift amount is expressed by <zi 2 shown in FIG. The phase shift amount 02 ranges from 0 ° to 180 ° clockwise with respect to the input voltage E i according to the frequency. To change. Also, since the output terminal 144 of the phase shift circuit 130C is connected to the output terminal of the operational amplifier 132, if the resistor value of the resistor 141 is R41 and the resistance value of the resistor 143 is R43, the output voltage Eo and When R41 and R43 are sufficiently smaller than the resistance value of the resistor 140, there is a relationship of Eo = (1 + R41 / R43) Eo 'with the above-described divided output Eo'. Therefore, a gain greater than 1 can be obtained by adjusting the values of R41 and R43, and the amplitude of the output voltage Eo is constant even if the frequency changes, as shown in Fig. 6, and only the phase is adjusted by a predetermined amount. Can be shifted.
このようにして、 2つの移相回路 1 1 0 C、 1 30 Cのそれそれにおいて位相 が所定量シフ トされ、 第 4図および第 6図に示すように、 同調回路 1全体での位 相シフ ト量は所定の周波数において 360 ° となる。  In this way, the phase of each of the two phase shift circuits 110C and 130C is shifted by a predetermined amount, and as shown in FIGS. 4 and 6, the phase of the entire tuning circuit 1 is changed. The shift amount is 360 ° at a predetermined frequency.
また、 後段の移相回路 1 30 Cの出力は、 第 2図に示すように出力端子 1 92 から同調回路 1の出力として取り出されるとともに、 この移相回路 1 30 Cの出 力を分圧回路 1 60を通した信号が帰還抵抗 1 70を介して前段の移相回路 1 1 0 Cの入力側に帰還されている。 そして、 この帰還された信号と入力抵抗 1 74 を介して入力される信号とが加算され、 この加算された信号が前段の移相回路 1 1 0 Cに入力される。  The output of the subsequent phase shift circuit 130 C is taken out from the output terminal 192 as the output of the tuning circuit 1 as shown in FIG. 2, and the output of the phase shift circuit 130 C is divided by a voltage dividing circuit. The signal passed through 160 is fed back to the input side of the previous phase shift circuit 110 C via the feedback resistor 170. Then, the signal that has been fed back and the signal that is input via the input resistor 174 are added, and the added signal is input to the phase shift circuit 110C at the preceding stage.
このように、 2つの移相回路 1 1 0 C、 1 30 Cによって所定の周波数におけ る位相シフ 卜量の合計が 360 ° となり、 このとき 2つの移相回路 1 10 C、 1 30 C、 分圧回路 1 60および帰還抵抗 1 70による帰還ループのループゲイン を 1以下に設定することにより、 上述した所定の周波数成分の信号のみを通過さ せる同調動作が行われる。  Thus, the total amount of phase shift at a predetermined frequency is 360 ° by the two phase shift circuits 110 C and 130 C, and at this time, the two phase shift circuits 110 C, 130 C, By setting the loop gain of the feedback loop by the voltage dividing circuit 160 and the feedback resistor 170 to 1 or less, the above-described tuning operation for passing only the signal of the predetermined frequency component is performed.
また、 同調回路 1の出力端子 1 92からは、 分圧回路 1 60に入力される前の 移相回路 130 Cの出力が取り出されているため、 同調回路 1自体に利得を持た せることができ、 同調動作と同時に信号振幅の増幅が可能となる。  Also, since the output of the phase shift circuit 130C before being input to the voltage divider circuit 160 is taken out from the output terminal 192 of the tuning circuit 1, the gain can be given to the tuning circuit 1 itself. The signal amplitude can be amplified simultaneously with the tuning operation.
第 7図は、 上述した構成を有する 2つの移相回路 1 1 0 C、 1 30 Cおよび分 圧回路 1 60の全体を伝達関数 K1 を有する回路に置き換えた回路図であり、 伝 達関数 K1 を有する回路と並列に抵抗 R0 を有する帰還抵抗 1 70が、 直列に帰 還抵抗 1 70の n倍の抵抗値 (nRO ) を有する入力抵抗 1 74が接続されてい o 第 8図は、 第 7図に示す回路をミラーの定理によって変換した回路図であり、 変換後のシステム全体の伝達関数 Aは、 FIG. 7 is a circuit diagram in which the entirety of the two phase shift circuits 110 C and 130 C and the voltage divider circuit 160 having the above-described configuration is replaced with a circuit having a transfer function K1, and the transfer function K1 A feedback resistor 170 having a resistor R0 is connected in parallel with a circuit having a resistor R0, and an input resistor 174 having a resistance value (nRO) n times as large as the feedback resistor 170 is connected in series. FIG. 8 is a circuit diagram obtained by converting the circuit shown in FIG. 7 by Miller's theorem, and the transfer function A of the whole system after the conversion is
A = Vo /Vi =Kl / {n ( 1 -Kl ) + 1} · · · (1) で表すことができる。  A = Vo / Vi = Kl / {n (1 -Kl) + 1} · · · · (1)
前段の移相回路 1 1 0 Cの伝達関数 K2 は、 可変抵抗 1 1 6とキャパシ夕 1 1 4からなる CR回路の時定数を T, (可変抵抗 1 1 6の抵抗値を R、 キャパシ夕 1 14の静電容量を Cとすると T , =CR) とすると、  The transfer function K2 of the first-stage phase shift circuit 110C is calculated by setting the time constant of the CR circuit consisting of the variable resistor 1 16 and the capacity 1 T to T, (the resistance value of the variable resistor 1 16 to R and the capacity 1 If the capacitance of 14 is C and T, = CR),
K2 =-a, ( 1 -T , s) / ( l +T i s) . . . (2) となる。 ここで、 s = j wであり、 a, は移相回路 1 10 Cの利得であって a , = ( 1 +R21/R23) > 1である。  K2 = −a, (1−T, s) / (l + Tis)... (2) Here, s = jw, a, is the gain of the phase shift circuit 110C, and a, = (1 + R21 / R23)> 1.
また、 後段の移相回路 1 30 Cの伝達関数 Κ3 は、 キャパシ夕 1 34と抵抗 1 36からなる CR回路の時定数を Τ 2 (キャパシ夕 1 34の静電容量を C、 抵抗 1 36の抵抗値を Rとすると T2 = CR) とすると、 Also, the transfer function Κ3 of the subsequent phase shift circuit 130 C is 時2, the time constant of the CR circuit consisting of the capacitor 134 and the resistor 136 is Τ2 (the capacitance of the capacitor 134 is C, the resistance of the resistor 136 is (If the resistance value is R, T2 = CR)
K3 =a, ( 1 -T2 s) / ( 1 +T, s) · · · (3) となる。 ここで、 a 2 は移相回路 1 30 Cの利得であって a 2 = ( 1 +R41/R 43) 〉 1である。  K3 = a, (1 -T2 s) / (1 + T, s) · · · · (3) Here, a 2 is the gain of the phase shift circuit 130C, and a 2 = (1 + R41 / R43)> 1.
分圧回路 1 60を介することによって信号振幅が 1 /a! a 2 に減衰するもの とすると、 2つの移相回路 1 1 0 C、 1 30 Cと分圧回路 1 60を縦続接続した 場合の全体の伝達関数 K1 は、  The signal amplitude is 1 / a through the voltage divider circuit 160! Assuming that it attenuates to a 2, the overall transfer function K1 when two phase shift circuits 110 C and 130 C and a voltage divider circuit 160 are cascaded is
K1 =- { 1 + (T s) 2 - 2 T s} / { 1 + (Ts) 2 +2 T s} K1 = - {1 + (T s) 2 - 2 T s} / {1 + (Ts) 2 +2 T s}
• · · (4) となる。 なお、 上述した (4) 式においては、 計算を簡単なものとするために、 各移相回路の時定数 Τ\ 、 Τ ' をともに Τとした。 この (4) 式を上述した ( 1 ) 式に代入すると、  • · · (4) In the above equation (4), the time constants Τ \ and Τ 'of each phase shift circuit are both set to Τ in order to simplify the calculation. By substituting equation (4) into equation (1) above,
Α = - { 1 + (Ts) 2 - 2 T s} Α = - {1 + (Ts ) 2 - 2 T s}
/ C ( 2 n+ 1 ) { 1 + (T s) 2 } +2 T s) / C (2 n + 1) {1 + (T s) 2 } +2 T s)
=- { 1/ (2 n+ 1 ) } C { 1 + (Ts) 2 - 2 T s} = - {1 / (2 n + 1)} C {1 + (Ts) 2 - 2 T s}
/ { 1 + (Ts) 2 + 2 T s/ ( 2 n+ l) } 〕 · · - (5) となる。 この ( 5 ) 式によれば、 ω = 0 (直流の領域) のときに A =— l / ( 2 η + 1 ) となって、 最大減衰量を与えることがわかる。 また、 ω =∞のときにも A = _ l / ( 2 η + 1 ) となって、 最大減衰量を与えることがわかる。 さらに、 ω = 1 / Τの同調点においては Α = 1であって帰還抵抗 1 7 0と入力抵抗 1 7 4の抵抗比 ηに無関係であることがわかる。 換言すれば、 第 9図に示すように、 ηの値を変 化させても同調点がずれることなく、 かつ同調点の減衰量も変化しない。 / {1 + (Ts) 2 + 2 T s / (2 n + l)}] · ·-(5). According to this equation (5), it can be seen that when ω = 0 (DC region), A =-l / (2 η + 1), which gives the maximum attenuation. Also, when ω = A, A = _ l / (2 η + 1), which gives the maximum attenuation. Further, at the tuning point of ω = 1 / Τ, Α = 1, which indicates that the resistance ratio η between the feedback resistor 170 and the input resistor 174 is independent. In other words, as shown in FIG. 9, even if the value of η is changed, the tuning point does not shift and the attenuation of the tuning point does not change.
しかも、 前段の移相回路 1 1 0 C内の可変抵抗 1 1 6および後段の移相回路 1 3 0 Cに含まれる可変抵抗 1 3 6の各抵抗値を変えることにより、 移相回路 1 1 0 C、 1 3 0 Cに含まれる各 C R回路の時定数を変化させることができ、 同調周 波数 ωをある範囲で任意に変化させることができる。  In addition, by changing each resistance value of the variable resistor 1 16 in the preceding phase shift circuit 110 C and the variable resistor 1 36 included in the subsequent phase shift circuit 130 C, the phase shift circuit 1 1 1 The time constant of each CR circuit included in 0 C and 130 C can be changed, and the tuning frequency ω can be changed arbitrarily within a certain range.
ところで、 上述した第 7図において、 伝達関数 K 1 で示される全域通過回路が 入力インピーダンスを有する場合、 帰還抵抗 1 7 0とこの全域通過回路の入カイ ンピーダンスによる分圧回路が形成されるため、 全域通過回路を含む帰還ループ のループゲインは伝達関数 K 1 の絶対値より小さくなる。 全域通過回路の入カイ ンビーダンスとは、 前段の移相回路 1 1 0 Cの入力インピーダンスであり、 オペ アンプ 1 1 2の入力抵抗 1 1 8に可変抵抗 1 1 6とキャパシ夕 1 1 4からなる C R回路の直列インビーダンスが並列に接続されて形成される入力インピーダンス に他ならない。 したがって、 全域通過回路の入力インピーダンスによる帰還ルー プのループゲインの損失を補償するには、 全域通過回路自体の利得を 1以上に設 定することが必要である。  By the way, in FIG. 7 described above, when the all-pass circuit represented by the transfer function K 1 has an input impedance, a voltage dividing circuit is formed by the feedback resistor 170 and the input impedance of the all-pass circuit. The loop gain of the feedback loop including the all-pass circuit is smaller than the absolute value of the transfer function K1. The input impedance of the all-pass circuit is the input impedance of the previous stage phase shift circuit 110 C, which consists of the input resistance 1 18 of the operational amplifier 1 12 and the variable resistance 1 16 and the capacity 1 1 4 This is nothing but the input impedance formed by connecting the series impedance of the CR circuit in parallel. Therefore, to compensate for the loss of the loop gain of the feedback loop due to the input impedance of the all-pass circuit, it is necessary to set the gain of the all-pass circuit itself to 1 or more.
例えば、 移相回路 1 1 0 Cに含まれる抵抗 1 2 1、 1 2 3による分圧回路を無 視して考える (分圧比が 1の場合であって、 上述した ( 2 ) 式における a , が 1 の場合を考える) と、 移相回路 1 1 0 Cは、 ( 2 ) 式によれば、 入力された周波 数に応じて利得が 1倍のホロヮ回路から利得が— 1倍の反転増幅器としての範囲 で動作しなければならないので、 抵抗 1 1 8と 1 2 0の抵抗比を 1以外にするこ とは好ましくない。 なぜなら、 抵抗 1 1 8、 1 2 0の各抵抗値を R 18、 R20とす る 、 移相回路 1 1 0 Cが反転増幅器として動作するときの利得は— R 20ノ R 18 であるが、 ホロワ回路として動作する場合の利得は抵抗 1 1 8と抵抗 1 2 0の抵 抗比にかかわらず常に 1であるから、 抵抗 1 1 8と抵抗 1 2 0の抵抗比が 1でな い場合には、 移相回路 1 1 0 Cが動作する全領域において、 その入出力間の位相 だけが変化し、 出力振幅が変化しない理想条件が満足できなくなるからである。 移相回路 1 1 0 Cの出力側に抵抗 1 2 1と抵抗 1 2 3からなる分圧回路を付加 し、 この分圧回路を介してオペアンプ 1 1 2の反転入力端子への帰還を施すこと により、 抵抗 1 1 8と抵抗 1 2 0の抵抗比を 1に保持したまま移相回路 1 1 0 C の利得を 1以上に設定することが可能となる。 同様に、 移相回路 1 3 0 Cの出力 側に抵抗 1 4 1と抵抗 1 4 3からなる分圧回路を付加し、 この分圧回路を介して オペアンプ 1 32の反転入力端子への帰還を施すことにより、 抵抗 1 3 8と抵抗 1 4 0の抵抗比を 1に保持したまま移相回路 1 3 0 Cの利得を 1以上に設定する ことが可能となる。 For example, ignoring the voltage dividing circuit composed of the resistors 122 and 123 included in the phase shift circuit 110 C (when the voltage dividing ratio is 1, a, Is 1) and the phase-shift circuit 110C is, according to equation (2), an inverting amplifier with a gain of-1 times from a hollow circuit with a gain of 1 according to the input frequency. Therefore, it is not preferable to set the resistance ratio between the resistors 118 and 120 to a value other than unity. Because the resistance values of the resistors 1 18 and 1 20 are R 18 and R 20, the gain when the phase shift circuit 1 10 C operates as an inverting amplifier is — R 20 no R 18, When operating as a follower circuit, the gain is always 1 irrespective of the resistance ratio of resistor 118 and resistor 120, so the resistance ratio of resistor 118 and resistor 120 is not 1. In this case, only the phase between the input and the output changes in the entire region where the phase shift circuit 110C operates, and the ideal condition that the output amplitude does not change cannot be satisfied. Add a voltage divider consisting of resistors 1 2 1 and 1 2 3 to the output side of the phase shift circuit 1 1 0 C, and provide feedback to the inverting input terminal of the operational amplifier 1 1 2 via this voltage divider. Thus, it is possible to set the gain of the phase shift circuit 110 C to 1 or more while maintaining the resistance ratio of the resistors 1 18 and 120 to 1. Similarly, a voltage divider consisting of resistors 141 and 1443 is added to the output side of the phase shifter 130C, and feedback to the inverting input terminal of the operational amplifier 132 is performed via this voltage divider. This makes it possible to set the gain of the phase shift circuit 130 C to 1 or more while maintaining the resistance ratio of the resistances 1338 and 140 to 1.
なお、 ( 2 ) 式あるいは (3 ) 式から第 4図、 第 6図に示した 01 (入力電圧 Ei を基準として時計回り方向 (位相遅れ方向) に 1 8 0 ° ^ 01 ≤ 3 6 0 ° ) 、 Ι (入力電圧 Ei を基準として時計回り方向に 0。 ^ 1 8 0 ° ) を求め ると、 Note that from equation (2) or equation (3), 180 ° in the clockwise direction (phase lag direction with respect to the input voltage Ei) as shown in FIG. 4 and FIG. ), Ι (0 in the clockwise direction with reference to the input voltage Ei. ^ 180 °)
1 = t a n { 2 ωΤ , / ( 1 -ω2 Τ .2) } · · · (6)1 = tan {2 ωΤ, / (1 -ω 2 Τ. 2 )} · · · (6)
Φ2 = t a n { 2 ωΤ2 / ( 1 -ω2 Τ,2) } · · · (7) となる。 Φ2 = tan {2 ωΤ 2 / (1 -ω 2 Τ, 2 )} · · · (7)
Τ ι =Τ2 (二 Τ) の場合には、 ω= 1/Τのときに 2つの移相回路 1 1 0 C、 1 3 0 Cによる位相シフト量の合計は 3 6 0。 となって上述した同調動作が行わ れ、 このとき 01 = 2 7 0 ° 、 φΐ = 9 0。 となる。 In the case of ι ι = Τ 2 (2 Τ), when ω = 1 / Τ, the total amount of phase shift by the two phase shift circuits 110 C and 130 C is 360. And the above-mentioned tuning operation is performed. At this time, 01 = 270 ° and φ ° = 90. Becomes
第 1 0図は、 2つの移相回路 1 1 0 C、 1 3 0 Cに入出力される信号間の位相 関係を示す図であり、 前段の移相回路 1 1 0 Cに入力される信号の周波数と同調 周波数が等しい場合を示している。  FIG. 10 is a diagram showing the phase relationship between the signals input to and output from the two phase shift circuits 110C and 130C, and the signals input to the preceding phase shift circuit 110C. This shows the case where the frequency is equal to the tuning frequency.
前段の移相回路 1 1 0 Cの出力信号 S 2は、 第 1 0図 (A) に示すように、 入 力信号 S 1を基準として、 時計回り方向に 01 = 2 7 0 ° 位相がシフ 卜する。 ま た、 後段の移相回路 1 30 Cの出力信号 S 3は、 第 1 0図 (B) に示すように、 入力信号 S 2を基準として時計回り方向に 2 = 9 0 ° 位相がシフ トする。  As shown in FIG. 10 (A), the output signal S 2 of the preceding phase shift circuit 110 C has a phase shift of 01 = 270 ° clockwise with respect to the input signal S 1 as shown in FIG. To remove. Further, as shown in FIG. 10 (B), the output signal S 3 of the subsequent phase shift circuit 130 C has a phase shift of 2 = 90 ° clockwise with respect to the input signal S 2. I do.
したがって、 2つの移相回路 1 1 0 C、 1 3 0 Cを縦続接続すると、 第 1 0図 (C) に示すように、 全体として 3 6 0 ° 位相がシフ 卜する。 ところが、 前段の移相回路 1 1 0 Cに入力される信号の周波数より設定されて いる同調周波数の方が高い場合には、 上述した 0 1 と 02 を足し合わせた結果が 3 6 0 ° とはならない。 Therefore, when the two phase shift circuits 110 C and 130 C are connected in cascade, the phase shifts by 360 ° as a whole as shown in FIG. 10 (C). However, if the set tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit 110C, the result of adding the above 01 and 02 is 360 °. Not be.
第 1 1図は、 前段の移相回路 1 1 0 Cに入力される信号の周波数より同調周波 数の方が高い場合の各移相回路の入出力信号間の位相関係を示す図である。  FIG. 11 is a diagram showing the phase relationship between input and output signals of each phase shift circuit when the tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit 110C.
前段の移相回路 1 1 0 Cに入力される信号の周波数より同調周波数の方が高い 場合とは、 入力される信号の周波数が同調周波数より相対的に低い場合であり、 この場合には、 第 4図および第 6図から明らかなように、 前段の移相回路 1 1 0 Cの位相シフ ト量 0 1 は 2 7 0 ° より小さくなり、 後段の移相回路 1 3 0 Cの位 相シフ ト量 02 は 9 0 ° より小さくなる。 したがって、 0 1 および 02 はそれぞ れ第 1 1図 ( A ) 、 第 1 1図 (B ) のように表され、 2つの移相回路 1 1 0 C、 1 3 0 Cを縦続接続した場合の位相シフ ト量の合計は、 第 1 1図 (C ) に示すよ うに、 3 6 0 ° よりも小さくなる。  The case where the tuning frequency is higher than the frequency of the signal input to the preceding phase shift circuit 110C is the case where the frequency of the input signal is relatively lower than the tuning frequency. In this case, As is clear from FIGS. 4 and 6, the phase shift amount 0 1 of the first-stage phase shift circuit 110 C is smaller than 270 °, and the phase shift amount of the second-stage phase shift circuit 130 C is 130 °. The shift amount 02 is smaller than 90 °. Therefore, 0 1 and 02 are represented as shown in Fig. 11 (A) and Fig. 11 (B), respectively, and when two phase shift circuits 110 C and 130 C are connected in cascade. As shown in FIG. 11 (C), the sum of the phase shift amounts becomes smaller than 360 °.
ところで、 このような場合に同調周波数を実際に入力される信号の周波数に近 づけるには、 上述した 0 1 および 02 を大きくすればよく、 具体的には、 第 2図 に示した可変抵抗 1 1 6の両端電圧 VR1と可変抵抗 1 3 6の両端電圧 VR2を大き くすればよい。 例えば、 可変抵抗 1 1 6あるいは 1 3 6を ηチャネル型の F Ε Τ で形成した場合には、 ゲー卜電圧を下げてチャネル抵抗を大きくすればよい。 一方、 前段の移相回路 1 1 0 Cに入力される信号の周波数より同調周波数の方 が低い場合も、 上述した 0 1 と 02 を足し合わせた結果が 3 6 0 ° とはならない c 第 1 2図は、 前段の移相回路 1 1 0 Cに入力される信号周波数より同調周波数 の方が低い場合の各移相回路の入出力信号間の位相関係を示す図である。  By the way, in such a case, in order to bring the tuning frequency closer to the frequency of the actually input signal, it is sufficient to increase the values of 01 and 02 described above. Specifically, the variable resistor 1 shown in FIG. The voltage VR1 between both ends of 16 and the voltage VR2 between both ends of the variable resistor 13 may be increased. For example, when the variable resistor 116 or 136 is formed of an η-channel type F Ε Ε, the gate voltage may be reduced to increase the channel resistance. On the other hand, if the tuning frequency is lower than the frequency of the signal input to the phase shift circuit 110 C at the preceding stage, the result of adding 0 1 and 02 described above does not become 360 °. FIG. 2 is a diagram showing the phase relationship between input and output signals of each phase shift circuit when the tuning frequency is lower than the signal frequency input to the preceding phase shift circuit 110C.
前段の移相回路 1 1 0 Cに入力される信号の周波数より同調周波数の方が低い 場合とは、 入力される信号の周波数が同調周波数より相対的に高い場合であり、 この場合には、 第 4図および第 6図から明らかなように、 前段の移相回路 1 1 0 Cの位相シフ 卜量 0 1 は 2 7 0。 より大きくなり、 後段の移相回路 1 3 0 Cの位 相シフ ト量 02 は 9 0 ° より大きくなる。 したがって、 0 1 および 02 はそれそ れ第 1 2図 (Α ) 、 第 1 2図 (Β ) のように表され、 2つの移相回路 1 1 0 C、 1 3 0 Cを縦続接続した場合の位相シフ ト量の合計は、 第 1 2図 (C ) に示すよ うに、 3 6 0 ° よりも大きくなる。 The case where the tuning frequency is lower than the frequency of the signal input to the preceding phase shift circuit 110C is the case where the frequency of the input signal is relatively higher than the tuning frequency. In this case, As is apparent from FIGS. 4 and 6, the phase shift amount 0 1 of the preceding phase shift circuit 110 C is 270. The phase shift amount 02 of the subsequent phase shift circuit 130 C becomes larger than 90 °. Therefore, 0 1 and 02 are represented as shown in Fig. 12 (Α) and Fig. 12 (Β), respectively, and when two phase shift circuits 1 1 0 C and 1 3 0 C are cascaded. The sum of the phase shift amounts of the two is shown in Fig. 12 (C). Thus, it is larger than 360 °.
ところで、 このような場合に同調周波数を実際に入力される信号の周波数に近 づけるには、 上述した 01 および 02 の絶対値を小さくすればよく、 具体的には、 第 2図に示した可変抵抗 1 1 6の両端電圧 VR1と可変抵抗 1 3 6の両端電圧 VR2 を小さくすればよい。 例えば、 可変抵抗 1 1 6および 1 3 6を nチャネル型の F E Tで形成した場合には、 ゲート電圧を上げてチャネル抵抗を小さくすればよい c 以上に説明したように、 上述した同調回路 1では、 移相回路 1 1 0 C内の抵抗 1 1 8と抵抗 1 2 0の抵抗値を同じ値に設定するとともに移相回路 1 3 0 C内の 抵抗 1 3 8と抵枋 1 4 0の抵抗値を同じ値に設定しているため、 同調周波数を変 えた際の振幅変動を防止でき、 ほぼ一定の振幅を有する同調出力が得られる。 特に、 同調出力の振幅変動を抑えたことにより、 上述した抵抗比 nを大きく し て同調回路 1の Qの値を大きくすることができる。 すなわち、 ループゲインに周 波数依存性があると、 利得の低い周波数では抵抗比 nを大きく しても Qが上がら ず、 利得の高い周波数ではループゲインが 1を越えて発振することがある。 した がって、 振幅変動が大きい場合には、 このような発振を防止するために抵抗比 n をあまり大きな値に設定することができず、 同調回路 1の Qの値も小さくなる。 一方、 第 2図に示す同調回路 1によれば、 抵抗比 nを大きく設定しても同調回路 1の同調出力は振幅変動を起こさないため、 抵抗比 nを大きく して Qの値を大き くすることができる。  By the way, in such a case, in order to bring the tuning frequency closer to the frequency of the actually input signal, the absolute values of 01 and 02 described above may be reduced, and more specifically, the tuning shown in FIG. The voltage VR1 across the resistor 1 16 and the voltage VR2 across the variable resistor 1 36 may be reduced. For example, if the variable resistors 1 16 and 1 36 are formed by n-channel FETs, it is sufficient to increase the gate voltage and reduce the channel resistance.c As described above, in the tuning circuit 1 described above, , Set the resistance values of the resistors 118 and 120 in the phase shift circuit 110C to the same value, and set the resistance of the resistor 130 and the resistor 140 in the phase shift circuit 130C to the same value. Since the values are set to the same value, it is possible to prevent amplitude fluctuations when the tuning frequency is changed, and to obtain a tuning output having a substantially constant amplitude. In particular, by suppressing the amplitude fluctuation of the tuning output, it is possible to increase the value of Q of the tuning circuit 1 by increasing the resistance ratio n described above. In other words, if the loop gain has a frequency dependence, Q does not increase at a low gain frequency even if the resistance ratio n is increased, and the loop gain may exceed 1 at a high gain frequency. Therefore, when the amplitude fluctuation is large, the resistance ratio n cannot be set to a very large value to prevent such oscillation, and the value of Q of the tuning circuit 1 also becomes small. On the other hand, according to the tuning circuit 1 shown in FIG. 2, since the tuning output of the tuning circuit 1 does not cause amplitude fluctuation even if the resistance ratio n is set to a large value, the resistance value n is increased and the value of Q is increased. can do.
また、 分圧回路 1 6 0を介して減衰した信号を帰還信号として用いるとともに、 分圧回路 1 6 0に入力前の信号を同調回路 1の出力として取り出すことにより、 入力信号の中から所定の周波数成分のみを抽出する同調動作とともに、 この抽出 された信号に対して所定の増幅を行うことができる。  In addition, a signal attenuated through the voltage dividing circuit 160 is used as a feedback signal, and a signal before being input to the voltage dividing circuit 160 is taken out as an output of the tuning circuit 1 so that a predetermined signal can be selected from the input signals. Along with the tuning operation for extracting only the frequency component, a predetermined amplification can be performed on the extracted signal.
なお、 上述した第 2図に示した同調回路 1において、 同調回路 1に含まれる各 移相回路内のオペアンプ 1 1 2あるいは 1 3 2の出力端に接続された分圧回路の うち、 いずれか一方の分圧回路を省略し、 あるいは分圧比を 1に設定してもよい。 例えば、 移相回路 1 1 0 C内の分圧回路を省略してオペアンプ 1 1 2の出力端子 を抵抗 1 2 0の一方端に直接接続してもよい。  In the tuning circuit 1 shown in FIG. 2 described above, one of the voltage dividing circuits connected to the output terminals of the operational amplifiers 112 and 132 in each phase shift circuit included in the tuning circuit 1 One of the voltage dividing circuits may be omitted, or the voltage dividing ratio may be set to 1. For example, the output terminal of the operational amplifier 112 may be directly connected to one end of the resistor 120 without omitting the voltage dividing circuit in the phase shift circuit 110C.
このように、 縦続接続された 2つの移相回路の一方について分圧回路を省略し てゲインを 1に設定すると、 他方の移相回路 1 1 0 Cのゲインを 1より大きな値 に設定することにより、 第 2図に示した同調回路 1と同様の同調動作が行われる c また、 増幅動作が不要な場合には、 移相回路 1 3 0 Cの後段の分圧回路 1 6 0 を省略し、 移相回路 1 3 0 Cの出力を直接前段側に帰還してもよい。 あるいは、 分圧回路 1 6 0内の抵抗 1 6 2の抵抗値を極端に小さな値にして分圧比を 1に設 定してもよい。 Thus, the voltage divider is omitted for one of the two cascaded phase shifters. With a gain setting of 1 Te, by setting the gain of the other phase shift circuit 1 1 0 C to a value greater than 1, c The same tuning operation as the tuning circuit 1 shown in FIG. 2 is performed, If the amplification operation is not required, the voltage dividing circuit 160 at the subsequent stage of the phase shift circuit 130 C may be omitted, and the output of the phase shift circuit 130 C may be directly fed back to the preceding stage. Alternatively, the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
〔C . 周波数制御回路の詳細構成および動作〕  [C. Detailed configuration and operation of frequency control circuit]
次に、 第 1図に示した周波数制御回路 2の詳細について説明する。 第 1 3図は、 周波数制御回路 2の構成を示す回路図であり、 周波数制御回路 2に含まれる位相 差検出回路 3、 制御電圧発生回路 4の詳細構成が示されている。  Next, details of the frequency control circuit 2 shown in FIG. 1 will be described. FIG. 13 is a circuit diagram showing the configuration of the frequency control circuit 2, and shows the detailed configurations of the phase difference detection circuit 3 and the control voltage generation circuit 4 included in the frequency control circuit 2.
第 1 3図に示す位相差検出回路 3は、 ソースホロワ等のバッファ 3 0と、 2つ の電圧比較器 3 1、 3 2と、 E X— O R (排他的論理和) ゲート 3 3とを含んで 構成されている。  The phase difference detection circuit 3 shown in FIG. 13 includes a buffer 30 such as a source follower, two voltage comparators 31 and 32, and an EX-OR (exclusive OR) gate 33. It is configured.
2つの電圧比較器 3 1、 3 2の反転入力端子はともに接地されており、 一方の 電圧比較器 3 1の非反転入力端子には同調回路 1の制御出力端子 1 9 6から出力 される信号 (後段の移相回路 1 3 0 Cの入力信号) がバッファ 3 0を介して入力 されており、 他方の電圧比較器 3 2の非反転入力端子には同調回路 1の制御出力 端子 1 9 7から出力される信号 (後段の移相回路 1 3 0 Cの出力信号) が入力さ れている。  The inverting input terminals of the two voltage comparators 31 and 32 are both grounded, and the non-inverting input terminal of one of the voltage comparators 31 has a signal output from the control output terminal 196 of the tuning circuit 1. (The input signal of the subsequent phase shift circuit 130 C) is input through the buffer 30, and the non-inverting input terminal of the other voltage comparator 32 is the control output terminal 19 9 7 of the tuning circuit 1. (Output signal of the subsequent phase shift circuit 130 C) is input.
各電圧比較器 3 1、 3 2は、 非反転入力端子に入力される信号の電圧レベルが 0 Vより高いか低いかによつて、 正負いずれかの電圧レベルを有する矩形波信号 を出力する。 すなわち、 電圧比較器 3 1、 3 2はそれそれ同調回路 1の制御出力 端子 1 9 6、 1 9 7から出力される信号と周波数および位相が等しい矩形波信号 を出力する。  Each of the voltage comparators 31 and 32 outputs a square wave signal having a positive or negative voltage level depending on whether the voltage level of the signal input to the non-inverting input terminal is higher or lower than 0 V. That is, the voltage comparators 31 and 32 respectively output rectangular wave signals having the same frequency and phase as the signals output from the control output terminals 196 and 197 of the tuning circuit 1.
E X— O Rゲート 3 3は、 各電圧比較器 3 1、 3 2からそれそれ出力される矩 形波信号を入力としており、 各矩形波信号が有する正極性の電圧レベルを論理 H に、 負極性の電圧レベルを論理 Lに対応させて、 これら 2入力の排他的論理和を 求める。  EX—OR gate 33 receives the square wave signals output from each of the voltage comparators 31 and 32 as inputs, and sets the positive voltage level of each square wave signal to logic H and negative polarity The voltage level of these two inputs is made to correspond to logic L, and the exclusive OR of these two inputs is calculated.
したがって、 例えば同調回路 1の 2つの制御出力端子 1 9 6、 1 9 7から出力 される 2つの信号の位相差が 9 0 ° である場合には、 電圧比較器 3 1、 3 2から それそれ出力される矩形波信号の位相差は 9 0 ° となり、 E X— O Rゲート 3 3 からはこれら矩形波信号の 2倍の周波数を有しデューティ比が 5 0 %の矩形波信 号が出力される。 Therefore, for example, output from the two control output terminals 196 and 197 of tuning circuit 1 If the phase difference between the two signals is 90 °, the phase difference between the square wave signals output from the voltage comparators 31 and 32 is 90 °, and the EX-OR gate 3 3 Outputs a square wave signal having a frequency twice that of these square wave signals and a duty ratio of 50%.
第 1 3図に示す制御電圧発生回路 4は、 抵抗 4 0およびキャパシ夕 4 1を含ん で構成されるローパスフィル夕と、 所定のバイアス電圧を発生する可変抵抗 4 2 と、 オペアンプ 4 4、 抵抗 4 5および抵抗 4 6を含んで構成される増幅器とを備 えている。  The control voltage generation circuit 4 shown in FIG. 13 includes a low-pass filter including a resistor 40 and a capacitance 41, a variable resistor 42 for generating a predetermined bias voltage, an operational amplifier 44, and a resistor. And an amplifier including a resistor 45 and a resistor 46.
ローパスフィル夕は、 抵抗 4 0およびキャパシ夕 4 1により定まる時定数に応 じて、 E X— O Rゲート 3 3から出力される矩形波信号から高周波成分を除去す る。 したがって、 ローパスフィル夕の出力電圧は、 E X— O Rゲート 3 3から出 力される矩形波信号のデューティ比が 5 0 %より大きい場合 (論理 Hの相対的割 合が多い場合) には徐々に上昇し、 反対に E X— O Rゲート 3 3から出力される 矩形波信号のデューティ比が 5 0 %より小さい場合 (論理 Lの相対的割合が多い 場合) には徐々に低下する。 なお、 第 1 3図に示す口一パスフィルタは、 増幅器 の前段に挿入されているが、 増幅器の帰還抵抗と並列にキャパシ夕を接続する等 により、 増幅器と一体的に形成してもよい。  The low-pass filter removes high-frequency components from the square wave signal output from the EX-OR gate 33 according to the time constant determined by the resistor 40 and the capacity 41. Therefore, the output voltage of the low-pass filter gradually increases when the duty ratio of the square wave signal output from the EX-OR gate 33 is larger than 50% (when the relative ratio of logic H is large). When the duty ratio of the square wave signal output from the EX-OR gate 33 is smaller than 50% (when the relative ratio of logic L is large), it gradually decreases. Although the single-pass filter shown in FIG. 13 is inserted before the amplifier, it may be formed integrally with the amplifier by connecting a capacitor in parallel with the feedback resistor of the amplifier.
オペアンプ 4 4の出力端子と反転入力端子の間には抵抗 4 5が接続され、 また 反転入力端子は抵抗 4 6を介して接地されている。 このような接続により、 オペ アンプ 4 4は、 抵抗 4 5、 4 6の抵抗比に応じた増幅度を有する増幅器として機 能する。 オペアンプ 4 4で増幅された電圧は、 以下に説明するように所定のバイ ァス電圧と加算されて制御電圧が生成された後、 同調回路 1に入力される。 オペアンプ 4 4の反転入力端子には、 2つの固定端子が正電源 Vddと負電源 V ssに接続された可変抵抗 4 2の可動端子が抵抗 4 3を介して接続されている。 し たがって、 この可変抵抗 4 2を含んで構成されるバイアス回路によって、 ォペア ンプ 4 4の出力端の電圧は所定のバイアス電圧に設定される。 なお、 この可変抵 抗 4 2を実際に半導体基板上に形成する場合には F E T等の能動素子を利用して 形成することができる。  A resistor 45 is connected between the output terminal of the operational amplifier 44 and the inverting input terminal, and the inverting input terminal is grounded via the resistor 46. With such a connection, the operational amplifier 44 functions as an amplifier having an amplification degree corresponding to the resistance ratio of the resistors 45 and 46. The voltage amplified by the operational amplifier 44 is added to a predetermined bias voltage to generate a control voltage as described below, and then input to the tuning circuit 1. To the inverting input terminal of the operational amplifier 44, a movable terminal of a variable resistor 42 having two fixed terminals connected to a positive power supply Vdd and a negative power supply V ss is connected via a resistor 43. Therefore, the bias circuit including the variable resistor 42 sets the voltage at the output terminal of the operational amplifier 44 to a predetermined bias voltage. When this variable resistance 42 is actually formed on a semiconductor substrate, it can be formed using an active element such as FET.
このバイアス回路は、 同調回路 1の同調周波数と入力信号の周波数とがー致し たときに (すなわち誤差がないときに) 、 同調回路 1の一方の移相回路 1 1 0 C に含まれる可変抵抗 1 1 6および他方の移相回路 1 3 0 Cに含まれる可変抵抗 1 3 6の各ゲー卜に印加すべき電圧を設定するために設けられている。 This bias circuit matches the tuning frequency of tuning circuit 1 with the frequency of the input signal. The variable resistor 1 16 included in one phase shift circuit 110 C of the tuning circuit 1 and the variable resistor 13 included in the other phase shift circuit 130 C of the tuning circuit 1 It is provided to set the voltage to be applied to each gate of No. 6.
なお、 可変抵抗 1 1 6および 1 3 6を F E Tを用いて構成した場合には、 各 F E Tに同一のゲート電圧を印加しても、 各 F E Tのソース電位等が異なると、 抵 抗値が等しくならないことがある。 このため、 実際に回路を組む場合には、 制御 電圧発生回路 4の出力電圧に応じて互いに連動して可変可能な 2種類のゲート電 圧を発生する分配器 5を制御電圧発生回路 4と同調回路 1の間に接続するのが望 ましい。 あるいは、 同一のゲート電圧が印加されたときに抵抗値が等しくなるよ うに F E Tを選別してもよく、 このような選別を行えば第 1 3図に示した分配器 5を省略することができる。  When the variable resistors 1 16 and 1 36 are configured using FETs, even if the same gate voltage is applied to each FET, if the source potential of each FET is different, the resistance values will be equal. May not be. For this reason, when actually constructing a circuit, the distributor 5 that generates two kinds of gate voltages that can be varied in conjunction with each other according to the output voltage of the control voltage generator 4 is synchronized with the control voltage generator 4. It is desirable to connect between circuit 1. Alternatively, the FETs may be selected so that the resistance values become equal when the same gate voltage is applied, and if such a selection is performed, the distributor 5 shown in FIG. 13 can be omitted. .
本実施形態の周波数制御回路 2はこのような詳細構成を有しており、 次にその 詳細動作を場合を別けて説明する。  The frequency control circuit 2 of the present embodiment has such a detailed configuration. Next, the detailed operation will be described with different cases.
C C - 1 . 入力信号の周波数より同調周波数が高い場合〕  C C-1. When the tuning frequency is higher than the frequency of the input signal]
第 1 4図は、 同調回路 1に入力される信号の周波数に比べて同調回路 1の同調 周波数が高い場合のタイミング図であり、 周波数制御回路 2内の各構成の入出力 夕イ ミングが示されている。 同図 (A ) 〜 (F ) は第 1 3図の回路図において示 した符号 A〜Fに対応している。  Fig. 14 is a timing chart when the tuning frequency of the tuning circuit 1 is higher than the frequency of the signal input to the tuning circuit 1, and shows the input / output timing of each component in the frequency control circuit 2. Have been. 13A to 13F correspond to reference numerals A to F shown in the circuit diagram of FIG.
同調回路 1の入力信号の周波数より同調周波数の方が高い場合には、 第 1 1図 に示したように後段の移相回路 1 3 0 Cの位相シフ ト量 02 が 9 0 ° より小さく なるため、 同調回路 1の 2つの制御出力端子 1 9 6、 1 9 7から出力される 2つ の信号はそれそれ、 第 1 4図 (A ) に示す制御出力①および第 1 4図 (B ) に示 す制御出力②のような位相関係を有する。  When the tuning frequency is higher than the frequency of the input signal of the tuning circuit 1, as shown in FIG. 11, the phase shift amount 02 of the subsequent phase shift circuit 130 C becomes smaller than 90 °. Therefore, the two signals output from the two control output terminals 196 and 197 of the tuning circuit 1 are the control output 制 御 shown in Fig. 14 (A) and the control output ① shown in Fig. 14 (B), respectively. It has a phase relationship like the control output す shown in Fig. 1.
位相差検出回路 3内の一方の電圧比較器 3 1は、 上述した制御出力①の電圧レ ベルが 0 Vより高いときには Hレベルの信号を出力する。 したがって、 電圧比較 器 3 1からは、 第 1 4図 (C ) に示すように制御出力①と同じ周波数および位相 を有する信号、 すなわち、 制御出力①の電圧レベルが正極性のときに Hレベル、 反対に制御出力①の電圧レベルが負極性のときに Lレベルとなる矩形波信号が出 力される。 同様に、 位相差検出回路 3内の他方の電圧比較器 3 2は、 上述した制御出力② の電圧レベルが 0 Vより高いときには Hレベルの信号を出力する。 したがって、 電圧比較器 3 2からは、 第 1 4図 (D ) に示すように制御出力②と同じ周波数お よび位相を有する信号、 すなわち、 制御出力②の電圧レベルが正極性のときに H レベル、 反対に制御出力②の電圧レベルが負極性のときに Lレベルとなる矩形波 信号が出力される。 One voltage comparator 31 in the phase difference detection circuit 3 outputs an H-level signal when the voltage level of the control output 高 い is higher than 0 V. Therefore, the voltage comparator 31 outputs a signal having the same frequency and phase as the control output ① as shown in FIG. 14 (C), that is, an H level when the voltage level of the control output 正極 is positive, Conversely, when the voltage level of the control output 負極 is negative, a rectangular wave signal that becomes L level is output. Similarly, the other voltage comparator 32 in the phase difference detection circuit 3 outputs an H-level signal when the voltage level of the control output is higher than 0 V. Therefore, from the voltage comparator 32, as shown in FIG. 14 (D), a signal having the same frequency and phase as the control output 、, that is, the H level when the voltage level of the control output 正極 is positive On the other hand, when the voltage level of the control output 負極 is negative, a rectangular wave signal which becomes L level is output.
E X— O Rゲート 3 3は、 2つの電圧比較器 3 1、 3 2の各出力の論理が異な るときに Hレベルとなり、 各出力の論理が同じときに Lレベルとなる矩形波信号 を出力する。 同調回路 1の入力信号の周波数より同調周波数の方が高い場合には、 後段の移相回路 1 3 0 Cの位相シフ ト量 2 が 9 0 ° より小さくなるため、 第 1 4図 (E ) に示すように、 デューティ比が 5 0 %より小さい矩形波信号が出力さ れる。  EX—OR gate 33 outputs a square wave signal that goes high when the logic of each output of the two voltage comparators 31 and 32 is different, and goes low when the logic of each output is the same. . When the tuning frequency is higher than the frequency of the input signal of the tuning circuit 1, the phase shift amount 2 of the subsequent phase shift circuit 130 C becomes smaller than 90 °, and therefore, FIG. As shown in the figure, a rectangular wave signal with a duty ratio smaller than 50% is output.
この E X— O Rゲート 3 3から出力される矩形波信号は、 制御電圧発生回路 4 内の抵抗 4 0とキャパシ夕 4 1からなる口一パスフィル夕を介してオペアンプ 4 4の非反転入力端子に入力される。 このローパスフィル夕は、 入力される矩形波 信号から高周波成分を除去するために用いられており、 この入力される矩形波信 号のデューティ比が 5 0 %より小さい場合には、 第 1 4図 (F ) に示すように、 ローパスフィル夕の出力電圧は 0 Vより低くなる。  The square-wave signal output from the EX-OR gate 33 is input to the non-inverting input terminal of the operational amplifier 44 via a single-pass filter composed of a resistor 40 and a capacitor 41 in the control voltage generating circuit 4. Is done. This low-pass filter is used to remove high-frequency components from the input rectangular wave signal. If the duty ratio of the input rectangular wave signal is smaller than 50%, the low-pass filter shown in FIG. As shown in (F), the output voltage of the low-pass filter is lower than 0 V.
このローパスフィルタの出力電圧はオペアンプ 4 4を含んで構成される増幅器 によって所定の増幅度で増幅され、 さらに可変抵抗 4 2によって設定された所定 のバイアス電圧が加算される。 そして、 この加算された電圧を分配器 5に印加す ることにより、 同調回路 1の制御入力端子 1 9 4、 1 9 5に印加される各制御電 圧が生成される。 したがって、 E X— O Rゲート 3 3から出力される矩形波信号 のデューティ比が 5 0 %より小さい場合には、 これらの制御電圧も低い方に変化 する。  The output voltage of this low-pass filter is amplified at a predetermined amplification degree by an amplifier including an operational amplifier 44, and a predetermined bias voltage set by the variable resistor 42 is added. Then, by applying the added voltage to the distributor 5, each control voltage applied to the control input terminals 194 and 195 of the tuning circuit 1 is generated. Therefore, when the duty ratio of the rectangular wave signal output from the EX-OR gate 33 is smaller than 50%, these control voltages also change to lower ones.
このようにして、 同調回路 1にフィードバックされる制御電圧が低くなつて同 調回路 1の同調周波数を低い方に変化させる。 このような制御は、 同調回路 1の 入力信号の周波数と同調周波数のずれがなくなるまで繰り返され、 所定時間経過 後に同調周波数が入力信号の周波数に一致する。 〔C— 2 . 入力信号の周波数より同調周波数の方が低い場合〕 In this way, the control voltage fed back to the tuning circuit 1 decreases, and the tuning frequency of the tuning circuit 1 is changed to a lower value. Such control is repeated until there is no difference between the frequency of the input signal of the tuning circuit 1 and the tuning frequency, and after a predetermined time, the tuning frequency matches the frequency of the input signal. [C-2. When the tuning frequency is lower than the frequency of the input signal]
第 1 5図は、 同調回路 1に入力される信号の周波数に比べて同調回路 1の同調 周波数が低い場合のタイ ミング図であり、 周波数制御回路 2内の各構成の入出力 タイ ミングが示されている。 第 1 4図と同様に、 第 1 5図 (A ) 〜 (F ) は第 1 3図の回路図において示した符号 A〜Fに対応している。  Fig. 15 is a timing diagram when the tuning frequency of the tuning circuit 1 is lower than the frequency of the signal input to the tuning circuit 1, and shows the input / output timing of each component in the frequency control circuit 2. Have been. Similarly to FIG. 14, FIGS. 15 (A) to 15 (F) correspond to reference numerals A to F shown in the circuit diagram of FIG.
同調回路 1の入力信号の周波数より同調周波数の方が低い場合には、 第 1 2図 に示したように後段の移相回路 1 3 0 Cの位相シフ ト量 02 が 9 0 ° より大きく なるため、 同調回路 1の 2つの制御出力端子 1 9 6、 1 9 7から出力される 2つ の信号を観察すると、 第 1 5図 (A ) に示す制御出力①および第 1 5図 (B ) に 示す制御出力②のような位相関係となる。  When the tuning frequency is lower than the frequency of the input signal of the tuning circuit 1, as shown in FIG. 12, the phase shift amount 02 of the subsequent phase shift circuit 130C becomes larger than 90 ° as shown in FIG. Therefore, when observing the two signals output from the two control output terminals 196 and 197 of the tuning circuit 1, the control output 示 す shown in Fig. 15 (A) and the control output ① shown in Fig. 15 (B) The phase relationship is like the control output ② shown in Fig.
上述したように、 位相差検出回路 3内の電圧比較器 3 1は制御出力①の電圧レ ベルが 0 Vより高いときに Hレベルとなる矩形波信号を出力し (第 1 5図 (C ) ) 、 電圧比較器 3 2は制御出力②の電圧レベルが 0 Vより高いときに Hレベルとなる 矩形波信号を出力する (第 1 5図 (D ) ) 。  As described above, the voltage comparator 31 in the phase difference detection circuit 3 outputs a square wave signal which becomes H level when the voltage level of the control output よ り is higher than 0 V (FIG. 15 (C)). ), And the voltage comparator 32 outputs a square wave signal which becomes H level when the voltage level of the control output よ り is higher than 0 V (FIG. 15 (D)).
また、 E X— O Rゲート 3 3は、 これら 2つの電圧比較器 3 1、 3 2の各出力 の論理が異なるときに Hレベル、 同じときに Lレベルとなる矩形波信号を出力す る。 したがって、 同調回路 1の入力信号の周波数より同調周波数の方が低い場合 には後段の移相回路 1 3 0 Cの位相シフ ト量 2 が 9 0。 より大きくなるため、 第 1 5図 (E ) に示すように、 E X— O Rゲ一ト 3 3が出力する矩形波信号のデ ユーティ比は 5 0 %より大きくなる。  Further, the EX-OR gate 33 outputs a rectangular wave signal which becomes H level when the logic of each output of these two voltage comparators 31 and 32 is different, and which becomes L level when the logic is the same. Therefore, when the tuning frequency is lower than the frequency of the input signal of the tuning circuit 1, the phase shift amount 2 of the subsequent phase shift circuit 130 C is 90. As shown in FIG. 15 (E), the duty ratio of the square wave signal output from the EX-OR gate 33 becomes larger than 50%.
したがって、 制御電圧発生回路 4内の口一パスフィル夕の出力電圧は、 第 1 5 図 (F ) に示すように 0 Vより高くなり、 これに伴って制御電圧発生回路 4から 分配器 5を介して同調回路 1に印加される制御電圧も高い方に変化する。  Therefore, the output voltage of the single-pass filter in the control voltage generation circuit 4 becomes higher than 0 V as shown in FIG. 15 (F), and the control voltage generation circuit 4 passes through the distributor 5 accordingly. Therefore, the control voltage applied to the tuning circuit 1 also changes to a higher value.
このようにして、 同調回路 1にフィードバックされる制御電圧が高くなつて同 調回路 1の同調周波数を高い方に変化させる。 このような制御は、 同調回路 1の 入力信号の周波数と同調周波数のずれがなくなるまで繰り返され、 所定時間経過 後に同調周波数が入力信号の周波数に一致する。  In this way, when the control voltage fed back to the tuning circuit 1 increases, the tuning frequency of the tuning circuit 1 is changed to a higher value. Such control is repeated until there is no difference between the frequency of the input signal of the tuning circuit 1 and the tuning frequency, and after a predetermined time, the tuning frequency matches the frequency of the input signal.
このように、 本実施形態の同調機構によれば、 同調回路 1の一方の移相回路 1 3◦ Cの入出力信号間の位相差が 9 0 ° となるように制御を行うため、 同調周波 数は常に入力信号の周波数に追従して変化し、 両周波数は必ず一致する。 したが つて、 本実施形態の同調機構を例えばスーパーヘテロダイン方式の受信機に適用 した場合においては、 入力される放送波等のキヤリァの周波数に容易に同調周波 数を一致させることができる。 As described above, according to the tuning mechanism of the present embodiment, control is performed such that the phase difference between the input and output signals of one phase shift circuit 13 ° C. of the tuning circuit 1 is 90 °. The number always changes according to the frequency of the input signal, and both frequencies always match. Therefore, when the tuning mechanism of this embodiment is applied to, for example, a superheterodyne receiver, the tuning frequency can be easily matched to the frequency of a carrier such as an input broadcast wave.
また、 本実施形態の同調機構の内部に含まれる同調回路 1および周波数制御回 路 2は、 電圧比較器やゲートあるいはオペアンプ、 キャパシ夕、 抵抗等によって 構成されており、 いずれの素子も半導体基板上に形成することができることから、 同調機構全体あるいは同調機構やその周辺回路を含む全体を半導体基板上に集積 化することができる。  The tuning circuit 1 and the frequency control circuit 2 included in the tuning mechanism of the present embodiment are configured by a voltage comparator, a gate, an operational amplifier, a capacitor, a resistor, and the like. Therefore, the entire tuning mechanism or the entire tuning mechanism and its peripheral circuits can be integrated on a semiconductor substrate.
特に、 同調機構全体を集積化した場合には、 製造したチップ毎に回路定数に大 きなばらつきが生じて周波数特性が一致しないことが考えられるが、 このような 場台であっても本実施形態の同調機構によれば、 所定周波数を有する入力信号に 追随するように同調回路 1の同調周波数が変化するため、 回路素子の特性がばら ついても実際の同調特性に影響することはなく、 常に安定した同調特性が得られ る。  In particular, when the entire tuning mechanism is integrated, it is conceivable that the frequency characteristics may not match due to large variations in circuit constants for each manufactured chip. According to the tuning mechanism of the form, the tuning frequency of the tuning circuit 1 changes so as to follow an input signal having a predetermined frequency, so that even if the characteristics of the circuit elements vary, the actual tuning characteristics are not affected, and are always Stable tuning characteristics are obtained.
また、 同調機構全体を集積化した場合には、 使用時の温度変化に伴って抵抗等 の各種の素子定数が変化することも考えられるが、 本実施形態の同調制御方式で は常に人力信号の周波数に一致するような制御を行っているため、 各種の素子定 数が変化した場合であっても適度なフィ一ドバックがかかり、 人力信号の周波数 と同調周波数のずれがなくなる。  In addition, when the entire tuning mechanism is integrated, various element constants such as resistance may change with temperature change during use.However, in the tuning control method of the present embodiment, the human control signal is always output. Since the control is performed so as to match the frequency, appropriate feedback is applied even when various element constants change, and the difference between the frequency of the human input signal and the tuning frequency is eliminated.
C D . 周波数制御回路の他の例〕  C D. Another example of frequency control circuit]
次に、 第 1図に示した周波数制御回路 2の他の構成例について説明する。 第 1 3図に詳細構成を示した周波数制御回路 2内の位相差検出回路 3は、 E X— 0 R ゲート 3 3を用いて構成されているが、 それ以外の素子を用いて構成することも できる。  Next, another configuration example of the frequency control circuit 2 shown in FIG. 1 will be described. The phase difference detection circuit 3 in the frequency control circuit 2 whose detailed configuration is shown in FIG. 13 is configured using the EX-0 R gate 33, but may be configured using other elements. it can.
第 1 6図は、 周波数制御回路の他の構成例を示す詳細回路図であり、 第 1 3図 に示した位相差検出回路 3を位相差検出回路 3 Aに置き換えた構成を有している。 第 1 6図に示す位相差検出回路 3 Aは、 バッファ 3 0と、 2つの電圧比較器 3 1、 3 2と、 一方の電圧比較器 3 1の出力に応じて動作が制御される トライステ ートバッファ 3 4とを含んで構成されている。 この位相差検出回路 3 Aは、 第 1 3図に示した位相差検出回路 3内の E X— O Rゲート 3 3を トライステートバッ ファ 3 4に置き換えるとともに、 一方の電圧比較器 3 2の 2つの入力端子の接続 を入れ換えた構成を有している。 なお、 このトライステートバッファ 3 4をアナ ログスィ ツチに置き換えるようにしてもよい。 FIG. 16 is a detailed circuit diagram showing another configuration example of the frequency control circuit, which has a configuration in which the phase difference detection circuit 3 shown in FIG. 13 is replaced with a phase difference detection circuit 3A. . The phase difference detection circuit 3A shown in FIG. 16 has a buffer 30, two voltage comparators 31 and 32, and a tri-state circuit whose operation is controlled according to the output of one of the voltage comparators 31. And an external buffer 34. This phase difference detection circuit 3A replaces the EX-OR gate 33 in the phase difference detection circuit 3 shown in FIG. 13 with a tri-state buffer 34, and also uses two voltage comparators 32 It has a configuration in which the connections of the input terminals are interchanged. The tri-state buffer 34 may be replaced with an analog switch.
第 1 7図は、 第 1 6図に示す同調回路 1に入力される信号の周波数に比べて同 調周波数が高い場合のタイ ミング図であり、 周波数制御回路を構成する位相差検 出回路 3 Aおよび制御電圧発生回路 4のそれそれの各構成における入出力タイミ ングが示されている。 第 1 7闵 (A;) 〜 (F ) は第 1 6図の回路図において示し た符号 A〜 Fに対応している。  FIG. 17 is a timing chart in the case where the tuning frequency is higher than the frequency of the signal input to the tuning circuit 1 shown in FIG. 16, and the phase difference detection circuit 3 constituting the frequency control circuit is shown in FIG. The input / output timing of each of the configuration of the A and the control voltage generation circuit 4 is shown. 17 (A) to (F) correspond to reference signs A to F shown in the circuit diagram of FIG.
なお、 第 1 7図 (A ) 〜 (C ) に示すタイ ミングは、 第 1 4図 (A ) 〜 (C ) に示した各タイミングと同じであり、 以下では主にトライステートバッファ 3 4 の動作に着目して説明する。  The timing shown in FIGS. 17 (A) to (C) is the same as the timing shown in FIGS. 14 (A) to (C), and the timing of the tristate buffer 34 will be mainly described below. A description will be given focusing on the operation.
上述したように、 トライステ一トバッファ 3 4の制御端子には一方の電圧比較 器 3 1の出力信号が入力され、 この制御端子の電圧レベルに応じて トライステ一 トバッファ 3 4は電圧比較器 3 2の出力を通過させあるいは遮断する。 例えば電 圧比較器 3 1の出力信号が Hレベルのときに他方の電圧比較器 3 2から出力され る信号をそのまま通過させ、 反対に電圧比較器 3 1の出力が Lレベルのときにハ ィィ ンピ一ダンス状態になる。  As described above, the output signal of one voltage comparator 31 is input to the control terminal of the tri-state buffer 34, and the tri-state buffer 34 is connected to the voltage comparator 32 according to the voltage level of this control terminal. Pass or cut off the output. For example, when the output signal of the voltage comparator 31 is at the H level, the signal output from the other voltage comparator 32 is passed as it is, and when the output of the voltage comparator 31 is at the L level, It goes into an impedance state.
ところで、 同調回路 1の入力信号の周波数より同調周波数の方が高い場合であ つて、 トライステートバッファ 3 4がバッファとして動作するとき、 すなわち一 方の電圧比較器 3 1の出力が Hレベルのとき、 他方の電圧比較器 3 2の出力は H レベルの期間よりも Lレベルの期間の方が長くなる。  By the way, when the tuning frequency is higher than the frequency of the input signal of the tuning circuit 1 and the tristate buffer 34 operates as a buffer, that is, when the output of one of the voltage comparators 31 is at the H level The output of the other voltage comparator 32 is longer in the L level period than in the H level period.
したがって、 トライステートバッファ 3 4からは、 第 1 7図 (E ) に示すよう に、 一方の電圧比較器 3 1の出力が Lレベルにあるときには 0 Vとなり、 電圧比 較器 3 1の出力が Hレベルにあるときには Lレベルあるいは Hレベルとなる信号 が出力される。  Therefore, as shown in FIG. 17 (E), when the output of one of the voltage comparators 31 is at L level, the output from the tri-state buffer 34 is 0 V, and the output of the voltage comparator 31 is When the signal is at the H level, a signal at the L level or the H level is output.
このように、 入力信号の周波数より同調周波数の方が高い場合には、 トライス テートバッファ 3 4の出力は Hレベル期間よりも Lレベル期間の方が長くなるた め、 制御電圧発生回路 4内の抵抗 4 0、 キャパシ夕 4 1により構成される口一パ スフ ィル夕の出力電圧は、 第 1 7図 (F ) に示すように 0 Vより低くなり、 これ に伴い同調回路 1にフ ィードバックされる制御電圧も低い方に変化する。 As described above, when the tuning frequency is higher than the frequency of the input signal, the output of the tristate buffer 34 is longer in the L level period than in the H level period. As a result, the output voltage of the single-pass filter composed of the resistor 40 and the capacity 41 in the control voltage generation circuit 4 becomes lower than 0 V as shown in FIG. 17 (F). Accordingly, the control voltage fed back to the tuning circuit 1 also changes to a lower value.
なお、 トライステートバッファ 3 4の出力は、 1周期のうち半周期は必ず 0 V になるため、 第 1 3図に示したように E X— O Rゲー卜 3 3を使った場合と比べ ると検出感度が低く、 制御の応答速度は遅くなる。  Since the output of the tri-state buffer 34 is always 0 V in one half of one cycle, the output is detected as compared to the case using the EX-OR gate 33 as shown in Fig. 13. The sensitivity is low, and the response speed of the control is slow.
第 1 8図は、 第 1 6図に示す同調回路 1に入力される信号の周波数に比べて同 調周波数が低い場合のタイミング図であり、 周波数制御回路を構成する位相差検 出回路 3 Aおよび制御電圧発生回路 4のそれそれの各構成における入出力タイ ミ ングが示されている。 第 1 8図 (A ) 〜 (F ) は第 1 6図の回路図において示し た符号 A〜Fに対応している。  FIG. 18 is a timing chart when the tuning frequency is lower than the frequency of the signal input to the tuning circuit 1 shown in FIG. 16, and the phase difference detection circuit 3 A constituting the frequency control circuit is shown in FIG. Also, the input / output timing of each configuration of the control voltage generation circuit 4 is shown. 18 (A) to 18 (F) correspond to reference signs A to F shown in the circuit diagram of FIG.
同調回路 1の人力信号の周波数より同調周波数の方が低い場合には、 電圧比較 器 3 1の出力が Hレベルのときのトライステートバッファ 3 4の出力レベルが上 述した場合と異なる。 すなわち、 電圧比較器 3 1の出力が Hレベルの場合には、 トライステ一トバッファ 3 4の出力は Lレベル期間よりも Hレベル期間の方が長 くなる。 なお、 電圧比較器 3 1の出力が Lレベルの場合には、 卜ライステートバ ッファ 3 4の出力は常に 0 Vとなる。  When the tuning frequency is lower than the frequency of the manual signal of the tuning circuit 1, the output level of the tristate buffer 34 when the output of the voltage comparator 31 is at the H level is different from that described above. That is, when the output of the voltage comparator 31 is at the H level, the output of the tristate buffer 34 is longer in the H level period than in the L level period. When the output of the voltage comparator 31 is at the L level, the output of the tristate buffer 34 is always 0 V.
このように、 入力信号の周波数より同調周波数の方が低い場合には、 トライス テー卜バッファ 3 4の出力は、 Lレベル期間よりも Hレベル期間の方が長くなる ため、 制御電圧発生回路 4内の抵抗 4 0、 キャパシ夕 4 1により構成されるロー パスフィル夕の出力電圧は、 第 1 8図 (F ) に示すように 0 Vより高くなり、 こ れに伴い同調回路 1にフィ一 ドバックされる制御電圧も高い方に変化する。  As described above, when the tuning frequency is lower than the frequency of the input signal, the output of the tristate buffer 34 is longer in the H level period than in the L level period. The output voltage of the low-pass filter composed of the resistor 40 and the capacitor 41 becomes higher than 0 V as shown in Fig. 18 (F), and is fed back to the tuning circuit 1 accordingly. The control voltage also changes to the higher one.
このようにして、 同調回路 1の入力信号の周波数よりも同調周波数の方が高い 場合にはフィ一ドバックされる制御電圧が低くなつて同調周波数を低い方に変化 させ、 反対に同調周波数の方が低い場合にはフィ一ドバックされる制御電圧が高 くなって同調周波数を高い方に変化させるため、 同調周波数が常に入力信号の周 波数に追従して一致するように制御が行われる。  In this way, when the tuning frequency is higher than the frequency of the input signal of the tuning circuit 1, the control voltage to be fed back decreases and the tuning frequency is changed to a lower value. When the input signal is low, the control voltage to be fed back increases and the tuning frequency is changed to a higher value. Therefore, the control is performed so that the tuning frequency always matches the frequency of the input signal.
〔E . F M受信機に適用した場合の例〕  [Example when applied to E.FM receiver]
次に、 上述した本実施形態の同調機構を F M受信機に適用した場合について説 明する。 第 1図に示した周波数制御回路 2は、 同調回路 1の入力信号の周波数が 変化した場合に、 この周波数変化に追従させて同調回路 1に帰還する制御電圧を 変化させている。 したがって、 原理的にはこの制御電圧には同調回路 1の入力信 号の周波数変化、 すなわち入力信号として F M波を考えた場合にこの F M波の変 調信号と同じ周波数成分が含まれており、 本実施形態はこの周波数成分を F M検 波信号として取り出すものである。 Next, the case where the tuning mechanism of the present embodiment described above is applied to an FM receiver will be described. I will tell. When the frequency of the input signal of the tuning circuit 1 changes, the frequency control circuit 2 shown in FIG. 1 changes the control voltage that is fed back to the tuning circuit 1 by following the change in the frequency. Therefore, in principle, this control voltage includes the same frequency component as the frequency change of the input signal of the tuning circuit 1, that is, the FM signal when the FM signal is considered as the input signal. In the present embodiment, this frequency component is extracted as an FM detection signal.
第 1 9図は、 F M検波を兼ねた同調機構の構成を示す図である。 同図に示す構 成は、 第 1図に示した周波数制御回路 2内の制御電圧発生回路 4を制御電圧発生 回路 4 Aに置き換え、 この制御電圧発生回路 4 Aから同調回路 1へ帰還する制御 電圧と並行して F M検波信号を取り出している。  FIG. 19 is a diagram showing a configuration of a tuning mechanism that also serves as FM detection. In the configuration shown in the figure, the control voltage generation circuit 4 in the frequency control circuit 2 shown in FIG. 1 is replaced with a control voltage generation circuit 4A, and control is performed so that the control voltage generation circuit 4A feeds back to the tuning circuit 1. The FM detection signal is extracted in parallel with the voltage.
第 2 0図は、 第 1 9図に示す周波数制御回路 2の詳細構成を示す回路図である c 周波数制御回路 2を構成する位相差検出回路 3の詳細構成は第 1 3図に示した構 成と同じであり、 制御電圧発生回路 4 Aの構成が第 1 3図に示した制御電圧発生 回路 4とは若干異なっている。  FIG. 20 is a circuit diagram showing a detailed configuration of the frequency control circuit 2 shown in FIG. 19 c. A detailed configuration of the phase difference detection circuit 3 forming the frequency control circuit 2 is shown in FIG. The configuration of the control voltage generation circuit 4A is slightly different from that of the control voltage generation circuit 4 shown in FIG.
制御電圧発生回路 4 Aは、 抵抗 4 0およびキャパシ夕 4 1により構成される口 —パスフィル夕と、 オペアンプ 4 4と、 抵抗 4 5、 4 6により構成される増幅器 とを含んでいる点や、 可変抵抗 4 2を操作することにより制御電圧発生回路 4 A から同調回路 1に印加する制御電圧のバイアス電圧を任意に変更できる点は第 1 3図に示した制御電圧発生回路 4と同じである。  The control voltage generating circuit 4 A includes a port formed by a resistor 40 and a capacitor 41, a path-fill circuit, an operational amplifier 44, and an amplifier formed by resistors 45 and 46, The point that the bias voltage of the control voltage applied to the tuning circuit 1 from the control voltage generating circuit 4 A can be arbitrarily changed by operating the variable resistor 42 is the same as the control voltage generating circuit 4 shown in FIG. .
制御電圧発生回路 4 Aは、 第 1 3図に示した制御電圧発生回路と同様の構成を 備えており、 その他に抵抗 4 7とキャパシ夕 4 8により構成される第 2の口一パ スフィル夕と、 オペアンプ 4 9および抵抗 5 0、 5 1により構成される第 2の増 幅器とを備えている。  The control voltage generation circuit 4A has the same configuration as the control voltage generation circuit shown in FIG. 13 and additionally has a second port-pass filter composed of a resistor 47 and a capacity 48. And a second amplifier composed of an operational amplifier 49 and resistors 50 and 51.
抵抗 4 0およびキャパシ夕 4 1により構成される第 1の口一パスフィル夕は、 位相差検出回路 3から出力される矩形波信号から高周波成分を除去するために設 けられている。 この第 1の口一パスフィル夕からは、 上述した矩形波信号のデュ —ティ比に応じて直流電圧レベルがなだらかに変化する信号が出力される。  The first oral pass filter composed of the resistor 40 and the capacity 41 is provided for removing high-frequency components from the rectangular wave signal output from the phase difference detection circuit 3. From the first mouth-to-pass filter, a signal whose DC voltage level changes gradually according to the duty ratio of the rectangular wave signal described above is output.
これに対し、 抵抗 4 7およびキャパシ夕 4 8により構成される第 2のローパス フィル夕は、 位相差検出回路 3から出力される矩形波信号から約 2 0 k H z以上 の高周波成分を除去するために設けられている。 この第 2のローパスフィル夕か らは、 F M音声等の F M変調信号が F M検波信号として出力される。 この F M検 波信号は、 オペアンプ 4 9等により構成される増幅器によって増幅され、 制御電 圧発生回路 4 Aの外部に取り出される。 On the other hand, the second low-pass filter composed of the resistor 47 and the capacity 48 is about 20 kHz or more from the square wave signal output from the phase difference detection circuit 3. Is provided to remove the high frequency components of From the second low-pass fill, an FM modulation signal such as an FM sound is output as an FM detection signal. This FM detection signal is amplified by an amplifier including an operational amplifier 49 and the like, and is taken out of the control voltage generation circuit 4A.
第 2 1図は、 第 1 9図に示した同調機構を利用した F M受信機の構成を示す図 である。  FIG. 21 is a diagram showing a configuration of an FM receiver using the tuning mechanism shown in FIG.
第 2 1図に示す F M受信機は、 第 1 9図および第 2 0図に示した同調回路 1お よび周波数制御回路 2と、 高周波増幅回路 1 0と、 低周波増幅回路 1 2と、 スピ —力 1 4と、 アンテナ 1 6とを含んで構成されている。  The FM receiver shown in FIG. 21 is composed of the tuning circuit 1 and the frequency control circuit 2, the high-frequency amplifier circuit 10, the low-frequency amplifier circuit 12, and the spin circuit 1 shown in FIGS. 19 and 20. —Consists of force 14 and antenna 16.
高周波増幅回路 1 0は、 アンテナ 1 6によって受信した F M波を高周波増幅し て同調回路 1に入力する。 上述したように、 同調回路 1は、 周波数制御回路 2か らの制御電圧に応じて、 入力される F M波の周波数に同調周波数を一致させる制 御を行う。  The high frequency amplifier circuit 10 amplifies the FM wave received by the antenna 16 at a high frequency and inputs the amplified FM wave to the tuning circuit 1. As described above, the tuning circuit 1 controls the tuning frequency to match the frequency of the input FM wave according to the control voltage from the frequency control circuit 2.
低周波増幅回路 1 2は、 周波数制御回路 2内の制御電圧発生回路 4 Aから出力 される F M検波信号に対して低周波増幅を行い、 スピーカ 1 4から音声を出力す る。 なお、 スピーカ 1 4を用いずに、 イヤホン等によって音声に変換するように してもよい。  The low-frequency amplification circuit 12 performs low-frequency amplification on the FM detection signal output from the control voltage generation circuit 4A in the frequency control circuit 2, and outputs sound from the speaker 14. Instead of using the speaker 14, the sound may be converted into a sound by an earphone or the like.
また、 第 2 1図に示す F M受信機は、 アンテナ 1 6からの入力部分にバリコン とバ一アンテナによる L C回路を用いずに、 同調回路 1によって直接所望周波数 の F M波を抽出しているため、 入力部分の設計が容易となる。 このため、 アンテ ナ 1 6を短い棒状あるいは紐状の導電性材料で形成することができ、 F M波を効 率良く受信することができる。 具体的には、 カーラジオ等に使用されるロッ ドァ ンテナによってアンテナ 1 6を形成したり、 イヤホンのリード部分をアンテナ 1 6として使用するだけで、 所望の F M波を感度良く受信することができ、 従来不 可欠であったバーアンテナをなくすことができる。  The FM receiver shown in Fig. 21 uses the tuning circuit 1 to directly extract the FM wave of the desired frequency without using an LC circuit with a variable condenser and a single antenna at the input from the antenna 16. The design of the input part becomes easy. Therefore, the antenna 16 can be formed of a short rod-shaped or string-shaped conductive material, and FM waves can be received efficiently. Specifically, it is possible to receive a desired FM wave with high sensitivity simply by forming an antenna 16 with a rod antenna used for a car radio or using the lead of an earphone as the antenna 16. The bar antenna, which has been indispensable in the past, can be eliminated.
また、 バーアンテナを用いずに済むため、 同調回路 1や周波数制御回路 2およ び高周波増幅回路 1 0等を含む F M受信機のほとんど全ての構成回路を半導体基 板上に集積化することができ、 構成回路を 1チップ上に形成することも可能とな る。 このように、 制御電圧発生回路 4 Aに含まれるローパスフィル夕の時定数を調 整することにより、 同調回路 1に入力される FM変調がかかった信号から容易に FM変調信号のみを取り出すことができ、 第 19図に示した同調機構を FM受信 機に適用した場合には、 本来であれば同調機構の後段に別に設ける FM検波回路 が不要となり、 回路構成の簡素化が可能となる。 In addition, since it is not necessary to use a bar antenna, almost all the components of the FM receiver including the tuning circuit 1, the frequency control circuit 2, the high-frequency amplifier circuit 10, etc. can be integrated on a semiconductor substrate. This makes it possible to form constituent circuits on one chip. Thus, by adjusting the time constant of the low-pass filter included in the control voltage generation circuit 4 A, it is possible to easily extract only the FM modulation signal from the FM-modulated signal input to the tuning circuit 1. If the tuning mechanism shown in Fig. 19 is applied to an FM receiver, an FM detection circuit separately provided after the tuning mechanism is not required, and the circuit configuration can be simplified.
また、 従来の FM受信機では同調機構と FM検波回路の間に、 振幅変動の影響 を除去した後に FM検波を行うためにリミッ夕回路を設けていたが、 第 20図に 示した同調機構では位相差検出回路 3内の 2つの電圧比較器で矩形波信号に変換 しているため振幅変動の影響がなく、 従来必要であったリ ミッ夕回路も不要とな る。  Also, in the conventional FM receiver, a limiting circuit was provided between the tuning mechanism and the FM detection circuit to remove the effect of amplitude fluctuations and then perform FM detection, but the tuning mechanism shown in Fig. 20 Since the two voltage comparators in the phase difference detection circuit 3 convert the signal into a rectangular wave signal, there is no influence of the amplitude fluctuation, and the limit circuit that was conventionally required is not required.
なお、 第 19図および第 20図は、 周波数制御回路 2内の制御電圧発生回路 4 Aから FM検波信号を取り出す場合を説明したが、 当然ながら、 従来の受信機で 行っているように、 同調回路 1の後段にリミッ夕回路および各種の検波方式を用 いた FM検波回路を接続して FM検波信号を得るようにしてもよい。  FIGS. 19 and 20 illustrate the case where the FM detection signal is extracted from the control voltage generation circuit 4A in the frequency control circuit 2, but naturally, as in the case of the conventional receiver, the tuning is performed. A limiter circuit and an FM detection circuit using various detection methods may be connected to the subsequent stage of the circuit 1 so as to obtain an FM detection signal.
CF. AM受信機に適用した場合の例〕  Example of application to CF. AM receiver]
次に、 上述した本実施形態の同調機構を AM受信機に適用した場合について説 明する。 本実施形態の同調回路 1は、 同調時には 2つの移相回路 1 10 C、 13 0Cの全体により合計で 360 ° の位相シフ 卜を行う。 したがって、 同調回路 1 の出力信号を参照信号として入力信号に対する同期整流を行うことにより、 入力 信号に含まれる各種の周波数成分の中から同調周波数と同じ周波数成分のみを抽 出し、 この同期整流出力を AM検波信号として用いることができる。  Next, a case where the above-described tuning mechanism of the present embodiment is applied to an AM receiver will be described. The tuning circuit 1 of the present embodiment performs a total of 360 ° phase shift by the entire two phase shift circuits 110 C and 130 C during tuning. Therefore, by performing synchronous rectification on the input signal using the output signal of the tuning circuit 1 as a reference signal, only the same frequency component as the tuning frequency is extracted from various frequency components included in the input signal, and this synchronous rectified output is obtained. It can be used as an AM detection signal.
第 22図は、 同期整流による AM検波を併用した同調機構の構成を示す図であ る。 同図に示す同調機構は、 第 1図に示した同調回路 1と周波数制御回路 2に加 え、 同期整流回路 6とその後段に接続されたローパスフィルタ (LPF) 6とを 含んで構成されている。  FIG. 22 is a diagram showing a configuration of a tuning mechanism using AM detection by synchronous rectification. The tuning mechanism shown in the figure includes a synchronous rectifier circuit 6 and a low-pass filter (LPF) 6 connected to the subsequent stage in addition to the tuning circuit 1 and the frequency control circuit 2 shown in FIG. I have.
一般に、 ある参照信号に同期して入力信号に対するスィツチングを行うという 操作は、 参照信号と入力信号とをミキシングすることに等価であるといえる。 い ま、 入力信号として互いに周波数が接近した第 1および第 2の信号を考え、 第 1 の信号の周波数を fl 、 第 2の信号の周波数を f2 ( = f 1 +Δ f ) とする。 ま た、 参照信号の周波数を: fr とする。 Generally, an operation of switching an input signal in synchronization with a certain reference signal can be said to be equivalent to mixing the reference signal and the input signal. Consider first and second signals whose frequencies are close to each other as input signals, and let the frequency of the first signal be fl and the frequency of the second signal be f2 (= f1 + Δf). Ma Also, let the frequency of the reference signal be: fr.
このような参照信号を用いて入力信号に対する同期整流を行うと、 三角関数で 表すことができる各信号同士を掛け算することに相当するため、 結果として入力 信号の周波数 fl および f2 と参照信号の周波数 fr との和と差の成分が生じる £ したがって、 入力信号の中の第 1の信号と参照信号とを掛け合わせることにより f 1 + f r 、 f 1 一 f r の各周波数成分が現れ、 入力信号の中の第 2の信号と参 照信号とを掛け合わせることにより、 fl + Af + fr、 f 1 +Δΐ— frの各 周波数成分が現れる。 Performing synchronous rectification on an input signal using such a reference signal is equivalent to multiplying each signal that can be expressed by a trigonometric function. As a result, the frequencies fl and f2 of the input signal and the frequency of the reference signal are obtained. component of the sum and the difference between fr occurs £ Thus, f 1 + fr, the frequency components of f 1 one fr appears by multiplying the first signal in the input signal and the reference signal, the input signal By multiplying the second signal inside by the reference signal, fl + Af + fr and f1 + Δΐ-fr frequency components appear.
今、 fr = f 1 とすると、 第 1の信号と参照信号を掛け合わせることにより 2 f 1 、 0の各周波数成分が現れ、 第 2の信号と参照信号とを掛け合わせることに より 2 f +厶 f 、 の周波数成分が現れる。 したがって、 同期整流出力として は 2 f + Af、 2 f 1 、 Δ f , 0の各周波数成分が現れる。 ここで、 周波数 「0_ の成分とは直流成分であり、 実際にはこの直流成分には変調信号が含まれるため、 この直流成分とそれ以外の交流成分 (2 f + Af、 2 fl 、 Δ f ) を分離して直 流成分のみを取り出すことにより、 同期整流を利用した検波と同調分離を同時に 行うことができる。  Now, assuming that fr = f 1, each frequency component of 2 f 1 and 0 appears by multiplying the first signal by the reference signal, and 2 f + by multiplying the second signal by the reference signal. The frequency components of f and appear. Therefore, each frequency component of 2f + Af, 2f1, Δf, 0 appears as a synchronous rectification output. Here, the component of the frequency “0_ is a DC component, and since this DC component actually contains a modulation signal, this DC component and the other AC components (2 f + Af, 2 fl, Δ f ) To extract only the DC component, detection using synchronous rectification and tuning separation can be performed simultaneously.
国内の AM放送を考えた場合、 上述した は 9kHzであるため、 この 9k H z以上の周波数成分を除去可能なローパスフィル夕 7を用いることにより、 参 照信号と同じ周波数を有する所望の放送波のみを取り出すことが可能となる。 第 23図は、 第 22図に示す同期整流回路 6の詳細構成を示す図である。 同図 に示す同期整流回路 6は、 電圧比較器 60およびアナログスィッチ (AS) 61 を備えている。  Considering domestic AM broadcasting, since the above is 9 kHz, the desired broadcast wave having the same frequency as the reference signal can be obtained by using a low-pass filter 7 that can remove the frequency component of 9 kHz or more. It becomes possible to take out only. FIG. 23 is a diagram showing a detailed configuration of the synchronous rectifier circuit 6 shown in FIG. The synchronous rectifier circuit 6 shown in the figure includes a voltage comparator 60 and an analog switch (AS) 61.
この電圧比較器 60は、 反転入力端子が接地されており、 非反転入力端子に同 調回路 1の出力信号が入力されている。 したがって、 電圧比較器 60は、 同調回 路 1の出力信号が 0 Vより高い電圧レベルにあるときに所定の正電圧を有し、 反 対に 0 Vより低い電圧レベルにあるときに所定の負電圧を有する矩形波信号を出 力する。  In the voltage comparator 60, the inverting input terminal is grounded, and the output signal of the tuning circuit 1 is input to the non-inverting input terminal. Therefore, the voltage comparator 60 has a predetermined positive voltage when the output signal of the tuning circuit 1 is at a voltage level higher than 0 V, and has a predetermined negative voltage when the output signal is at a voltage level lower than 0 V. Outputs a rectangular wave signal with voltage.
アナログスィッチ 61は、 電圧比較器 60から出力される矩形波信号の電圧レ ベルに応じてスイッチング状態を切り換える。 すなわち、 電圧比較器 60から出 力された矩形波信号が所定の正電圧のときに同調回路 1の入力信号を通過させ、 矩形波信号が所定の負電圧のときに同調回路 1の入力信号を遮断する。 アナログ スィッチ 6 1の出力は口一パスフィル夕 7に入力され、 このローパスフィル夕 7 により同調周波数に等しい周波数成分のみが抽出され、 A M検波信号が得られる c 本実施形態で用いた同調回路 1は、 第 2図に示す詳細構成を用いて説明したよ うに、 理論的には信号振幅の減衰がなく、 同調周波数が変化した場合であっても 常に一定振幅の出力信号を得ることができる。 しかし、 実際に同調回路 1を組み 立てたりシミュレ一ションを行ってみると、 同調周波数の変化によって出力振幅 が若干変化したり、 可変抵抗 1 1 6、 1 3 6を構成する F E Tの種類や可変幅等 によっては出力信号に歪みが生じることがある。 ところが、 第 2 2図に示したよ うに同調回路 1の入力信号に対して同期整流を行うことにより、 同調回路 1を通 すことによる振幅変動や歪みの発生等による A M検波信号への影響がなくなり、 S N比が良好な A M検波信号を取り出すことができる。 The analog switch 61 switches the switching state according to the voltage level of the rectangular wave signal output from the voltage comparator 60. That is, output from the voltage comparator 60 When the input rectangular wave signal has a predetermined positive voltage, the input signal of the tuning circuit 1 is passed, and when the input rectangular wave signal has a predetermined negative voltage, the input signal of the tuning circuit 1 is cut off. The output of the analog switch 61 is input to the mouth-pass filter 7, and only the frequency component equal to the tuning frequency is extracted by the low-pass filter 7, and an AM detection signal is obtained.c The tuning circuit 1 used in this embodiment is As described with reference to the detailed configuration shown in FIG. 2, the signal amplitude is theoretically not attenuated, and an output signal having a constant amplitude can always be obtained even when the tuning frequency changes. However, when the tuning circuit 1 is actually assembled or simulated, the output amplitude slightly changes due to the change in the tuning frequency, and the type and variable FET of the variable resistors 1 16 and 1 36 Depending on the width, the output signal may be distorted. However, by performing synchronous rectification on the input signal of the tuning circuit 1 as shown in Fig. 22, the influence on the AM detection signal due to amplitude fluctuation and distortion caused by passing through the tuning circuit 1 is eliminated. An AM detection signal having a good SN ratio can be extracted.
また、 同期整流出力を A M検波に用いる場合には、 例えばダイオードを用いて A M検波を行う場合のような順方向電圧以下の不感帯領域が存在しないため、 直 線性の良い A M受信が可能となる。 特に、 A M検波回路を含む同調機構の全体を 半導体基板上に集積化する場合には、 順方向電圧が低いゲルマニウムダイォ一ド が使えず順方向電圧が高いシリコンダイォ一ド等を使うことになるため、 ダイォ ードを使わない検波方式の方が望ましい。 したがって、 第 2 2図に示す同調機構 は、 集積化する場合に特に有効である。  Also, when the synchronous rectification output is used for AM detection, there is no dead zone below the forward voltage as in the case of performing AM detection using a diode, for example, so that AM reception with good linearity is possible. In particular, when integrating the entire tuning mechanism including the AM detection circuit on a semiconductor substrate, a germanium diode with a low forward voltage cannot be used and a silicon diode with a high forward voltage must be used. Therefore, a detection method that does not use a diode is preferable. Therefore, the tuning mechanism shown in Fig. 22 is particularly effective when integrated.
なお、 第 2 2図に示した同調機構では同調回路 1の入力信号に対して同期整流 を行ったが、 当然ながら、 従来の受信機のように、 同調回路 1の後段に同期整流 を利用した A M検波回路を接続して、 あるいは同調回路 1の後段にその他の検波 方式を用いた A M検波回路を接続して A M検波信号を得るようにしてもよい。 第 2 4図は、 第 2 2図に示した同調機構を利用した A M受信機の構成を示す図 である。  In the tuning mechanism shown in Fig. 22, synchronous rectification was performed on the input signal of tuning circuit 1, but naturally, synchronous rectification was used in the subsequent stage of tuning circuit 1, as in a conventional receiver. An AM detection circuit may be connected, or an AM detection circuit using another detection method may be connected after the tuning circuit 1 to obtain an AM detection signal. FIG. 24 is a diagram showing a configuration of an AM receiver using the tuning mechanism shown in FIG.
第 2 4図に示す A M受信機は、 第 2 2図に示す同調回路 1、 周波数制御回路 2、 同期整流回路 6およびローパスフィル夕 7に加えて、 高周波増幅回路 1 0、 口一 パスフィル夕 7、 低周波増幅回路 1 2、 スピーカ 1 4およびアンテナ 1 6を含ん で構成されている。 The AM receiver shown in Fig. 24 consists of a tuning circuit 1, a frequency control circuit 2, a synchronous rectifier circuit 6 and a low-pass filter 7, and a high-frequency amplifier circuit 10 and a single-pass filter 7 shown in Fig. 22. , Including low frequency amplifier circuit 12, speaker 14 and antenna 16 It is composed of
アンテナ 16で受信した AM波を高周波増幅回路 10で高周波増幅した後に同 調回路 1に入力する。 周波数制御回路 2によって同調回路 1の同調周波数が制御 され、 このとき同調回路 1から出力される信号を用いて同期整流が行われ、 ロー パスフィルタ 7から AM検波信号が出力される。 この AM検波信号は低周波増幅 回路 12によって増幅された後スピーカ 14から出力される。  The AM wave received by the antenna 16 is high-frequency amplified by the high-frequency amplifier circuit 10 and then input to the tuning circuit 1. The tuning frequency of the tuning circuit 1 is controlled by the frequency control circuit 2. At this time, synchronous rectification is performed using the signal output from the tuning circuit 1, and the AM detection signal is output from the low-pass filter 7. This AM detection signal is output from the speaker 14 after being amplified by the low frequency amplifier circuit 12.
〔同調回路の第 1の変形例〕  [First Modification of Tuning Circuit]
第 2図に示した同調機構に含まれる同調回路 1は各移相回路 1 10C、 130 Cを CR回路を含んで構成したが、 CR回路を抵抗とィンダク夕からなる LR回 路に置き換えた移相回路を用いて同調回路を構成することもできる。  In the tuning circuit 1 included in the tuning mechanism shown in Fig. 2, each of the phase shift circuits 110C and 130C was configured to include a CR circuit, but the CR circuit was replaced with an LR circuit consisting of a resistor and an inductor. A tuning circuit can also be configured using a phase circuit.
第 25図は、 LR回路を含む移相回路の他の構成を示す回路図であり、 第 2図 に示した同調回路 1の前段の移相回路 1 10 Cと置き換え可能な構成が示されて いる。 同図に示す移相回路 110Lは、 第 3図に示した移相回路 1 10C内のキ ャパシ夕 1 14と可変抵抗 1 16からなる CR回路を、 可変抵抗 1 16とインダ クタ 1 17からなる LR回路に置き換えた構成を有している。  FIG. 25 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, showing a configuration that can be replaced with the phase shift circuit 110C preceding the tuning circuit 1 shown in FIG. I have. The phase shift circuit 110L shown in the figure is a CR circuit consisting of the capacitor 114 and the variable resistor 116 in the phase shift circuit 110C shown in FIG. 3, and is composed of a variable resistor 116 and an inductor 117. It has a configuration replaced with an LR circuit.
したがって、 第 25図に示す移相回路 1 10 Lの入出力電圧等の関係は、 第 2 6図のべク トル図に示すように、 第 4図に示した電圧 VC1を可変抵抗 1 16の両 端電圧 VR1に、 第 4図に示した電圧 VR1をインダクタ 1 17の両端電圧 VL1にそ れそれ置き換えて考えることができる。  Therefore, as shown in the vector diagram of FIG. 26, the relationship between the input / output voltage and the like of the phase shift circuit 110 L shown in FIG. 25 is obtained by changing the voltage VC1 shown in FIG. The voltage VR1 shown in FIG. 4 can be replaced by the voltage VR1 shown in FIG.
また、 移相回路 1 10 Lの位相シフ 卜量 03は、 インダク夕 1 17と可変抵抗 1 16により構成される LR回路の時定数を T, (インダク夕 1 17のインダク 夕ンスを L、 可変抵抗 1 16の抵抗値を Rとすると T , =L/R) とすると、 上 述した (6) 式に示した 01 と同じとなる。  In addition, the phase shift amount 03 of the phase shift circuit 110 L is determined by setting the time constant of the LR circuit composed of the inductor 117 and the variable resistor 116 to T, (the inductance of the inductor 117 to L, and the variable Assuming that the resistance value of the resistor 116 is R, T, = L / R) is the same as 01 shown in the above equation (6).
第 27図は、 LR回路を含む移相回路の他の構成を示す回路図であり、 第 2図 に示した同調回路 1の後段の移相回路 130 Cと置き換え可能な構成が示されて いる。 同図に示す移相回路 130Lは、 第 5図に示した移相回路 130 C内の可 変抵抗 136とキャパシ夕 134からなる CR回路を、 インダク夕 137と可変 抵抗 136からなる LR回路に置き換えた構成を有している。  FIG. 27 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and shows a configuration that can be replaced with the phase shift circuit 130C at the subsequent stage of the tuning circuit 1 shown in FIG. . The phase shifter 130L shown in the figure replaces the CR circuit consisting of the variable resistor 136 and the capacitor 134 in the phase shifter 130C shown in Fig. 5 with an LR circuit consisting of an inductor 137 and a variable resistor 136. Configuration.
したがって、 第 27図に示す移相回路 130 Lの入出力電圧等の関係は、 第 2 8図のべク トル図に示すように、 第 6図に示した電圧 VC2を可変抵抗 136の両 端電圧 VR2に、 第 6図に示した電圧 VR2をインダク夕 137の両端電圧 VL2にそ れそれ置き換えて考えることができる。 Therefore, the relationship between the input / output voltage and the like of the phase shift circuit 130L shown in FIG. As shown in the vector diagram of Fig. 8, the voltage VC2 shown in Fig. 6 is applied to the voltage VR2 across the variable resistor 136, and the voltage VR2 shown in Fig. 6 is applied to the voltage VL2 across the inductor 137. You can think of it as a replacement.
また、 移相回路 130Lの位相シフト量 04 は、 可変抵抗 136とインダクタ 137により構成される LR回路の時定数を T2 (可変抵抗 136の抵抗値を R、 インダク夕 137のインダク夕ンスを Lとすると T2 =L/R) とすると、 上述 した (7) 式に示した(62 と同じとなる。 The phase shift amount 04 of the phase shift circuit 130L is determined by setting the time constant of the LR circuit composed of the variable resistor 136 and the inductor 137 to T 2 (the resistance value of the variable resistor 136 is R, and the inductance of the inductor 137 is L Assuming that T 2 = L / R), this is the same as (62) shown in the above equation (7).
このように、 第 25図に示した移相回路 1 10 Lおよび第 27図に示した移相 回路 130 Lのそれそれは、 第 3図あるいは第 5図に示した移相回路 1 10 C、 130 Cと等価であり、 第 2図に示した同調回路 1において、 前段の移相回路 1 10 Cを第 25図に示した移相回路 1 10 Lに、 後段の移相回路 130 Cを第 2 7図に示した移相回路 130 Lにそれそれ置き換えることが可能である。 移相回 路 1 10L、 130 Lを含んで構成した同調回路の同調周波数は、 例えば各移相 回路 1 10L、 130 L内の LR回路の時定数の逆数 R/Lに比例し、 この中で ィンダクタンス Lは集積化等により小さくすることが容易であるため、 2つの移 相回路 1 10 L、 130 Lを含んで構成した同調回路全体を集積化することによ り同調周波数の高周波化が容易となる。  Thus, each of the phase shift circuit 110 L shown in FIG. 25 and the phase shift circuit 130 L shown in FIG. 27 is different from the phase shift circuit 110 C, 130 L shown in FIG. 3 or FIG. In the tuning circuit 1 shown in FIG. 2, the phase shift circuit 110 C of the preceding stage is replaced with the phase shift circuit 110 L shown in FIG. It is possible to replace each with the phase shift circuit 130L shown in FIG. The tuning frequency of the tuning circuit including the phase shift circuits 1 10L and 130L is, for example, proportional to the reciprocal R / L of the time constant of the LR circuit in each phase shift circuit 110L and 130L. Since the inductance L can be easily reduced by integration, etc., the tuning frequency can be increased by integrating the entire tuning circuit including the two phase shifters 110 L and 130 L. It will be easier.
なお、 第 2図に示す移相回路 1 10 C、 130 Cをそれそれ、 第 25図に示す 移相回路 1 10Lと第 27図に示す移相回路 130 Lに置き換えた場合には、 可 変抵抗 1 16および 136を形成する F E Tのゲート電圧を変化させた場合の各 位相シフ ト量の変化の方向が反対となるため、 第 13図に示した位相差検出回路 3内の EX— ORゲート 33を EX— NOR (イクスクルシブ . ノア) ゲートに 置き換えたり、 第 13図に示した電圧比較器 31、 32のいずれか一方の 2つの 入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。  When the phase shift circuits 110 C and 130 C shown in FIG. 2 are replaced with the phase shift circuit 110 L shown in FIG. 25 and the phase shift circuit 130 L shown in FIG. 27, respectively, When the gate voltage of the FETs forming resistors 1 16 and 136 is changed, the direction of change of each phase shift amount is opposite, so the EX-OR gate in phase difference detection circuit 3 shown in Fig. 13 It is necessary to reverse the direction of the control voltage change by replacing 33 with an EX-NOR (exclusive. NOR) gate or exchanging one of the two inputs of either of the voltage comparators 31 and 32 shown in Fig. 13. There is.
また、 第 2図に示した同調回路 1内の移相回路 1 10 C、 130 Cのそれそれ を、 移相回路 1 10 L、 130 Lに置き換えた場合には、 各移相回路内のオペァ ンプ 1 12あるいは 132の出力端に接続された分圧回路のうち、 いずれか一方 の分圧回路を省略してもよい。 あるいは、 双方の分圧回路を省略し、 抵抗 1 18 および 120の抵抗比と、 抵抗 138および 140の抵抗比とを調整することに より、 同調回路 1の帰還ループで生じる損失を補うようにしてもよい。 When the phase shift circuits 110 C and 130 C in the tuning circuit 1 shown in FIG. 2 are replaced with phase shift circuits 110 L and 130 L, the operation in each phase shift circuit is performed. Either of the voltage dividing circuits connected to the output terminal of the amplifier 112 or 132 may be omitted. Alternatively, omitting both voltage dividers and adjusting the resistance ratio of resistors 118 and 120 and the resistance ratio of resistors 138 and 140 Thus, the loss generated in the feedback loop of the tuning circuit 1 may be compensated.
また、 増幅動作が不要な場合には、 後段の移相回路のさらに後段の分圧回路 1 6 0を省略し、 後段の移相回路の出力を直接前段側に帰還してもよい。 あるいは、 分圧回路 1 6 0内の抵抗 1 6 2の抵抗値を極端に小さな値にして分圧比を 1に設 定してもよい。  When the amplification operation is not required, the voltage dividing circuit 160 in the subsequent stage of the subsequent phase shift circuit may be omitted, and the output of the subsequent phase shift circuit may be directly fed back to the previous stage. Alternatively, the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
〔同調回路の第 2の変形例〕  [Second modification of tuning circuit]
第 2 9図は、 同調回路の第 2の変形例を示す回路図である。 同図に示す同調回 路 1 Aは、 それそれが入力される交流信号の位相を所定量シフ トさせることによ り所定の周波数において合計で 3 6 0 ° の位相シフ トを行う 2つの移相回路 2 1 0 C、 2 3 0 Cと、 帰還抵抗 1 7 0および入力抵抗 1 7 4 (入力抵抗 1 7 4は帰 還抵抗 1 7 0の抵抗値の n倍の抵抗値を有しているものとする) のそれそれを介 することにより後段の移相回路 2 3 0 Cの出力 (帰還信号) と入力端子 1 9 0に 入力される信号 (入力信号) とを所定の割合で加算する加算回路とを含んで構成 されている。  FIG. 29 is a circuit diagram showing a second modification of the tuning circuit. The tuning circuit 1A shown in the figure has two shifts in which a phase shift of a total of 360 ° is performed at a predetermined frequency by shifting a phase of an input AC signal by a predetermined amount. Phase circuit 210 C, 230 C, feedback resistor 170 and input resistor 174 (input resistor 174 has n times the resistance of feedback resistor 170) The output (feedback signal) of the subsequent phase shift circuit 230 C and the signal (input signal) input to the input terminal 190 are added at a predetermined ratio by passing through each of these. And an adder circuit for performing the operation.
第 2図に示した同調回路 1においては、 前段の移相回路 1 1 0 C内の抵抗 1 1 8と抵抗 1 2 0の各抵抗値を同じに設定することで、 入力される交流信号の周波 数が変わったときの振幅変化を抑え、 オペアンプ 1 1 2の出力側に抵抗 1 2 1と 1 2 3による分圧回路を接続することで、 移相回路 1 1 0 Cの利得を 1より大き な値に設定している。 これに対し、 第 2 9図に示す同調回路 1 Aに含まれる前段 の移相回路 2 1 0 Cは、 移相回路内に分圧回路を設けずに、 抵抗 1 1 8 ' の抵抗 値よりも抵抗 1 2 0 ' の抵抗値を大きく設定することにより、 移相回路 2 1 0 C の利得を 1より大きな値に設定している。  In the tuning circuit 1 shown in Fig. 2, the resistance of the input AC signal is set by setting the resistances of the resistors 118 and 120 in the preceding phase shift circuit 110C to the same value. By suppressing the amplitude change when the frequency changes, and connecting the voltage dividing circuit composed of resistors 121 and 123 to the output side of the operational amplifier 112, the gain of the phase shift circuit 110 It is set to a large value. On the other hand, the preceding phase shift circuit 210C included in the tuning circuit 1A shown in FIG. 29 does not include a voltage dividing circuit in the phase shift circuit, and the resistance value of the resistor 1 18 ' Also, the gain of the phase shift circuit 210C is set to a value greater than 1 by setting the resistance of the resistor 120 'to a large value.
後段の移相回路 2 3 0 Cについても同様であり、 抵抗 1 3 8 ' の抵抗値よりも 抵抗 1 4 0 ' の抵抗値を大きく設定することで、 移相回路 2 3 0 Cの利得を 1よ り大きな値に設定している。 また、 移相回路 2 3 0 Cの出力端子には、 帰還抵抗 1 7 0、 出力端子 1 9 2および抵抗 1 7 8が接続されている。  The same applies to the subsequent phase shift circuit 230 C. By setting the resistance value of the resistor 140 0 ′ larger than the resistance value of the resistor 1 38 ′, the gain of the phase shift circuit 230 C is increased. It is set to a value greater than 1. The output terminal of the phase shift circuit 230 C is connected to the feedback resistor 170, the output terminal 192, and the resistor 178.
なお、 第 2 9図に示す同調回路 1 Aでは、 後段の移相回路 2 3 0 Cの出力を直 接帰還させているが、 後段の移相回路 2 3 0 Cのさらに後段に分圧回路を接続し、 その分圧出力を帰還抵抗 1 7 0を介して帰還させるようにしてもよい。 ところで、 上述したように、 各抵抗の値を設定して移相回路の利得を 1より大 きな値にすると、 入力される信号の周波数に応じて利得変動が生じる。 例えば、 前段の移相回路 2 1 0 Cについて考えると、 入力信号の周波数が低い場合には移 相回路 2 1 0 Cはボルテージホロワ回路となるためこのときの利得は 1倍となる のに対し、 周波数が高い場合には移相回路 2 1 0 Cは反転増幅器となるためこの ときの利得は— m倍 (mは抵抗 1 2 0 ' と抵抗 1 1 8 ' の抵抗比) となり、 入力 信号の周波数が変化したときに移相回路 2 1 0 Cの利得も変化して出力信号の振 幅変動が生じる。 In the tuning circuit 1A shown in Fig. 29, the output of the subsequent phase shift circuit 230C is directly fed back, but the voltage divider circuit is provided further downstream of the subsequent phase shift circuit 230C. And the divided output may be fed back via the feedback resistor 170. By the way, as described above, when the value of each resistor is set and the gain of the phase shift circuit is set to a value larger than 1, gain fluctuation occurs according to the frequency of the input signal. For example, considering the phase shift circuit 210C at the preceding stage, when the frequency of the input signal is low, the phase shift circuit 210C becomes a voltage follower circuit, so the gain at this time becomes 1 times. On the other hand, when the frequency is high, the phase shift circuit 210C becomes an inverting amplifier, so the gain at this time is -m times (m is the resistance ratio between the resistors 120 'and 118'), and the input is When the frequency of the signal changes, the gain of the phase shift circuit 210C also changes, and the amplitude of the output signal fluctuates.
このような振幅変動は、 オペアンプ 1 1 2の反転入力端子に抵抗 1 1 9を接続 して、 入力信号の周波数が低い場合と高い場合の利得を一致させることにより抑 えることができる。 具体的には、 抵抗 1 1 8 ' の抵抗値を r、 抵抗 1 2 0 ' の抵 抗値を m rとすると、 抵抗 1 1 9の抵抗値を m r / ( m— 1 ) に設定することに より、 入力信号の周波数が 0と無限大のときの移相回路 2 1 0 Cの各利得を一致 させることができる。 同様に、 移相回路 2 3 0 Cについてもオペアンプ 1 3 2の 反転入力端子に所定の抵抗値を有する抵抗 1 3 9を接続することにより、 出力信 号の振幅変動を抑えることができる。 なお、 抵抗 1 1 9および抵抗 1 3 9の一方 端はグランドレベル以外の固定電位に接続してもよい。  Such amplitude fluctuations can be suppressed by connecting a resistor 119 to the inverting input terminal of the operational amplifier 112 and matching the gains when the frequency of the input signal is low and high. Specifically, assuming that the resistance value of the resistance 1 18 ′ is r and the resistance value of the resistance 1 20 ′ is mr, the resistance value of the resistance 1 19 is set to mr / (m−1). Accordingly, the gains of the phase shift circuit 210C when the frequency of the input signal is 0 and infinity can be matched. Similarly, with respect to the phase shift circuit 230C, by connecting the resistor 139 having a predetermined resistance value to the inverting input terminal of the operational amplifier 132, the amplitude fluctuation of the output signal can be suppressed. Note that one end of the resistors 119 and 139 may be connected to a fixed potential other than the ground level.
〔同調回路の第 3の変形例〕  [Third Modification of Tuning Circuit]
第 2 9図に示す同調回路 1 Aでは、 移相回路 2 1 0 Cおよび 2 3 0 C内に C R 回路を含む例を説明したが、 C R回路の代わりに L R回路を含む場合にも、 同様 の移相回路を構成できる。  In the tuning circuit 1A shown in Fig. 29, an example was described in which a CR circuit was included in the phase shift circuits 210C and 230C, but the same applies when a LR circuit is included instead of the CR circuit. Can be configured.
第 3 0図は、 L R回路を含む移相回路の構成を示す回路図であり、 第 2 9図に 示した同調回路 1 Aの前段の移相回路 2 1 0 Cと置き換え可能な構成が示されて いる。 同図に示す移相回路 2 1 0 Lは、 第 2 9図に示した前段の移相回路 2 1 0 C内のキャパシ夕 1 1 4と可変抵抗 1 1 6からなる C R回路を、 可変抵抗 1 1 6 とインダクタ 1 1 7からなる L R回路に置き換えた構成を有している。  FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit, and shows a configuration that can be replaced with the phase shift circuit 210C preceding the tuning circuit 1A shown in FIG. It has been. The phase shift circuit 210L shown in the figure is a CR circuit consisting of the capacitor 114 and the variable resistor 116 in the preceding phase shift circuit 210C shown in FIG. It has a configuration in which it is replaced with an LR circuit consisting of 1 16 and inductor 1 17.
一方、 第 3 1図は L R回路を含む移相回路の他の構成を示す回路図であり、 第 2 9図に示した同調回路 1 Aの後段の移相回路 2 3 0 Cと置き換え可能な構成が 示されている。 同図に示す移相回路 2 3 0 Lは、 第 2 9図に示した後段の移相回 路 2 3 0 C内の可変抵抗 1 3 6とキャパシ夕 1 3 4からなる C R回路を、 ィンダ クタ 1 3 7と可変抵抗 1 3 6からなる L R回路に置き換えた構成を有している。 第 3 0図に示す移相回路 2 1 0 Lは第 2 9図に示した前段の移相回路 2 1 0 C と等価であって、 第 2 9図に示した同調回路 1 Aの前段の移相回路 2 1 0 Cを第 3 0図に示した移相回路 2 1 0 Lに置き換えることが可能である。 同様に、 第 3 1図に示す移相回路 2 3 0 Lは第 2 9図に示した後段の移相回路 2 3 0 Cと等価 であって、 第 2 9図に示した同調回路 1 Aの後段の移相回路 2 3 0 Cを第 3 1図 に示した移相回路 2 3 0 Lに置き換えることが可能である。 On the other hand, FIG. 31 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, which can be replaced with the phase shift circuit 230 C at the subsequent stage of the tuning circuit 1 A shown in FIG. The configuration is shown. The phase shift circuit 230 L shown in FIG. It has a configuration in which the CR circuit consisting of the variable resistor 1336 and the capacitor 1334 in the path 230C is replaced by an LR circuit consisting of an inductor 1337 and a variable resistor 1336. The phase shift circuit 210L shown in FIG. 30 is equivalent to the phase shift circuit 210C of the preceding stage shown in FIG. 29, and is provided in the stage preceding the tuning circuit 1A shown in FIG. It is possible to replace the phase shift circuit 210C with the phase shift circuit 210L shown in FIG. Similarly, the phase shift circuit 230 L shown in FIG. 31 is equivalent to the phase shift circuit 230 C of the subsequent stage shown in FIG. 29, and the tuning circuit 1 A shown in FIG. It is possible to replace the subsequent phase shift circuit 230C with the phase shift circuit 230L shown in FIG.
2つの移相回路 2 1 0 C、 2 3 0 Cのそれそれを移相回路 2 1 0 L、 2 3 0 L に置き換えた場合には、 同調回路全体を集積化することにより同調周波数の高周 波化が容易となる。  When the two phase shift circuits 2 10 C and 230 C are replaced with phase shift circuits 210 L and 230 L, the entire tuning circuit is integrated to increase the tuning frequency. It becomes easy to frequency.
なお、 第 2 9図に示す移相回路 2 1 0 C、 2 3 0 Cをそれぞれ第 3 0図に示す 移相回路 2 1 0 Lと第 3 1図に示す移相回路 2 3 0 Lに置き換えた場合には、 可 変抵抗 1 1 6および 1 3 6を形成する F E Tのゲート電圧を変化させた場合の各 位相シフ ト量の変化の方向が反対となるため、 第 1 3図に示した位相差検出回路 3内の E X— O Rゲート 3 3を E X— N O R (イクスクルシブ · ノア) ゲートに 置き換えたり、 第 1 3図に示した電圧比較器 3 1、 3 2のいずれか一方の 2つの 入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。  The phase shift circuits 210 C and 230 C shown in FIG. 29 are respectively connected to the phase shift circuit 210 L shown in FIG. 30 and the phase shift circuit 230 L shown in FIG. 31. When replaced, the direction of change of each phase shift amount when the gate voltage of the FET forming the variable resistors 1 16 and 1 36 is changed is opposite, so that it is shown in Fig. 13. The EX-OR gate 33 in the phase difference detection circuit 3 is replaced with an EX-NOR (exclusive NOR) gate, or one of the two voltage comparators 31 1 and 3 2 shown in Fig. 13 is used. It is necessary to reverse the direction of the change in the control voltage by, for example, changing the input.
ところで、 第 2 9図に示した同調回路 1 Aは、 2つの移相回路 2 1 0 C、 2 3 0 Cのそれそれに抵抗 1 1 9あるいは 1 3 9を接続することにより、 同調周波数 を可変したときの振幅変動を防止したが、 周波数の可変範囲が狭い場合には振幅 変動も少なくなるため上述した抵抗 1 1 9、 1 3 9を取り除いて同調回路を構成 することもできる。 あるいは、 一方の抵抗 1 1 9あるいは 1 3 9のみを取り除い て同調回路を構成することもできる。  By the way, the tuning circuit 1A shown in Fig. 29 can adjust the tuning frequency by connecting two phase shift circuits, 210C and 230C, and a resistor 11 9 or 13 9 to it. Although the amplitude fluctuation at the time of the above is prevented, when the frequency variable range is narrow, the amplitude fluctuation becomes small. Therefore, the tuning circuit can be configured by removing the above-mentioned resistors 119 and 139. Alternatively, a tuning circuit can be formed by removing only one of the resistors 11 9 or 13 9.
〔同調回路の第 4の変形例〕  (Fourth modification of tuning circuit)
上述した同調回路 1、 1 Aにおいて、 2つの移相回路 1 1 0 C等を含む全域通 過回路と帰還抵抗 1 7 0からなる帰還ループのループゲインの損失は、 前段の移 相回路 1 1 0 C等の入カインピーダンスに起因するものであるから、 この入カイ ンピーダンスに起因する損失の発生を抑えるために、 前段の移相回路 1 1 0 C等 のさらに前段にトランジス夕によるホロヮ回路を挿入し、 帰還される信号をこの ホロワ回路を介して前段の移相回路 (例えば 1 1 0 Cや 1 1 0 L等) に入力する ようにしてもよい。 In the above-mentioned tuning circuits 1 and 1A, the loss of the loop gain of the feedback loop composed of the entire area passing circuit including the two phase shift circuits 110C and the feedback resistor 170 is caused by the phase shift circuit 1 1 Because it is caused by the input impedance such as 0 C, the phase shift circuit in the preceding stage such as 110 C Further, a follower circuit by a transistor may be inserted in the previous stage, and the signal to be fed back may be input to the preceding phase shift circuit (for example, 110 C or 110 L) through the follower circuit. .
第 3 2図は、 ホロワ回路を内部に含む同調回路の一例を示す回路図である。 同 図に示す同調回路 1 Bは、 前段の移相回路 1 1 0 Cの前段側にトランジスタによ るホロワ回路 1 5 0を挿入した点で第 2図に示す同調回路 1 と相違している。 な お、 第 3 2図に示すホロヮ回路 1 5 0は、 いわゆるソースホロワ回路で構成され ているが、 エミッ夕ホロワ回路で構成してもよい。 また、 第 3 2図において、 分 圧回路 1 6 0の分圧比を 1に設定し、 あるいはこの分圧回路 1 6 0自体を省略す ることにより、 同調回路全体により増幅動作は行わずに単に同調動作のみを行う ようにしてもよい。  FIG. 32 is a circuit diagram showing an example of a tuning circuit including a follower circuit therein. The tuning circuit 1B shown in the figure differs from the tuning circuit 1 shown in FIG. 2 in that a follower circuit 150 using a transistor is inserted in the preceding stage of the phase shifting circuit 110C in the preceding stage. . Incidentally, the follower circuit 150 shown in FIG. 32 is constituted by a so-called source follower circuit, but may be constituted by an emitter follower circuit. Further, in FIG. 32, by setting the voltage dividing ratio of the voltage dividing circuit 160 to 1, or omitting the voltage dividing circuit 160 itself, the amplification operation is not performed by the entire tuning circuit, and the voltage is simply increased. Only the tuning operation may be performed.
このように、 前段の移相回路 1 1 ◦ C等の前段側にトランジスタによるホロヮ 回路 1 5 0を縦続接続すれば、 第 2図の同調回路 1等と比較して、 帰還抵抗 1 7 0および入力抵抗 1 7 4の抵抗値を大きくすることができる。 特に、 同調回路全 体を半導体基板上に集積化するような場合には、 帰還抵抗 1 7 0等の抵抗値を小 さく しょうとすると素子の占有面積を大きく しなければならないため、 ある程度 抵抗値が大きい方が望ましい。 したがって、 集積化する場合などは特に、 第 3 2 図に示すようなホロワ回路 5 0を接続するのが有効である。  In this way, if a hologram circuit 150 composed of transistors is connected in cascade to the preceding stage of the preceding phase shift circuit 11 ◦C, etc., compared with the tuning circuit 1 etc. in FIG. The resistance value of the input resistance 174 can be increased. In particular, when the entire tuning circuit is integrated on a semiconductor substrate, if the resistance value of the feedback resistor 170 is reduced, the area occupied by the element must be increased. It is desirable that the value is large. Therefore, it is effective to connect a follower circuit 50 as shown in FIG.
〔同調回路の第 5の変形例〕  [Fifth Modification of Tuning Circuit]
第 2図に示した同調回路 1では、 2つの移相回路 1 1 0 Cと 1 3 0 Cを合わせ た位相シフ ト量を 3 6 0 ° としているが、 縦続接続された移相回路 1 1 0 Cと 1 3 0 Cに、 位相をシフ トさせない非反転回路を接続して同調回路を構成してもよ い。  In the tuning circuit 1 shown in FIG. 2, the combined phase shift amount of the two phase shift circuits 110 C and 130 C is 360 °, but the phase shift circuit 1 1 A tuning circuit may be constructed by connecting a non-inverting circuit that does not shift the phase to 0 C and 130 C.
第 3 3図は、 2つの移相回路の前段に非反転回路 3 5 0を接続した同調回路 1 Cの構成を示す回路図である。 同図に示すように、 同調回路 1 Cは、 第 3図に示 した移相回路 1 1 0 Cから抵抗 1 2 1および 1 2 3を省いた構成を有する移相回 路 3 1 0 Cと、 第 5図に示した移相回路 1 3 0 Cから抵抗 1 4 1および 1 4 3を 省いた構成を有する移相回路 3 3 0 Cと、 移相回路 3 1 0 Cの前段に接続された 非反転回路 3 5 0と、 抵抗 1 6 2および 1 6 4からなる分圧回路 1 6 0と、 帰還 抵抗 1 Ί 0および入力抵抗 1 7 4からなる加算回路とを含んで構成される。 FIG. 33 is a circuit diagram showing a configuration of a tuning circuit 1C in which a non-inverting circuit 350 is connected in front of two phase shift circuits. As shown in the figure, the tuning circuit 1C is composed of a phase shift circuit 310C having a configuration in which the resistors 121 and 123 are omitted from the phase shift circuit 110C shown in FIG. The phase shift circuit 330C having a configuration in which the resistors 141 and 144 are omitted from the phase shift circuit 130C shown in FIG. 5 and a phase shift circuit 310C connected in front of the phase shift circuit 310C. A non-inverting circuit 350, a voltage dividing circuit 160 composed of resistors 162 and 164, and feedback And an adder circuit comprising an input resistor 174 and an input resistor 174.
第 3 3図に示す移相回路 3 1 0 C;、 3 3 0 Cは、 オペアンプ 1 1 2あるいは 1 The phase shift circuit 3 10 C shown in Fig. 33, 3 0 C is the operational amplifier 1 1 2 or 1
3 2の出力端子に分圧回路が接続されていない点以外は第 3図に示した各移相回 路 1 1 0 C、 1 3 0 Cと同じ構成を有しており、 伝達関数や位相シフ ト量も移相 回路 1 1 0 C、 1 3 0 Cと同じである。 ただし、 ( 2 ) 式において a > = 1、Except that the voltage dividing circuit is not connected to the output terminal of 32, it has the same configuration as each of the phase shift circuits 110C and 130C shown in FIG. The shift amount is the same as that of the phase shift circuits 110C and 130C. However, in equation (2), a> = 1,
( 3 ) 式において a 2 = 1となる。 In the equation (3), a 2 = 1.
非反転回路 3 5 0は、 非反転入力端子に交流信号が入力され反転入力端子が抵 抗 3 5 4を介して接地されたオペアンプ 3 5 2と、 このオペアンプ 3 5 2の反転 入力端子と出力端子との間に接続された抵抗 3 5 6とにより構成されている。 ォ ペアンプ 3 5 2は、 2つの抵抗 3 5 4、 3 5 6の抵抗比によって定まる所定の増 幅度を有する。  The non-inverting circuit 350 has an operational amplifier 3502 in which an AC signal is input to the non-inverting input terminal and the inverting input terminal is grounded via a resistor 350, and an inverting input terminal of the operational amplifier 3502 and an output. It is composed of a resistor 356 connected to the terminal. The operational amplifier 352 has a predetermined amplification determined by the resistance ratio of the two resistors 354, 356.
移相回路 3 1 0 Cは、 抵抗 1 1 8および 1 2 0の各抵抗値が同じであるため、 利得が 1となる。 同様に、 移相回路 3 3 0 Cも抵抗 1 3 8および 1 4 0の各抵抗 値が同じであるため、 利得が 1 となる。 したがって、 上述した同調回路 1 Cでは、 各移相回路で利得を稼ぐ代わりに、 上述した非反転回路 3 5 0の利得を 1より大 きな値に設定している。  The gain of the phase shift circuit 310C is 1 because the resistances of the resistors 118 and 120 are the same. Similarly, the gain of the phase shift circuit 33 0 C is 1 because the resistances of the resistors 1 38 and 140 are the same. Therefore, in the above-mentioned tuning circuit 1C, the gain of the above-mentioned non-inverting circuit 350 is set to a value larger than 1 instead of gaining each phase shift circuit.
このような構成を有する非反転回路 3 5 0は、 入力信号の位相を変えずに出力 しており、 利得を調整することにより、 分圧回路 1 6◦による信号振幅の減衰や 帰還ループで生じる損失を補うことが容易となる。 また、 非反転回路 3 5 0は、 上述したトランジスタによるホロヮ回路と同様に、 前段の移相回路 3 1 0 Cの前 段側に接続されたバッファとしても機能する。  The non-inverting circuit 350 having such a configuration outputs the input signal without changing the phase, and by adjusting the gain, the signal amplitude is attenuated by the voltage dividing circuit 16 ° and is generated in the feedback loop. It is easy to make up for the loss. The non-inverting circuit 350 also functions as a buffer connected to the preceding stage of the preceding phase shifting circuit 310C, similarly to the above-described transistor-based hollow circuit.
なお、 第 3 3図に示す非反転回路 3 5 0は、 第 2図や第 2 9図に示した同調回 路 1、 1 Aの前段等に接続してもよい。  The non-inverting circuit 350 shown in FIG. 33 may be connected to the preceding stage of the tuning circuits 1 and 1 A shown in FIGS. 2 and 29, and the like.
〔同調回路の第 6の変形例〕  [Sixth modification of tuning circuit]
上述した各同調回路 1、 1 A、 1 B、 1 Cは、 2つの移相回路による位相シフ 卜量の合計が 3 6 0。 となる周波数で所定の同調動作を行っていたが、 基本的に 同じ動作を行う 2つの移相回路を組み合わせて同調回路を構成することにより、 2つの移相回路による位相シフ ト量の合計が 1 8 0。 となる周波数で所定の同調 動作を行うようにしてもよい。 第 3 4図は同調回路の第 6の変形例を示す回路図であって、 第 3 3図の後段の 移相回路 3 3 0 Cの代わりに移相回路 3 1 0 Cを接続し、 非反転回路 3 5 0の代 わりに位相反転回路 3 8 0を接続したものである。 In each of the tuning circuits 1, 1A, 1B, and 1C described above, the total amount of phase shift by the two phase shift circuits is 360. Although the specified tuning operation was performed at the frequency which becomes the following, basically the same operation is performed.By combining two phase shift circuits to form a tuning circuit, the total amount of phase shift by the two phase shift circuits is reduced. 1 8 0. A predetermined tuning operation may be performed at a frequency that satisfies the following conditions. FIG. 34 is a circuit diagram showing a sixth modification of the tuning circuit. In FIG. 34, a phase shift circuit 310 C is connected in place of the phase shift circuit 330 C in the latter stage of FIG. A phase inversion circuit 380 is connected in place of the inversion circuit 350.
位相反転回路 3 8 0は、 入力される交流信号が抵抗 3 8 4を介して反転入力端 子に入力されるとともに非反転入力端子が接地されたオペアンプ 3 8 2と、 この オペアンプ 3 8 2の反転入力端子と出力端子との間に接続された抵抗 3 8 6とに より構成されている。 抵抗 3 8 4を介してオペアンプ 3 8 2の反転入力端子に交 流信号が入力されると、 オペアンプ 3 8 2の出力端子からは位相が反転した逆相 の信号が出力され、 この逆相の信号が前段の移相回路 3 1 0 Cに入力される。 ま た、 この位相反転回路 3 8 0は、 2つの抵抗 3 8 4、 3 8 6の抵抗比によって定 まる所定の増幅度を有しており、 抵抗 3 8 4の抵抗値より抵抗 3 8 6の抵抗値を 大きくすることにより 1より大きな利得が得られる。  The phase inverting circuit 380 includes an operational amplifier 382 in which an input AC signal is input to an inverting input terminal via a resistor 384 and a non-inverting input terminal is grounded. It is composed of a resistor 386 connected between the inverting input terminal and the output terminal. When an AC signal is input to the inverting input terminal of the operational amplifier 382 via the resistor 384, a signal having an inverted phase is output from the output terminal of the operational amplifier 382. The signal is input to the preceding phase shift circuit 310C. Further, the phase inversion circuit 380 has a predetermined amplification determined by the resistance ratio of the two resistors 384 and 386, and the resistance 380 is determined by the resistance value of the resistor 384. A gain greater than 1 can be obtained by increasing the resistance value of.
ところで、 上述したように、 移相回路 3 1 0 Cは入力信号の周波数 ωが 0から ∞まで変化するに従って、 入力電圧 E i を基準として時計回り方向に 1 8 0 β か ら 3 6 0 ° まで位相がシフ トする。 2つの移相回路 3 1 0 C内の C R回路の時定 数が同じ (これを Τとおく) である場合には、 ω = 1 / Tの周波数では 2つの移 相回路 3 1 0 Cのそれそれにおける位相シフ ト量が 2 7 0 ° となる。 したがって、 2つの移相回路 3 1 0 Cの全体によつて位相が 2 7 0 ° x 2 = 5 4 0 ° ( = 1 8 0 ° ) シフ トされ、 しかも 2つの移相回路 3 1 0 Cの前段に接続された位相反転 回路 3 8 0によって位相が反転されるため、 全体として、 位相が一巡して位相シ フ ト量が 3 6 0 ° となる信号が後段の移相回路 3 1 0 C から出力される。 By the way, as described above, as the frequency ω of the input signal changes from 0 to ∞, the phase shift circuit 310 C shifts clockwise from 180 β to 360 ° with reference to the input voltage E i. The phase shifts up to. If the time constants of the CR circuits in the two phase-shift circuits 310C are the same (this is denoted by Τ), at the frequency of ω = 1 / T, the two phase-shift circuits 3110C The phase shift amount in each case is 270 °. Therefore, the phase is shifted by 270 ° x 2 = 540 ° (= 180 °) by the entire two phase shift circuits 310C, and furthermore, the two phase shift circuits 310C Since the phase is inverted by the phase inverting circuit 380 connected to the previous stage, the signal whose phase shifts to 360 ° and the phase shift amount becomes 360 ° as a whole is the phase shifting circuit 310 Output from C.
また、 第 3 4図に示す同調回路 1 Dでは、 各移相回路で利得を稼ぐ代わりに、 上述した位相反転回路 3 8 0の利得を 1より大きな値に設定しており、 分圧回路 1 6 0による信号振幅の減衰や帰還ループで生じる損失を補うことが容易となる ( In the tuning circuit 1D shown in FIG. 34, the gain of the phase inverting circuit 380 is set to a value larger than 1 instead of gaining each phase shift circuit. It is easy to compensate for the signal amplitude attenuation due to 60 and the loss generated in the feedback loop (
〔同調回路の第 7の変形例〕 [Seventh modification of tuning circuit]
第 3 4図に示した同調回路 1 Dは、 移相回路 3 1 0 Cを縱続接続する例を示し たが、 第 3 3図に示した移相回路 3 3 0 Cを縱続接続した場合も同調動作を行わ せることができる。  The tuning circuit 1 D shown in FIG. 34 shows an example in which the phase shift circuits 3 10 C are cascaded, but the phase shift circuit 3 D shown in FIG. 33 is cascaded. In this case, the tuning operation can be performed.
第 3 5図は、 同調回路の第 7の変形例を示す回路図である。 同図に示す同調回 路 1 Eは、 第 3 4図の移相回路 3 1 0 Cの代わりに、 移相回路 3 3 0 Cを縦続接 続したものである。 FIG. 35 is a circuit diagram showing a seventh modification of the tuning circuit. Tuning shown in the figure The path 1E is a cascade connection of the phase shift circuit 330C in place of the phase shift circuit 310C in FIG.
ところで、 上述したように、 移相回路 3 3 0 Cは、 入力信号の周波数 ωが 0か ら∞まで変化するに従って、 入力電圧 E i を基準として時計回り方向に 0 ° から 1 8 0 ° まで位相がシフ トする。 2つの移相回路 3 3 0 C内の C R回路の時定数 が同じ (これを Tとおく) である場合には、 ω = 1 / Τの周波数では、 2つの移 相回路 3 3 0 Cのそれそれにおける位相シフ ト量が 9 0。 となる。 したがって、 2つの移相回路 3 3 0 Cの全体によつて位相が 1 8 0。 シフ トされ、 しかも 2つ の移相回路 3 3 0 Cの前段に接続された位相反転回路 3 8 0によって位相が反転 されるため、 全体として、 位相が一巡して位相シフ ト量が 3 6 0 ° となる信号が 後段の移相回路 3 3 0 Cから出力される。  By the way, as described above, as the frequency ω of the input signal changes from 0 to ∞, the phase shift circuit 330 C shifts from 0 ° to 180 ° clockwise with respect to the input voltage E i. The phase shifts. If the time constants of the CR circuits in the two phase shift circuits 33 0 C are the same (this is denoted by T), at a frequency of ω = 1 / Τ, the two phase shift circuits 3 330 C The phase shift in each case is 90. Becomes Therefore, the phase of the entire two phase shift circuits 330 C is 180. The phase is shifted by the phase inverting circuit 380 connected in front of the two phase shift circuits 330 C, and the phase shifts as a whole to reduce the phase shift amount by 36 The signal at 0 ° is output from the subsequent phase shift circuit 330C.
また、 第 3 4図に示した同調回路 1 Dと同様に、 上述した同調回路 1 Εでは、 各移相回路で利得を稼ぐ代わりに、 上述した位相反転回路 3 8 0の利得を 1より 大きな値に設定しており、 分圧回路 1 6 0による信号振幅の減衰や帰還ループで 生じる損失を補うことが容易となる。  Similarly to the tuning circuit 1D shown in FIG. 34, in the above-mentioned tuning circuit 1Ε, the gain of the phase inversion circuit 3 The value is set to a value, which makes it easy to compensate for the attenuation of the signal amplitude due to the voltage dividing circuit 160 and the loss generated in the feedback loop.
また、 第 3 3図〜第 3 5図に示した同調回路 1 C、 1 D、 I Eは、 いずれも 2 つの移相回路を C R回路を含んで構成したが、 L R回路を含んで構成するように してもよい。 例えば、 第 3 3図に示した同調回路 1 Cにおいて、 前段の移相回路 3 1 0 Cを第 2 5図に示した移相回路 1 1 0 Lから分圧回路を省略した移相回路 に置き換えるとともに、 後段の移相回路 3 3 0 Cを第 2 7図に示した移相回路 1 3 0 Lから分圧回路を省略した移相回路に置き換えてもよい。  The tuning circuits 1C, 1D, and IE shown in FIGS. 33 to 35 each have two phase shift circuits that include a CR circuit, but are configured to include an LR circuit. May be used. For example, in the tuning circuit 1 C shown in FIG. 33, the preceding phase shift circuit 310 C is replaced with the phase shift circuit 110 L shown in FIG. Along with the replacement, the subsequent phase shift circuit 330C may be replaced with a phase shift circuit in which the voltage dividing circuit is omitted from the phase shift circuit 130L shown in FIG.
なお、 第 3 3図〜第 3 5図に示した同調回路 1 C、 1 D、 I Eにおいて、 信号 振幅の増幅を行わずに同調動作のみを行わせたい場合には、 分圧回路 1 6 0を省 略すればよい。 また、 2つの移相回路内のオペアンプの少なくとも一方の出力端 に分圧回路を接続してもよい。 例えば、 第 3 3図の同調回路 1 Cにおいて、 前段 の移相回路 3 1 0 C内のオペアンプ 1 1 2の出力端と、 後段の移相回路 3 3 0 C 内のオペアンプ 1 3 2の出力端にそれそれ分圧回路を接続すれば、 第 2図に示し た同調回路 1内の前段の移相回路 1 1 0 Cのさらに前段に非反転回路 3 5 0を接 続した構成と同じになる。 ところで、 第 3 3図〜第 3 5図に示した同調回路 1 C、 1 D、 I E等は、 2つ の移相回路と非反転回路、 あるいは 2つの移相回路と位相反転回路によって構成 されており、 接続された 3つの回路の全体によつて所定の周波数において合計の 位相シフ ト両を 3 6 0 ° にすることにより所定の同調動作を行うようになってい る。 したがって、 位相シフ ト量だけに着目すると、 3つの回路をどのような順序 で接続するかはある程度の自由度があり、 必要に応じて接続順序を決めることが できる。 In the tuning circuits 1C, 1D, and IE shown in FIGS. 33 to 35, if it is desired to perform only the tuning operation without amplifying the signal amplitude, a voltage dividing circuit 160 May be omitted. Further, a voltage dividing circuit may be connected to at least one output terminal of the operational amplifier in the two phase shift circuits. For example, in the tuning circuit 1 C shown in FIG. 33, the output terminal of the operational amplifier 112 in the preceding phase shift circuit 310 C and the output terminal of the operational amplifier 132 in the subsequent phase shift circuit 330 C If a voltage dividing circuit is connected to each end, the configuration is the same as the configuration in which the non-inverting circuit 350 is connected further to the preceding stage of the phase shifting circuit 110 C of the preceding stage in the tuning circuit 1 shown in FIG. Become. The tuning circuits 1C, 1D, IE, etc. shown in FIGS. 33 to 35 are composed of two phase shift circuits and a non-inverting circuit, or two phase shifting circuits and a phase inverting circuit. A predetermined tuning operation is performed by setting the total phase shift to 360 ° at a predetermined frequency by a total of the three connected circuits. Therefore, focusing only on the amount of phase shift, there is a certain degree of freedom in the order in which the three circuits are connected, and the connection order can be determined as necessary.
〔同調回路の第 8の変形例〕  [Eighth Modification of Tuning Circuit]
上述した同調回路の第 1〜第 7の変形例はいずれも、 移相回路の内部にォペア ンプを含んでいるが、 オペアンプの代わりに トランジスタを用いて移相回路を構 成することも可能である。  All of the first to seventh modifications of the tuning circuit described above include an op-amp inside the phase shift circuit, but it is also possible to configure the phase shift circuit using transistors instead of the operational amplifier. is there.
第 3 6図に示す同調回路 1 Fは、 それそれが入力される交流信号の位相を所定 量シフ トさせることにより所定の周波数において合計で 3 6 0 ° の位相シフ トを 行う 2つの移相回路 4 1 0 C;、 4 3 0 Cと、 移相回路 4 3 0 Cの出力信号の位相 を変えずに所定の増幅度で増幅して出力する非反転回路 4 5 0と、 非反転回路 4 5 0の後段に設けられた抵抗 1 6 2および 1 6 4からなる分圧回路 1 6 0と、 帰 還抵抗 1 7 0および入力抵抗 1 7 4 (入力抵抗 1 Ί 4は帰還抵抗 1 7 0の n倍の 抵抗値を有しているものとする) のそれそれを介することにより分圧回路 1 6 0 の分圧出力 (帰還信号) と入力端子 1 9 0に入力される信号 (入力信号) とを所 定の割合で加算する加算回路とを含んで構成されている。  The tuning circuit 1F shown in FIG. 36 has a phase shift of a total of 360 ° at a predetermined frequency by shifting the phase of the input AC signal by a predetermined amount. Circuit 410 C; non-inverting circuit 450 that amplifies and outputs at a predetermined degree of amplification without changing the phase of the output signal of phase shifting circuit 43 0 C; A voltage divider circuit 16 composed of resistors 16 2 and 16 4 provided at the subsequent stage of 45 0, a feedback resistor 17 0 and an input resistor 17 4 (input resistor 1 Ί 4 is a feedback resistor 17 It is assumed that it has a resistance value that is n times as large as 0), through which the divided voltage output of the voltage divider circuit 160 (feedback signal) and the signal input to the input terminal 190 (input And an adder circuit for adding the signals at a predetermined ratio.
帰還抵抗 1 7 0と直列に接続されたキャパシ夕 1 7 2、 および入力抵抗 1 7 4 と入力端子 1 9 0との間に挿入されたキャパシ夕 1 7 6はともに直流電流を阻止 するためのものであり、 そのィンビーダンスは動作周波数において極めて小さく、 すなわち大きな静電容量を有している。  Both the capacitor 170 connected in series with the feedback resistor 170 and the capacitor 170 inserted between the input resistor 170 and the input terminal 190 are used to block DC current. The impedance is extremely small at the operating frequency, that is, has a large capacitance.
第 3 7図は、 第 3 6図に示した前段の移相回路 4 1 0 Cの構成を抜き出して示 したものである。 同図に示す前段の移相回路 4 1 0 Cは、 ゲー卜が入力端 1 2 2 に接続された F E T 4 1 2と、 この F E T 4 1 2のソース · ドレイン間に直列に 接続されたキャパシ夕 4 1 4および可変抵抗 4 1 6と、 F E T 4 1 2のドレイン と正電源との間に接続された抵抗 4 1 8と、 F E T 4 1 2のソースとアースとの 間に接続された抵抗 420とを含んで構成されている。 なお、 FET412およ び後述する FET 432は、 少なくとも一方をバイポーラトランジスタに置き替 えるようにしてもよい。 FIG. 37 shows an extracted configuration of the phase shift circuit 410C in the preceding stage shown in FIG. The phase shift circuit 410C at the front stage shown in the figure is composed of a FET 412 whose gate is connected to the input terminal 122, and a capacitor connected in series between the source and drain of this FET 412. E 4 1 4 and the variable resistor 4 16, the resistor 4 18 connected between the drain of the FET 4 12 and the positive power supply, and the source of the FET 4 1 2 and ground. And a resistor 420 connected therebetween. Note that at least one of the FET 412 and the FET 432 described later may be replaced with a bipolar transistor.
ここで、 上述した FET412のソースおよびドレインに接続された 2つの抵 抗 418、 420の抵抗値はほぼ等しく設定されており、 入力端 122に印加さ れる入力電圧の交流成分に着目すると、 位相が一致した信号が FE T 412のソ —スから、 位相が反転した (位相が 180° シフ トした) 信号が F E T 412の ドレインからそれそれ出力されるようになっている。  Here, the resistance values of the two resistors 418 and 420 connected to the source and the drain of the FET 412 are set to be substantially equal, and when focusing on the AC component of the input voltage applied to the input terminal 122, the phase is The matched signal is output from the source of the FET 412, and the signal whose phase is inverted (the phase is shifted by 180 °) is output from the drain of the FET 412.
なお、 第 36図に示した移相回路 410内の抵抗 426は、 FE T 412に適 切なバイアス電圧を印加するためのものである。 また、 可変抵抗 4 16は、 例え ば第 37図に示すように、 接合型の FETのソース · ドレイン間に形成されるチ ャネルを抵抗体として用いており、 ゲート電圧を可変することにより抵抗値をあ る範囲で任意に変化させることができる。  The resistor 426 in the phase shift circuit 410 shown in FIG. 36 is for applying an appropriate bias voltage to the FET 412. The variable resistor 416 uses a channel formed between the source and drain of a junction type FET as a resistor, as shown in FIG. 37, for example, and varies the gate voltage to change the resistance value. Can be arbitrarily changed within a certain range.
このような構成を有する移相回路 410 Cにおいて、 所定の交流信号が入力端 122に入力されると、 すなわち FET412のゲートに所定の交流電圧 (入力 電圧) が印加されると、 FET412のソースにはこの入力電圧と同相の交流電 圧が現れ、 反対に FE T 412のドレインにはこの入力電圧と逆相であってソー スに現れる電圧と振幅が等しい交流電圧が現れる。 このソースおよびドレインに 現れる交流電圧の振幅をともに Ei とする。  In the phase shift circuit 410C having such a configuration, when a predetermined AC signal is input to the input terminal 122, that is, when a predetermined AC voltage (input voltage) is applied to the gate of the FET 412, the source of the FET 412 In this case, an AC voltage having the same phase as the input voltage appears, and an AC voltage having a phase opposite to that of the input voltage and having the same amplitude as the voltage appearing at the source appears at the drain of the FET 412. The amplitude of the AC voltage appearing at the source and drain is Ei.
この F E T 412のソース ' ドレイン間には可変抵抗 416とキャパシ夕 41 4により構成される直列回路 (CR回路) が接続されている。 したがって、 FE T 412のソースおよびドレインに現れる電圧のそれそれを可変抵抗 416ある いはキャパシ夕 414を介して合成した信号が出力端 124から出力される。 第 38図は、 前段の移相回路 410 Cの入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべク トル図である。  A series circuit (CR circuit) composed of a variable resistor 416 and a capacitor 414 is connected between the source and the drain of the FET 412. Therefore, a signal obtained by combining the voltages appearing at the source and drain of the FET 412 via the variable resistor 416 or the capacitor 414 is output from the output terminal 124. FIG. 38 is a vector diagram showing the relationship between the input / output voltage of the preceding phase shift circuit 410C and the voltage appearing in the capacity and the like.
F E T 412のソースと ドレインにはそれそれ入力電圧と同相および逆相であ つて電圧振幅が Ei の交流電圧が現れるため、 ソース · ドレイ ン間の電位差 (交 流成分) は 2Ei となる。 また、 キャパシ夕 414の両端に現れる電圧 VC1と可 変抵抗 416の両端に現れる電圧 VR1とは互いに 90 ° 位相がずれており、 これ らをべク トル的に合成したものが、 F E T 4 12のソース ' ドレイン間の電圧 2 Ei に等しくなる。 Since the source and the drain of the FET 412 have an AC voltage with the same and opposite phases as the input voltage and the voltage amplitude of Ei, the potential difference between the source and the drain (AC component) is 2Ei. Also, the voltage VC1 appearing across the capacitor 414 and the voltage VR1 appearing across the variable resistor 416 are 90 ° out of phase with each other. The vectorwise combination of these is equal to the source-drain voltage 2 Ei of the FET 412.
したがって、 第 38図に示すように、 電圧 Ei の 2倍を斜辺とし、 キャパシ夕 414の両端電圧 VC1と可変抵抗 416の両端電圧 VR1とが直交する 2辺を構成 する直角三角形を形成することになる。 このため、 入力信号の振幅が一定で周波 数のみが変化した場合には、 第 38図に示す半円の円周に沿ってキャパシ夕 41 4の両端電圧 VC1と可変抵抗 416の両端電圧 VR1とが変化する。  Accordingly, as shown in FIG. 38, the double side of the voltage Ei is defined as the hypotenuse, and the voltage VC1 across the capacitance 414 and the voltage VR1 across the variable resistor 416 form a right-angled triangle forming two sides orthogonal to each other. Become. For this reason, when the amplitude of the input signal is constant and only the frequency changes, the voltage VC1 across the capacitor 414 and the voltage VR1 across the variable resistor 416 are determined along the circumference of the semicircle shown in FIG. Changes.
ところで、 キャパシ夕 414と可変抵抗 4 16の接続点とグラン ドレベルとの 電位差を出力電圧 Eo として取り出すものとすると、 この出力電圧 Eo は、 第 3 8図に示した半円においてその中心点を始点とし、 電圧 VC1と電圧 VR1とが交差 する円周上の一点を終点とするべク トルで表すことができ、 その大きさは半円の 半径 Ei に等しくなる。 しかも、 入力信号の周波数が変化しても、 このベク トル の終点は円周上を移動するだけであるため、 周波数に応じて出力振幅が変化しな い安定した出力を得ることができる。  By the way, assuming that the potential difference between the connection point between the capacitor 414 and the variable resistor 416 and the ground level is taken out as the output voltage Eo, this output voltage Eo starts from the center point in the semicircle shown in FIG. It can be represented by a vector ending at a point on the circumference where voltage VC1 and voltage VR1 intersect, and its magnitude is equal to the radius Ei of the semicircle. Moreover, even if the frequency of the input signal changes, the end point of this vector merely moves on the circumference, so that a stable output whose output amplitude does not change according to the frequency can be obtained.
また、 第 38図から明らかなように、 電圧 VR1と電圧 VC1とは円周上で直角に 交わるため、 理論的には FET412のゲー卜に印加される入力電圧と電圧 VR1 との位相差は、 周波数 ωが 0から∞まで変化するに従って、 入力電圧と同相の電 圧 Ei を基準として時計回り方向に 270。 から 360° まで変化する。 そして、 移相回路 410 C全体の位相シフ 卜量 05 は、 周波数に応じて 180° から 36 0° まで変化する。 しかも、 可変抵抗 416の抵抗値を可変することにより、 位 相シフ ト量 05 を変化させることができる。  In addition, as apparent from FIG. 38, since the voltage VR1 and the voltage VC1 intersect at right angles on the circumference, the phase difference between the input voltage applied to the gate of the FET 412 and the voltage VR1 is theoretically As the frequency ω changes from 0 to ∞, 270 clockwise with respect to the voltage Ei in phase with the input voltage. To 360 °. Then, the phase shift amount 05 of the entire phase shift circuit 410C changes from 180 ° to 360 ° according to the frequency. Moreover, by varying the resistance value of the variable resistor 416, the phase shift amount 05 can be changed.
また、 第 37図に示した移相回路 410 Cの伝達関数は、 キャパシ夕 414と 可変抵抗 416からなる CR回路の時定数を (キャパシ夕 414の静電容量 を C、 可変抵抗 416の抵抗値を Rとすると T, =CR) とすると、 (2) 式に 示した K2 をそのまま適用でき (ただし、 a, < 1) 、 第 38図に示す位相シフ ト量 05 も上述した (6) 式に示した 01 と同じになる。  Further, the transfer function of the phase shift circuit 410 C shown in FIG. 37 is obtained by setting the time constant of the CR circuit composed of the capacitor 414 and the variable resistor 416 to (the capacitance of the capacitor 414 is C, the resistance of the variable resistor 416 is C, If T is R and T, = CR), K2 shown in Eq. (2) can be applied as it is (a, <1), and the phase shift amount 05 shown in Fig. 38 is obtained by Eq. (6). It is the same as 01 shown in.
同様に、 第 39図は第 36図に示した後段の移相回路 430 Cの構成を抜き出 して示したものである。 同図に示す後段の移相回路 430 Cは、 ゲートが入力端 142に接続された F E T 432と、 この F E T 432のソース . ドレイン間に 直列に接続されたキャパシ夕 434および可変抵抗 436と、 FET432のド レインと正電源との間に接続された抵抗 438と、 FET432のソースとァー スとの間に接続された抵抗 440とを含んで構成されている。 Similarly, FIG. 39 shows only the configuration of the subsequent phase shift circuit 430C shown in FIG. 36. The subsequent phase shift circuit 430 C shown in the figure is a FET 432 whose gate is connected to the input terminal 142 and the source and drain of this FET 432. A capacitor 434 and a variable resistor 436 connected in series, a resistor 438 connected between the drain of the FET432 and the positive power supply, and a resistor 440 connected between the source and the ground of the FET432. It is comprised including.
第 37図に示した移相回路 410 Cと同様に、 第 39図に示した FET432 のソースおよびドレインに接続された 2つの抵抗 438, 440の抵抗値はほぼ 等しく設定されており、 入力端 142に印加される入力電圧の交流成分に着目す ると、 位相が一致した信号が FET 432のソースから、 位相が反転した信号が FET432のドレインからそれそれ出力されるようになっている。  As with the phase shift circuit 410 C shown in FIG. 37, the resistance values of the two resistors 438 and 440 connected to the source and drain of the FET 432 shown in FIG. Focusing on the AC component of the input voltage applied to the FET 432, a signal whose phase is matched is output from the source of the FET 432, and a signal whose phase is inverted is output from the drain of the FET 432.
なお、 第 36図に示した移相回路 430 C内の抵抗 446は、 FET 432に 適切なバイアス電圧を印加するためのものである。 また、 移相回路 430 Cの入 力側に設けられたキャパシ夕 148は、 移相回路 410 Cの出力から直流成分を 取り除く直流電流阻止用であり、 交流成分のみが移相回路 430 Cに入力される。 このような構成を有する移相回路 430 Cにおいて、 所定の交流信号が入力端 142に入力されると、 すなわち FET 432のゲートに所定の交流電圧 (入力 電圧) が印加されると、 F E T 432のソースにはこの入力電圧と同相の交流電 圧が現れ、 反対に FET 432のドレインにはこの入力電圧と逆相であってソー スに現れる電圧と振幅が等しい交流電圧が現れる。 このソースおよびドレインに 現れる交流電圧の振幅をともに Ei とする。  The resistor 446 in the phase shift circuit 430 C shown in FIG. 36 is for applying an appropriate bias voltage to the FET 432. The capacitor 148 provided on the input side of the phase shift circuit 430 C is for blocking DC current that removes the DC component from the output of the phase shift circuit 410 C, and only the AC component is input to the phase shift circuit 430 C. Is done. In the phase shift circuit 430 C having such a configuration, when a predetermined AC signal is input to the input terminal 142, that is, when a predetermined AC voltage (input voltage) is applied to the gate of the FET 432, At the source, an AC voltage having the same phase as this input voltage appears. On the contrary, at the drain of the FET 432, an AC voltage having a phase opposite to that of the input voltage and equal in amplitude to the voltage appearing at the source appears. The amplitude of the AC voltage appearing at the source and drain is Ei.
この FE T 432のソース · ドレイン間にはキャパシ夕 434と可変抵抗 43 6とにより構成される直列回路 (CR回路) が接続されている。 したがって、 F E T 432のソースおよびドレインに現れる電圧のそれそれをキャパシ夕 434 あるいは可変抵抗 436を介して合成した信号が出力端 144から出力される。 第 40図は、 後段の移相回路 430 Cの入出力電圧とキャパシ夕等に現れる電 圧との関係を示すべク トル図である。  A series circuit (CR circuit) including a capacitor 434 and a variable resistor 436 is connected between the source and the drain of the FET 432. Therefore, a signal obtained by combining the voltages appearing at the source and the drain of the FET 432 through the capacity 434 or the variable resistor 436 is output from the output terminal 144. FIG. 40 is a vector diagram showing a relationship between the input / output voltage of the subsequent phase shift circuit 430C and the voltage appearing in the capacity and the like.
FET 432のソースと ドレインにはそれそれ入力電圧と同相および逆相であ つて電圧振幅が Ei の交流電圧が現れるため、 ソース ' ドレイン間の電位差は 2 Ei となる。 また、 可変抵抗 436の両端に現れる電圧 VR2とキャパシ夕の両端 に現れる電圧 VC2とは互いに 90° 位相がずれており、 これらをべク トル的に加 算したものが、 FET432のソース ' ドレイン間の電位差 2 Ei に等しくなる。 したがって、 第 4 0図に示すように、 電圧 Ei の 2倍を斜辺とし、 可変抵抗 4Since the source and the drain of the FET 432 show an AC voltage having the same and opposite phases as the input voltage and the voltage amplitude of Ei, the potential difference between the source and the drain is 2 Ei. Also, the voltage VR2 appearing at both ends of the variable resistor 436 and the voltage VC2 appearing at both ends of the capacitor are 90 ° out of phase with each other, and the vectorwise addition of these results in a difference between the source and drain of the FET432. Is equal to 2 Ei. Therefore, as shown in Fig. 40, twice the voltage Ei is the hypotenuse, and the variable resistance 4
3 6の両端電圧 VR2とキャパシ夕 4 34の両端電圧 VC2とが直交する 2辺を構成 する直角三角形を形成することになる。 このため、 入力信号の振幅が一定で周波 数のみが変化した場合には、 第 4 0図に示す半円の円周に沿って可変抵抗 4 3 6 の両端電圧 VR2とキャパシ夕 1 3 4の両端電圧 VC2とが変化する。 The voltage VR2 between both ends 36 and the voltage VC2 between both ends of the capacitor 434 form a right-angled triangle forming two orthogonal sides. For this reason, when the amplitude of the input signal is constant and only the frequency changes, the voltage VR2 across the variable resistor 436 and the voltage between the capacitor 1 34 along the circumference of the semicircle shown in FIG. The voltage between both ends VC2 changes.
可変抵抗 4 3 6とキャパシ夕 4 3 4の接続点とグランドレベルとの電位差を出 力電圧 Eo として取り出すものとすると、 この出力電圧 Eo は、 第 4 0図に示し た半円においてその中心点を始点とし、 電圧 VR2と電圧 VC2とが交差する円周上 の一点を終点とするベク トルで表すことができ、 その大きさは半円の半径 Ei に 等しくなる。 しかも、 入力信号の周波数が変化しても、 このベク トルの終点は円 周上を移動するだけであるため、 周波数に応じて出力振幅が変化しない安定した 出力を得ることができる。  Assuming that the potential difference between the connection point of the variable resistor 436 and the capacitor 434 and the ground level is taken out as the output voltage Eo, this output voltage Eo is the center point of the semicircle shown in Fig. 40. Can be represented as a vector whose starting point is a point on the circumference where voltage VR2 and voltage VC2 intersect, and whose size is equal to the radius Ei of the semicircle. Moreover, even if the frequency of the input signal changes, the end point of this vector only moves on the circumference, so that a stable output whose output amplitude does not change according to the frequency can be obtained.
また、 第 4 0図から明らかなように、 電圧 VR2と電圧 VC2とは円周上で直角に 交わるため、 理論的には F E T 4 3 2のゲー卜に印加される入力電圧と電圧 VC2 との位相差は、 周波数 ωが 0から∞まで変化するに従って 0 ° から 9 0 ° まで変 化する。 そして、 移相回路 4 3 0 C全体の位相シフ ト量 06 は、 周波数に応じて 0 ° から 1 8 0 ° まで変化する。  Also, as is apparent from FIG. 40, since the voltage VR2 and the voltage VC2 intersect at right angles on the circumference, theoretically, the input voltage applied to the gate of the FET 432 and the voltage VC2 The phase difference changes from 0 ° to 90 ° as the frequency ω changes from 0 to ∞. Then, the phase shift amount 06 of the entire phase shift circuit 430C changes from 0 ° to 180 ° according to the frequency.
また、 第 3 7図に示した移相回路 4 3 0 Cの伝達関数は、 キャパシ夕 4 3 4と 可変抵抗 4 3 6からなる CR回路の時定数を Τ 2 (キャパシ夕 4 3 4の静電容量 を C、 可変抵抗の抵抗値を Rとすると T 2 = CR ) とすると、 ( 3 ) 式に示した K3 をそのまま適用でき (ただし、 a2 < 1 ) 、 第 4 0図に示す位相シフト量 ø 6 も上述した ( 7 ) 式に示した 02 と同じになる。 In addition, the transfer function of the phase shift circuit 430 C shown in Fig. 37 is obtained by setting the time constant of the CR circuit consisting of the capacitor 434 and the variable resistor 436 to Τ 2 (the static When the capacitance C, and the resistance value of the variable resistor is When R and T 2 = CR), (3 ) can continue to apply the K3 shown in equation (however, a 2 <1), the phase shown in the fourth 0 Figure The shift amount ø6 is also the same as 02 shown in the above equation (7).
このようにして、 2つの移相回路 4 1 0 C、 4 3 0 Cのそれそれにおいて位相 が所定量シフ トされ、 第 3 8図および第 4 0図に示すように、 所定の周波数にお いて 2つの移相回路 4 1 0 C、 4 3 0 Cの全体により位相シフ ト量の合計が 3 6 0 ° となる信号が出力される。  In this way, the phase is shifted by a predetermined amount in each of the two phase shift circuits 410C and 4300C, and is shifted to a predetermined frequency as shown in FIGS. 38 and 40. In addition, a signal having a total phase shift amount of 360 ° is output by the entire two phase shift circuits 410C and 430C.
また、 第 3 6図に示した非反転回路 4 5 0は、 ドレインと正電源との間に抵抗 The non-inverting circuit 450 shown in FIG. 36 has a resistor between the drain and the positive power supply.
4 5 4が、 ソースとアースとの間に抵抗 4 5 6がそれぞれ接続された F E T 4 5 2と、 ベースが F E T 4 5 2のドレインに接続されているとともにコレクタが抵 抗 4 6 0を介して F E T 4 5 2のソースに接続されたトランジスタ 4 5 8と、 F E T 4 5 2に適切なバイアス電圧を印加するための抵抗 4 6 2とを含んで構成さ れている。 なお、 第 3 6図に示した非反転回路 4 5 0の前段に設けられたキャパ シ夕 1 6 4は、 後段の移相回路 4 3 0 Cの出力から直流成分を取り除く直流電流 阻止用であり、 交流成分のみが非反転回路 4 5 0に入力される。 4 5 4 is a FET 4 52 with a resistor 4 56 connected between the source and ground, and a base is connected to the drain of the FET 4 52 and the collector is a resistor. It is configured to include a transistor 458 connected to the source of the FET 452 via an anti-460 and a resistor 462 for applying an appropriate bias voltage to the FET 452. . Note that the capacitor 164 provided before the non-inverting circuit 450 shown in FIG. 36 is for blocking DC current that removes the DC component from the output of the subsequent phase shift circuit 430C. Yes, only the AC component is input to the non-inverting circuit 450.
F E T 4 5 2は、 ゲートに交流信号が入力されると、 逆相の信号をドレインか ら出力する。 また、 トランジスタ 4 5 8は、 ベースにこの逆相の信号が入力され ると、 さらに位相を反転した信号、 すなわち F E T 4 5 2のゲートに入力された 信号の位相を基準に考えると同相の信号をコレクタから出力し、 この同相の信号 が非反転回路 4 5 0から出力される。  When an AC signal is input to the gate, F ET 452 outputs a signal of the opposite phase from the drain. Also, when the opposite phase signal is input to the base of the transistor 458, the transistor 458 is further inverted in phase, that is, the in-phase signal is considered based on the phase of the signal input to the gate of the FET 452. Is output from the collector, and this in-phase signal is output from the non-inverting circuit 450.
この非反転回路 4 5 0の出力は、 出力端子 1 9 2から同調回路 1 Fの出力とし て取り出されるとともに、 この非反転回路 4 5 0の出力を分圧回路 1 6 0を通し た信号が帰還抵抗 1 7 0を介して前段の移相回路 4 1 0 Cの入力側に帰還されて いる。 そして、 この帰還された信号と入力抵抗 1 7 4を介して入力される信号と が加算され、 この加算された信号の電圧が前段の移相回路 4 1 0 Cの入力端 (第 3 7図に示した入力端 1 2 2 ) に印加されている。  The output of the non-inverting circuit 450 is taken out from the output terminal 192 as the output of the tuning circuit 1F, and the output of the non-inverting circuit 450 is passed through the voltage dividing circuit 160 to generate a signal. The signal is fed back to the input side of the phase shift circuit 410 C in the preceding stage via the feedback resistor 170. Then, the feedback signal and the signal input via the input resistor 174 are added, and the voltage of the added signal is input to the input terminal of the preceding phase shift circuit 410C (FIG. 37). Is applied to the input terminals 1 2 2
また、 上述した非反転回路 4 5 0の利得は、 上述した抵抗 4 5 4、 4 5 6、 4 6 0の各抵抗値によって決まり、 これら各抵抗の抵抗値を調整することにより、 第 3 6図に示した 2つの移相回路 4 1 0 C、 4 3 0 Cあるいは分圧回路 1 6 0に よる減衰や帰還ループで生じる損失を補い、 かつ同調回路全体のル一ブゲインが 1以下になるように設定されている。  Further, the gain of the above-described non-inverting circuit 450 is determined by the resistance values of the above-described resistors 45 4, 45 6, and 46 0. Compensates for the attenuation caused by the two phase shift circuits 4 10 C, 4 3 0 C or the voltage divider circuit 160 shown in the figure, and the loss generated in the feedback loop, and reduces the gain of the entire tuning circuit to 1 or less. It is set as follows.
また、 同調回路 1の出力端子 1 9 2からは、 分圧回路 1 6 0に入力される前の 非反転回路 4 5 0の出力信号が取り出されているため、 同調回路 1 F自体に利得 を持たせることができ、 同調動作と同時に信号振幅の増幅が可能となる。  Also, since the output signal of the non-inverting circuit 450 before being input to the voltage dividing circuit 160 is extracted from the output terminal 192 of the tuning circuit 1, the gain is applied to the tuning circuit 1F itself. The signal amplitude can be amplified simultaneously with the tuning operation.
〔同調回路の第 9の変形例〕  [Ninth modification of tuning circuit]
第 3 6図に示した同調回路は、 各移相回路 4 1 0 C、 4 3 0 Cの内部に C R回 路を含んでいるが、 C R回路を抵抗とィンダク夕からなる L R回路に置き換えた 移相回路を用いて同調回路を構成することも可能である。  The tuning circuit shown in Fig. 36 includes a CR circuit inside each of the phase shift circuits 410C and 330C, but the CR circuit has been replaced with an LR circuit consisting of a resistor and an inductor. It is also possible to configure a tuning circuit using a phase shift circuit.
第 4 1図は、 L R回路を含む移相回路の構成を示す回路図であり、 第 3 6図に 示した同調回路 1 Fの前段の移相回路 410 Cと置き換え可能な構成が示されて いる。 同図に示す移相回路 410 Lは、 第 36図に示した前段の移相回路 410 C内のキャパシ夕 414と可変抵抗 416からなる CR回路を、 可変抵抗 416 とイ ンダク夕 417からなる LR回路に置き換えた構成を有しており、 抵抗 41 8と抵抗 420の各抵抗値が同じ値に設定されている。 なお、 インダク夕 417 と FET412のドレインとの間に挿入されたキャパシ夕 419は直流電流阻止 用である。 FIG. 41 is a circuit diagram showing a configuration of a phase shift circuit including an LR circuit. A configuration that can be replaced with the phase shift circuit 410C preceding the tuning circuit 1F shown is shown. The phase shift circuit 410 L shown in the figure is a CR circuit comprising the capacity 414 and the variable resistor 416 in the preceding phase shift circuit 410 C shown in FIG. 36, and an LR comprising the variable resistor 416 and the inductor 417. The circuit is replaced with a circuit, and the resistances of the resistor 418 and the resistor 420 are set to the same value. The capacitor 419 inserted between the inductor 417 and the drain of the FET 412 is for blocking DC current.
上述した移相回路 410 Lの入出力電圧等の関係は、 第 42図のべク トル図に 示すように、 第 38図に示した電圧 VC1を可変抵抗 416の両端電圧 VR1に、 第 38図に示した電圧 VR1をインダク夕 417の両端電圧 VL1にそれそれ置き換え て考えることができる。  As shown in the vector diagram of FIG. 42, the relationship between the input / output voltage and the like of the phase shift circuit 410 L described above is obtained by replacing the voltage VC1 shown in FIG. 38 with the voltage VR1 across the variable resistor 416, The voltage VR1 shown in (1) can be replaced with the voltage VL1 across the inductor 417.
また、 第 41図に示した移相回路 410 Lの伝達関数は、 ィンダク夕 417と 可変抵抗 416からなる LR回路の時定数を T , (インダク夕 41 7のインダク 夕ンスを L、 可変抵抗 416の抵抗値を Rとすると T, =L/R) とすると、 ( 2 ) 式に示した K2 をそのまま適用でき (ただし a , < 1 ) 、 第 42図に示す 位相シフ ト量 7 も上述した (6) 式に示した 01 と同じになる。  The transfer function of the phase shift circuit 410 L shown in FIG. 41 is such that the time constant of the LR circuit composed of the inductor 417 and the variable resistor 416 is T, (the inductance of the inductor 417 is L, the variable resistor 416 If the resistance value of R is T, = L / R), K2 shown in Eq. (2) can be applied as it is (a, <1), and the amount of phase shift 7 shown in Fig. 42 is also described above. (6) It is the same as 01 shown in the equation.
したがって、 第 41図に示す移相回路 410 Lは、 第 37図に示した移相回路 410 Cと基本的に等価であり、 第 37図に示した移相回路 4 10 Cを第 41図 に示した移相回路 410 Lに置き換えることができる。  Therefore, the phase shift circuit 410 L shown in FIG. 41 is basically equivalent to the phase shift circuit 410 C shown in FIG. 37, and the phase shift circuit 410 C shown in FIG. It can be replaced by the phase shift circuit 410 L shown.
第 43図は、 LR回路を含む移相回路の他の構成を示す回路図であり、 第 36 図に示した同調回路 1 Fの後段の移相回路 430 Cと置き換え可能な構成が示さ れている。 同図に示す移相回路 430 Lは、 第 39図に示した後段の移相回路 4 FIG. 43 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and shows a configuration that can be replaced with the phase shift circuit 430C after the tuning circuit 1F shown in FIG. 36. I have. The phase shift circuit 430 L shown in FIG.
30 C内のキャパシ夕 434と可変抵抗 436からなる CR回路を、 可変抵抗 4 36とイ ンダク夕 437からなる LR回路に置き換えた構成を有しており、 抵抗It has a configuration in which the CR circuit consisting of a capacity 434 and a variable resistor 436 in 30 C is replaced with an LR circuit consisting of a variable resistor 436 and an inductor 437.
438と抵抗 440の各抵抗値は同じ値に設定されている。 なお、 可変抵抗 43 6と FET432のドレインとの間に挿入されたキャパシ夕 439は直流電流阻 止用である。 The resistance values of 438 and 440 are set to the same value. A capacitor 439 inserted between the variable resistor 436 and the drain of the FET 432 is for blocking DC current.
上述した移相回路 430 Lの入出力電圧等の関係は、 第 44図のべク トル図に 示すように、 第 40図に示した電圧 VR2をィンダク夕 437の両端電圧 VL2に、 第 40図に示した電圧 VC2を可変抵抗 436の両端電圧 VR2にそれそれ置き換え て考えることができる。 As shown in the vector diagram of FIG. 44, the relationship between the input / output voltage and the like of the phase shift circuit 430 L described above is obtained by converting the voltage VR2 shown in FIG. The voltage VC2 shown in FIG. 40 can be replaced with the voltage VR2 across the variable resistor 436.
また、 第 43図に示した移相回路 430 Lの伝達関数は、 可変抵抗 436とィ ンダクタ 437からなる LR回路の時定数を T2 (可変抵抗 436の抵抗値を R、 インダクタ 437のインダクタンスを Lとすると T2 =L/R) とすると、 (3) 式に示した K3 をそのまま適用でき (ただし、 a2 く 1 ) 、 第 44図に示す位相 シフ ト量 08 も上述した ( 7) 式に示した 02 と同じになる。 In addition, the transfer function of the phase shift circuit 430 L shown in FIG. 43 is obtained by setting the time constant of the LR circuit composed of the variable resistor 436 and the inductor 437 to T 2 (the resistance value of the variable resistor 436 is R, and the inductance of the inductor 437 is When T 2 = L / R) When L, (3) to K3 as it can be applied as shown formula (However, a 2 ° 1), the phase shift amount 08 shown in FIG. 44 also described above (7) It is the same as 02 shown in the formula.
したがって、 第 43図に示す移相回路 430 Lは、 第 39図に示した移相回路 430 Cと基本的に等価であり、 第 39図に示した移相回路 430 Cを第 43図 に示した移相回路 430 Lに置き換えることができる。  Therefore, the phase shift circuit 430 L shown in FIG. 43 is basically equivalent to the phase shift circuit 430 C shown in FIG. 39, and the phase shift circuit 430 C shown in FIG. 39 is shown in FIG. 43. Phase shift circuit 430 L.
このように、 第 36図に示した 2つの移相回路 4 1 0 Cおよび 430 Cの両方 を第 4 1図、 第 43図に示した移相回路 4 1 0 L、 430 Lに置き換えることが でき、 同調回路全体を集積化することにより同調周波数の高周波化が容易となる。 なお、 第 36図に示す移相回路 4 10 C、 430 Cをそれそれ第 4 1図に示す 移相回路 41 0 Lと第 43図に示す移相回路 430 Lに置き換えた場合には、 可 変抵抗 4 1 6および 436を形成する FETのゲート電圧を変化させた場合の各 位相シフ ト量の変化の方向が反対となるため、 第 1 3図に示した位相差検出回路 3内の EX— ORゲート 33を EX— NOR (イクスクルシブ ' ノア) ゲートに 置き換えたり、 第 13図に示した電圧比較器 3 1、 32のいずれか一方の 2つの 入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。  Thus, it is possible to replace both the two phase shift circuits 410 C and 430 C shown in FIG. 36 with the phase shift circuits 410 L and 430 L shown in FIGS. 41 and 43. By integrating the entire tuning circuit, it is easy to increase the tuning frequency. Note that if the phase shift circuits 4 10 C and 430 C shown in FIG. 36 are replaced with the phase shift circuit 410 L shown in FIG. 41 and the phase shift circuit 430 L shown in FIG. 43, respectively, Since the direction of change of each phase shift amount when the gate voltage of the FET forming the variable resistors 4 16 and 436 is changed is opposite, the EX in the phase difference detection circuit 3 shown in Fig. 13 is — The direction of the change in the control voltage, for example, by replacing the OR gate 33 with an EX—NOR (exclusive 'NOR) gate or exchanging one of the two inputs of one of the voltage comparators 31 and 32 shown in Fig. 13. Need to be inverted.
また、 第 36図に示した移相回路 4 10 C、 430 Cをそれそれ移相回路 4 1 0 L、 430 Lに置き換えた場合に、 分圧回路 1 60を省略して後段の移相回路 の出力を直接前段側に帰還してもよい。 あるいは分圧回路 1 60内の抵抗 1 62 を取り除いて抵抗 1 64だけにしてもよい。 分圧回路 160を省略した場合、 あ るいは抵抗 1 62を取り除いた場合には、 同調動作のみを行うことができる。  When the phase shift circuits 4 10 C and 430 C shown in FIG. 36 are replaced with phase shift circuits 410 L and 430 L, respectively, the voltage divider circuit 160 is omitted and the phase shift circuit in the subsequent stage is omitted. May be directly fed back to the preceding stage. Alternatively, the resistor 162 in the voltage dividing circuit 160 may be removed and only the resistor 164 may be used. If the voltage dividing circuit 160 is omitted, or if the resistor 162 is removed, only the tuning operation can be performed.
〔同調回路の第 1 0の変形例〕  [10th modification of tuning circuit]
第 45図は、 同調回路の他の変形例を示す回路図である。 同図に示す同調回路 1 Gは、 それそれが入力される交流信号の位相を所定量シフ 卜させることにより 所定の周波数において合計で 1 80 ° の位相シフ トを行う 2つの移相回路 4 10 Cと、 後段の移相回路 4 1 0 Cの出力信号の位相をさらに反転する位相反転回路 480と、 帰還抵抗 1 70および入力抵抗 1 Ί 4のそれそれを介することにより 位相反転回路 480から出力される信号 (帰還信号) と入力端子 1 90に入力さ れる信号 (入力信号) とを所定の割合で加算する加算回路とを含んで構成されて いる。 FIG. 45 is a circuit diagram showing another modification of the tuning circuit. The tuning circuit 1G shown in the figure is composed of two phase shift circuits 4 10 that perform a total of 180 ° phase shift at a predetermined frequency by shifting the phase of the input AC signal by a predetermined amount. C, the subsequent phase shift circuit 4 10 0 The phase inversion circuit 480 that further inverts the phase of the output signal of C, and the output from the phase inversion circuit 480 by passing through the feedback resistor 170 and the input resistor 1Ί4 And a signal (input signal) input to the input terminal 190 at a predetermined ratio.
各移相回路 4 1 0 Cは、 その詳細構成および入出力の位相関係は第 37図およ び第 38図を用いて説明した通りであり、 例えばキャパシ夕 4 14と可変抵抗 4 1 6からなる CR回路の時定数を T, とすると、 ω= 1/Τ, の周波数における 位相シフ ト量 05 は時計回り方向 (位相遅れ方向) に 270 ° となる。  The detailed configuration of each phase shift circuit 410C and the phase relationship between input and output are as described with reference to FIGS. 37 and 38. For example, from the capacity 414 and the variable resistor 416 Assuming that the time constant of the CR circuit is T, the phase shift amount 05 at a frequency of ω = 1 / Τ is 270 ° in the clockwise direction (phase delay direction).
したがって、 2つの移相回路 4 10 Cの全体による位相遅れ方向の位相シフ ト 量の合計が所定の周波数において、 05 + 5 = 270° + 270° = 540° (= 1 80° ) となる。  Therefore, the sum of the phase shift amounts of the two phase shift circuits 410C in the phase delay direction is 05 + 5 = 270 ° + 270 ° = 540 ° (= 180 °) at the predetermined frequency.
また、 位相反転回路 480は、 ドレインと正電源との間に抵抗 484が、 ソ一 スとアースとの間に抵抗 486がそれそれ接続された FET 482と、 FET4 82のゲ一トに所定のバイァス電圧を印加する抵抗 488とを含んで構成されて いる。 FET 482のゲートに交流信号が入力されると、 FE T 482のドレイ ンからは位相を反転した逆相の信号が出力される。 また、 この位相反転回路 48 0は、 2つの抵抗 484、 486の抵抗比によって定まる所定の利得を有する。 このように、 所定の周波数において、 2つの移相回路 4 1 0 Cによって位相が 180° シフ トされ、 さらに後段に接続された位相反転回路 480によって位相 が反転され、 これら 3つの回路の全体による位相シフ ト量の合計が 360° とな る。 したがって、 位相反転回路 480の出力を帰還抵抗 1 70を介して前段の移 相回路 4 10 Cの入力側に帰還させ、 この帰還信号に入力抵抗 1 Ί 4を介して入 力した信号を加算するとともに、 位相反転回路 480の利得を調整することによ り、 第 2図に示した同調回路 1と同様の同調動作が行われる。  The phase inverting circuit 480 has a predetermined resistance connected to the gate of the FET 482 and the FET 482 each having a resistor 484 connected between the drain and the positive power supply and a resistor 486 between the source and the ground. And a resistor 488 for applying a bias voltage. When an AC signal is input to the gate of the FET 482, a signal having a reversed phase is output from the drain of the FET 482. The phase inversion circuit 480 has a predetermined gain determined by the resistance ratio of the two resistors 484 and 486. As described above, at a predetermined frequency, the phase is shifted by 180 ° by the two phase shift circuits 410C, and the phase is inverted by the phase inverting circuit 480 connected at the subsequent stage. The total amount of phase shift is 360 °. Therefore, the output of the phase inversion circuit 480 is fed back to the input side of the previous phase shift circuit 4 10 C via the feedback resistor 170, and the signal input via the input resistor 1Ί4 is added to this feedback signal. At the same time, by adjusting the gain of the phase inversion circuit 480, the same tuning operation as that of the tuning circuit 1 shown in FIG. 2 is performed.
なお、 第 45図に示した同調回路 1 Gにおいては、 位相反転回路 480の出力 を直接帰還抵抗 1 Ί 0を介して帰還させたが、 第 36図に示す同調回路 1 Fと同 様に、 この位相反転回路 480の後段に分圧回路 1 60を接続して分圧出力を帰 還させてもよい。 〔同調回路の第 1 1の変形例〕 In the tuning circuit 1G shown in FIG. 45, the output of the phase inversion circuit 480 was directly fed back via the feedback resistor 1Ί0, but like the tuning circuit 1F shown in FIG. 36, A voltage dividing circuit 160 may be connected to the subsequent stage of the phase inverting circuit 480 to return the divided voltage output. [First modification of tuning circuit]
第 4 6図は、 同調回路の他の変形例を示す回路図であり、 第 4 5図とは反対に 第 3 6図に示す後段の移相回路 4 3 0 Cを含んで構成されている。  FIG. 46 is a circuit diagram showing another modified example of the tuning circuit, which is configured to include the latter-stage phase shift circuit 4300 shown in FIG. 36 as opposed to FIG. 45. .
第 4 6図に示す同調回路 1 Hは、 それそれが入力される交流信号の位相を所定 量シフ 卜させることにより所定の周波数において合計で 1 8 0。 の位相シフ トを 行う 2つの移相回路 4 3 0 Cと、 後段の移相回路 4 3 0 Cの出力信号の位相をさ らに反転する位相反転回路 4 8 0と、 帰還抵抗 1 7 0および入力抵抗 1 7 4のそ れそれを介することにより位相反転回路 4 8 0から出力される信号 (帰還信号) と入力端子 1 9 0に入力される信号 (入力信号) とを所定の割合で加算する加算 回路とを含んで構成されている。  The tuning circuit 1H shown in FIG. 46 has a total of 180 at a predetermined frequency by shifting the phase of the AC signal to which it is input by a predetermined amount. Two phase shift circuits 4300C that perform the phase shift of the following, a phase inversion circuit 480 that further inverts the phase of the output signal of the subsequent phase shift circuit 430C, and a feedback resistor 170 And a signal (feedback signal) output from the phase inversion circuit 480 and a signal (input signal) input to the input terminal 190 at a predetermined ratio by passing through each of the input resistors 174. And an adding circuit for adding.
各移相回路 4 3 0 Cは、 その詳細構成および入出力の位相関係は第 3 9図およ び第 4 0図を用いて説明した通りであり、 例えばキャパシ夕 4 3 4と可変抵抗 4 3 6からなる C R回路の時定数を T 2 とすると、 ω = 1 / Τ 2 の周波数における 位相シフ ト量 06 は時計回り方向 (位相遅れ方向) に 9 0 ° となる。 The detailed configuration of each phase shift circuit 430C and the phase relationship between input and output are as described with reference to FIGS. 39 and 40. For example, the capacity shifter 4 when the time constant of the CR circuit consisting of 3 6, T 2, the phase shift amount 06 at a frequency of ω = 1 / Τ 2 becomes 9 0 ° in the clockwise direction (phase lag direction).
したがって、 所定の周波数において、 2つの移相回路 4 3 0 Cによって位相が 1 8 0 ° シフ トされ、 さらに後段に接続された位相反転回路 4 8 0によって位相 が反転され、 これら 3つの回路の全体による位相シフ ト量の合計が 3 6 0 ° とな る。 このため、 位相反転回路 4 8 0の出力を帰還抵抗 1 7 0を介して前段の移相 回路 4 3 0 Cの入力側に帰還させ、 この帰還信号に入力抵抗 1 7 4を介して入力 した信号を加算するとともに、 位相反転回路 4 8 0の利得を調整することにより、 第 2図に示した同調回路 1 と同様の同調動作が行われる。  Therefore, at a predetermined frequency, the phase is shifted by 180 ° by the two phase shift circuits 430 C, and the phase is inverted by the phase inverting circuit 480 connected at the subsequent stage. The total phase shift amount is 360 °. For this reason, the output of the phase inversion circuit 480 is fed back to the input side of the preceding phase shift circuit 430 C via the feedback resistor 170, and the feedback signal is input via the input resistor 174. By adding the signals and adjusting the gain of the phase inversion circuit 480, the same tuning operation as the tuning circuit 1 shown in FIG. 2 is performed.
なお、 第 3 6図に示した同調回路 1 Fと同様に、 第 4 6図に示した同調回路 1 Ηにおいても、 位相反転回路 4 8 0の後段に分圧回路 1 6 0を接続して同調と同 時に増幅を行うようにしてもよい。  Note that, similarly to the tuning circuit 1F shown in FIG. 36, in the tuning circuit 1 1 shown in FIG. 46, a voltage dividing circuit 160 is connected downstream of the phase inverting circuit 480. Amplification may be performed simultaneously with tuning.
ところで、 上述した各種の同調回路 1 F、 1 G、 1 H等は、 2つの移相回路と 非反転回路あるいは 2つの移相回路と位相反転回路によって構成されており、 接 続された 3つの回路の全体によつて所定の周波数において合計の位相シフ ト量を 3 6 0 ° にすることにより所定の同調動作を行うようになっている。 したがって、 位相シフ ト量だけに着目すると、 3つの回路をどのような順番で接続するかはあ る程度の自由度があり、 必要に応じて接続順番を決めることができる。 By the way, the various tuning circuits 1F, 1G, 1H, etc. described above are composed of two phase shift circuits and a non-inverting circuit or two phase shift circuits and a phase inverting circuit, and the three connected A predetermined tuning operation is performed by setting the total phase shift amount to 360 ° at a predetermined frequency by the entire circuit. Therefore, focusing only on the amount of phase shift, the order in which the three circuits are connected is uncertain. There is a certain degree of freedom, and the connection order can be determined as necessary.
また、 上述した第 45図および第 46図に示す同調回路 1 G、 1 Hでは、 移相 回路内部に CR回路を含む例を示したが、 LR回路を内部に含む移相回路を縦続 接続して同調回路を構成してもよい。 例えば、 第 45図に示す同調回路 1 Gの 2 つの移相回路 4 1 0 Cの代わりに第 4 1図に示す移相回路 4 1 0 Lを接続しても よい。 あるいは、 第 46図に示す同調回路 1 Hの 2つの移相回路 430 Cの代わ りに第 43図に示す移相回路 430 Lを接続してもよい。  In the tuning circuits 1G and 1H shown in FIGS. 45 and 46 described above, an example is shown in which a CR circuit is included inside the phase shift circuit.However, a phase shift circuit including an LR circuit is connected in cascade. To form a tuning circuit. For example, instead of the two phase shift circuits 410C of the tuning circuit 1G shown in FIG. 45, a phase shift circuit 410L shown in FIG. 41 may be connected. Alternatively, a phase shift circuit 430L shown in FIG. 43 may be connected in place of the two phase shift circuits 430C of the tuning circuit 1H shown in FIG.
ただし、 CR回路を含む移相回路を LR回路を含む移相回路に置き換えた場合 には、 可変抵抗 4 1 6および 436を形成する FETのゲート電圧を変化させた 場合の各位相シフ ト量の変化の方向が反対となるため、 第 1 3図に示した位相差 検出回路 3内の EX— ORゲ一ト 33を EX— NOR (イクスクルシブ ' ノア) ゲートに置き換えたり、 第 13図に示した電圧比較器 3 1、 32のいずれか一方 の 2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある c なお、 上述した同調回路 1 F、 1 G、 1 Hでは、 FET4 1 2あるいは FET 432を用いて移相回路を構成しているが、 FE Tの代わりにバイポーラトラン ジス夕を用いて移相回路を構成してもよい。  However, when the phase shift circuit including the CR circuit is replaced with a phase shift circuit including the LR circuit, the amount of each phase shift when the gate voltage of the FET forming the variable resistors 416 and 436 is changed Since the direction of change is opposite, the EX-OR gate 33 in the phase difference detection circuit 3 shown in FIG. 13 is replaced with an EX-NOR (exclusive 'NOR) gate, or as shown in FIG. It is necessary to invert the direction of the control voltage change by exchanging one of the two inputs of the voltage comparator 31 or 32.c In the tuning circuits 1F, 1G, and 1H described above, Although the phase shift circuit is configured using 12 or FET 432, the phase shift circuit may be configured using a bipolar transistor instead of FET.
〔同調回路の第 1 2の変形例〕  [First and second modifications of the tuning circuit]
第 47図は、 同調回路の第 1 2の変形例を示す回路図である。 同図に示す同調 回路 1 Jは、 入力される交流信号の位相を変えずに出力する非反転回路 550と、 それそれが入力信号の位相を所定量シフ トさせることにより所定の周波数におい て合計で 360° の位相シフ トを行う 2つの移相回路 5 10 C、 530 Cと、 後 段の移相回路 530 Cのさらに後段に設けられた抵抗 1 62および 1 64からな る分圧回路 1 60と、 帰還抵抗 1 70および入力抵抗 1 74 (入力抵抗 1 74は 帰還抵抗 1 70の n倍の抵抗値を有しているものとする) のそれそれを介するこ とにより分圧回路 1 60の分圧出力 (帰還信号) と入力端子 1 90に入力される 信号 (入力信号) とを所定の割合で加算する加算回路とを含んで構成されている c なお、 非反転回路 550は、 バッファ回路として機能するものであり、 前段の 移相回路 5 1 0 Cと上述した加算回路とを直接接続した場合に生じる信号の損失 等を防止するために設けられている。 非反転回路 550は、 例えばエミッ夕ホロ ヮ回路やソースホロワ回路等により構成されている。 なお、 直接接続した場合の 損失等を最小限に抑えるように帰還抵抗 1 7 0等の各素子の素子定数を選定した 場合には、 この非反転回路 5 5 0を省略して同調回路を構成してもよい。 FIG. 47 is a circuit diagram showing a twelfth modification of the tuning circuit. The tuning circuit 1 J shown in the figure is composed of a non-inverting circuit 550 that outputs the input AC signal without changing the phase, and that shifts the phase of the input signal by a predetermined amount to obtain a total at a predetermined frequency. Phase shift circuit that performs a 360 ° phase shift at 5 ° C. 5 C and 530 C, and a voltage divider 1 consisting of resistors 1 62 and 1 64 provided further downstream of the subsequent phase shift circuit 530 C 60 and the feedback resistor 170 and the input resistor 174 (the input resistor 174 has a resistance value n times as large as the feedback resistor 170). divided output of c is composed of a signal inputted to the (feedback signal) and the input terminal 1 90 (input signal) and a summing circuit for adding at a predetermined ratio the non-inverting circuit 550, a buffer It functions as a circuit, and directly connects the phase shift circuit 5100C in the preceding stage and the above-described adder circuit. It is provided in order to prevent the loss or the like of the signals occurring when connected. The non-inverting circuit 550 is, for example, ヮ It is composed of a circuit and a source follower circuit. When the element constants of each element such as the feedback resistor 170 are selected so as to minimize the loss and the like when directly connected, the non-inverting circuit 550 is omitted and the tuning circuit is configured. May be.
第 4 8図は、 第 4 7図に示した前段の移相回路 5 1 0 Cの構成を抜き出して示 したものである。 同図に示す前段の移相回路 5 1 0 Cは、 2入力の差分電圧を所 定の増幅度で増幅して出力する差動増幅器 5 1 2と、 入力端 1 2 2に入力された 信号の位相を所定量シフ トさせて差動増幅器 5 1 2の非反転入力端子に入力する キャパシ夕 5 1 4および可変抵抗 5 1 6と、 入力端 1 2 2に入力された信号の位 相を変えずにその電圧レベルを約 1 / 2に分圧して差動増幅器 5 1 2の反転入力 端子に入力する抵抗 5 1 8および 5 2 0とを含んで構成されている。  FIG. 48 shows a configuration extracted from the phase shift circuit 5100 at the preceding stage shown in FIG. The phase shift circuit 510C at the preceding stage shown in the figure is a differential amplifier 511 that amplifies the differential voltage of two inputs with a predetermined amplification and outputs the amplified signal, and a signal input to the input terminal 122. Shifts the phase of the signal by a predetermined amount, and inputs the same to the non-inverting input terminal of the differential amplifier 512. It is configured to include resistors 518 and 520 which divide the voltage level to about 1/2 without any change and input to the inverting input terminal of the differential amplifier 5122.
上述した可変抵抗 5 1 6は、 例えば第 4 8図に示すように、 接合型の F E丁の ソース ' ドレイン間に形成されるチャネルを抵抗体として用いており、 ゲート電 圧を可変することにより抵抗値をある範囲で任意に変化させることができる。 第 4 8図に示す入力端 1 2 2に所定の交流信号が入力されると、 差動増幅器 5 1 2の反転入力端子には、 入力端 1 2 2に印加される電圧 E i を抵抗 5 1 8と抵 抗 5 2 0とによって約 1 / 2に分圧した電圧が印加される。  The variable resistor 516 described above uses a channel formed between the source and the drain of a junction type FE as a resistor, as shown in FIG. 48, for example, and the gate voltage is varied by changing the gate voltage. The resistance value can be arbitrarily changed within a certain range. When a predetermined AC signal is input to the input terminal 1 22 shown in FIG. 48, the voltage E i applied to the input terminal 122 is connected to the inverting input terminal of the differential amplifier 512 by a resistor 5. A voltage divided by about 1/2 is applied by 18 and the resistor 520.
一方、 入力信号が人力端 1 2 2に入力されると、 差動増幅器 5 1 2の非反転入 力端子には、 キャパシ夕 5 1 4と可変抵抗 5 1 6の接続点に現れる信号が入力さ れる。 キャパシ夕 5 1 4と可変抵抗 5 1 6により構成される C R回路の一方端に は入力信号が入力されているため、 入力信号の位相をこの C R回路によって所定 量シフ トした信号の電圧が差動増幅器 5 1 2の非反転入力端子には印加される。 差動増幅器 5 1 2は、 このようにして 2つの入力端子に印加される電圧の差分を 所定の増幅度で増幅した信号を出力する。  On the other hand, when the input signal is input to the human-powered end 1 2 2, the signal appearing at the connection point between the capacitor 5 14 and the variable resistor 5 16 is input to the non-inverting input terminal of the differential amplifier 5 12. Is done. Since an input signal is input to one end of the CR circuit composed of the capacitance circuit 5 14 and the variable resistor 5 16, the voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by this CR circuit is different. It is applied to the non-inverting input terminal of the operational amplifier 5 1 2. The differential amplifier 512 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals at a predetermined amplification degree in this manner.
第 4 9図は、 第 4 8図に示す移相回路 5 1 0 Cの入出力電圧とキャパシ夕等に 現れる電圧との関係を示すべク トル図である。  FIG. 49 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 510 C shown in FIG. 48 and the voltage appearing in the capacity and the like.
同図に示すように、 可変抵抗 5 1 6の両端に現れる電圧 VR1とキャパシ夕 5 1 4の両端に現れる電圧 VC1は、 互いに位相が 9 0 ° ずれており、 これらをべクト ル的に加算したものが入力電圧 E i となる。 したがって、 入力信号の振幅が一定 で周波数のみが変化した場合には、 第 4 9図に示す半円の円周に沿って可変抵抗 5 1 6の両端電圧 VR1とキャパシ夕 5 1 4の両端電圧 VC1とが変化する。 As shown in the figure, the voltage VR1 appearing at both ends of the variable resistor 516 and the voltage VC1 appearing at both ends of the capacitor 514 are 90 ° out of phase with each other. The result is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the variable resistance is set along the circumference of the semicircle shown in Fig. 49. The voltage VR1 between both ends of 516 and the voltage VC1 between both ends of the capacitor 514 change.
また、 差動増幅器 5 1 2の非反転入力端子に印加される電圧 (可変抵抗 5 1 6 の両端電圧 VR1 ) から反転入力端子に印加される電圧 (抵抗 5 2 0の両端電圧 E i / 2 ) をべク トル的に減算したものが差分電圧 E o ' となる。 この差分電圧 E 0 ' は、 第 4 9図に示した半円において、 その中心点を始点とし、 電圧 VR1と鼋 圧 VC1とが交差する円周上の一点を終点とするべク トルで表すことができ、 その 大きさは半円の半径 E i / 2に等しくなる。  In addition, the voltage applied to the non-inverting input terminal of the differential amplifier 5 12 (voltage VR1 across the variable resistor 5 16) is applied to the voltage applied to the inverting input terminal (voltage E i / 2 across the resistor 5 20). ) Is the difference voltage E o '. This differential voltage E 0 ′ is represented by a vector whose center point is the start point and whose end point is a point on the circumference where voltage VR1 and voltage VC1 intersect in the semicircle shown in FIG. 49. And its size is equal to the radius of the semicircle E i / 2.
差動増幅器 5 1 2の出力電圧 E o はこの差分電圧 E o ' を所定の増幅度で増幅 したものとなる。 したがって、 上述した移相回路 5 1 0 Cにおいて、 出力電圧 E 0 は入力信号の周波数によらず一定であって、 全域通過回路として動作する。 また、 第 4 9図から明らかなように、 電圧 VR1と電圧 VC1とは円周上で直角に 交わるため、 入力電圧 E i と電圧 VR1との位相差は、 周波数 ωが 0から∞まで変 化するに従って、 入力電圧 E i を基準として時計回り方向 (位相遅れ方向) に 2 7 0 ° から 3 6 0 ° まで変化する。 そして、 移相回路 5 1 0 C全体の位相シフト 量 09 は、 周波数に応じて 1 8 0 ° から 3 6 0 ° まで変化する。  The output voltage Eo of the differential amplifier 512 is obtained by amplifying the difference voltage Eo 'with a predetermined amplification factor. Therefore, in the above-described phase shift circuit 5110C, the output voltage E0 is constant regardless of the frequency of the input signal, and operates as an all-pass circuit. Further, as is clear from FIG. 49, since the voltage VR1 and the voltage VC1 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VR1 varies from the frequency ω of 0 to ∞. Then, the angle changes from 270 ° to 360 ° in the clockwise direction (phase lag direction) based on the input voltage E i. Then, the phase shift amount 09 of the entire phase shift circuit 5110C changes from 180 ° to 360 ° according to the frequency.
同様に、 第 5 0図は第 4 7図に示した後段の移相回路 5 3 0 Cの構成を抜き出 して示したものである。 同図に示す後段の移相回路 5 3 0 Cは、 2入力の差分電 圧を所定の増幅度で増幅して出力する差動増幅器 5 3 2と、 入力端 1 4 2に入力 された信号の位相を所定量シフ トさせて差動増幅器 5 3 2の非反転入力端子に入 力する可変抵抗 5 3 6およびキャパシ夕 5 3 4と、 入力端 1 4 2に入力された信 号の位相を変えずにその電圧レベルを約 1 / 2に分圧して差動増幅器 5 3 2の反 転入力端子に入力する抵抗 5 3 8および 5 4 0とを含んで構成されている。 第 5 0図に示した入力端 1 4 2に所定の交流信号が入力されると、 差動増幅器 5 3 2の反転入力端子には、 入力端 1 4 2に印加される電圧 E i を抵抗 5 3 8と 抵抗 5 4 0とによって約 1 7 2に分圧した電圧が印加される。  Similarly, FIG. 50 shows a configuration extracted from the phase shift circuit 530C at the subsequent stage shown in FIG. 47. The phase shift circuit 530C at the subsequent stage shown in the figure is a differential amplifier 532 that amplifies the differential voltage of the two inputs at a predetermined amplification level and outputs the amplified signal, and a signal that is input to the input terminal 142. The variable resistor 5336 and the capacitor 5334 input to the non-inverting input terminal of the differential amplifier 532 after shifting the phase of the signal by a predetermined amount, and the phase of the signal input to the input terminal 1422 And the resistors 538 and 540 which divide the voltage level to about 1/2 without changing the voltage and input to the inverting input terminal of the differential amplifier 532. When a predetermined AC signal is input to the input terminal 14 2 shown in FIG. 50, the voltage E i applied to the input terminal 14 2 is connected to the inverting input terminal of the differential amplifier 5 32 by a resistor. A voltage divided to about 172 is applied by 538 and the resistor 540.
一方、 入力信号が入力端 1 4 2に入力されると、 差動増幅器 5 3 2の非反転入 力端子には、 可変抵抗 5 3 6とキャパシ夕 5 3 4の接続点に現れる信号が入力さ れる。 可変抵抗 5 3 6とキャパシ夕 5 3 4により構成される C R回路の一方端に は入力信号が入力されているため、 入力信号の位相をこの C R回路によって所定 量シフ トした信号の電圧が差動増幅器 5 3 2の非反転入力端子には印加される。 差動増幅器 5 3 2は、 このようにして 2つの入力端子に印加される電圧の差分を 所定の増幅度で増幅した信号を出力する。 On the other hand, when an input signal is input to the input terminal 14 42, the signal appearing at the connection point between the variable resistor 5 36 and the capacitor 5 34 is input to the non-inverting input terminal of the differential amplifier 5 32. Is done. Since an input signal is input to one end of the CR circuit composed of the variable resistor 536 and the capacitor 5334, the phase of the input signal is determined by this CR circuit. The voltage of the signal that has been shifted is applied to the non-inverting input terminal of the differential amplifier 532. The differential amplifier 532 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals at a predetermined amplification degree in this manner.
第 5 1図は、 移相回路 5 3 0 Cの入出力電圧とキャパシ夕等に現れる電圧との 関係を示すべク トル図である。  FIG. 51 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 530 C and the voltage appearing in the capacity and the like.
同図に示すように、 キャパシ夕 5 3 4の両端に現れる電圧 VC2と可変抵抗 5 3 6の両端に現れる電圧 VR2は、 互いに位相が 9 0 ° ずれており、 これらをべク ト ル的に加算したものが入力電圧 E i となる。 したがって、 入力信号の振幅が一定 で周波数のみが変化した場合には、 第 5 1図に示す半円の円周に沿ってキャパシ 夕 5 3 4の両端電圧 VC2と可変抵抗 5 3 6の両端電圧 VR2とが変化する。  As shown in the figure, the voltage VC2 appearing at both ends of the capacitor 534 and the voltage VR2 appearing at both ends of the variable resistor 536 are 90 degrees out of phase with each other. The sum is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage VC2 across the capacitor 534 and the voltage across the variable resistor 536 along the circumference of the semicircle shown in Fig. 51 VR2 changes.
また、 差動増幅器 5 3 2の非反転入力端子に印加される電圧 (キャパシタ 5 3 4の両端電圧 VC2) から反転入力端子に印加される電圧 (抵抗 5 4 0の両端電圧 E i / 2 ) をべク トル的に減算したものが差分電圧 E o ' となる。 この差分電圧 E o ' は、 第 5 1図に示した半円において、 その中心点を始点とし、 電圧 VC2と 電圧 VR2とが交差する円周上の一点を終点とするべク トルで表すことができ、 そ の大きさは半円の半径 E i / 2に等しくなる。  The voltage applied to the non-inverting input terminal of the differential amplifier 532 (the voltage VC2 across the capacitor 534) is applied to the voltage applied to the inverting input terminal (the voltage E i / 2 across the resistor 540). The vector obtained by subtracting the vector is the differential voltage E o '. The difference voltage E o 'is represented by a vector whose center point is the starting point and whose end point is a point on the circumference where voltage VC2 and voltage VR2 intersect in the semicircle shown in Fig. 51. And its size is equal to the radius of the semicircle E i / 2.
差動増幅器 5 3 2の出力電圧 E o はこの差分電圧 E o ' を所定の増幅度で増幅 したものとなる。 したがって、 上述した移相回路 5 3 0 Cにおいて、 出力電圧 E 0 は入力信号の周波数によらず一定であって、 全域通過回路として動作する。 また、 第 5 1図から明らかなように、 電圧 VC2と電圧 VR2とは円周上で直角に 交わるため、 入力電圧 E i と電圧 VC2との位相差は、 周波数 ωが 0から∞まで変 化するに従って 0 ° から 9 0 ° まで変化する。 そして、 移相回路 5 3 0 C全体の 位相シフト量 0 10は周波数に応じて 0。 から 1 8 0 ° まで変化する。  The output voltage Eo of the differential amplifier 532 is obtained by amplifying the difference voltage Eo 'with a predetermined amplification factor. Therefore, in the above-described phase shift circuit 530 C, the output voltage E 0 is constant regardless of the frequency of the input signal, and operates as an all-pass circuit. In addition, as is clear from FIG. 51, since the voltage VC2 and the voltage VR2 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VC2 varies from a frequency ω of 0 to ∞. The angle changes from 0 ° to 90 ° as required. Then, the phase shift amount 010 of the entire phase shift circuit 530C is 0 according to the frequency. To 180 °.
このようにして、 2つの移相回路 5 1 0 C、 5 3 0 Cのそれそれにおいて位相 が所定量シフ トされ、 第 4 9図および第 5 1図に示すように、 所定の周波数にお いて 2つの移相回路 5 1 0 C、 5 3 0 Cの全体により位相シフ ト量の合計が 3 6 0 ° となる信号が出力される。  In this way, the phase of each of the two phase shift circuits 510C and 530C is shifted by a predetermined amount, and as shown in FIGS. 49 and 51, at a predetermined frequency. In addition, a signal having a total phase shift amount of 360 ° is output by the entire two phase shift circuits 510C and 530C.
また、 後段の移相回路 5 3 0 Cの出力は、 出力端子 1 9 2から同調回路 1 Jの 出力として取り出されるとともに、 この移相回路 5 3 0 Cの出力を分圧回路 1 6 0を通した信号が帰還抵抗 1 7 0を介して非反転回路 5 5 0の入力側に帰還され ている。 そして、 この帰還された信号と入力抵抗 1 7 4を介して入力される信号 とが加算され、 この加算された信号が非反転回路 5 5 0を介して前段の移相回路 5 1 0 Cに入力されている。 The output of the subsequent phase shift circuit 530 C is taken out from the output terminal 192 as the output of the tuning circuit 1 J, and the output of the phase shift circuit 530 C is divided by the voltage divider circuit 16 The signal passed through 0 is fed back to the input side of the non-inverting circuit 550 via the feedback resistor 170. Then, the feedback signal and the signal input via the input resistor 174 are added, and the added signal is supplied to the preceding phase shift circuit 510 C via the non-inverting circuit 550. Has been entered.
また、 上述した 2つの移相回路 5 1 0 C、 5 3 0 Cの各利得を調整することに より、 第 4 7図に示した 2つの移相回路 5 1 0 C、 5 3 0 C、 分圧回路 1 6 0に よる減衰や帰還ループで生じる損失を補い、 かつ同調回路全体のループゲインが 1以下になるように設定されている。 なお、 移相回路 5 1 0 C、 5 3 0 Cの各利 得を調整する代わりに、 非反転回路 5 5 0に 1以上の利得を持たせ、 この値を調 整してもよい。  In addition, by adjusting the respective gains of the two phase shift circuits 510C and 530C described above, the two phase shift circuits 510C, 530C, It is set so that the attenuation caused by the voltage divider circuit 160 and the loss generated in the feedback loop are compensated, and the loop gain of the entire tuning circuit is 1 or less. Instead of adjusting the gains of the phase shift circuits 510C and 530C, the non-inverting circuit 550 may have a gain of 1 or more and adjust this value.
また、 同調回路 1 Jの出力端子 1 9 2からは、 分圧回路 1 6 0に入力される前 の移相回路 5 3 0 Cの出力が取り出されているため、 同調回路 1 J自体に利得を 持たせることができ、 同調動作と同時に信号振幅の増幅が可能となる。  In addition, since the output of the phase shift circuit 530 C before being input to the voltage dividing circuit 160 is taken out from the output terminal 1992 of the tuning circuit 1 J, the gain is given to the tuning circuit 1 J itself. Therefore, the signal amplitude can be amplified simultaneously with the tuning operation.
なお、 第 4 7図に示した同調回路において、 増幅動作が不要な場合には、 分圧 回路 1 6 0を省略して移相回路 5 3 0 Cの出力を直接前段側に帰還してもよい。 あるいは、 分圧回路 1 6 0内の抵抗 1 6 2の抵抗値を極端に小さな値にして分圧 比を 1に設定してもよい。  In the tuning circuit shown in FIG. 47, when the amplification operation is not necessary, the voltage divider circuit 160 may be omitted and the output of the phase shift circuit 530C may be directly fed back to the preceding stage. Good. Alternatively, the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
〔同調回路の第 1 3の変形例〕  [Third Modification of Tuning Circuit]
第 4 7図に示した同調回路 1 Jは、 各移相回路 5 1 0 C、 5 3 0 Cを C R回路 を含んで構成したが、 C R回路を抵抗とインダク夕からなる L R回路に置き換え た移相回路を用いて同調回路を構成することもできる。  In the tuning circuit 1J shown in Fig. 47, each of the phase shift circuits 510C and 530C was configured to include a CR circuit, but the CR circuit was replaced with an LR circuit consisting of a resistor and an inductor. A tuning circuit can also be configured using a phase shift circuit.
第 5 2図は、 L R回路を含む移相回路の他の構成を示す回路図であり、 第 4 7 図に示した同調回路 1 Jの前段の移相回路 5 1 0 Cと置き換え可能な構成が示さ れている。 同図に示す移相回路 5 1 0 Lは、 第 4 8図に示した移相回路 5 1 0 C 内のキャパシ夕 5 1 4と可変抵抗 5 1 6からなる C R回路を、 可変抵抗 5 1 6と インダク夕 5 1 7からなる L R回路に置き換えた構成を有している。 なお、 ィン ダクタ 5 1 7に直列に接続されたキャパシ夕 5 1 9は直流電流阻止用であり、 そ のィンビ一ダンスは動作周波数において極めて小さく設定され、 すなわち大きな 静電容量を有している。 第 53図は、 移相回路 5 1 0 Lの入出力電圧とインダク夕等に現れる電圧との 関係を示すべク トル図である。 同図に示す移相回路 5 1 0 Lの位相シフ ト量 011 は、 可変抵抗 5 1 6とインダク夕 5 1 7により構成される LR回路の時定数を T , (可変抵抗 5 1 6の抵抗値を R、 インダク夕 5 1 7のインダク夕ンスを Lとす ると T , =L/R) とすると、 上述した ( 6) 式に示した 01 と同じとなる。 第 54図は、 LR回路を含む移相回路の他の構成を示す回路図であり、 第 47 図に示した同調回路 1 Jの後段の移相回路 5 30 Cと置き換え可能な構成が示さ れている。 同図に示す移相回路 53 0 Lは、 第 5 0図に示した移相回路 530 C 内の可変抵抗 536とキャパシ夕 534からなる CR回路を、 インダク夕 53 7 と可変抵抗 536からなる LR回路に置き換えた構成を有している。 なお、 イン ダク夕 5 37に直列に接続されたキャパシ夕 53 9は直流電流阻止用であり、 そ のィンピーダンスは動作周波数において極めて小さく設定され、 すなわち大きな 静電容量を有している。 FIG. 52 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and is a configuration that can be replaced with the phase shift circuit 510 C preceding the tuning circuit 1 J shown in FIG. 47. It is shown. The phase shift circuit 5 10 L shown in the figure is a CR circuit consisting of the capacity 5 1 4 and the variable resistor 5 16 in the phase shift circuit 5 10 C shown in FIG. It has a configuration in which it is replaced with an LR circuit consisting of 6 and Inductor 5 17. The capacitor 5 19 connected in series with the inductor 5 17 is for blocking DC current, and its impedance is set to be extremely small at the operating frequency, that is, it has a large capacitance. I have. FIG. 53 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 5101 L and the voltage appearing in the inductor and the like. The phase shift amount 011 of the phase shift circuit 510 L shown in the figure is obtained by setting the time constant of the LR circuit composed of the variable resistor 5 16 and the inductor 5 17 to T, (the resistance of the variable resistor 5 16 If the value is R and the inductance of the inductor 517 is L, then T, = L / R), the result is the same as 01 shown in the above equation (6). FIG. 54 is a circuit diagram showing another configuration of the phase shift circuit including the LR circuit, and shows a configuration that can be replaced with the phase shift circuit 530C at the subsequent stage of the tuning circuit 1J shown in FIG. 47. ing. The phase shift circuit 53 0 L shown in the figure is a CR circuit consisting of the variable resistor 536 and the capacitor 534 in the phase shift circuit 530 C shown in FIG. 50, and an LR consisting of the inductor 53 7 and the variable resistor 536. It has a configuration replaced with a circuit. The capacitor 539 connected in series with the inductor 537 is for blocking DC current, and its impedance is set to be extremely small at the operating frequency, that is, it has a large capacitance.
第 5 5図は、 移相回路 530 Lの入出力電圧とインダクタ等に現れる電圧との 関係を示すべク トル図である。 同図に示す移相回路 5 30 Lの位相シフ ト量 012 は、 インダク夕 537と可変抵抗 536により構成される LR回路の時定数を T 2 (インダクタ 1 37のインダクタンスを L、 可変抵抗 53 6の抵抗値を Rとす ると T 2 =L/R) とすると、 上述した ( 7) 式に示した <zJ2 と同じとなる。 なお、 第 4 7図に示す移相回路 5 1 0 C、 53 0 Cをそれぞれ第 52図に示す 移相回路 5 1 0 Lと第 54図に示す移相回路 530 Lに置き換えた場合には、 可 変抵抗 536を形成する FETのゲート電圧を変化させた場合の各位相シフ ト量 の変化の方向が反対となるため、 第 1 3図に示した位相差検出回路 3内の EX— ORゲート 33を EX— NOR (イクスクルシブ ' ノア) ゲートに置き換えたり、 第 1 3図に示した電圧比較器 3 1、 32のいずれか一方の 2つの入力を入れ換え る等して制御電圧の変化の方向を反転させる必要がある。  FIG. 55 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit 530 L and the voltage appearing in the inductor and the like. The phase shift amount 012 of the phase shift circuit 5 30 L shown in the figure is obtained by setting the time constant of the LR circuit composed of the inductor 537 and the variable resistor 536 to T 2 (the inductance of the inductor 1 37 is L, the variable resistor 53 6 If T 2 = L / R) where R is the resistance value of R, this is the same as <zJ2 shown in the above equation (7). When the phase shift circuits 510 C and 530 C shown in FIG. 47 are replaced with the phase shift circuit 510 L shown in FIG. 52 and the phase shift circuit 530 L shown in FIG. 54, respectively. Since the direction of change of each phase shift amount when the gate voltage of the FET forming the variable resistor 536 is changed is opposite, the EX-OR in the phase difference detection circuit 3 shown in FIG. The direction of the change in the control voltage by replacing the gate 33 with an EX-NOR (exclusive 'NOR) gate or exchanging one of the two inputs of one of the voltage comparators 31 and 32 shown in Fig. 13 Need to be inverted.
このように、 第 52図に示した移相回路 5 1 0 Lおよび第 54図に示した移相 回路 530 Lのそれそれは、 第 48図あるいは第 50図に示した移相回路 5 1 0 C、 530 Cと等価であり、 第 47図に示した同調回路 1 Jにおいて、 前段の移 相回路 5 1 0 Cを第 5 2図に示した移相回路 5 1 0 Lに、 後段の移相问路 530 Cを第 5 4図に示した移相回路 5 3 0 Lにそれそれ置き換えることが可能である c 2つの移相回路 5 1 0 C、 5 3 0 Cの両方を移相回路 5 1 0 L、 5 3 0 Lに置き 換えた場合には、 同調回路全体を集積化することにより同調周波数の高周波化が 容易となる。 Thus, each of the phase shift circuit 510 L shown in FIG. 52 and the phase shift circuit 530 L shown in FIG. 54 is different from the phase shift circuit 510 L shown in FIG. 48 or FIG. 530 C in the tuning circuit 1 J shown in FIG. 47, and the phase shift circuit 510 C of the preceding stage is shifted to the phase shift circuit 510 L shown in FIG. Route 530 C fifth 4 are possible which it replaces it in the phase shift circuit 5 3 0 L shown in FIG. C 2 two phase shifting circuits 5 1 0 C, 5 3 0 C 0 phase shift circuit 5 1 both L When the frequency is replaced with 530 L, the tuning frequency can be easily increased by integrating the entire tuning circuit.
〔同調回路の第 1 4の変形例〕  [14th modification of tuning circuit]
第 4 7図に示した同調回路 1 Jは、 互いに移相方向が異なる 2つの移相回路を 含んでいるが、 基本的に同じ構成を有する 2つの移相回路を組み合わせて同調回 路を構成することもできる。  The tuning circuit 1 J shown in FIG. 47 includes two phase shifting circuits having different phase shift directions from each other, but a tuning circuit is formed by combining two phase shifting circuits having basically the same configuration. You can also.
第 5 6図は、 同調回路の他の構成を示す回路図である。 同図に示す同調回路 1 Kは、 入力される交流信号の位相を反転して出力する位相反転回路 5 8 0と、 そ れそれが入力される交流信号の位相を所定量シフ 卜させることにより所定の周波 数において合計で 1 8 0 ° の位相シフトを行う 2つの移相回路 5 1 0 Cと、 後段 の移相回路 5 1 0 Cのさらに後段に設けられた抵抗 1 6 2および 1 6 4からなる 分圧回路 1 6 0と、 帰還抵抗 1 7 0および入力抵抗 1 7 4のそれそれを介するこ とにより分圧回路 1 6 0の分圧出力 (帰還信号) と入力端子 1 9 0に入力される 信号 (入力信号) とを所定の割合で加算する加算回路とを含んで構成されている c FIG. 56 is a circuit diagram showing another configuration of the tuning circuit. The tuning circuit 1K shown in the figure is composed of a phase inverting circuit 580 that inverts the phase of an input AC signal and outputs the inverted signal, and a phase shift circuit that shifts the phase of the input AC signal by a predetermined amount. Two phase shift circuits 510 C that perform a total of 180 ° phase shift at a predetermined frequency, and resistors 16 2 and 16 that are provided further downstream of the subsequent phase shift circuit 510 C The voltage divider circuit 160 consists of four components, the feedback resistor 170 and the input resistor 174 pass through the voltage divider circuit 160 (divided output (feedback signal) and input terminal 190). c of the signal which is input (input signal) is configured to include an adder circuit for adding at a predetermined ratio to
2つの移相回路 5 1 0 Cの詳細構成および入出力信号の位相関係は第 4 8図お よび第 4 9図を用いて説明した通りであり、 所定の周波数において、 2つの移相 回路 5 1 0 Cの全体による位相シフ ト量の合計が 1 8 0 ° となる。 The detailed configuration of the two phase shift circuits 5 10 C and the phase relationship between the input and output signals are as described with reference to FIGS. 48 and 49. At a predetermined frequency, the two phase shift circuits 5 The total phase shift amount of the entire 100 C is 180 °.
また、 2つの移相回路 5 1 0 Cの前段に接続された位相反転回路 5 8 0は、 入 力される交流信号の位相を反転するものであり、 例えば、 エミッ夕接地回路ゃソ ース接地回路あるいはオペアンプと抵抗を組み合わせた回路によって実現される c このように、 所定の周波数において、 2つの移相回路 5 1 0 Cによって位相が 1 8 0 ° シフ トされ、 さらにその前段に接続された位相反転回路 5 8 0によって 位相が反転され、 これら 3つの回路の全体による位相シフ ト量の合計が 3 6 0 ° となる。 A phase inverting circuit 580 connected in front of the two phase shift circuits 510 C inverts the phase of the input AC signal. For example, an emitter ground circuit ゃ source as this c realized by a circuit that combines a ground circuit or an operational amplifier resistor, at a predetermined frequency, phase by two phase shifting circuits 5 1 0 C is 1 8 0 ° shifted, it is further connected to the preceding stage The phase is inverted by the phase inverting circuit 580, and the total phase shift amount of the three circuits as a whole is 360 °.
また、 後段の移相回路 5 1 0 Cの出力は出力端子 1 9 2から同調回路 1 Kの出 力として取り出されるとともに、 後段の移相回路 5 1 0 Cの出力を分圧回路 1 6 0を通した信号が帰還抵抗 1 7 0を介して位相反転回路 5 8 0の入力側に帰還さ れている。 そして、 この帰還される信号と入力抵抗 1 7 4を介して入力される信 号とが加算され、 この加算された信号が位相反転回路 5 8 0に入力されている。 このように、 分圧回路 1 6 0の出力を帰還抵抗 1 7 0を介して位相反転回路 5 8 0の入力側に帰還させ、 この帰還信号に入力抵抗 1 7 4を介して入力した信号 を加算するとともに、 2つの移相回路 5 1 0 Cの利得を調整して分圧回路 1 6 0 や帰還抵抗 1 7 0と入力抵抗 1 7 4の接続部において生じる損失等を補うことに より、 第 4 7図に示した同調回路 1 Jと同様の同調動作および増幅動作を行うこ とができる。 なお、 移相回路 5 1 0 Cの各利得を調整する代わりに、 位相反転回 路 5 8 0の利得を調整してもよい。 Also, the output of the subsequent phase shift circuit 5100C is taken out from the output terminal 1992 as the output of the tuning circuit 1K, and the output of the subsequent phase shift circuit 5100C is divided by the voltage divider circuit 160 Through the feedback resistor 170 to the input side of the phase inverter 580 Have been. The signal that is fed back and the signal that is input via the input resistor 174 are added, and the added signal is input to the phase inversion circuit 580. In this way, the output of the voltage dividing circuit 160 is fed back to the input side of the phase inverting circuit 580 via the feedback resistor 170, and the signal input via the input resistor 174 is applied to this feedback signal. In addition to the addition, by adjusting the gain of the two phase shift circuits 5 10 C to compensate for the loss and the like that occur in the voltage divider circuit 160 and the connection between the feedback resistor 170 and the input resistor 174, The same tuning operation and amplification operation as the tuning circuit 1J shown in FIG. 47 can be performed. Instead of adjusting each gain of the phase shift circuit 5100C, the gain of the phase inversion circuit 580 may be adjusted.
なお、 第 5 6図に示した同調回路 1 Kにおいて、 増幅動作が不要な場合には分 圧回路 1 6 0を省略し、 移相回路 5 1 0 Cの出力を直接前段側に帰還してもよい。 あるいは、 分圧回路 1 6 0内の抵抗 1 6 2の抵抗値を極端に小さな値にして分圧 比を 1に設定してもよい。  In the tuning circuit 1K shown in Fig. 56, if amplification operation is not necessary, the voltage divider circuit 160 is omitted, and the output of the phase shift circuit 5100C is directly fed back to the previous stage. Is also good. Alternatively, the voltage division ratio may be set to 1 by making the resistance value of the resistor 162 in the voltage dividing circuit 160 extremely small.
〔同調回路の第 1 5の変形例〕  [Fifteenth Modification of Tuning Circuit]
第 5 7図は、 同調回路の他の変形例を示す回路図であり、 第 5 6図とは反対に 第 4 7図に示す後段の移相回路 5 3 0 Cを含んで構成されている。  FIG. 57 is a circuit diagram showing another modification of the tuning circuit, which is configured to include a subsequent-stage phase shift circuit 530C shown in FIG. 47 contrary to FIG. .
第 5 7図に示す同調回路 1 Lは、 それそれが入力される交流信号の位相を所定 量シフ トさせることにより所定の周波数において合計で 1 8 0 ° の位相シフ トを 行う 2つの移相回路 5 3 0 Cと、 後段の移相回路 5 3 0 Cの出力信号の位相をさ らに反転する位相反転回路 5 8 0と、 帰還抵抗 1 Ί 0および入力抵抗 1 7 4のそ れそれを介することにより位相反転回路 5 8 0から出力される信号 (帰還信号) と入力端子 1 9 0に入力される信号 (入力信号) とを所定の割合で加算する加算 回路とを含んで構成されている。  The tuning circuit 1L shown in Fig. 57 has a total of 180 ° phase shift at a given frequency by shifting the phase of the input AC signal by a given amount. Circuit 530 C, a phase inverting circuit 580 that further inverts the phase of the output signal of the subsequent phase shift circuit 530 C, a feedback resistor 1 Ί 0, and an input resistor 174 And a signal (input signal) output from the phase inversion circuit 580 and a signal (input signal) input to the input terminal 190 at a predetermined ratio. ing.
各移相回路 5 3 0 Cの詳細構成および入出力の位相関係は第 5 0図および第 5 1図を用いて説明した通りであり、 例えばキャパシ夕 5 3 4と可変抵抗 5 3 6か らなる C R回路の時定数を T 2 とすると、 ω = 1 / Τ 2 の周波数における位相シ フ ト量 0 10は時計回り方向 (位相遅れ方向) に 9 0 ° となる。 したがって、 所定 の周波数において、 2つの移相回路 5 3 0 Cの全体による位相シフ ト量の合計は 1 8 0 ° となる。 このように、 上述した 2つの移相回路 5 3 0 Cを用いた場合であっても、 所定 の周波数において 2つの移相回路 5 3 0 Cによって位相が 1 8 0 ° シフ トされ、 さらにその前段に接続された位相反転回路 5 8 0によって位相が反転され、 これ ら 3つの回路の全体による位相シフ ト量の合計が 3 6 0 ° となる。 The detailed configuration of each phase shift circuit 530 C and the phase relationship between the input and output are as described with reference to FIGS. 50 and 51. when the time constant of the composed CR circuit and T 2, the phase sheet oice weight 0 10 at a frequency of ω = 1 / Τ 2 becomes 9 0 ° in the clockwise direction (phase lag direction). Therefore, at a predetermined frequency, the total amount of phase shift by the entire two phase shift circuits 530C is 180 °. As described above, even when the two phase shift circuits 530C described above are used, the phase is shifted by 180 ° by the two phase shift circuits 530C at a predetermined frequency, and furthermore, The phase is inverted by the phase inverting circuit 580 connected in the preceding stage, and the total phase shift amount of the three circuits as a whole is 360 °.
したがって、 上述した同調回路 1 Lは、 分圧回路 1 6 0の出力を帰還抵抗 1 7 0を介して位相反転回路 5 8 0の入力側に帰還させ、 この帰還信号に入力抵抗 1 7 4を介して入力した信号を加算するとともに、 2つの移相回路 5 3 0 Cの利得 を調整して分圧回路 1 6 0や帰還抵抗 1 Ί 0と入力抵抗 1 7 4の接続部において 生じる損失等を補い、 かつ帰還ループのループゲインを 1以下に設定することに より、 第 5 6図に示した同調回路 1 K等と同様の同調動作および増幅動作を行う ことができる。  Therefore, the above-mentioned tuning circuit 1 L feeds back the output of the voltage dividing circuit 160 to the input side of the phase inverting circuit 580 via the feedback resistor 170, and adds the input resistor 1 74 to this feedback signal. The signals input via the input terminals are added together, and the gain of the two phase shift circuits 530 C is adjusted to adjust the gain of the voltage divider circuit 160 and the connection between the feedback resistor 1 Ί 0 and the input resistor 174, etc. By compensating for this and setting the loop gain of the feedback loop to 1 or less, the same tuning operation and amplification operation as those of the tuning circuit 1K shown in FIG. 56 can be performed.
なお、 第 5 6図、 第 5 7図に示した同調回路 1 K、 1 Lは、 C R回路を内部に 含む移相回路を縦続接続しているが、 両方の移相回路について L R回路を内部に 含んで構成するようにしてもよい。  The tuning circuits 1K and 1L shown in Fig. 56 and Fig. 57 are connected in cascade with a phase shift circuit that includes a CR circuit, but the LR circuit is internally connected for both phase shift circuits. May be included.
具体的には、 第 5 6図に示した同調回路 1 Κにおいて、 2つの移相回路 5 1 0 Cを第 5 2図に示した移相回路 5 1 0 Lに置き換えてもよい。 また、 第 5 7図に 示した同調回路 1 Lにおいて、 2つの移相回路 5 3 0 Cを第 5 4図に示した移相 回路 5 3 0 Lに置き換えてもよい。  Specifically, in the tuning circuit 1 # shown in FIG. 56, the two phase shift circuits 5100C may be replaced with the phase shift circuit 5101L shown in FIG. Further, in the tuning circuit 1L shown in FIG. 57, the two phase shift circuits 530C may be replaced with the phase shift circuit 530L shown in FIG.
ただし、 C R回路を含む移相回路を L R回路を含む移相回路に置き換えた場合 には、 可変抵抗 1 1 6あるいは 1 3 6を形成する F E Τのゲ一ト電圧を変化させ た場合の各位相シフ ト量の変化の方向が反対となるため、 第 1 3図に示した位相 差検出回路 3内の E X— O Rゲート 3 3を E X— N O R (イクスクルシブ . ノア) ゲートに置き換えたり、 第 1 3図に示した電圧比較器 3 1、 3 2のいずれか一方 の 2つの入力を入れ換える等して制御電圧の変化の方向を反転させる必要がある。 ところで、 上述した同調回路 1 J、 1 K、 1 Lは、 非反転回路と 2つの移相回 路あるいは位相反転回路と 2つの移相回路を含んで構成されており、 接続された 3つの回路の全体によつて所定の周波数において合計の位相シフ ト量を 3 6 0 ° にすることにより所定の同調動作を行うようになっている。 したがって、 位相シ フト量だけに着目すると、 2つの移相回路のどちらを前段に用いるか、 あるいは 上述した 3つの回路をどのような順番で接続するかはある程度の自由度があり、 必要に応じて接続順番を決めることができる。 However, when the phase shift circuit including the CR circuit is replaced by the phase shift circuit including the LR circuit, the various points when the gate voltage of the FE 形成 that forms the variable resistor 116 or 136 are changed Since the direction of the phase shift change is opposite, the EX-OR gate 33 in the phase difference detection circuit 3 shown in FIG. 13 can be replaced with an EX-NOR (exclusively NOR) gate. It is necessary to reverse the direction of change of the control voltage by exchanging either of the two inputs of the voltage comparators 31 and 32 shown in FIG. By the way, the tuning circuits 1 J, 1 K, and 1 L described above include a non-inverting circuit and two phase shifting circuits or a phase inverting circuit and two phase shifting circuits, and are connected to three connected circuits. By setting the total phase shift amount to 360 ° at a predetermined frequency, a predetermined tuning operation is performed. Therefore, focusing only on the amount of phase shift, which of the two phase shift circuits is used in the preceding stage, There is a certain degree of freedom in the order in which the above three circuits are connected, and the connection order can be determined as necessary.
上述した各同調回路において、 C R回路を含む移相回路を L R回路を含む移相 回路に置き換える場合には、 縦続接続された 2つの移相回路のうちいずれか一方 の移相回路のみを、 L R回路を含む移相回路に置き換えてもよい。 ただし、 その 場合には、 前段の移相回路内の可変抵抗 1 1 6の抵抗値の制御方向と、 後段の移 相回路内の可変抵抗 1 3 6の抵抗値の制御方向とが反対であるため、 第 1 3図に 示す分配器 5の出力レベルを反転させる等の若干の回路の修正が必要となる。 こ のように、 C R回路を含む移相回路と L R回路を含む移相回路とを縦続接続して 同調回路を構成し、 同調回路全体を集積化した場合には、 温度変化による同調周 波数の変動を防止する、 いわゆる温度補償が可能となる。  In each of the tuning circuits described above, when replacing the phase shift circuit including the CR circuit with the phase shift circuit including the LR circuit, only one of the two cascade-connected phase shift circuits is connected to the LR It may be replaced with a phase shift circuit including a circuit. However, in this case, the control direction of the resistance value of the variable resistor 116 in the preceding phase shift circuit is opposite to the control direction of the resistance value of the variable resistor 116 in the subsequent phase shift circuit. Therefore, it is necessary to slightly modify the circuit, such as inverting the output level of the distributor 5 shown in FIG. In this way, the phase shift circuit including the CR circuit and the phase shift circuit including the LR circuit are cascaded to form a tuning circuit, and when the entire tuning circuit is integrated, the tuning frequency due to temperature change is reduced. So-called temperature compensation that prevents fluctuations is possible.
上述した各同調回路では、 後段の移相回路の入出力信号間の位相差を検出して いるが、 前段の移相回路の入出力信号間の位相差を検出してもよい。 ただし、 そ の場合には、 後段の移相回路の入出力信号間の位相差を検出する場合とは位相シ フ ト量の変化の方向が反対となるため、 第 1 3図に示した位相差検出回路 3内の E X— O Rゲート 3 3を E X— N O Rゲートに置き換える等の若干の回路の修正 が必要となる。  In each of the tuning circuits described above, the phase difference between the input and output signals of the subsequent phase shift circuit is detected, but the phase difference between the input and output signals of the preceding phase shift circuit may be detected. However, in this case, the direction of change of the phase shift amount is opposite to that in the case where the phase difference between the input and output signals of the subsequent phase shift circuit is detected. Some modification of the circuit is required, such as replacing the EX-OR gate 33 in the phase difference detection circuit 3 with an EX-NOR gate.
〔J . その他の変形例〕  [J. Other variations]
ところで、 第 1図や第 2 0図等に示した各種の同調機構は、 同調回路を構成す る 2つの移相回路内の可変抵抗 1 1 6等を接合型の F E Tを用いて形成したが、 可変抵抗を他の素子で形成するようにしてもよい。  By the way, in the various tuning mechanisms shown in FIGS. 1 and 20, etc., the variable resistors 1 16 in the two phase shift circuits constituting the tuning circuit are formed by using the junction type FET. Alternatively, the variable resistor may be formed of another element.
第 5 8図に示す同調回路 1 Mは、 第 3図に示した移相回路 1 1 0 C、 1 3 0 C 内の可変抵抗 1 1 6、 1 3 6を M O S型の F E Tで形成した可変抵抗 1 1 5、 1 3 5にそれそれ置き換えたものである。 このように、 M O S型の F E Tのソース • ドレイン間に形成されるチャネルを抵抗体として用いることもできる。 この場 合に、 ゲートに印加する制御電圧を変えることによりこの F E Tのチャネル抵抗 を変化させることができるため、 同調回路 1の同調周波数をある範囲で任意に変 化させることができる。  The tuning circuit 1M shown in Fig. 58 is a variable circuit in which the variable resistors 1 16 and 1 36 in the phase shift circuits 110 C and 130 C shown in Fig. 3 are formed by MOS type FETs. These are replaced by resistors 1 1 5 and 1 3 5 respectively. As described above, a channel formed between the source and the drain of the MOS FET can be used as a resistor. In this case, since the channel resistance of the FET can be changed by changing the control voltage applied to the gate, the tuning frequency of the tuning circuit 1 can be arbitrarily changed within a certain range.
また、 上述した移相回路 1 1 0 C等は、 キャパシ夕 1 1 4等と直列に接続され た可変抵抗 1 16等の抵抗値を変化させて位相シフ ト量を変化させることにより 全体の同調周波数を変えるようにしたが、 キャパシ夕 1 14等の静電容量を変化 させることにより全体の同調周波数を変えるようにしてもよい。 In addition, the above-described phase shift circuit 110C and the like are connected in series with the capacity 114 and the like. The overall tuning frequency was changed by changing the phase shift amount by changing the resistance value of the variable resistor 116 etc., but the overall tuning was changed by changing the capacitance of the capacitor 114 etc. The frequency may be changed.
第 59図は、 キャパシ夕の静電容量を変えることにより全体の同調周波数を変 化させるようにした同調回路の構成を示す図である。 同図に示す同調回路 1 Nは、 第 2図に示した移相回路 1 10 C、 130 Cを元にして構成されているが、 第 2 9図や第 46図等に示す各種の移相回路を元にして構成してもよい。  FIG. 59 is a diagram showing the configuration of a tuning circuit in which the overall tuning frequency is changed by changing the capacitance of the capacitance. The tuning circuit 1N shown in the figure is configured based on the phase shift circuits 110C and 130C shown in FIG. 2, but the various phase shift circuits shown in FIG. 29 and FIG. 46 etc. You may comprise based on a circuit.
第 59図において、 可変容量ダイオード 127、 147に直列に接続されたキ ャパシタ 128、 148は、 可変容量ダイオードに逆バイアス電圧を印加する際 の直流電流阻止用であり、 そのインピーダンスは動作周波数において極めて小さ く、 すなわち大きな静電容量を有している。  In FIG. 59, the capacitors 128 and 148 connected in series to the variable capacitance diodes 127 and 147 are for blocking DC current when applying a reverse bias voltage to the variable capacitance diodes, and the impedance thereof is extremely low at the operating frequency. It is small, that is, has a large capacitance.
なお、 第 59図に示した同調回路では、 可変容量素子として可変容量ダイォー ドを用いてその静電容量を可変したが、 ゲートに印加する制御電圧に応じてその ゲート容量がある範囲で変更可能な FE Tを可変容量素子として用いるようにし てもよい。  In the tuning circuit shown in Fig. 59, the capacitance was varied using a variable capacitance diode as a variable capacitance element, but the gate capacitance could be changed within a certain range according to the control voltage applied to the gate Any FET may be used as the variable capacitance element.
第 60図は、 第 2図に示した移相回路 1 10 C、 130 C内の可変抵抗として FE T以外の素子を利用した場合の一例を示す回路図である。  FIG. 60 is a circuit diagram showing an example in which an element other than FET is used as a variable resistor in the phase shift circuits 110 C and 130 C shown in FIG.
第 60図に示す移相回路 1 10C〃 は、 第 2図に示した移相回路 1 10C内の F E Tを用いて形成された可変抵抗 1 16を、 CdSフォトセンサと発光ダイォ —ドからなる Cd Sフォト力ブラ 177に置き換えた構成を有している。 このフ オ ト力ブラ 177に含まれる CdSフォトセンサは、 発光ダイォードの発光量が 多いほど抵抗値が小さくなる特性を有しているため、 このような CdSフォ ト力 ブラ 177を外部からの制御電流に応じて抵抗値が変更可能な可変抵抗として用 いることができる。  The phase shift circuit 110C〃 shown in FIG. 60 includes a variable resistor 116 formed by using the FET in the phase shift circuit 110C shown in FIG. 2, and a CdS comprising a CdS photosensor and a light emitting diode. It has a configuration replaced with an S-photo power brush 177. The CdS photosensor included in the photo-force bra 177 has such a characteristic that the resistance value decreases as the amount of light emitted from the light-emitting diode increases, so that such a CdS photo-bra 177 is externally controlled. It can be used as a variable resistor whose resistance value can be changed according to the current.
同様に、 第 60図に示す移相回路 130 C〃 は、 第 2図に示した移相回路 13 0 C内の FE Tを用いて形成された可変抵抗 136を、 CdSフォ トセンサと発 光ダイオードからなる CdSフォト力ブラ 179に置き換えた構成を有している c 第 60図に示す制御電圧発生回路 4 Bは、 第 13図に示した制御電圧発生回路 4を部分的に変形した構成を有しており、 制御電圧発生回路 4に対して、 可変抵 抗 4 2および抵抗 4 3を含んで構成されたバイアス回路が取り除かれている点が 異なっている。 Similarly, the phase shift circuit 130 C〃 shown in FIG. 60 includes a variable resistor 136 formed using FET in the phase shift circuit 130 C shown in FIG. 2, and a CdS photosensor and a light emitting diode. control voltage generating circuit 4 B shown in c FIG. 60 having a structure obtained by replacing the CdS photo force bra 179 made from, have a configuration in which a control voltage generation circuit 4 shown in FIG. 13 partially deformed Variable resistance to the control voltage generation circuit 4. The difference is that the bias circuit including the resistor 42 and the resistor 43 is removed.
また、 第 6 0図に示す電圧一電流変換回路 2 0 0は、 制御電圧発生回路 4 Bの 出力である制御電圧が抵抗 2 0 2を介して反転入力端子に入力されるオペアンプ 2 0 4と、 可変のバイアス電圧を発生させるために用いる可変抵抗 2 0 6とを含 んで構成されている。  The voltage-to-current conversion circuit 200 shown in FIG. 60 includes an operational amplifier 204 in which the control voltage output from the control voltage generation circuit 4B is input to the inverting input terminal via the resistor 202. And a variable resistor 206 used to generate a variable bias voltage.
オペアンプ 2 0 4は、 出力端子と反転入力端子との間に上述したフォトカブラ 1 7 7、 1 7 9内の 2つの発光ダイオードが直列に接続されており、 非反転入力 端子が接地されている。 したがって、 制御電圧発生回路 4 Bの出力電圧 (制御電 圧) が定まると、 抵抗 2 0 2と可変抵抗 2 0 6の抵抗比によって決まる所定の電 流がフォ ト力ブラ 1 7 7、 1 7 9内の各発光ダイオードに流れ、 この発光ダイォ 一ドと対になる C d Sフォトセンサが発光ダイォードの発光量に応じたある一定 の抵抗値を有するようになる。  In the operational amplifier 204, the two light emitting diodes in the photocouplers 1777 and 1779 described above are connected in series between the output terminal and the inverting input terminal, and the non-inverting input terminal is grounded. . Therefore, when the output voltage (control voltage) of the control voltage generation circuit 4B is determined, a predetermined current determined by the resistance ratio between the resistor 202 and the variable resistor 206 is generated by the photovoltaic motors 17 7 and 17 The CdS photosensor that flows to each light emitting diode in the light emitting diode 9 and forms a pair with this light emitting diode has a certain resistance value corresponding to the light emission amount of the light emitting diode.
したがって、 制御電圧発生回路 4 Bの出力電圧を下げることにより発光ダイォ ―ドに流す電流値が小さくなって発光量が少なくなり、 C d Sフォトセンサが有 する抵抗値が高くなつて第 6 0図に示す同調回路の同調周波数が低くなる。 反対 に、 制御電圧発生回路 4 Bの出力電圧を上げることにより発光ダイォ一ドに流す 電流値も大きくなって発光量が多くなり、 C d Sフォトセンサが有する抵抗値が 低くなつて同調回路 1の同調周波数が高くなる。 この関係は、 上述した F E Tに よって形成した可変抵抗と制御電圧の関係と同じであり、 全く同じ制御手順によ つて同調回路 1の同調周波数を入力信号の周波数に一致させることができる。 このように、 フォト力ブラ 1 7 7、 1 7 9を可変抵抗として用いることによつ ても上述した実施形態の同調機構を実現する同調回路を構成することができる。 フォト力ブラ 1 7 7、 1 7 9を可変抵抗として用いた場合には、 この可変抵抗の 両端電圧等によらず常に一定の抵抗値が得られるため、 歪みの少ない同調出力を 容易に得ることができる利点がある。 但し、 フォ ト力ブラ 1 7 7、 1 7 9を含む 同調回路 1の全体を半導体基板上に集積化することはできないため、 フォトカブ ラ 1 7 7、 1 7 9は単体の部品を接続線等を用いて結線することになる。  Therefore, by lowering the output voltage of the control voltage generation circuit 4B, the value of the current flowing through the light emitting diode becomes smaller, the amount of light emission decreases, and the resistance value of the CdS photosensor increases, resulting in the 60th The tuning frequency of the tuning circuit shown in FIG. Conversely, by increasing the output voltage of the control voltage generation circuit 4B, the value of the current flowing through the light emitting diode increases, the amount of light emission increases, and the resistance value of the CdS photosensor decreases. Tuning frequency increases. This relationship is the same as the relationship between the variable resistor formed by FET and the control voltage described above, and the tuning frequency of the tuning circuit 1 can be made to match the frequency of the input signal by exactly the same control procedure. As described above, the tuning circuit that realizes the tuning mechanism of the above-described embodiment can also be configured by using the photo power blurs 1777 and 179 as the variable resistors. When the photo power blurs 1777 and 179 are used as variable resistors, a constant resistance value is always obtained regardless of the voltage at both ends of the variable resistor, so that a tuning output with little distortion can be easily obtained. There are advantages that can be. However, since the entire tuning circuit 1 including the photo couplers 177 and 179 cannot be integrated on a semiconductor substrate, the photocouplers 177 and 179 connect individual components to connection lines and the like. Will be used for connection.
また、 上述した各同調回路においては、 オペアンプを用いた移相回路 1 1 0 C、 1 3 0 Cによって同調回路 1を構成することにより高い安定度を実現することが できるが、 本実施形態の移相回路 1 1 0 C、 1 3 0 Cのような使い方をする場合 にはオフセッ ト電圧や電圧利得はそれほど高性能なものが要求されないため所定 の増幅度を有する差動増幅器を各移相回路内のオペアンプの代わりに使用するよ うにしてもよい。 In each of the tuning circuits described above, a phase shift circuit 110 C using an operational amplifier, Although high stability can be achieved by configuring the tuning circuit 1 with 130 C, offsetting is required when using the phase shift circuits 110 C and 130 C of the present embodiment. Since a high-performance voltage and voltage gain are not required, a differential amplifier having a predetermined amplification may be used instead of the operational amplifier in each phase shift circuit.
第 6 1図は、 オペアンプの構成の中で移相回路の動作に必要な部分を抽出した 回路図であり、 全体が所定の増幅度を有する差動増幅器として動作する。 同図に 示す差動増幅器は、 F E Tにより構成された差動入力段 1 0 0と、 この差動入力 段 1 0 0に定電流を与える定電流回路 1 0 2と、 定電流回路 1 0 2に所定のバイ ァス電圧を与えるバイァス回路 1 0 4と、 差動入力段 1 0 0に接続された出力ァ ンブ 1 0 6とによって構成されている。 同図に示すように、 実際のオペアンプに 含まれている電圧利得を稼ぐための多段増幅回路を省略して、 差動増幅器の構成 を簡略化し、 広帯域化を図ることができる。 このように、 回路の簡略化を行うこ とにより、 動作周波数の上限を高くすることができるため、 その分この差動増幅 器を用いて構成した同調回路 1の同調周波数の上限を高くすることができる。 なお、 この発明は上述した各種の実施形態に限定されるものではなく、 この発 明の要旨の範囲内で種々の変形実施が可能である。  FIG. 61 is a circuit diagram in which a part necessary for the operation of the phase shift circuit is extracted from the configuration of the operational amplifier, and the whole operates as a differential amplifier having a predetermined amplification degree. The differential amplifier shown in the figure includes a differential input stage 100 composed of FETs, a constant current circuit 102 for supplying a constant current to the differential input stage 100, and a constant current circuit 102. A differential input stage 100 connected to a differential input stage 100, and a bias circuit 104 for applying a predetermined bias voltage to the differential input stage 100. As shown in the figure, the multistage amplifier circuit for gaining the voltage gain included in the actual operational amplifier is omitted, so that the configuration of the differential amplifier can be simplified and a wider band can be achieved. In this way, by simplifying the circuit, the upper limit of the operating frequency can be increased.Therefore, the upper limit of the tuning frequency of the tuning circuit 1 configured using this differential amplifier must be increased accordingly. Can be. The present invention is not limited to the various embodiments described above, and various modifications can be made within the scope of the present invention.
例えば、 第 2図に詳細構成を示した同調回路 1は、 帰還イ ンピーダンス素子と して帰還抵抗 1 7 0を、 入カインピーダンス素子として入力抵抗 1 7 4を用いた が、 それそれの素子に入力された信号の位相関係を変えることなく加算できれば よいことから、 帰還ィンビーダンス素子および入カインピーダンス素子を抵抗の 代わりにキャパシ夕により形成したり、 抵抗やキャパシ夕等を組み合わせてィン ビーダンスの実数分および虚数分の比を同時に調整しうるようにしてもよい。 また、 帰還抵抗 1 7 0と入力抵抗 1 7 4のうち少なくとも一方の抵抗を可変抵 抗により構成して、 同調増幅器 1等における同調帯域幅を可変するようにしても よい。  For example, the tuning circuit 1 whose detailed configuration is shown in Fig. 2 uses a feedback resistor 170 as a feedback impedance element and an input resistor 174 as an input impedance element. Since it is sufficient that the signals can be added without changing the phase relationship of the input signals, the feedback impedance element and the input impedance element are formed by a capacitor instead of a resistor, or the real number of impedance is formed by combining a resistor and a capacitor. The ratio of the minute and the imaginary number may be adjusted simultaneously. Further, at least one of the feedback resistor 170 and the input resistor 174 may be constituted by a variable resistor so that the tuning bandwidth in the tuning amplifier 1 or the like can be varied.
また、 第 2図に示した移相回路 1 1 0 C等では、 可変抵抗 1 1 6を 1つの F E Tによつて構成したが、 pチャネルの F E Tと nチャネルの F E Tとを並列接続 して 1つの可変抵抗を構成してもよい。 このように、 2つの F E Tを組み合わせ て可変抵抗を構成することにより、 F E Tの非線形領域の改善を行うことができ るため、 同調出力の歪みを少なくすることができる。 Also, in the phase shift circuit 110 C and the like shown in FIG. 2, the variable resistor 1 16 is composed of one FET, but the p-channel FET and the n-channel FET are connected in parallel. One variable resistor may be configured. Thus, combining two FETs By constructing a variable resistor by using the variable resistor, the nonlinear region of the FET can be improved, and the distortion of the tuning output can be reduced.
産業上の利用可能性 Industrial applicability
以上のように、 本発明の同調制御方式は、 同調回路の入力信号の周波数と同調 周波数のずれがなくなるように同調回路の同調周波数をフィ一ドバック制御する ため、 入力信号の周波数に同調周波数を確実に合わせることができる。 したがつ て、 同調機構全体を集積化した場合に、 製造したチップごとに周波数特性がばら ついても同調特性はばらつかなくなる。 また、 同調周波数を決定する各素子の素 子定数が温度等によって変動しても同調周波数は変動しなくなるため、 集積化に も適する。  As described above, the tuning control method of the present invention performs feedback control of the tuning frequency of the tuning circuit so that there is no deviation between the frequency of the input signal of the tuning circuit and the tuning frequency. Can be reliably matched. Therefore, when the entire tuning mechanism is integrated, the tuning characteristics do not vary even if the frequency characteristics vary among the manufactured chips. In addition, the tuning frequency does not change even if the element constant of each element that determines the tuning frequency fluctuates due to temperature or the like, so that it is suitable for integration.

Claims

請 求 の 範 囲 The scope of the claims
1 . 縦続接続された全域通過型の 2つの移相回路と、 後段の前記移相回路の出力 を帰還信号として前段の前記移相回路の入力側に帰還させるとともに前記帰還信 号と入力信号とを加算して前段の前記移相回路に入力する加算回路とを含み、 所 定の周波数近傍の信号のみを通過させる同調回路と、  1. Two cascaded all-pass type phase shift circuits, and the output of the subsequent phase shift circuit is fed back as a feedback signal to the input side of the previous phase shift circuit, and the feedback signal and the input signal are And a tuning circuit for passing only signals near a predetermined frequency,
前記同調回路に前記所定の周波数近傍の周波数を有する信号が入力されたとき に、 前記同調回路に含まれる一方の移相回路の入出力信号間の位相差に基づいて、 前記同調回路の同調周波数を前記同調回路の入力信号の周波数に一致させる周波 数制御回路と、  When a signal having a frequency near the predetermined frequency is input to the tuning circuit, a tuning frequency of the tuning circuit is determined based on a phase difference between input and output signals of one of the phase shift circuits included in the tuning circuit. A frequency control circuit that matches the frequency of the input signal to the tuning circuit;
を備えることを特徴とする同調制御方式。  A tuning control method comprising:
2 . 前記同調回路に含まれる前記 2つの移相回路のそれそれは、 時定数が変更可 能な直列回路を含んでおり、  2. Each of the two phase shift circuits included in the tuning circuit includes a series circuit with a variable time constant,
前記周波数制御回路は、 前記同調回路の入力信号の周波数と前記同調回路の同 調周波数とが異なる場合に、 双方の前記直列回路の時定数を互いに等しく維持し ながら各移相回路の位相シフ ト量を変化させることにより、 前記同調回路の同調 周波数を前記同調回路の入力信号の周波数に一致させることを特徴とする請求の 範囲第 1項記載の同調制御方式。  When the frequency of the input signal of the tuning circuit is different from the tuning frequency of the tuning circuit, the frequency control circuit controls the phase shift of each phase shift circuit while maintaining the time constants of the two series circuits equal to each other. The tuning control method according to claim 1, wherein a tuning frequency of the tuning circuit is made to match a frequency of an input signal of the tuning circuit by changing an amount.
3 . 前記直列回路のそれそれは、 キャパシ夕あるいはインダク夕によるリアクタ ンス素子と第 1の抵抗とを含んで構成され、  3. Each of the series circuits is configured to include a reactance element due to capacitance or inductance and a first resistor,
双方の前記直列回路の時定数は、 前記周波数制御回路から出力される制御信号 によって変更可能とされ、  The time constants of the two series circuits can be changed by a control signal output from the frequency control circuit,
前記周波数制御回路は、 前記同調回路の同調周波数が前記同調回路の入力信号 の周波数に一致するように前記制御信号を出力することを特徴とする請求の範囲 第 2項記載の同調制御方式。  3. The tuning control method according to claim 2, wherein the frequency control circuit outputs the control signal such that a tuning frequency of the tuning circuit matches a frequency of an input signal of the tuning circuit.
4 . 前記周波数制御回路は、 前記同調回路に含まれるいずれか一方の前記移相回 路の入出力信号の位相差が 9 0 ° からずれているときに、 前記 2つの移相回路の それそれに含まれる前記直列回路の時定数を変化させることにより、 前記一方の 移相回路の入出力信号の位相差を 9 0 ° に制御することを特徴とする請求の範囲 第 3項記載の同調制御方式。 4. The frequency control circuit, when the phase difference between the input and output signals of any one of the phase shift circuits included in the tuning circuit is shifted from 90 °, to that of the two phase shift circuits. 4. The tuning control method according to claim 3, wherein a phase difference between input and output signals of the one phase shift circuit is controlled to 90 ° by changing a time constant of the serial circuit included. .
5 . 前記周波数制御回路は、 5. The frequency control circuit comprises:
前記同調回路に含まれるいずれか一方の移相回路の入出力信号の位相差に応じ てデューティ比が変化する第 1の矩形波信号を出力する位相差検出回路と、 前記第 1の矩形波信号を平滑することにより、 前記第 1の矩形波信号のデュー ティ比に応じて電圧レベルが変化する制御電圧を発生させる制御電圧発生回路と、 を備え、 前記制御電圧を前記制御信号として出力することを特徴とする請求の 範囲第 4項記載の同調制御方式。  A phase difference detection circuit that outputs a first rectangular wave signal whose duty ratio changes according to a phase difference between input and output signals of one of the phase shift circuits included in the tuning circuit; and the first rectangular wave signal. A control voltage generating circuit that generates a control voltage whose voltage level changes in accordance with the duty ratio of the first rectangular wave signal by smoothing the control signal, and outputting the control voltage as the control signal. The tuning control method according to claim 4, characterized in that:
6 . 前記位相差検出回路は、  6. The phase difference detection circuit
前記同調回路に含まれるいずれか一方の移相回路の入力信号に同期した第 2の 矩形波信号を出力する第 1の電圧比較器と、  A first voltage comparator that outputs a second rectangular wave signal synchronized with an input signal of one of the phase shift circuits included in the tuning circuit;
前記一方の移相回路の出力信号に同期した第 3の矩形波信号を出力する第 2の 電圧比較器と、  A second voltage comparator that outputs a third rectangular wave signal synchronized with the output signal of the one phase shift circuit;
前記第 2および第 3の矩形波信号を合成して前記第 1の矩形波信号を出力する 矩形波合成手段と、  Rectangular wave combining means for combining the second and third rectangular wave signals and outputting the first rectangular wave signal;
を備えることを特徴とする請求の範囲第 5項記載の同調制御方式。  6. The tuning control method according to claim 5, comprising:
7 . 前記矩形波合成手段は、 前記第 2および第 3の矩形波信号の排他的論理和を 演算する論理ゲートを含んで構成され、 この論理ゲ一卜の出力を前記第 1の矩形 波信号とする請求の範囲第 6項記載の同調制御方式。  7. The rectangular wave synthesizing means is configured to include a logical gate for calculating an exclusive OR of the second and third rectangular wave signals, and outputs an output of the logical gate to the first rectangular wave signal. 7. The tuning control method according to claim 6, wherein:
8 . 前記矩形波合成手段は、 制御端子の電圧レベルに応じて入力端子に入力され た信号を通過させあるいは遮断するトライステ一 トバッファを含んで構成され、 前記第 2および第 3の矩形波信号のいずれか一方を前記制御端子に入力し、 他方 を前記入力端子に入力し、 前記トライステートバッファの出力を前記第 1の矩形 波信号とする請求の範囲第 6項記載の同調制御方式。  8. The rectangular wave synthesizing means is configured to include a tri-state buffer that passes or blocks a signal input to an input terminal according to a voltage level of a control terminal, and outputs the second and third square wave signals. 7. The tuning control method according to claim 6, wherein one of the signals is input to the control terminal, the other is input to the input terminal, and the output of the tristate buffer is the first rectangular wave signal.
9 . 前記制御電圧発生回路は、 前記位相差検出回路から出力される前記第 1の矩 形波信号を平滑する平滑回路と、 前記平滑回路の出力電圧を増幅して前記制御電 圧を出力する増幅器とを備えることを特徴とする請求の範囲第 5項記載の同調制 御方式。  9. The control voltage generating circuit smoothes the first rectangular wave signal output from the phase difference detection circuit, and amplifies an output voltage of the smoothing circuit to output the control voltage. 6. The tuning control method according to claim 5, further comprising an amplifier.
1 0 . 前記同調回路に含まれる前記 2つの移相回路の少なくとも一方は、 反転入 力端子に第 2の抵抗の一方端が接続され前記第 2の抵抗を介して交流信号が入力 される差動増幅器と、 前記差動増幅器の出力端と前記差動増幅器の反転入力端子 との間に接続された第 3の抵抗とを含み、 前記第 2の抵抗の他方端に前記直列回 路を接続し、 前記直列回路を構成する前記第 1の抵抗および前記リアクタンス素 子との接続部を前記差動増幅器の非反転入力端子に接続したことを特徴とする請 求の範囲第 3項記載の同調制御方式。 10. At least one of the two phase shift circuits included in the tuning circuit has one end of a second resistor connected to an inverting input terminal, and receives an AC signal via the second resistor. And a third resistor connected between an output terminal of the differential amplifier and an inverting input terminal of the differential amplifier, and the other end of the second resistor includes the series circuit. Claim 3 characterized in that a connection section between the first resistor and the reactance element constituting the series circuit is connected to a non-inverting input terminal of the differential amplifier. The tuning control method described.
1 1 . 前記同調回路は、 入力される交流信号の位相を変えずに出力する非反転回 路を備えており、 前記非反転回路は前記縦続接続された 2つの移相回路によって 形成される帰還ループの一部に挿入され、  11. The tuning circuit includes a non-inverting circuit that outputs the input AC signal without changing the phase thereof, and the non-inverting circuit is a feedback formed by the two cascade-connected phase shift circuits. Inserted into part of the loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフ ト 量の合計が 3 6 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 1 0項記載の同調制御方式。  10. The tuning circuit according to claim 10, wherein the whole of the two cascade-connected phase shift circuits passes only a signal near a frequency at which a total phase shift amount is 360 °. The tuning control method described in the section.
1 2 . 前記同調回路は、 入力される交流信号の位相を反転して出力する位相反転 回路を備えており、 前記位相反転回路は前記縦続接続された 2つの移相回路によ つて形成される帰還ループの一部に挿入され、  12. The tuning circuit includes a phase inversion circuit that inverts the phase of an input AC signal and outputs the inverted signal, and the phase inversion circuit is formed by the two cascade-connected phase shift circuits. Inserted into a part of the feedback loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフ ト 量の合計が 1 8 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 1 0項記載の同調制御方式。  The tuning circuit according to claim 10, wherein the whole of the two cascade-connected phase shift circuits passes only a signal in the vicinity of a frequency at which the total phase shift amount is 180 °. The tuning control method described in the section.
1 3 . 前記縦続接続された 2つの移相回路の前段にトランジスタによるホロヮ回 路を挿入することを特徴とする請求の範囲第 1 0項記載の同調制御方式。  13. The tuning control method according to claim 10, wherein a hollow circuit using a transistor is inserted in a stage preceding said two cascade-connected phase shift circuits.
1 4 . 前記縦続接続された 2つの移相回路によって形成される帰還ループの一部 に分圧回路を挿入し、  14. Insert a voltage divider into a part of the feedback loop formed by the two cascaded phase shift circuits,
前記同調回路は、 前記分圧回路に入力される交流信号を同調信号として出力す ることを特徴とする請求の範囲第 1 0項記載の同調制御方式。  10. The tuning control method according to claim 10, wherein the tuning circuit outputs an AC signal input to the voltage dividing circuit as a tuning signal.
1 5 . 前記直列回路内の前記第 1の抵抗を可変抵抗により形成し、 前記可変抵抗 の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調 周波数を可変することを特徴とする請求の範囲第 1 0項記載の同調制御方式。 15. The first resistor in the series circuit is formed by a variable resistor, and a tuning frequency of the tuning circuit is varied by changing a resistance value of the variable resistor according to a voltage level of the control signal. 10. The tuning control method according to claim 10, wherein:
1 6 . 前記差動増幅器は演算増幅器であることを特徴とする請求の範囲第 1 0項 記載の同調制御方式。 16. The tuning control method according to claim 10, wherein said differential amplifier is an operational amplifier.
1 7 . 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第 1 0項記載の同調制御方式。 17. The component according to claim 1, wherein the component parts are integrally formed on the semiconductor substrate. The tuning control method described in item 0.
1 8 . 前記同調回路に含まれる前記 2つの移相回路の少なく とも一方は、 反転入 力端子に第 2の抵抗の一方端が接続され前記第 2の抵抗を介して交流信号が入力 される差動増幅器と、 前記差動増幅器の出力端子に接続された第 1の分圧回路と、 前記第 1の分圧回路の出力端と前記差動増幅器の反転入力端子との間に接続され た第 3の抵抗とを含み、 前記第 2の抵抗の他方端に前記直列回路を接続し、 前記 直列回路を構成する前記第 1の抵抗および前記リアクタンス素子の接続部を前記 差動増幅器の非反転入力端子に接続したことを特徴とする請求の範囲第 3項記載 の同調制御方式。  18. At least one of the two phase shift circuits included in the tuning circuit has one end of a second resistor connected to an inverting input terminal, and an AC signal is input via the second resistor. A differential amplifier, a first voltage divider connected to an output terminal of the differential amplifier, and a resistor connected between an output terminal of the first voltage divider and an inverting input terminal of the differential amplifier. A third resistor, wherein the series circuit is connected to the other end of the second resistor, and a connection between the first resistor and the reactance element forming the series circuit is connected to the non-inverting portion of the differential amplifier. 4. The tuning control method according to claim 3, wherein the tuning control method is connected to an input terminal.
1 9 . 前記同調回路は、 入力される交流信号の位相を変えずに出力する非反転回 路を備えており、 前記非反転回路は前記縦続接続された 2つの移相回路によって 形成される帰還ループの一部に揷入され、  19. The tuning circuit has a non-inverting circuit that outputs the input AC signal without changing the phase thereof, and the non-inverting circuit is a feedback formed by the two cascade-connected phase shift circuits. Introduced into a part of the loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフ 卜 量の合計が 3 6 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 1 8項記載の同調制御方式。  20. The tuning circuit according to claim 19, wherein the whole of the two cascade-connected phase shift circuits passes only signals in the vicinity of a frequency at which the total phase shift amount is 360 °. The tuning control method described in the section.
2 0 . 前記同調回路は、 入力される交流信号の位相を反転して出力する位相反転 回路を備えており、 前記位相反転回路は前記縦続接続された 2つの移相回路によ つて形成される帰還ループの一部に挿入され、  20. The tuning circuit includes a phase inversion circuit that inverts the phase of an input AC signal and outputs the inverted signal, and the phase inversion circuit is formed by the two cascade-connected phase shift circuits. Inserted into a part of the feedback loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフト 量の合計が 1 8 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 1 8項記載の同調制御方式。  19. The tuning circuit according to claim 18, wherein the whole of the two cascade-connected phase shift circuits passes only signals in the vicinity of a frequency at which the total amount of phase shift is 180 °. The tuning control method described.
2 1 . 前記縦続接続された 2つの移相回路の前段にトランジスタによるホロヮ回 路を挿入することを特徴とする請求の範囲第 1 8項記載の同調制御方式。  21. The tuning control method according to claim 18, wherein a hollow circuit formed by a transistor is inserted in a stage preceding the two cascade-connected phase shift circuits.
2 2 . 前記縦続接続された 2つの移相回路によって形成される帰還ループの一部 に第 2の分圧回路を挿入し、 2 2. Insert a second voltage divider into a part of the feedback loop formed by the two cascaded phase shifters,
前記同調回路は、 前記第 2の分圧回路に入力される交流信号を同調信号として 出力することを特徴とする請求の範囲第 1 8項記載の同調制御方式。  19. The tuning control method according to claim 18, wherein the tuning circuit outputs an AC signal input to the second voltage dividing circuit as a tuning signal.
2 3 . 前記直列回路内の前記第 1の抵抗を可変抵抗により形成し、 前記可変抵抗 の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調 周波数を可変することを特徴とする請求の範囲第 1 8項記載の同調制御方式。 23. Tuning of the tuning circuit by forming the first resistor in the series circuit with a variable resistor and changing the resistance value of the variable resistor according to the voltage level of the control signal 19. The tuning control method according to claim 18, wherein the frequency is variable.
2 4 . 前記差動増幅器は演算増幅器であることを特徴とする請求の範囲第 1 8項 記載の同調制御方式。 24. The tuning control method according to claim 18, wherein said differential amplifier is an operational amplifier.
2 5 . 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第 1 8項記載の同調制御方式。  25. The tuning control method according to claim 18, wherein the components are integrally formed on a semiconductor substrate.
2 6 . 前記同調回路に含まれる前記 2つの移相回路の少なくとも一方は、 反転入 力端子に第 2の抵抗の一方端が接続され前記第 2の抵抗を介して交流信号が入力 される差動増幅器と、 前記差動増幅器の反転入力端子と出力端子との間に接続さ れた第 3の抵抗と、 一方端が前記差動増幅器の反転入力端子に接続され他方端が 接地された第 4の抵抗とを含み、 前記第 2の抵抗の他方端に前記直列回路を接続 し、 前記直列回路を構成する前記第 1の抵抗および前記リアクタンス素子の接続 部を前記差動増幅器の非反転入力端子に接続したことを特徴とする請求の範囲第 3項記載の同調制御方式。  26. At least one of the two phase shift circuits included in the tuning circuit has a difference that one end of a second resistor is connected to an inverting input terminal and an AC signal is input through the second resistor. And a third resistor connected between the inverting input terminal and the output terminal of the differential amplifier; and a third resistor having one end connected to the inverting input terminal of the differential amplifier and the other end grounded. And a connection part of the first resistance and the reactance element forming the series circuit, and a non-inverting input of the differential amplifier. 4. The tuning control method according to claim 3, wherein the tuning control method is connected to a terminal.
2 7 . 前記同調回路は、 入力される交流信号の位相を変えずに出力する非反転回 路を備えており、 前記非反転回路は前記縦続接続された 2つの移相回路によって 形成される帰還ループの一部に挿入され、  27. The tuning circuit includes a non-inverting circuit that outputs the input AC signal without changing the phase thereof, and the non-inverting circuit is a feedback formed by the two cascade-connected phase shift circuits. Inserted into part of the loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフ ト 量の合計が 3 6 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 2 6項記載の同調制御方式。  25. The tuning circuit according to claim 26, wherein the whole of the two cascade-connected phase shift circuits passes only signals in the vicinity of a frequency where the total phase shift amount is 360 °. The tuning control method described in the section.
2 8 . 前記同調回路は、 入力される交流信号の位相を反転して出力する位相反転 回路を備えており、 前記位相反転回路は前記縦続接続された 2つの移相回路によ つて形成される帰還ループの一部に挿入され、  28. The tuning circuit includes a phase inversion circuit that inverts the phase of an input AC signal and outputs the inverted signal, and the phase inversion circuit is formed by the two cascade-connected phase shift circuits. Inserted into a part of the feedback loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフ ト 量の合計が 1 8 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 2 6項記載の同調制御方式。  27. The tuning circuit according to claim 26, wherein the whole of the two cascade-connected phase shift circuits passes only a signal near a frequency at which the total phase shift amount is 180 °. The tuning control method described in the section.
2 9 . 前記縦続接続された 2つの移相回路の前段にトランジスタによるホロヮ回 路を挿入することを特徴とする請求の範囲第 2 6項記載の同調制御方式。  29. The tuning control method according to claim 26, wherein a hollow circuit using a transistor is inserted in a stage preceding said two cascade-connected phase shift circuits.
3 0 . 前記縦続接続された 2つの移相回路によって形成される帰還ループの一部 に分圧回路を挿入し、 前記同調回路は、 前記分圧回路に入力される交流信号を同調信号として出力す ることを特徴とする請求の範囲第 2 6項記載の同調制御方式。 30. Insert a voltage divider in a part of the feedback loop formed by the two cascaded phase shift circuits, 27. The tuning control method according to claim 26, wherein said tuning circuit outputs an AC signal input to said voltage dividing circuit as a tuning signal.
3 1 . 前記直列回路内の前記第 1の抵抗を可変抵抗により形成し、 前記可変抵抗 の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調 周波数を可変することを特徴とする請求の範囲第 2 6項記載の同調制御方式。 31. A method in which the first resistor in the series circuit is formed by a variable resistor, and the tuning frequency of the tuning circuit is varied by changing a resistance value of the variable resistor according to a voltage level of the control signal. 27. The tuning control method according to claim 26, wherein:
3 2 . 前記差動増幅器は演算増幅器であることを特徴とする請求の範囲第 2 6項 記載の同調制御方式。 32. The tuning control method according to claim 26, wherein said differential amplifier is an operational amplifier.
3 3 . 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第 2 6項記載の同調制御方式。  33. The tuning control method according to claim 26, wherein the components are integrally formed on a semiconductor substrate.
3 4 . 前記同調回路は、 入力される交流信号の位相を変えずに出力する非反転回 路を備えており、 前記非反転回路は前記縦続接続された 2つの移相回路によって 形成される帰還ループの一部に挿入され、  34. The tuning circuit includes a non-inverting circuit that outputs an input AC signal without changing the phase thereof, and the non-inverting circuit includes a feedback formed by the two cascade-connected phase shift circuits. Inserted into part of the loop,
前記 2つの移相回路の少なくとも一方は、 入力された交流信号を同相および逆 相の交流信号に変換して出力する変換手段と、 この変換手段によって変換された 一方の交流信号を前記直列回路の一方端を介して、 他方の交流信号を前記直列回 路の他方端を介して合成する合成手段とを含むことを特徴とする請求の範囲第 3 項記載の同調制御方式。  At least one of the two phase shift circuits is configured to convert an input AC signal into an in-phase and an out-of-phase AC signal and output the converted signal, and convert one of the AC signals converted by the conversion means into the serial circuit. 4. The tuning control method according to claim 3, further comprising: synthesizing means for synthesizing the other AC signal via one end through the other end of the series circuit.
3 5 . 前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シ フ ト量の合計が 3 6 0 ° となる周波数近傍の信号のみを通過させることを特徴と する請求の範囲第 3 4項記載の同調制御方式。  35. The tuning circuit according to claim 35, wherein the whole of the two cascade-connected phase shift circuits passes only signals near a frequency at which the total phase shift amount is 360 °. The tuning control method described in the section 34.
3 6 . 前記縦続接続された 2つの移相回路および前記非反転回路によって形成さ れる帰還ループの一部に分圧回路を挿入し、  36. A voltage divider is inserted into a part of a feedback loop formed by the two cascade-connected phase shift circuits and the non-inverting circuit,
前記同調回路は、 前記分圧回路に入力される交流信号を同調信号として出力す ることを特徴とする請求の範囲第 3 4項記載の同調制御方式。  35. The tuning control method according to claim 34, wherein the tuning circuit outputs an AC signal input to the voltage dividing circuit as a tuning signal.
3 7 . 前記 2つの移相回路内の前記変換手段はトランジスタを含んでおり、 前記 トランジスタのソースおよびドレイン、 あるいはエミッ夕およびコレクタにそれ それ抵抗値がほぼ等しい第 2の抵抗を接続し、 前記トランジス夕のゲートあるい はベースに交流信号を入力し、 前記トランジスタのソース ' ドレイン間あるいは ェミッタ ·コレクタ間に前記合成手段を構成する前記直列回路を接続したことを 特徴とする請求の範囲第 3 4項記載の同調制御方式。 37. The conversion means in the two phase shift circuits includes a transistor, and a source and a drain of the transistor or an emitter and a collector are connected to a second resistor having substantially the same resistance value. An AC signal is input to the gate or base of the transistor, and the fact that the series circuit forming the synthesizing means is connected between the source and the drain of the transistor or between the emitter and the collector. The tuning control method according to claim 34, characterized by:
3 8 . 前記直列回路内の前記第 1の抵抗を可変抵抗により形成し、 前記可変抵抗 の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調 周波数を可変することを特徴とする請求の範囲第 3 4項記載の同調制御方式。 38. A method in which the first resistor in the series circuit is formed by a variable resistor, and a tuning frequency of the tuning circuit is varied by changing a resistance value of the variable resistor according to a voltage level of the control signal. The tuning control method according to claim 34, characterized by:
3 9 . 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第 3 4項記載の同調制御方式。 39. The tuning control method according to claim 34, wherein the components are integrally formed on a semiconductor substrate.
4 0 . 前記同調回路は、 入力される交流信号の位相を反転して出力する位相反転 回路を備えており、 前記位相反転回路は前記縦続接続された 2つの移相回路によ つて形成される帰還ループの一部に挿入され、  40. The tuning circuit includes a phase inversion circuit that inverts the phase of an input AC signal and outputs the inverted signal, and the phase inversion circuit is formed by the two cascade-connected phase shift circuits. Inserted into a part of the feedback loop,
前記 2つの移相回路の少なく とも一方は、 入力された交流信号を同相および逆 相の交流信号に変換して出力する変換手段と、 この変換手段によって変換された 一方の交流信号を前記直列回路の一方端を介して、 他方の交流信号を前記直列回 路の他方端を介して合成する合成手段とを含むことを特徴とする請求の範囲第 3 項記載の同調制御方式。  At least one of the two phase shift circuits is configured to convert an input AC signal into an in-phase and an in-phase AC signal and output the converted signal, and convert one of the AC signals converted by the conversion means into the serial circuit. 4. The tuning control method according to claim 3, further comprising: synthesizing means for synthesizing the other AC signal via one end of the serial circuit via the other end of the series circuit.
4 1 . 前記同調回路は、 前記縱続接続された 2つの移相回路の全体により位相シ フ ト量の合計が 1 8 0 ° となる周波数近傍の信号のみを通過させることを特徴と する請求の範囲第 4 0項記載の同調制御方式。  41. The tuning circuit is characterized in that the entirety of the two cascaded phase shift circuits allows only signals in the vicinity of the frequency at which the total phase shift amount is 180 ° to pass. 40. The tuning control method according to item 40.
4 2 . 前記縦続接続された 2つの移相回路および前記位相反転回路によって形成 される帰還ループの一部に分圧回路を挿入し、  4 2. A voltage divider is inserted in a part of a feedback loop formed by the two cascade-connected phase shift circuits and the phase inversion circuit,
前記同調回路は、 前記分圧回路に入力される交流信号を同調信号として出力す ることを特徴とする請求の範囲第 4 0項記載の同調制御方式。  40. The tuning control method according to claim 40, wherein said tuning circuit outputs an AC signal input to said voltage dividing circuit as a tuning signal.
4 3 . 前記 2つの移相回路内の前記変換手段はトランジスタを含んでおり、 前記 トランジスタのソースおよびドレイン、 あるいはエミッ夕およびコレクタにそれ それ抵抗値がほぼ等しい第 2の抵抗を接続し、 前記トランジスタのゲートあるい はベースに交流信号を入力し、 前記トランジスタのソース · ドレイン間あるいは ェミツ夕 'コレクタ間に前記合成手段を構成する前記直列回路を接続したことを 特徴とする請求の範囲第 4 0項記載の同調制御方式。  43. The conversion means in the two phase shift circuits includes a transistor, and a source and a drain of the transistor or an emitter and a collector are connected to a second resistor having substantially the same resistance value. An AC signal is input to a gate or a base of the transistor, and the series circuit constituting the synthesizing means is connected between a source and a drain of the transistor or between an emitter and a collector. The tuning control method described in item 0.
4 4 . 前記直列回路内の前記第 1の抵抗を可変抵抗により形成し、 前記可変抵抗 の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調 周波数を可変することを特徴とする請求の範囲第 4 0項記載の同調制御方式。 4 5 , 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第 4 0項記載の同調制御方式。 4 4. The tuning of the tuning circuit by forming the first resistor in the series circuit with a variable resistor and changing the resistance value of the variable resistor according to the voltage level of the control signal. 41. The tuning control method according to claim 40, wherein the frequency is variable. 45. The tuning control method according to claim 40, wherein the components are integrally formed on a semiconductor substrate.
4 6 . 前記同調回路に含まれる前記 2つの移相回路の少なくとも一方は、 抵抗値 がほぼ等しい第 2および第 3の抵抗により構成される第 1の分圧回路と、 前記第 1の分圧回路の出力端の電位と前記直列回路を構成する前記リアクタンス素子お よび前記第 1の抵抗の接続点の電位との差分を所定の増幅度で増幅して出力する 差動増幅器とを含み、 前記第 1の分圧回路および前記直列回路の一端にそれそれ 交流信号を入力することを特徴とする請求の範囲第 3項記載の同調制御方式。 4 7 . 前記同調回路は、 入力される交流信号の位相を変えずに出力する非反転回 路を備えており、 前記非反転回路は前記縦続接続された 2つの移相回路によって 形成される帰還ループの一部に挿入され、  46. At least one of the two phase shift circuits included in the tuning circuit includes: a first voltage dividing circuit including second and third resistors having substantially equal resistance values; and the first voltage dividing circuit. A differential amplifier that amplifies a difference between a potential of an output terminal of a circuit and a potential of a connection point of the reactance element and the first resistor configuring the series circuit with a predetermined amplification degree and outputs the amplified difference. 4. The tuning control method according to claim 3, wherein an AC signal is input to one end of each of the first voltage dividing circuit and the series circuit. 47. The tuning circuit has a non-inverting circuit that outputs the input AC signal without changing the phase thereof, and the non-inverting circuit is a feedback formed by the two cascade-connected phase shift circuits. Inserted into part of the loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフト 量の合計が 3 6 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 4 6項記載の同調制御方式。  47. The tuning circuit according to claim 46, wherein the whole of the two cascade-connected phase shift circuits passes only signals near a frequency at which the total amount of phase shift is 360 °. The tuning control method described.
4 8 . 前記同調回路は、 入力される交流信号の位相を反転して出力する位相反転 回路を備えており、 前記位相反転回路は前記縦続接続された 2つの移相回路によ つて形成される帰還ループの一部に挿入され、  48. The tuning circuit includes a phase inversion circuit that inverts the phase of an input AC signal and outputs the inverted signal, and the phase inversion circuit is formed by the two cascade-connected phase shift circuits. Inserted into a part of the feedback loop,
前記同調回路は、 前記縦続接続された 2つの移相回路の全体により位相シフト 量の合計が 1 8 0 ° となる周波数近傍の信号のみを通過させることを特徴とする 請求の範囲第 4 6項記載の同調制御方式。  47. The tuning circuit according to claim 46, wherein the whole of the two cascade-connected phase shift circuits passes only signals near a frequency at which the total phase shift amount is 180 °. The tuning control method described.
4 9 . 前記縱続接続された 2つの移相回路によって形成される帰還ループの一部 に第 2の分圧回路を挿入し、  49. Insert a second voltage divider into a part of the feedback loop formed by the two cascaded phase shifters,
前記同調回路は、 前記第 2の分圧回路に入力される交流信号を同調信号として 出力することを特徴とする請求の範囲第 4 6項記載の同調制御方式。  47. The tuning control method according to claim 46, wherein the tuning circuit outputs an AC signal input to the second voltage dividing circuit as a tuning signal.
5 0 . 前記直列回路内の前記第 1の抵抗を可変抵抗により形成し、 前記可変抵抗 の抵抗値を前記制御信号の電圧レベルに応じて変えることで前記同調回路の同調 周波数を可変することを特徴とする請求の範囲第 4 6項記載の同調制御方式。 50. The method according to claim 1, wherein the first resistor in the series circuit is formed by a variable resistor, and a tuning frequency of the tuning circuit is varied by changing a resistance value of the variable resistor according to a voltage level of the control signal. A tuning control method according to claim 46, characterized by:
5 1 . 構成部品を半導体基板上に一体形成したことを特徴とする請求の範囲第 4 6項記載の同調制御方式。 51. The fourth aspect of the present invention, wherein the component parts are integrally formed on a semiconductor substrate. The tuning control method described in item 6.
5 2 . 前記同調回路は、 入力信号が一方端に入力される入力イ ンピーダンス素子 と、 帰還信号が一方端に入力される帰還インピーダンス素子とを含んでおり、 前 記加算回路は、 前記入力インピーダンス素子を介して入力される前記入力信号と、 前記帰還インピーダンス素子を介して入力される前記帰還信号とを前記加算回路 によって加算することを特徴とする請求の範囲第 3項記載の同調制御方式。  52. The tuning circuit includes an input impedance element to which an input signal is input to one end, and a feedback impedance element to which a feedback signal is input to one end. 4. The tuning control method according to claim 3, wherein the input signal input via an element and the feedback signal input via the feedback impedance element are added by the adder circuit.
5 3 . 前記入カインピ一ダンス素子と前記帰還ィンピ一ダンス素子との素子定数 の比を変えることにより、 前記同調回路の帯域幅を変えることを特徴とする請求 の範囲第 5 2項記載の同調制御方式。 53. The tuning according to claim 52, wherein a bandwidth of the tuning circuit is changed by changing a ratio of element constants of the input impedance element and the feedback impedance element. control method.
PCT/JP1996/001097 1995-11-09 1996-04-23 Tuning control system WO1997017759A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019980703018A KR100350400B1 (en) 1995-11-09 1996-04-23 Tuning control system
AU53481/96A AU5348196A (en) 1995-11-09 1996-04-23 Tuning control system
JP51804597A JP3764483B2 (en) 1995-11-09 1996-04-23 Tuning control method
HK99100745A HK1015979A1 (en) 1995-11-09 1999-02-24 Tuning control system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP7/317394 1995-11-09
JP31739495 1995-11-09
JP7/316121 1995-11-09
JP31612295 1995-11-09
JP7/316122 1995-11-09
JP31612195 1995-11-09
JP34665895 1995-12-13
JP7/346658 1995-12-13
JP8/38878 1996-02-01
JP8/38881 1996-02-01
JP3887896 1996-02-01
JP3888196 1996-02-01

Publications (1)

Publication Number Publication Date
WO1997017759A1 true WO1997017759A1 (en) 1997-05-15

Family

ID=27549919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001097 WO1997017759A1 (en) 1995-11-09 1996-04-23 Tuning control system

Country Status (6)

Country Link
JP (1) JP3764483B2 (en)
KR (1) KR100350400B1 (en)
CN (1) CN1113462C (en)
AU (1) AU5348196A (en)
HK (1) HK1015979A1 (en)
WO (1) WO1997017759A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066733A (en) * 2009-09-18 2011-03-31 Mitsumi Electric Co Ltd Superheterodyne receiver apparatus and reception method, and semiconductor integrated circuit for receiver apparatus
CN106462119B (en) * 2014-03-31 2019-09-17 瑞典爱立信有限公司 Switched-mode power supply compensation loop
CN106680594B (en) * 2016-12-14 2019-01-01 浙江大学 A kind of contactless measurement for LC oscillator characteristic parameter
CN106972487B (en) * 2017-04-26 2020-06-02 广东电网有限责任公司电力科学研究院 Reactor and implementation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660116A (en) * 1979-10-22 1981-05-23 Tech Res & Dev Inst Of Japan Def Agency Synchronous oscillation afc system
JPS6290016A (en) * 1986-06-25 1987-04-24 Nippon Columbia Co Ltd Frequency characteristic correction circuit
JPH03178205A (en) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd Phase shift type cr oscillator
JPH0575387A (en) * 1991-09-17 1993-03-26 Sanyo Electric Co Ltd Variable delay circuit
JPH05183406A (en) * 1991-12-27 1993-07-23 Nec Eng Ltd Automatic phase correction circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660116A (en) * 1979-10-22 1981-05-23 Tech Res & Dev Inst Of Japan Def Agency Synchronous oscillation afc system
JPS6290016A (en) * 1986-06-25 1987-04-24 Nippon Columbia Co Ltd Frequency characteristic correction circuit
JPH03178205A (en) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd Phase shift type cr oscillator
JPH0575387A (en) * 1991-09-17 1993-03-26 Sanyo Electric Co Ltd Variable delay circuit
JPH05183406A (en) * 1991-12-27 1993-07-23 Nec Eng Ltd Automatic phase correction circuit

Also Published As

Publication number Publication date
JP3764483B2 (en) 2006-04-05
HK1015979A1 (en) 1999-10-22
CN1201567A (en) 1998-12-09
AU5348196A (en) 1997-05-29
KR100350400B1 (en) 2002-12-18
CN1113462C (en) 2003-07-02
KR19990067078A (en) 1999-08-16

Similar Documents

Publication Publication Date Title
EP0886913A1 (en) A cmos microwave multiphase voltage controlled oscillator
US6696890B2 (en) Differential signal transfer circuit
JP4793595B2 (en) Frequency synthesizer
WO1997017759A1 (en) Tuning control system
KR100372873B1 (en) Tuning amplifier
JP3764484B2 (en) Tuning control method
JPH0974319A (en) Receiver
JP3766472B2 (en) Tuning circuit
JPH1051272A (en) Tuning-control system
JP3628402B2 (en) Tuning amplifier
JP5524678B2 (en) Recursive filter circuit
JP3798077B2 (en) Tuning control method
JP3766469B2 (en) Tuning circuit
JP3142857B2 (en) Voltage controlled oscillator
JP3628407B2 (en) Tuning amplifier
JPH09191229A (en) Tuning control system
JPH0865100A (en) Tuned amplifier
JP3628408B2 (en) Tuning control method
KR20040011742A (en) Quadrature signal generator
JPH08274660A (en) Fm wireless microphone
JPH08154034A (en) Tuned amplifier
JPH08274661A (en) Fm wireless microphone
JPH0974318A (en) Receiver
JPH08111612A (en) Oscillator
JPH08154024A (en) Tuned amplifier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96198159.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR RU US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980703018

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019980703018

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980703018

Country of ref document: KR