JPH03178205A - Phase shift type cr oscillator - Google Patents

Phase shift type cr oscillator

Info

Publication number
JPH03178205A
JPH03178205A JP31798489A JP31798489A JPH03178205A JP H03178205 A JPH03178205 A JP H03178205A JP 31798489 A JP31798489 A JP 31798489A JP 31798489 A JP31798489 A JP 31798489A JP H03178205 A JPH03178205 A JP H03178205A
Authority
JP
Japan
Prior art keywords
phase
phase shift
circuit
circuits
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31798489A
Other languages
Japanese (ja)
Inventor
Tatsuo Itomitsu
辰夫 糸満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31798489A priority Critical patent/JPH03178205A/en
Publication of JPH03178205A publication Critical patent/JPH03178205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To prevent mutual interference between CR differentiating circuits caused by the connection, to easily set the constant remarkably and to facilitate the design of an oscillation circuit by connecting three lead phase shift circuits of the CR differentiating circuits having a maximum phase shift quantity of 90 deg. in cascade via a buffer. CONSTITUTION:Three lead phase shift circuits comprising CR differentiating circuits 23-25 having a maximum phase shift quantity of 90 deg. and buffers 26-28 connected to the output side of the CR differentiating circuits 23-25 are connected in cascade. Furthermore, a phase inverting amplifier circuit 21 is connected to the input of the 3 stages of lead phase shift circuits 22 and a feedback path from the output of the 3 stages of lead phase shift circuits 22 to the input side of the phase inverse amplifier circuit 21 is provided. Then the constant of the CR differentiating circuits 23-25 is set independently and a desired oscillating frequency is easily obtained and in the case of designing a variable frequency oscillator, the design of the oscillator such as decision of R, C constants and the setting of a desired oscillating frequency is facilitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、移相型CR発振装置、特に、所望の発振周波
数に対する発振装置の内部素子における定数の設定に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a phase-shifted CR oscillator, and particularly to setting constants in internal elements of the oscillator for a desired oscillation frequency.

従来の技術 従来の移相型CR発振装置の例として、CR微分回路の
進相型位相シフタを3個縦続接続したものを第3図に示
す。
2. Description of the Related Art As an example of a conventional phase-shifting type CR oscillator, FIG. 3 shows an example of a CR differential circuit in which three phase advance type phase shifters are connected in cascade.

第3図において、移相型CR発振装置は位相反転増幅回
路lと進相型位相シフト回路2から構成されており、回
路2は180 ’位相シフトする進相型位相シフト回路
である。3,4.5は抵抗であり、抵抗の大きさはそれ
ぞれR1,R,、、R3である。6,7.8はコンデン
サであり、容量はそれぞれC+ 、C2、Caである。
In FIG. 3, the phase-shifting CR oscillator is composed of a phase-inverting amplifier circuit 1 and a phase-advance phase shift circuit 2, and circuit 2 is a phase-advanced phase shift circuit that shifts the phase by 180'. 3 and 4.5 are resistances, and the magnitudes of the resistances are R1, R, . . . R3, respectively. 6, 7.8 are capacitors, and their capacitances are C+, C2, and Ca, respectively.

9は演算回路、10は出力端子であり、18o0進相型
位相シフト回路2の出力を位相反転増幅回路lの演算回
路9の一方の入力端子に帰還させる経路が設けられてい
る。
9 is an arithmetic circuit, 10 is an output terminal, and a path is provided for feeding back the output of the 18o0 advance type phase shift circuit 2 to one input terminal of the arithmetic circuit 9 of the phase inversion amplifier circuit l.

第5図は第3図の移相型CR発振装置のブロック構成図
である。11は入力端子で、その電位をVlとする。ま
た、位相反転増幅回路1と180 ’進相型位相シフト
回路2の接続点Aの電位をVとする。この移相型CR発
振装置が発振するための条件は次の通りである。
FIG. 5 is a block diagram of the phase-shifted CR oscillator shown in FIG. 3. Reference numeral 11 denotes an input terminal, and its potential is set to Vl. Further, the potential at the connection point A between the phase inversion amplifier circuit 1 and the 180' phase advance type phase shift circuit 2 is assumed to be V. The conditions for this phase-shifted CR oscillator to oscillate are as follows.

条件(1)  位相反転増幅回路1と180 ’進相型
位相シフト回路2とのトータルゲイ ンが1以上である。
Condition (1) The total gain of the phase inversion amplifier circuit 1 and the 180' phase advance type phase shift circuit 2 is 1 or more.

条件(2)  V+とVが同相である。Condition (2) V+ and V are in phase.

第4図は第3図の180°進相型位相シフト回路2より
求めた伝達関数のベクトル軌跡図であり、ψは位相角、
12は伝達関数ベクトル、13はベクトル軌跡である。
FIG. 4 is a vector locus diagram of the transfer function obtained from the 180° advance type phase shift circuit 2 in FIG. 3, where ψ is the phase angle,
12 is a transfer function vector, and 13 is a vector locus.

第3図の回路1が位相反転増幅回路であり、条件(2)
を満足するには、第3図の回路2が180°進相型位相
シフト回路となることである。第4図の0点での周波数
か発振周波数となり、大きさDが第3図の1800進相
型位相シフト回路2のゲインとなる。
Circuit 1 in Fig. 3 is a phase inversion amplifier circuit, and condition (2) is satisfied.
In order to satisfy the requirement, circuit 2 in FIG. 3 must be a 180° phase advance type phase shift circuit. The frequency at the 0 point in FIG. 4 is the oscillation frequency, and the magnitude D is the gain of the 1800-advanced phase shift circuit 2 in FIG.

発明が解決しようとする課題 しかしながら上記のような構成では、所望の周波数にお
いて、第3図の移相型CR発振装置が発振するように、
第3図の位相反転増幅回路2の内部素子(第3図の1.
 2. 3. 4. 5. 6)の定数を設定する場合
、位相反転増幅回路2は、CR微分回路を3個縦続接続
した構成であるため、3個のCR微分回路が相互に干渉
し合うように作用する。そのため第3図の出力端のB点
での位相゛がA点より180°進むという発振に必要な
条件を満足するように内部素子の定数を設定することが
困難であるという問題がある。
Problems to be Solved by the Invention However, in the above configuration, it is difficult to make the phase-shifted CR oscillator shown in FIG. 3 oscillate at a desired frequency.
Internal elements of the phase inversion amplifier circuit 2 shown in FIG. 3 (1.
2. 3. 4. 5. When setting the constant 6), since the phase inversion amplifier circuit 2 has a configuration in which three CR differentiating circuits are connected in cascade, the three CR differentiating circuits act so as to interfere with each other. Therefore, there is a problem in that it is difficult to set the constants of the internal elements so as to satisfy the condition necessary for oscillation that the phase at point B at the output end in FIG. 3 leads by 180 degrees from point A.

ここで、発振装置としてのトータルゲインを第3図の位
相反転増幅回路lによって1以上にでき、満足されると
する。第2図の180°進相型位相シフト回路2の伝達
関数は(1)式で与えられる。
Here, it is assumed that the total gain as an oscillator can be made greater than 1 by the phase inverting amplifier circuit l shown in FIG. 3 and is satisfied. The transfer function of the 180° advance phase shift circuit 2 shown in FIG. 2 is given by equation (1).

Gfii+1 」ωR,C,・1ωR+ C1tωR,C。Gfii+1 ”ωR,C,・1ωR+ C1tωR,C.

(1+111R1c、 l fl”i#RI Cal 
[1”1liRI Cal ji、 Iff”!vR1
c、 l ’R+ C+ + (1+1llR+ Ca
l ’L C1+ 1tlR1RI C+ C+ただし
、G(iω)は伝達関数、ωは角周波数、j2=−4 (1)式の分母の第2項がない式は、それぞれのCR微
分回路の伝達関数の積であり、分母の第2項は3個のC
R微分回路が相互に干渉し合っていることを表わす項で
ある。
(1+111R1c, l fl”i#RI Cal
[1”1liRI Cal ji, If”! vR1
c, l 'R+ C+ + (1+1llR+ Ca
l 'L C1+ 1tlR1RI C+ C+ However, G(iω) is the transfer function, ω is the angular frequency, j2=-4 Equations without the second term in the denominator of equation (1) are the transfer function of each CR differentiator circuit. The second term in the denominator is the product of three C
This term represents that the R differential circuits interfere with each other.

所望の発振周波数を得るには、伝達関数の(1)式より
周波数特性を求め複雑な連立方程式を解くことにより、
内部素子の定数を設定するが、一意的に決まらず困難で
ある。また、第3図の出力端子10に後段の回路を接続
した場合、接続した回路の影響も考慮しなければならな
くなり、第3図の1800進相型位相シフト回路2の内
部素子の定数の設定が一層困難になる。
To obtain the desired oscillation frequency, find the frequency characteristics from equation (1) of the transfer function and solve the complex simultaneous equations.
The constants of internal elements are set, but they cannot be determined uniquely and are difficult. In addition, when a subsequent circuit is connected to the output terminal 10 in FIG. 3, the influence of the connected circuit must also be taken into consideration, and the constants of the internal elements of the 1800 phase advance type phase shift circuit 2 in FIG. 3 must be considered. becomes even more difficult.

本発明は上記従来の問題を解決するもので、設計を容易
にすることができる移相型CR発振装置を提供すること
を目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a phase-shifted CR oscillator that can be easily designed.

課題を解決するための手段 上記課題を解決するために本発明の移相型CR発振装置
は、最大位相シフト量90°をもつCR微分回路の進相
型位相シフト回路を3個縦続接続するにあたり、バッフ
ァを介して接続したものである。
Means for Solving the Problems In order to solve the above problems, the phase shift type CR oscillator of the present invention has the following features: In cascading three phase advance type phase shift circuits of CR differentiating circuits having a maximum phase shift amount of 90 degrees. , connected via a buffer.

作用 上記のような構成により、接続によって生じるCR微分
回路どうしの相互の干渉がなくなり、出力端子に後続の
回路を接続した場合も接続した回路の影響を考慮する必
要がない。したがって、所望の発振周波数を得る場合、
内部素子の定数をそれぞれのCR微分回路ごとに考慮す
ればよく、定数設定が著しく容易になり、発振回路の設
計が容易になる。
Effect: The above configuration eliminates mutual interference between CR differential circuits caused by connection, and even when a subsequent circuit is connected to the output terminal, there is no need to consider the influence of the connected circuit. Therefore, when obtaining the desired oscillation frequency,
It is only necessary to consider the constants of the internal elements for each CR differential circuit, which greatly simplifies the setting of the constants and facilitates the design of the oscillation circuit.

実施例 以下本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例の移相型CR発振装置の回路
図である。第1図において、移相型CR発振装置は、位
相反転増幅回路21と18G ’進相型位相シフト回路
22からなり、180°進相型位相シフト回路22は3
個のCR微分回路23.24.25とそれぞれの後段に
接続されたバッファ26.27.28の縦続接続からな
る。CR微分回路23.24.25は第3図の従来のも
のと同じであるが、この180°進相型位相シフト回路
22はバッファ26.27.28により相互に干渉のな
いCR微分回路23.24.25で構成されている。2
9は演算回路、30は出力端子である。
FIG. 1 is a circuit diagram of a phase-shifted CR oscillator according to an embodiment of the present invention. In FIG. 1, the phase-shift type CR oscillator is composed of a phase inversion amplifier circuit 21 and an 18G' phase advance type phase shift circuit 22.
It consists of cascade connection of CR differentiating circuits 23, 24, 25 and buffers 26, 27, 28 connected to the subsequent stage of each. The CR differentiating circuits 23, 24, and 25 are the same as the conventional one shown in FIG. 3, but the 180° phase advance type phase shift circuit 22 has buffers 26, 27, and 28 so that the CR differentiating circuits 23, 24, and 25 do not interfere with each other. It is composed of 24.25. 2
9 is an arithmetic circuit, and 30 is an output terminal.

第1図の微分回路23.24.25はそれぞれ簡単な伝
達関数となり、次の(2)式で与えられる。
The differentiating circuits 23, 24, and 25 in FIG. 1 each have a simple transfer function, which is given by the following equation (2).

1+jωRC ただし、Rは抵抗の大きさ、Cはコンデンサの容量、ω
は角周波数 本実施例において、従来例と異なるのは、バッファ26
.27.28によりCR微分回路23.24.25が相
互に干渉せず1つの独立した回路として取り扱うことが
できることである。第1図の移相型CR発振装置におけ
る発振条件も、従来の技術においてすでに記述している
条件(1)、 (2)  と同じである。
1+jωRC where R is the resistance size, C is the capacitance, ω
is the angular frequency In this embodiment, the difference from the conventional example is that the buffer 26
.. 27.28, the CR differential circuits 23, 24, and 25 can be treated as one independent circuit without interfering with each other. The oscillation conditions in the phase-shifted CR oscillator shown in FIG. 1 are also the same as conditions (1) and (2) already described in the prior art.

すなわち、条件(1)は、第1図の位相反転増幅回路1
において、トータルゲインを1以上にでき、満足できる
。条件(2)は、3つのCR微分回路23゜24、25
の進相型位相シフト量を個別に算出し、3つの合計が1
80°になるように設定すれば満足できる。
In other words, condition (1) is satisfied when the phase inversion amplifier circuit 1 of FIG.
In this case, the total gain can be made more than 1, which is satisfactory. Condition (2) is three CR differential circuits 23°24, 25
Calculate the advanced phase shift amount of each separately, and the sum of the three is 1.
If you set it so that it is 80 degrees, you will be satisfied.

所望の周波数において第1図の移相型CR発振装置が発
振するように内部素子の定数を設定する。
Constants of internal elements are set so that the phase-shifted CR oscillator shown in FIG. 1 oscillates at a desired frequency.

第1図において、CR微分回路23.24.25の進相
型位相シフト量をそれぞれθ□、θ2.θ3とする。こ
こで進相型最大位相シフト量90°とθ、。
In FIG. 1, the advance type phase shift amounts of the CR differentiating circuits 23, 24, and 25 are shown as θ□, θ2. Let it be θ3. Here, the phase advance type maximum phase shift amount is 90° and θ.

θ2.θ3の合計が180°であることを考慮すればθ
1.θ2.θ3の値を任意に決定できるが、CR微分回
路の3段の合計が180°でなければならないことから
、1段あたり60°付近が好ましい。
θ2. Considering that the sum of θ3 is 180°, θ
1. θ2. Although the value of θ3 can be arbitrarily determined, it is preferably around 60° per stage since the total of the three stages of the CR differential circuit must be 180°.

第2図は(2)式の伝達関数から求めたベクトル軌跡図
であり、31は伝達関数ベクトル、32はベクトル軌跡
である。θの範囲は位相角を表わし、θの大きさは進相
型位相シフト量を表わす。
FIG. 2 is a vector locus diagram obtained from the transfer function of equation (2), where 31 is a transfer function vector and 32 is a vector locus. The range of θ represents the phase angle, and the magnitude of θ represents the amount of advance phase shift.

第1図のCR微分回路23のR1,C1の定数を設定す
る。(2)式より位相角を表わす周波数特性を(3)式
に示す。
Constants of R1 and C1 of the CR differentiation circuit 23 shown in FIG. 1 are set. From equation (2), the frequency characteristic representing the phase angle is shown in equation (3).

工 θ=jan−1・・・ (3) 2πfRI Cま ただし、0°≦θ≦90°  fは発振周波数(3)式
に所望の発振周波数と任意のθ1を代入しR1と01の
定数を設定する。同様に、R2゜C3,Ra 、Csも
容易に算出し設定できる。
θ=jan-1... (3) 2πfRIC However, 0°≦θ≦90° f is the oscillation frequency Substitute the desired oscillation frequency and arbitrary θ1 into equation (3), and calculate the constants of R1 and 01. Set. Similarly, R2°C3, Ra, and Cs can be easily calculated and set.

発明の効果 以上のように、本発明によれば、各段のCR微分回路の
後段にバッファを接続することにより、各段のCR微分
回路の定数を独立に設定することができ、容易に所望す
る発振周波数が得られる。
Effects of the Invention As described above, according to the present invention, by connecting a buffer after the CR differentiating circuit of each stage, the constant of the CR differentiating circuit of each stage can be set independently, and it is possible to easily set the constant of the CR differentiating circuit of each stage as desired. The oscillation frequency is obtained.

また、可変周波数発振装置を設計する場合に、R2Cの
定数の決定や、所望する発振周波数の設定など発振装置
の設計を容易にすることができる。
Furthermore, when designing a variable frequency oscillation device, it is possible to facilitate the design of the oscillation device, such as determining the constant of R2C and setting a desired oscillation frequency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における移相型CR発振装置
の回路図、第2図は同移相型CR発振装置のCR微分回
路の伝達関数から求めたベクトル軌跡図、第3図は従来
の移相型CR発振装置の回路図、第4図は第3図の18
0°進相型位相シフト回路の伝達関数より求めたベクト
ル軌跡図、第5図は第3図の移相型CR発振装置のブロ
ック構成図である。 2I・・・位相反転増幅回路、22・・・180°進相
型位相シフト回路、23.24.25・・・CR微分回
路、26.27゜28・・・バッファ。 代理人   森  本  義  弘 第 図 23〜2s CR徴ホSみ 第 図 X軸
FIG. 1 is a circuit diagram of a phase-shifting CR oscillator according to an embodiment of the present invention, FIG. 2 is a vector locus diagram obtained from the transfer function of the CR differential circuit of the phase-shifting CR oscillator, and FIG. A circuit diagram of a conventional phase-shifted CR oscillator, Fig. 4 is similar to 18 in Fig. 3.
FIG. 5 is a vector locus diagram obtained from the transfer function of the 0° phase advance type phase shift circuit, and FIG. 5 is a block diagram of the phase shift type CR oscillator shown in FIG. 3. 2I... Phase inversion amplifier circuit, 22... 180° advance type phase shift circuit, 23.24.25... CR differentiation circuit, 26.27°28... Buffer. Agent Yoshihiro Morimoto Figure 23-2s CR chart X-axis

Claims (1)

【特許請求の範囲】[Claims] 1、最大位相シフト量90゜をもつCR微分回路と、前
記CR微分回路の出力側にバッファを接続して構成され
た進相型位相シフト回路を3段縦続接続し、さらに前記
3段の進相型位相シフト回路の入力側に位相反転増幅回
路を接続し、前記3段の進相型位相シフト回路の出力側
から前記位相反転増幅回路の入力側に帰還させる経路を
設けた移相型CR発振装置。
1. A CR differentiating circuit with a maximum phase shift of 90° and a phase advance type phase shift circuit configured by connecting a buffer to the output side of the CR differentiating circuit are connected in cascade, and the three stages are further connected in series. A phase-shifting CR, in which a phase-inverting amplifier circuit is connected to the input side of the phase-shifting phase-shifting circuit, and a path is provided for feedback from the output side of the three-stage phase-advancing phase-shifting circuit to the input side of the phase-inverting amplifier circuit. Oscillation device.
JP31798489A 1989-12-07 1989-12-07 Phase shift type cr oscillator Pending JPH03178205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31798489A JPH03178205A (en) 1989-12-07 1989-12-07 Phase shift type cr oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31798489A JPH03178205A (en) 1989-12-07 1989-12-07 Phase shift type cr oscillator

Publications (1)

Publication Number Publication Date
JPH03178205A true JPH03178205A (en) 1991-08-02

Family

ID=18094186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31798489A Pending JPH03178205A (en) 1989-12-07 1989-12-07 Phase shift type cr oscillator

Country Status (1)

Country Link
JP (1) JPH03178205A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017759A1 (en) * 1995-11-09 1997-05-15 Takeshi Ikeda Tuning control system
WO1997017760A1 (en) * 1995-11-09 1997-05-15 Takeshi Ikeda Tuning control system
JP2009528746A (en) * 2006-03-03 2009-08-06 バング アンド オルフセン アイスパワー アクティーゼルスカブ Secure decryption method
WO2012153448A1 (en) * 2011-05-09 2012-11-15 パナソニック株式会社 Rc oscillation circuit
WO2012169098A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Rc oscillator circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017759A1 (en) * 1995-11-09 1997-05-15 Takeshi Ikeda Tuning control system
WO1997017760A1 (en) * 1995-11-09 1997-05-15 Takeshi Ikeda Tuning control system
JP2009528746A (en) * 2006-03-03 2009-08-06 バング アンド オルフセン アイスパワー アクティーゼルスカブ Secure decryption method
WO2012153448A1 (en) * 2011-05-09 2012-11-15 パナソニック株式会社 Rc oscillation circuit
US8773213B2 (en) 2011-05-09 2014-07-08 Panasonic Corporation Resistance-capacitance oscillation circuit
WO2012169098A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Rc oscillator circuit
US8773212B2 (en) 2011-06-06 2014-07-08 Panasonic Corporation Resistance-capacitance oscillation circuit

Similar Documents

Publication Publication Date Title
JPH03178205A (en) Phase shift type cr oscillator
Chatterjee et al. Convergence analysis of Volterra series response of nonlinear systems subjected to harmonic excitation
JP2005505965A (en) Multiphase voltage controlled oscillator
US20060176121A1 (en) Piezoelectric oscillator having symmetric inverter pair
JPH0715274A (en) High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate
US6321076B1 (en) 90° phase shifter and image rejection mixer
JPH0336806A (en) Phase shifter type rc oscillator
Kawashima et al. Quartz temperature sensors of torsional vibration formed from doubly rotated plates
JPH07162228A (en) Oscillation circuit
JP3081418B2 (en) Automatic filter adjustment circuit
US7135915B2 (en) Tuning filters having transconductor cells
JPH0332103A (en) Phase shift type rc oscillator
Yong et al. Accuracy of crystal plate theories for high-frequency vibrations in the range of the fundamental thickness shear mode
Kawashima et al. New cuts for torsional mode quartz crystal resonators
Tiersten The influence of an asymmetric air gap on the vibration characteristics of quartz trapped energy resonators
Kawashima et al. Quartz microresonator sensors for monitoring thin film thickness
Nishihara Design of limit-cycle-free digital biquad filters
Haddara On the torsional vibrations of marine diesel engines with variable inertia
JPS62268Y2 (en)
Shmaliy The noise conversion method for oscillatory systems
JP2002319823A (en) I/q oscillator
JPS6295011A (en) Phase shifter
JPS63146601A (en) Oscillator
Wilson Precision RC-active frequency compensated phase shifters
JPH06252644A (en) Voltage-controlled oscillator circuit