WO1997017421A1 - Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel - Google Patents

Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel Download PDF

Info

Publication number
WO1997017421A1
WO1997017421A1 PCT/EP1996/004743 EP9604743W WO9717421A1 WO 1997017421 A1 WO1997017421 A1 WO 1997017421A1 EP 9604743 W EP9604743 W EP 9604743W WO 9717421 A1 WO9717421 A1 WO 9717421A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
percarbonate
alkali
silicates
sodium
Prior art date
Application number
PCT/EP1996/004743
Other languages
English (en)
French (fr)
Inventor
Beatrix Kottwitz
Jörg Poethkow
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7777000&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997017421(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AT96937318T priority Critical patent/ATE199932T1/de
Priority to DE59606648T priority patent/DE59606648D1/de
Priority to EP96937318A priority patent/EP0877789B1/de
Publication of WO1997017421A1 publication Critical patent/WO1997017421A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the invention relates to a detergent which contains water-soluble silicate builders and percarbonate as peroxy bleach.
  • Modern, compacted detergents generally have the disadvantage that, owing to their compact structure, they show poorer dissolving behavior in aqueous liquors than, for example, lighter spray-dried detergents from the prior art.
  • detergents tend to have a poorer dissolving speed in water, the higher their degree of compaction.
  • Zeolites which are usually contained in detergents as builder substances, can additionally contribute to the poorer dissolving behavior due to their water-insolubility.
  • a water-soluble alternative for the zeolite is represented by amorphous alkali silicates with a secondary washing ability.
  • spray-dried or roller-dried water glass solutions can be used to obtain hydrated water-soluble silicates in powder form which still contain about 20% by weight of water (cf. Ulimann's encyclopedia of technical chemistry, 4th edition 1982, volume 21, page 412).
  • Such products are commercially available for various purposes.
  • Such powders have a very loose structure due to spray drying; their bulk densities are generally well below 700 g / l.
  • Alkali silicates in granular form with higher bulk densities can be obtained according to the teaching of European patent application EP-A-0 526 978, an alkali silicate solution having a solids content of between 30 and 53% by weight being introduced into a heated drum the longitudinal axis of which rotates a shaft with a plurality of arms reaching close to the inner surface of the drum, the drum wall having a temperature between 150 and 200 ⁇ C and the drying process by a gas fed into the drum with a temperature between 175 and about 250 C C. is supported. According to this process, a product is obtained whose average particle size is in the range between 0.2 and 2 mm. A preferred drying gas is heated air.
  • European patent application EP-A-0 542 131 describes a process in which a product which is completely soluble in water at room temperature and has a bulk density of between 500 and 1200 g / l is obtained. Drying is preferably done under Use of heated air.
  • a cylindrical dryer with a heated wall 160 to 200 ° C.
  • a rotor with scoop-shaped blades rotates at such a speed that the silicate solution has a solids content of between 40 and 60% by weight pseudoplastic mass with a free water content between 5 and 12% by weight is formed. Drying is supported by a hot air stream (220 to 260 ° C).
  • the older, unpublished application P 44 19 745.4 also describes a water-soluble, amorphous and granular alkali silicate, which is prepared in a similar manner to that described in EP-A-0 526 978, but contains silicic acid.
  • amorphous means "X-ray amorphous”. This means that the alkali silicates do not provide sharp reflections in X-ray diffraction recordings, but at most one or more broad maxima, the width of which is several degree units of the diffraction angle. However, this does not rule out the possibility that areas are found in electron diffraction experiments which give sharp electron diffraction reflections. This is to be interpreted in such a way that the substance has microcrystalline regions in an order of magnitude of up to approximately 20 nm (max. 50 nm).
  • Granular amorphous sodium silicates which are obtained by spray drying aqueous water glass solutions, subsequent grinding and subsequent compacting and rounding with additional removal of water from the ground material, are the contents of American patents US 3,912,649, US 3,956,467, US 3,838,193 and US 3,879,527.
  • the water content of the products obtained is about 18 to 20% by weight with bulk densities well above 500 g / l.
  • alkali silicates with secondary washing ability are known from European patent applications EP-A-0 561 656 and EP-A-0 488 868. These are compounds of alkali silicates with certain Q distributions and alkali carbonates.
  • a number of amorphous silicates with secondary washing ability and compounds containing carbonate and silicate are available as commercial products. It is an example of the commercial products Britesil ⁇ from Akzo-PQ, Nabion 15 ⁇ from Rh ⁇ ne-Poulenc. Gransil ⁇ from Colin Stewart or Dizzil ⁇ G from Eka Nobel.
  • Preferred carbonate-alkali silicate compounds are those which have a weight ratio of carbonate to silicate of 3: 1 to 1: 9 and in particular of 2.5: 1 to Have 1: 5.
  • These commercially available alkali silicates or compounds can be granulated, for example, with aqueous solutions of anionic surfactants or also with anionic surfactant acids.
  • European patent application EP-A-0639639 describes a granular detergent which contains 2 to 50% by weight of percarbonate and 0.7 to 20% by weight of a powdered silicate, at least 0.7% by weight of silicate particles with a particle size of less than 425 ⁇ m.
  • Corresponding amorphous silicates are commercially available, for example (Hoechst AG, Akzo). The silicates can be added dry afterwards.
  • the combination of a granular percarbonate with a very finely divided alkali silicate increases both the dispersing properties and the bleaching performance compared to an agent which contains perborate monohydrate instead of the percarbonate.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number
  • M alkali metal
  • sodium and / or potassium silicate are particularly suitable.
  • the sodium silicates are preferred for economic reasons. However, if, for reasons of application technology, a particularly high dissolution rate in water is important, it is advisable to replace sodium at least partially with potassium.
  • the composition of the alkali silicate can be chosen so that the silicate has a potassium content, calculated as K 2 0, of up to 5% by weight.
  • Preferred alkali silicates are present as a compound with alkali carbonate, preferably sodium and / or potassium carbonate.
  • the water content of these preferred amorphous alkali silicate compounds is advantageously between 10 and 22% by weight, in particular between 12 and 20% by weight. Water contents of 14 to 18% by weight can be particularly preferred.
  • silicates can have been produced by spray drying, granulation and / or compacting, for example by roller compacting.
  • Compounds containing carbonate and silicate can also be produced by spray drying, granulation and / or compaction, for example by roller compaction.
  • Some of these silicates and carbonate and silicate-containing compounds are available as commercial products. Reference is made here, for example, to the commercial products Britesil (R) from Akzo-PQ, Nabion I ⁇ ⁇ from Rhönen-Poulenc, Gransil from Colin Stewart or Dizzil (R> G from Eka Nobel.
  • Carbonate-alkali silicate Compounds preferred are those which have a weight ratio of carbonate to silicate of 3: 1 to 1: 9 and in particular of 2.5: 1 to 1: 5.
  • These commercially available alkali silicates or compounds can be granulated, for example, with aqueous solutions of anionic surfactants or with anionic surfactant acids.
  • Suitable silicates are also amorphous silicates, which can be produced according to the above-mentioned US patents by spray drying or in granulators of the turbo-dryer type, for example from Vomm, Italy.
  • the agents according to the invention advantageously contain amorphous alkali silicates or compounds containing alkali carbonate and alkali silicate with secondary washing power in amounts of 10 to 45% by weight, preferably in amounts of 15 to 40% by weight and in particular in amounts of 20 to 35% by weight. .
  • Sodium percarbonate (2 Na 2 CO 3 ⁇ 3 H 2 0 2 ) is particularly suitable as the percarbonate, in particular in granular form. It is advantageous if these granules essentially contain sodium percarbonate and otherwise only those ingredients which are required for the chemical stabilization of the sodium percarbonate or which are used for the mechanical stabilization of the granules. These granules preferably contain at least 75% by weight and in particular at least 85% by weight sodium percarbonate.
  • These granules containing sodium percarbonate preferably have a bulk density of at least 500 g / l up to about 1400 g / l, with even higher bulk densities not being excluded.
  • These granules can be produced using a process which is referred to as fluidized bed spray granulation and in which a hydrogen peroxide and a sodium carbonate solution are sprayed onto sodium percarbonate seeds in a fluidized bed apparatus and water is evaporated at the same time.
  • a hydrogen peroxide and a sodium carbonate solution are sprayed onto sodium percarbonate seeds in a fluidized bed apparatus and water is evaporated at the same time.
  • One or both of these solutions can also contain auxiliaries for crystal formation, fillers or in particular stabilizers for the sodium percarbonate granules that form.
  • a particularly preferred embodiment for the production of sodium percarbonate is the process described in international patent application WO-A-95/06615, in which an aqueous hydrogen peroxide solution and an aqueous sodium carbonate solution are sprayed into the fluidized bed using a single nozzle, with water in the range of 40 to 95 ° C is evaporated at the same time.
  • the agents preferably contain percarbonate or granules essentially containing percarbonate in amounts of 10 to 30% by weight, in particular in amounts of 15 to 25% by weight.
  • amorphous alkali silicates or the compounds containing alkali carbonate and alkali silicate with secondary washing power in weight ratios to percarbonate from 1.1: 1 to 2.5: 1 and in particular in weight ratios from 1.2: 1 to a maximum of 2: 1 become.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • the zeolite can be used as spray-dried powder or as undried, of still moist, stabilized suspension are used in their manufacture.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C ⁇ rC ⁇ r fatty alcohols with 2 to 5 ethylene oxide groups, C ⁇ rCi4 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • the agents either contain no zeolite or zeolite only in amounts up to a maximum of 5% by weight (based on anhydrous active substance). This amount may have been used, for example, to powder or subsequently coat one or more components which are constituents of the composition with zeolite A and / or P.
  • crystalline layered silicates of the formula given above in which x is preferably 2, 3 or 4, in particular crystalline layered sodium disilicates, are also preferably present in the compositions in amounts well below 10% by weight.
  • the agents according to the invention are even free of these crystalline layered silicates.
  • Phosphates in particular sodium tripolyphosphate, are suitable as further inorganic builder substances. Mainly for ecological reasons, but also because they do not make a significant contribution to increasing the performance of the agents according to the invention, their content should also generally not exceed 10% by weight. In particular, the agents are free of phosphates.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitro-triacetic acid (NTA), provided that such use is not objectionable for ecological reasons. and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid Maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000.
  • biodegradable polymers for example those which, according to DE-A-4300772, are monomers re salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or according to DE-C-4221 381 as monomers salts of acrylic acid and 2-alkyl allyl sulfonic acid and sugar derivatives.
  • Other preferred copolymers are those which are found in the German patent applications DE-A-43 03 320 and P 44 17 734.8 are described and preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred
  • the content of (co) polymeric polycarboxylates in the agents is preferably 1 to 10% by weight and in particular 2 to 8% by weight.
  • Suitable builder substances are oxidation products of carboxyl-containing polyglucosans and / or their water-soluble salts, such as, for example are described in the international patent application WO-A-93/08251 or their production is described for example in the international patent application WO-A-93/16110.
  • polyaspartic acids or their salts and derivatives are also to be mentioned as further preferred builder substances.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A-0280223.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyolcarboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • bleach activators can be incorporated into the agents.
  • these are N-acyl or O-acyl compounds which form organic peracids with H 2 O 2 , preferably N.N'-tetraacylated diamines, p- (alkanoyloxy) benzenesulfonates, furthermore carboxylic acid anhydrides and esters of polyols such as Glucose pentaacetate.
  • Other known bleach activators are acetylated mixtures of sorbitol and mannitol, as described, for example, in European patent application EP-A-0 525 239.
  • the bleach activators contain bleach activators in the usual range, preferably between 1 and 10% by weight and in particular between 3 and 8% by weight.
  • Particularly preferred bleach activators are NNN'.N'-tetraacetylethylenediamine (TAED), 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine (DADHT) and acetylated sorbitol-mannitol mixtures (SORMAN).
  • TAED NNN'.N'-tetraacetylethylenediamine
  • DADHT 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine
  • SORMAN acetylated sorbitol-mannitol mixtures
  • the agents can also contain customary perborates such as sodium perborate monohydrate or sodium perborate tetrahydrate, in particular sodium perborate monohydrate.
  • customary perborates such as sodium perborate monohydrate or sodium perborate tetrahydrate, in particular sodium perborate monohydrate.
  • the weight ratio of sodium percarbonate to sodium perborate is at least 1: 1.
  • the detergents according to the invention can contain all the other known detergent ingredients, but in particular surfactants, so-called soil repellent agents, further solubility improvers, enzymes and enzyme stabilizers, Foam inhibitors, graying inhibitors, inorganic (for example alkali sulfates and / or alkali chlorides) and organic salts (for example phosphonates), textile-softening substances and colorants and fragrances.
  • anionic and / or nonionic surfactants are preferably used.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate types.
  • Preferred surfactants of the sulfonate type are Cg-Ciralkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates such as are obtained, for example, from C 12 -C mono-olefins with a terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent receives alkaline or acidic hydrolysis of the sulfonation products.
  • alkanesulfonates which are obtained from CirC.r-alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • the esters of oc-sulfofatty acids are also suitable, for example the oc-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and triesters and their mixtures, such as those produced by esterification by a monoglycerol with 1 to 3 mol of fatty acid or in the transesterification of triglycerides with 0.3 to 2 Moles of glycerol can be obtained.
  • the sulfate products are a complex mixture containing mono-, di- and triglyceride sulfonates with oc and / or internal sulfonic acid groups.
  • sulfonated fatty acid salts As by-products, sulfonated fatty acid salts, glyceride sulfates, glycerine sulfates, glycerin and soaps are formed. If one starts from the sulfonation of saturated fatty acids or hardened fatty acid glycerol ester mixtures, the proportion of the oc-sulfonated fatty acid disalts can be up to about 60% by weight, depending on the procedure.
  • alk (en) yl sulfates the alkali and in particular the sodium salts of the sulfuric acid half esters of CirCi ⁇ fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C10-C20 oxo alcohols and those half esters of secondary alcohols preferred this chain length.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical produced on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C ⁇ -Ci8-Alk (en) ylsulfate particularly preferred. It can also be particularly advantageous, and particularly advantageous for machine washing agents, to use C 8 -C 8 -alk (en) yl sulfates in combination with lower-melting anionic surfactants and in particular with those anionic surfactants which have a lower Krafft point and at a relative rate low washing temperatures of, for example, room temperature to 40 ° C. show a low tendency to crystallize.
  • the compositions therefore contain mixtures of short-chain and long-chain fatty alkyl sulfates, preferably mixtures of C 1 -C 4 -fatty alkyl sulfates or CirCi ⁇ -fatty alkyl sulfates with C 1 -C 16 -fatty alkyl sulfates and in particular C 12 -C 16 fatty alkyl sulfates with C 1 -C 4 .
  • ⁇ -fatty alkyl sulfates In a further preferred embodiment of the invention, however, not only saturated alkyl sulfates but also unsaturated alkenyl sulfates with an alkenyl chain length of preferably C 6 to C 22 are used.
  • mixtures of saturated mainly consisting of C. 6 sulfonated fatty alcohols and unsaturated, most preferably 8 beste ⁇ Henden sulfonated fatty alcohols from C ⁇ , for example those derived from solid or liquid fatty alcohol mixtures of the type HD-Ocenol 9 ** (commercial product of Applicant).
  • Weight ratios of alkyl sulfates to alkenyl sulfates of 10: 1 to 1: 2 and in particular of about 5: 1 to 1: 1 are preferred.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat. Nos. 3,234,258 or 5,075,041 and can be obtained as commercial products from the Shell Oil Company under the name DAN * "*, are also suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched CrC alcohols ethoxylated with 1 to 6 mol of ethylene oxide, such as 2-methyl-branched C ⁇ -d. -Alcohols with an average of 3.5 moles of ethylene oxide (EO) or CirCir fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which represent monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cr to C.r fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols which, viewed in isolation, are nonionic surfactants. (see description below).
  • sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable anionic surfactants are, in particular, soaps, preferably in amounts of 0.1 to 5% by weight.
  • Saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or taig fatty acids, derived soap mixtures.
  • the anionic surfactants can be present in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the anionic surfactant content of the agents is preferably 2 to 30% by weight and in particular 5 to 25% by weight.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue is linear or preferably in 2-position can be methyl-branched or can contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, -C 2 -Cn alcohols with 3 EO or 4 EO, C ⁇ -Cn alcohols with 7 EO, C.rCis alcohols with 3 EO, 5 EO, 7 EO or 8 EO, CirCi ⁇ alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of CurCu alcohol with 3 EO and CirCi ⁇ alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical mean values which can be an integer or a fractional number for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow ranks ethoxylates, NRE).
  • fatty alcohols can also be used more than 12 EO can be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R is a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms means and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as are described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • a CirCi ⁇ fatty acid methyl ester with an average of 10 to 15 EO, preferably with an average of 12 EO, is particularly preferred.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
  • IR 2 -CO-N- [Z] (I) in the R 2 CO for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R 3 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars with 5 or 6 carbon atoms, in particular from glucose.
  • the nonionic surfactants are preferably present in the agents according to the invention in amounts of 1 to 15% by weight, in particular in amounts of 2 to 12% by weight.
  • the agents can also contain components which have a positive effect on the oil and fat washability from textiles. This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups from 15 to 30% by weight and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic Cellulose ethers, and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof.
  • nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups from 15 to 30% by weight and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic Cellulose ethers
  • the agents can also contain constituents which improve the solubility of the compacted granules.
  • constituents which improve the solubility of the compacted granules are described, for example, in international patent application WO-A-93/02176 and in German patent application DE 42 03031.5.
  • the preferred ingredients include, in particular, fatty alcohols with 20 to 80 moles of ethylene oxide per mole of fatty alcohol, for example tallow fatty alcohol with 30 EO and tallow alcohol with 40 EO, but also fatty alcohols with 14 EO and polyethylene glycols with a relative molecular weight between 200 and 2000.
  • Suitable enzymes are those from the class of proteases, lipases or lipolytically active enzymes, amylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens are particularly suitable Active ingredients. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures are, for example, from protease and amylase or protease and lipase or enzymes with a lipolytic action or protease and cellulase or from cellulase and lipase or enzymes with a lipolytic effect or from protease, amylase and lipase or enzymes with a lipolytic effect or protease, lipase or lipolytically active enzymes and cellulase, in particular, however, mixtures containing protease and / or lipase or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the salts of polyphosphonic acids are suitable as stabilizers, in particular for per compounds and enzymes.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc. Polyvinyl pyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and also polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, are preferred on the means.
  • foam inhibitors are, for example, soaps of natural or synthetic origin which have a high proportion of C 1 -C 24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bistearylethylenediamide. Mixtures of various foam inhibitors are also used with advantages, for example those made of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • the bulk density of the preferred granular agents is generally 300 to 1200 g / l, in particular 500 to 1100 g / l.
  • the agents according to the invention can be produced by any of the known methods such as mixing, spray drying, granulating and extruding.
  • a method is preferred in which the Surface of partial components of the agent or of the entire agent for reducing the stickiness of the granules rich in nonionic surfactants and / or for their improved solubility is subsequently treated.
  • Suitable surface modifiers are known from the prior art.
  • zeolites, silicas, amorphous silicates, fatty acids or fatty acid salts for example calcium stearate, but especially mixtures of zeolite and silicas or zeolite and calcium stearate are particularly preferred.
  • detergents W1 and W2 according to the invention with the composition given below were tested for their primary and secondary washing ability.
  • comparative detergents V1 and V2 detergents with the same composition as W1 and W2 were used, but which contained sodium perborate monohydrate instead of sodium percarbonate in amounts such that the active oxygen content in W1, W2, V1 and V2 was identical.
  • composition in% by weight isobutyl
  • silicate builder 27.0 polymeric polycarboxylate (Sokalan CP ⁇ ⁇ , 5th
  • W1 and V1 a granular sodium carbonate / sodium disilicate compound (Nabion 15 TO , commercial product from Rhönen-Poulenc, France) was used as the silicate-forming substance, while in W2 and V2 an amorphous sodium disodium product (Britesil H20 plus ⁇ , commercial product from Akzo -PQ) used.
  • the application test was carried out under practical conditions in household washing machines.
  • the machines were loaded with 3.0 kg of clean laundry and 0.5 kg of test fabric, the test fabric being impregnated with conventional test soils for testing the primary washing ability and consisting of white fabric for testing the graying inhibition and the ash determination.
  • Strips of standardized cotton fabric (laundry research institute Krefeld, WFK), nettle (BN), knitwear (cotton jersey; B) and terry toweling fabric (FT) were used as the white test fabric.
  • SW-B Dust-wool grease on cotton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Waschmittel, welche amorphe Alkalisilikate mit Sekundärwaschvermögen und einem Molverhältnis M2O:SiO2 (M = Alkalimetall) zwischen 1:1,5 und 1:3,3 in Mengen von mindestens 5 Gew.-%, bis 30 Gew.-% Percarbonat, wobei das Gewichtsverhältnis Alkalisilikat zu Percarbonat mindestens 1:1 beträgt, sowie 0 bis 10 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) und/oder kristalline Schichtsilikate der allgemeinen Formel NaMSixO2x+1.yH2O, wobei M Natrium oder Wasserstoff, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 bedeuten und die kristallinen Schichtsilikate nur in Mengen unterhalb 10 Gew.-% vorhanden sind, enthalten, weisen nicht nur ein besseres Primär-sondern auch ein besseres Sekundärwaschvermögen auf als vergleichbare Mittel, die als Peroxybleichmittel nur Perborat enthalten.

Description

"Waschmittel, enthaltend amorphe Alkalisilikate und Peroxybleichmittel"
Die Erfindung betrifft ein Waschmittel, welches wasserlösliche silikatische Builder und als Peroxybleichmittel Percarbonat enthält.
Moderne, verdichtete Waschmittel weisen allgemein den Nachteil auf, daß sie aufgrund ihrer kompakten Struktur ein schlechteres Löseverhalten in wäßriger Flotte zeigen als beispielsweise leichtere sprühgetrocknete Waschmittel des Standes der Technik. Dabei tendieren Waschmittel im allgemeinen zu einer um so schlechteren Lösegeschwindig¬ keit in Wasser, je höher ihr Verdichtungsgrad ist. Zeolithe, die in Waschmitteln üblicher¬ weise als Buildersubstanzen enthalten sind, können aufgrund ihrer Wasserunlöslichkeit zusätzlich zu dem verschlechterten Löseverhalten beitragen.
Eine wasserlösliche Alternative für den Zeolith stellen amorphe Alkalisilikate mit Sekun¬ därwaschvermögen dar. Durch Sprüh- oder Walzentrocknung von Wasserglaslösungen lassen sich bekanntermaßen hydratisierte wasserlösliche Silikate in Pulverform erhal¬ ten, die noch etwa 20 Gew.-% Wasser enthalten (vgl. Ulimanns Enzyclopädie der tech¬ nischen Chemie. 4. Auflage 1982, Band 21, Seite 412). Solche Produkte sind für ver¬ schiedene Zwecke im Handel. Derartige Pulver weisen aufgrund der Sprühtrocknung eine sehr lockere Struktur auf; ihre Schüttdichten liegen im allgemeinen deutlich unter 700 g/l.
Alkalisilikate in granulärer Form mit höheren Schüttgewichten können gemäß der Lehre der europäischen Patentanmeldung EP-A-0 526 978 erhalten werden, wobei man eine Alkalisilikat-Lösung mit einem Feststoffgehalt zwischen 30 und 53 Gew.-% in eine be¬ heizte Trommel einbringt, in deren Längsachse eine Welle mit einer Vielzahl von nahe an die Innenfläche der Trommel reichenden Armen rotiert, wobei die Trommelwand eine Temperatur zwischen 150 und 200 βC aufweist und der Trockenvorgang durch ein in die Trommel eingespeistes Gas mit einer Temperatur zwischen 175 und etwa 250 CC unterstützt wird. Nach diesem Verfahren wird ein Produkt erhalten, dessen mittlere Teil¬ chengröße im Bereich zwischen 0,2 und 2 mm liegt. Ein bevorzugtes Trocknungsgas ist beheizte Luft.
Die europäische Patentanmeldung EP-A-0 542 131 beschreibt ein Verfahren, bei dem man ein in Wasser bei Raumtemperatur vollständig lösliches Produkt mit einem Schütt¬ gewicht zwischen 500 und 1200 g/l erhält. Die Trocknung erfolgt vorzugsweise unter Verwendung von erhitzter Luft. Auch hierbei wird mit einem zylindrischen Trockner mit beheizter Wand (160 bis 200 °C) gearbeitet, in dessen Längsachse ein Rotor mit schaufeiförmigen Blättern sich mit einer derartigen Geschwindigkeit dreht, daß aus der Silikatlösung mit einem Feststoffgehalt zwischen 40 und 60 Gew.-% eine pseudoplasti¬ sche Masse mit einem freien Wassergehalt zwischen 5 und 12 Gew.-% entsteht. Die Trocknung wird durch einen heißen Luftstrom (220 bis 260°C) unterstützt.
Die ältere, nicht vorveröffentlichte Anmeldung P 44 19 745.4 beschreibt ebenfalls ein wasserlösliches, amorphes und granuläres Alkalisilikat, welches auf ähnliche Weise wie in der EP-A-0 526 978 beschrieben hergestellt wird, jedoch kieselsäurehaltig ist. Mit dem Begriff "amorph" ist "röntgenamorph" gemeint. Dies bedeutet, daß die Alkalisilikate bei Röntgenbeugungsaufnahmen keine scharfen Reflexe liefern, sondern allenfalls eine oder mehrere breite Maxima, deren Breite mehrere Gradeinheiten des Beugungswin¬ kels beträgt. Damit ist jedoch nicht ausgeschlossen, daß bei Elektronenbeugungsexpe¬ rimenten Bereiche gefunden werden, die scharfe Elektronenbeugungsreflexe liefern. Dies ist so zu interpretieren, daß die Substanz mikrokristalline Bereiche in einer Grö¬ ßenordnung bis zu ca. 20 nm (max. 50 nm) aufweist.
Granuläre amorphe Natriumsilikate, welche durch Sprühtrockung wäßriger Wasserglas¬ lösungen, anschließendes Mahlen und nachfolgendes Verdichten und Abrunden unter zusätzlichem Wasserentzug des Mahlgutes erhalten werden, sind Inhalt der amerikani¬ schen Patentschriften US 3,912,649, US 3,956.467, US 3,838,193 und US 3.879,527. Der Wassergehalt der erhaltenen Produkte liegt bei etwa 18 bis 20 Gew -% bei Schütt¬ dichten deutlich oberhalb 500 g/l.
Weitere granuläre Alkalisilikate mit Sekundärwaschvermögen sind aus den europäi¬ schen Patentanmeldungen EP-A-0 561 656 und EP-A-0 488 868 bekannt. Es handelt sich hierbei um Compounds von Alkalisilikaten mit bestimmten Q-Verteilungen und Al- kalicarbonaten.
Eine Reihe von amorphen Silikaten mit Sekundärwaschvermögen und carbonat- und si- likathaltigen Compounds liegen als Handelsprodukte vor. Es wird hierbei beispielhaft auf die Handelsprodukte Britesil^ der Firma Akzo -PQ, Nabion 15^ der Firma Rhόne- Poulenc. Gransil^ der Firma Colin Stewart oder Dizzil^ G der Firma Eka Nobel verwie¬ sen. Dabei sind als Carbonat-Alkalisilikat-Compounds solche bevorzugt, welche ein Ge¬ wichtsverhältnis von Carbonat zu Silikat von 3:1 bis 1 :9 und insbesondere von 2,5:1 bis 1:5 aufweisen. Diese handelsüblichen Alkalisilikate bzw. Compounds können beispiels¬ weise mit wäßrigen Lösungen von Aniontensiden oder auch mit Aniontensidsäuren gra¬ nuliert werden.
Eine weitere Entwicklung aus jüngerer Zeit auf dem Gebiet der pulverförmigen Waschmittel betrifft den Einsatz von Natriumpercarbonat anstelle des früher eingesetz¬ ten Natriumperborats als Bleichmittel. Der Wunsch, Natriumpercarbonat einzusetzen, resultiert in erster Linie aus seiner guten Löslichkeit und seiner ökologischen Unbe¬ denklichkeit.
Aus der internationalen Patentanmeldung WO-A-92/18594 ist der Einsatz von Percar¬ bonat, das mit 2 bis 10 Gew.-% Silikat, bezogen auf das Percarbonat, umhüllt sein kann, in Kombination mit kristallinen Schichtsilikaten der allgemeinen Formel NaM- Si,θ2x+ι.yH20, wobei M Natrium oder Wasserstoff, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 bedeuten, in Waschmitteln bekannt. Der Gehalt dieser kristallinen Schichtsilikate soll mindestens 10 Gew.-% betragen. Übliche wasserlösliche Alkalisilika¬ te können in dem Mittel beispielsweise dann enthalten sein, wenn das Mittel durch Sprühtrocknung hergestellt wird und keinen Zeolith enthält.
Die europäische Patentanmeldung EP-A-0639639 hingegen beschreibt ein granuläres Waschmittel, welches 2 bis 50 Gew.-% Percarbonat und 0,7 bis 20 Gew.-% eines pul¬ verförmigen Silikats enthält, wobei mindestens 0,7 Gew.-% Silikatpartikel mit einer Teil¬ chengröße von weniger als 425 μm sind. Entsprechende amorphe Silikate sind bei¬ spielsweise im Handel (Hoechst AG, Akzo) erhältlich. Die Silikate können nachträglich trocken zugemischt sein. Durch die Kombination eines granulären Percarbonats mit ei¬ nem sehr feinteiligen Alkalisilikat werden sowohl die Dispergiereigenschaften als auch die Bleichleistungen gegenüber einem Mittel erhöht, welches anstelle des Percarbonats Perboratmonohydrat enthält.
Es wurde nun gefunden, daß durch den Einsatz von amorphen Alkalisilikaten mit Se¬ kundärwaschvermögen unabhängig von der Teilchengröße des Silikats in Kombination mit Percarbonat als Peroxybleichmittel sowohl die Primärwaschleistung als auch das Sekundärwaschvermögen gegenüber Waschmitteln, welche amorphe Alkalisilikate mit Sekundärwaschvermögen und Perborat als Peroxybleichmittel enthalten, verbessert werden kann. Gegenstand der Erfindung ist dementsprechend ein Waschmittel, enthaltend amoφhe Alkalisilikate und Percarbonat als Peroxybleichmittel, wobei das Mittel a) mindestens 5 Gew.-% amoφhe Alkalisilikate mit Sekundärwaschvermögen und einem Molverhältnis M2O : SiO2 (M=Alkalimetall) zwischen 1:1,5 und 1:3,3, b) bis 30 Gew.-% Percarbonat, wobei das Gewichtsverhältnis Alkalisilikat zu Percarbonat mindestens 1:1 beträgt, sowie c) 0 bis 10 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) und/oder kristalline Schichtsilikate der Formel NaMSixO 2x*ryH2O, wobei M Natrium oder Wasserstoff, x ei¬ ne Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 bedeuten und die kristallinen Schichtsilikate nur in Mengen unterhalb 10 Gew.-% vorhanden sind, aufweist.
Bevorzugte amoφhe Alkalisilikate weisen ein Molverhältnis M20 : SiO2 (M = Alkalimetall) zwischen 1:1,9 und 1:3, insbesondere bis 1:2,5 auf. Hierbei kommen insbesondere Na¬ trium- und/oder Kaliumsilikat in Betracht. Aus ökonomischen Gründen sind die Natri¬ umsilikate bevorzugt. Legt man aus anwendungstechnischen Gründen jedoch auf eine besonders hohe Lösegeschwindigkeit in Wasser Wert, so empfiehlt es sich, Natrium mindestens anteilsweise durch Kalium zu ersetzen. Beispielsweise kann die Zusam¬ mensetzung des Alkalisilikats so gewählt werden, daß das Silikat einen Kalium-Gehalt, berechnet als K20, von bis zu 5 Gew.-% aufweist. Bevorzugte Alkalisilikate liegen als Compound mit Alkalicarbonat, vorzugsweise Natrium- und/oder Kaliumcarbonat, vor. Der Wassergehalt dieser bevorzugten amoφhen Alkalisilikat-Compounds, liegt vorteil¬ hafterweise zwischen 10 und 22 Gew.-%, insbesondere zwischen 12 und 20 Gew.-%. Dabei können Wassergehalte von 14 bis 18 Gew.-% besonders bevorzugt sein.
Es wird ausdrücklich darauf hingewiesen, daß alle bekannten amoφhen Alkalisilikate bzw. Alkalisilikat-Compounds mit Sekundärwaschvermögen eingesetzt werden können. Diese Silikate können durch Sprühtrocknung, Granulierung und/oder Kompaktierung, beispielsweise durch Walzenkompaktierung hergestellt worden sein. Carbonat- und sili- kathaltige Compounds können ebenfalls durch Sprühtrocknung, Granulierung und/oder Kompaktierung, beispielsweise durch Walzenkompaktierung hergestellt werden. Einige dieser Silikate und carbonat- und silikathaltigen Compounds liegen als Handelsprodukte vor. Es wird hierbei beispielhaft auf die Handelsprodukte Britesil(R) der Firma Akzo-PQ, Nabion Iδ^ der Firma Rhöne-Poulenc, Gransil der Firma Colin Stewart oder Dizzil(R> G der Firma Eka Nobel verwiesen. Dabei sind als Carbonat-Alkalisilikat-Compounds solche bevorzugt, welche ein Gewichtsverhaltnis von Carbonat zu Silikat von 3:1 bis 1:9 und insbesondere von 2,5:1 bis 1:5 aufweisen. Diese handelsüblichen Alkalisilikate bzw. Compounds können beispielsweise mit wäßrigen Lösungen von Aniontensiden oder auch mit Aniontensidsäuren granuliert werden.
Auch amoφhe Silikate, welche gemäß den obengenannten US-Patentschriften durch Sprühtrocknung oder in Granulatoren von der Art der Turbotrockner beispielsweise der Firma Vomm, Italien, hergestellt werden können, stellen geeignete Silikate dar.
Vorteilhafterweise enthalten die erfindungsgemäßen Mittel amoφhe Alkalisilikate bzw. alkalicarbonat- und alkalisilikathaltige Compounds mit Sekundärwaschvermögen in Mengen von 10 bis 45 Gew.-%, vorzugsweise in Mengen von 15 bis 40 Gew.-% und insbesondere in Mengen von 20 bis 35 Gew.-%.
Als Percarbonat kommt vor allem das Natriumpercarbonat (2 Na2CO3 x 3 H202) und zwar insbesondere in granulärer Form in Betracht. Dabei ist es vorteilhaft, wenn dieses Granulat im wesentlichen Natriumpercarbonat und ansonsten nur solche Inhaltsstoffe enthält, welche zur chemischen Stabilisierung des Natriumpercarbonats benötigt wer¬ den oder die zur mechanischen Stabilisierung des Granulatkorns eingesetzt werden. Vorzugsweise enthält dieses Granulat wenigstens 75 Gew.-% und insbesondere min¬ destens 85 Gew -% Natriumpercarbonat.
Dieses Natriumpercarbonat enthaltende Granulat weist vorzugsweise eine Schüttdichte von mindestens 500 g/l bis hin zu etwa 1400 g/l auf, wobei noch höhere Schüttdichten nicht ausgenommen sind.
Die Herstellung dieses Granulats kann mit Hilfe eines Verfahrens erfolgen, das als Wir¬ belschicht-Sprühgranulation bezeichnet wird und bei dem eine Wasserstoffperoxid- und eine Natriumcarbonatlösung in einer Wirbelschichtapparatur auf Natriumpercarbonat- keime gesprüht werden und gleichzeitig Wasser verdampft wird. Eine oder beide dieser Lösungen können weiterhin Hilfsstoffe für die Kristallbildung, Füllstoffe oder insbeson¬ dere Stabilisatoren für das sich bildende Natriumpercarbonatgranulat enthalten. Eine besonders bevorzugte Ausführungsform für die Herstellung des Natriumpercarbonats ist das in der internationalen Patentanmeldung WO-A-95/06615 beschriebene Verfah¬ ren, bei dem eine wäßrige Wasserstoffperoxidlösung und eine wäßrige Natriumcarbo¬ natlösung mit Hilfe einer einzigen Düse in die Wirbelschicht gesprüht werden, wobei gleichzeitig Wasser im Bereich von 40 bis 95 °C verdampft wird. Vorzugsweise enthalten die Mittel Percarbonat oder ein im wesentlichen percarbo- nathaltiges Granulat in Mengen von 10 bis 30 Gew.-%, insbesondere in Mengen von 15 bis 25 Gew.-%.
Besonders vorteilhaft ist, wenn die amoφhen Alkalisilikate bzw. die alkalicarbonat- und alkalisilikathaltigen Compounds mit Sekundärwaschvermögen in Gewichtsverhältnissen zum Percarbonat von 1,1:1 bis 2,5:1 und insbesondere in Gewichtsverhältnissen von 1,2:1 bis maximal 2:1 eingesetzt werden.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeo¬ lith ist vorzugsweise Zeolith A und/oder P. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten CιrCιr Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, CιrCi4-Fettalkoholen mit 4 bis 5 Ethy- lenoxidgruppen oder ethoxylierten Iso-tridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coul- ter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. In einer bevorzugten Ausführungsform der Erfindung enthalten die Mittel aber entweder keinen Zeolith oder Zeolith nur in Mengen bis maxi¬ mal 5 Gew.-% (bezogen auf wasserfreie Aktivsubstanz). Diese Menge kann bei¬ spielsweise dazu benutzt worden sein, eine oder mehrere Komponenten, welche Be¬ standteile des Mittels sind, mit Zeolith A und/oder P abzupudern bzw. nachträglich zu umhüllen.
Auch die genannten kristallinen Schichtsilikate der oben angegebenen Formel, in der x vorzugsweise 2, 3 oder 4 ist, insbesondere kristalline schichtförmige Natriumdisilikate, sind vorzugsweise in Mengen weit unterhalb 10 Gew.-% in den Mitteln enthalten. Insbe¬ sondere sind die erfindungsgemäßen Mittel sogar frei von diesen kristallinen schicht- förmigen Silikaten.
Als weitere anorganische Buildersubstanzen kommen Phosphate, insbesondere Natri¬ umtripolyphosphat in Betracht. Vor allem aus ökologischen Gründen, aber auch, weil sie nicht wesentlich zur Leistungssteigerung der erfindungsgemäßen Mittel beitragen, soll ihr Gehalt ebenfalls im allgemeinen 10 Gew -% nicht überschreiten Insbesondere sind die Mittel frei von Phosphaten.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ih¬ rer Natnumsalze eingesetzten Polycarbonsäuren, wie Citronensäure, Adipinsaure, Bemsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitπlo- triessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsaure, Bemsteinsäure, Glutarsäure, Wein¬ säure, Zuckersäuren und Mischungen aus diesen.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Po- lyacrylsaure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekulmasse von 800 bis 150000 (auf Säure bezogen) Geeignete copolymere Poly¬ carboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acryl¬ säure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copo¬ lymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew -% Acrylsäure und 50 bis 10 Gew -% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Sauren, betragt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Insbesondere bevorzugt sind auch biologisch abbau¬ bare Teφolymere, beispielsweise solche, die gemäß der DE-A-4300772 als Monome¬ re Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw Vinylalkohol-Deπ- vate oder gemäß der DE-C-4221 381 als Monomere Salze der Acrylsäure und der 2-AI- kylallylsulfonsaure sowie Zucker- Den vate enthalten Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und P 44 17 734.8 beschπeben werden und als Monomere vorzugsweise Acrolein und Acrylsau- re/Acrylsauresalze bzw. Acrolein und Vinylacetat aufweisen
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßnge Lo¬ sung eingesetzt werden, wobei 20 bis 55 Gew -%ιge wäßnge Losungen bevorzugt sind
Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 1 bis 10 Gew -% und insbesondere 2 bis 8 Gew.-%.
Weitere geeignete Buildersubstanzen sind Oxidationsprodukte von carboxylgruppen- haltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder de¬ ren Herstellung beispielsweise in der internationalen Patentanmeldung WO-A-93/16110 beschrieben wird.
Ebenso sind als weitere bevorzugte Buildersubstanzen auch die bekannten Polyaspa- raginsäuren bzw. deren Salze und Derivate zu nennen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0280223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemi¬ schen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhal¬ ten.
Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleich¬ wirkung zu erreichen, können Bleichaktivatoren in die Mittel eingearbeitet werden. Bei¬ spiele hierfür sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl- Verbindungen, vorzugsweise N.N'-tetraacylierte Diamine, p-(Alkanoyloxy)benzolsulfo- nate, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbitol und Mannitol, wie sie beispielsweise in der europäischen Patentanmeldung EP-A-0 525 239 beschrieben werden. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N.N.N'.N'- Tetraacetylethylendiamin (TAED), 1 ,5-Diacetyl-2,4-dioxo-hexahydro-1 ,3,5-triazin (DADHT) und acetylierte Sorbitol-Mannitol-Mischungen (SORMAN).
Zusätzlich können die Mittel als Peroxybleichmittel auch übliche Perborate wie Natrium- perboratmonohydrat oder Natriumperborattetrahydrat, insbesondere Natriumperborat- monohydrat , enthalten. Dabei ist es aber bevorzugt, daß das Gewichtsverhältnis Natri¬ umpercarbonat zu Natriumperborat mindestens 1:1 beträgt.
Ansonsten können die erfindungsgemaßen Waschmittel alle übrigen bekannten In¬ haltsstoffe von Waschmitteln enthalten, insbesondere jedoch Tenside, sogenannte soil repellent- Wirkstoffe, weitere Löslichkeitsverbesserer, Enzyme und Enzymstabilisatoren, Schauminhibitoren, Vergrauungsinhibitoren, anorganische (beispielsweise Alkalisulfate und/oder Alkalichloride) und organische Salze (beispielsweise Phosphonate), textil- weichmachende Stoffe und Färb- und Duftstoffe.
Von den Tensiden werden anionische und/oder nichtionische Tenside bevorzugt einge¬ setzt.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfa¬ te eingesetzt. Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg-CirAlkylbenzol- sulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten so¬ wie Disulfonaten, wie man sie beispielsweise aus C12-CιrMonoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulf onate, die aus CirC.rAlkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutra¬ lisation gewonnen werden. Geeignet sind auch die Ester von oc-Sulfofettsäuren (Estersulfonate), z.B. die oc-sulfonierten Methylester der hydrierten Kokos-, Palmkern¬ oder Taigfettsäuren. Weitere geeignete Aniontenside sind sulfierte Fettsäureglyce- rinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Die Sulfieφrodukte stellen ein komplexes Gemisch dar, das Mono-, Di- und Triglycerid¬ sulfonate mit oc-ständiger und/oder innenständiger Sulfonsäuregruppierung enthält. Als Nebenprodukte bilden sich sulfonierte Fettsäuresalze, Glyceridsulfate, Glycerinsulfate, Glycerin und Seifen. Geht man bei der Sulfierung von gesättigten Fettsäuren oder ge¬ härteten Fettsäureglycerinestergemischen aus, so kann der Anteil der oc-sulfonierten Fettsäure-Disalze je nach Verfahrensführung durchaus bis etwa 60 Gew.-% betragen.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwe¬ felsäurehalbester der CirCiβ-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20- Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevor¬ zugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche ei¬ nen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Cιβ-Ci8-Alk(en)ylsulfate insbesondere bevorzugt. Dabei kann es auch von besonderem Vorteil und insbesondere für maschinelle Waschmittel von Vorteil sein, Cιβ-Cι8- Alk(en)ylsulfate in Kombination mit niedriger schmelzenden Aniontensiden und insbe¬ sondere mit solchen Aniontensiden, die einen niedrigeren Krafft-Punkt aufweisen und bei relativ niedrigen Waschtemperaturen von beispielsweise Raumtemperatur bis 40 °C eine geringe Kristallisationsneigung zeigen, einzusetzen. In einer bevorzugten Ausfüh¬ rungsform der Erfindung enthalten die Mittel daher Mischungen aus kurzkettigen und langkettigen Fettalkylsulfaten, vorzugsweise Mischungen aus CιrCi4-Fθttalkylsulfaten oder CirCiβ-Fettalkylsulfaten mit Ciβ-Ciβ-Fettalkylsulfaten und insbesondere C12-C16- Fettalkylsulfaten mit Ciβ-C.β-Fθttalkylsulfaten. In einer weiteren bevorzugten Ausfüh¬ rungsform der Erfindung werden jedoch nicht nur gesättigte Alkylsulfate, sondern auch ungesättigte Alkenylsulfate mit einer Alkenylkettenlänge von vorzugsweise Cι6 bis C22 eingesetzt. Dabei sind insbesondere Mischungen aus gesättigten, überwiegend aus C.6 bestehenden sulfierten Fettalkoholen und ungesättigten, überwiegend aus Cι8 beste¬ henden sulfierten Fettalkoholen bevorzugt, beispielsweise solche, die sich von festen oder flüssigen Fettalkoholmischungen des Typs HD-Ocenol9** (Handelsprodukt des Anmelders) ableiten. Dabei sind Gewichtsverhältnisse von Alkylsulfaten zu Alkenylsulfa- ten von 10:1 bis 1:2 und insbesondere von etwa 5:1 bis 1:1 bevorzugt.
Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN*"* erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoestβr der mit 1 bis 6 Mol Ethylenoxid ethoxylierten gerad¬ kettigen oder verzweigten CrC -Alkohole, wie 2-Methyl-verzweigte Cβ-d. -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder CirCirFettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Mo¬ noester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettal¬ koholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfo¬ succinate enthalten Cr bis C.rFettalkoholreste oder Mischungen aus diesen. Insbe¬ sondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside dar- stellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettal¬ kohol-Reste sich von ethoxylierten Fett- alkoholen mit eingeengter Homologenvertei¬ lung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen, vorzugsweise in Mengen von 0,1 bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fettsäuresei¬ fen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrier¬ ten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkem- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorlie¬ gen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kalium¬ salze, insbesondere in Form der Natriumsalze vor.
Der Gehalt der Mittel an Aniontensiden beträgt vorzugsweise 2 bis 30 Gew.-% und ins¬ besondere 5 bis 25 Gew.-%.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy¬ lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durch¬ schnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alko¬ holrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoal- koholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Cι2-Cn-Alkohole mit 3 EO oder 4 EO, Cβ-Cn-Alkohole mit 7 EO, C.rCis-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, CirCiβ-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus CurCu-Alkohol mit 3 EO und CirCiβ-Alkohol mit 5 EO. Die ange¬ gebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alko¬ holethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxyla- tes, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der all¬ gemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligogly¬ kosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensi¬ den, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Al¬ kylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren her¬ gestellt werden. Insbesondere bevorzugt ist ein CirCiβ-Fettsäuremethylester mit durch¬ schnittlich 10 bis 15 EO, vorzugsweise mit durchschnittlich 12 EO.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka- nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vor¬ zugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsaureamide der Formel (I),
I R2-CO-N-[Z] (I) in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlen¬ stoffatomen und 3 bis 10 Hydroxylgruppen steht. Vorzugsweise leiten sich die Poly¬ hydroxyfettsaureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoff atomen, insbesondere von der Glucose ab.
Die nichtionischen Tenside sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen von 1 bis 15 Gew.-%, insbesondere in Mengen von 2 bis 12 Gew.-% enthalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die öl- und Fettaus- waschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsge¬ mäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wird. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl- Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylen- terephthalaten und/oder Polyethyienglykolterephthalaten oder anionisch und/oder nich¬ tionische modifizierten Derivaten von diesen.
Die Mittel können außerdem Bestandteile enthalten, welche die Löslichkeit der verdich¬ teten Granulate verbessern. Derartige Bestandteile und das Einbringen derartiger Be¬ standteile werden beispielsweise in der internationalen Patentanmeldung WO-A- 93/02176 und in der deutschen Patentanmeldung DE 42 03031.5 beschrieben. Zu den bevorzugt eingesetzten Bestandteilen gehören insbesondere Fettalkohole mit 20 bis 80 Mol Ethylenoxid pro Mol Fettalkohol, beispielsweise Taigfettalkohol mit 30 EO und Taigfettalkohol mit 40 EO, aber auch Fettalkohole mit 14 EO sowie Polyethyienglykole mit einer relativen Molekülmasse zwischen 200 und 2000.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus li- cheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmi¬ schungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. li¬ polytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Li¬ pase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzy¬ men und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischun¬ gen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die En¬ zyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, En¬ zymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vor¬ zugsweise 0,1 bis etwa 2 Gew.-% betragen.
Als Stabilisatoren insbesondere für Perverbindungen und Enzyme kommen die Salze von Polyphosphonsäuren, insbesondere 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), Diethylentriaminpentamethylenphosphonsäure (DETPMP) oder Ethylendiamintetrame- thylenphosphonsäure in Betracht.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu ver¬ hindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, bei¬ spielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Sal¬ ze von sauren Schwefelsäureestem der Cellulose oder der Stärke. Auch was¬ serlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stär¬ keprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinyl¬ pyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxyme¬ thylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Me- thylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0, 1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt. Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln üb¬ liche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Cιβ-C24- Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispiels¬ weise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kiesel¬ säure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanier¬ ter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergieπbare Tragersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Die Schüttdichte der bevorzugten granulären Mittel beträgt im allgemeinen 300 bis 1200 g/l, insbesondere 500 bis 1100 g/l.
Die Herstellung der erfindungsgemaßen Mittel kann nach jedem der bekannten Verfah¬ ren wie Mischen, Sprühtrocknung, Granulieren und Extrudieren erfolgen.
Geeignet sind insbesondere solche Verfahren, in denen mehrere Teilkomponenten, beispielsweise sprühgetrocknete Komponenten und granulierte und/oder extrudierte Komponenten miteinander vermischt werden. Dabei ist es auch möglich, daß sprühge¬ trocknete oder granulierte Komponenten nachträglich in der Aufbereitung beispielswei¬ se mit nichtionischen Tensiden, insbesondere ethoxylierten Fettalkoholen, nach den üblichen Verfahren beaufschlagt werden. Insbesondere in Granulations- und Extrusi- onsverfahren ist es bevorzugt, die gegebenenfalls vorhandenen Aniontenside in Form eines sprühgetrockneten, granulierten oder extrudierten Compounds entweder als Zu- mischkomponente in dem Verfahren oder als Additiv nachträglich zu anderen Granula¬ ten einzusetzen. Ebenso ist es möglich und kann in Abhängigkeit von der Rezeptur von Vorteil sein, wenn weitere einzelne Bestandteile des Mittels, beispielsweise Carbonate, Citrat bzw. Citronensäure oder andere Polycarboxylate bzw. Polycarbonsäuren, poly¬ mere Polycarboxylate, Zeolith und/ oder Schichtsilikate, beispielsweise schichtförmige kristalline Disilikate, nachträglich zu sprühgetrockneten, granulierten und/oder extru¬ dierten Komponenten, die gegebenenfalls mit nichtionischen Tensiden und/oder an¬ deren bei der Verarbeitungstemperatur flüssigen bis wachsartigen Inhaltsstoffen beauf¬ schlagt sind, hinzugemischt werden. Bevorzugt ist dabei ein Verfahren, bei dem die Oberfläche von Teilkomponenten des Mittels oder des gesamtem Mittels zur Reduzie¬ rung der Klebrigkeit der an Niotensiden reichen Granulate und/oder zu ihrer verbesser¬ ten Löslichkeit nachträglich behandelt wird. Geeignete Oberflächenmodifizierer sind da¬ bei aus dem Stand der Technik bekannt. Neben weiteren geeigneten sind dabei fein¬ teilige Zeolithe, Kieselsäuren, amoφhe Silikate, Fettsäuren oder Fettsäuresalze, bei¬ spielsweise Calciumstearat, insbesondere jedoch Mischungen aus Zeolith und Kiesel¬ säuren oder Zeolith und Calciumstearat besonders bevorzugt.
Beispiele
Beispiel 1:
Die erfindungsgemäßen Waschmittel W1 und W2 mit der unten angegebenen Zusam¬ mensetzung wurden auf ihr Primär- und Sekundärwaschvermögen hin getestet. Als Vergleichswaschmittel V1 und V2 wurden Waschmittel mit gleicher Zusammensetzung wie W1 und W2 eingesetzt, welche jedoch anstatt des Natriumpercarbonats Natrium- perboratmonohydrat in den Mengen enthielten, daß der Aktivsauerstoffgehalt in W1, W2, V1 und V2 identisch war.
Zusammensetzung in Gew.-%:
Alkylbenzolsulfonat 10,0
Talgfettalkoholsulfat 5,0
rCιr Natriumfettsäureseife 1,0
Ci2-CιrFattalkohol mit 5 EO 4,0
silikatische Büildersubstanz 27,0 polymeres Polycarboxylat (Sokalan CPδ^, 5
Handelsprodukt der Firma BASF, Deutschland)
Natriumpercarbonat (Handelsprodukt der Firma 19,0
Degussa)
Tetraacetylethylendiamin 6,0
Protease-Granulat 1 ,0 optischer Aufheller 0,3
Carboxymethyicellulose/Methylcellulose 0,4
(Gew.-Verhältnis 1:1)
Wasser und Salze aus Lösungen Rest
In W1 und V1 wurde als silikatische Büildersubstanz ein granuläres Natriumcarbo- nat/Natriumdisilikat-Compound (Nabion 15TO, Handelsprodukt der Firma Rhöne- Poulenc, Frankreich), in W2 und V2 hingegen ein amoφhes Natriumdisiiikat (Britesil H20 plus^, Handelsprodukt der Firma Akzo-PQ) eingesetzt.
Den nachfolgenden Tabellen ist zu entnehmen, daß die Anwendung der erfindungsge¬ mäßen Mittel zu einer deutlichen Verbesserung sowohl an Fett/Pigment- Anschmutzungen als auch bei der Vergrauungsinhibierung führte. Insbesondere bei der Anwendung von W1 waren außerdem noch deutliche Vorteile bei der Aschebildung zu beobachten, während W2 noch deutiiche Vorteile bei enzymatischen Anschmutzungen zeigte. Etwa gleich gute bis leicht bessere Ergebnisse wurden bei bleichbaren An¬ schmutzungen, insbesondere an Rotwein, Tee und Johannisbeere auf Baumwolle und veredelter Baumwolle erzielt; gleich gute Ergebnisse wurden an Kosmetik- Anschmutzungen wie Lippenstift und Make up gefunden.
Überraschenderweise wurde auch gefunden, daß der Verlust an Naßreißkraft - be¬ stimmt nach DIN 53857 - mit W1 um 3,8 Prozentpunkte gegenüber V1 gesenkt werden konnte.
Die anwendungstechnische Prüfung erfolgte unter praxisnahen Bedingungen in Haus¬ haltswaschmaschinen. Hierzu wurden die Maschinen mit 3,0 kg sauberer Füllwäsche und 0,5 kg Testgewebe beschickt, wobei das Testgewebe zur Prüfung des Primär- waschver-mögens mit üblichen Testanschmutzungen imprägniert war und zur Prüfung der Vergrauungsinhibierung und der Aschebestimmung aus weißem Gewebe bestand. Als weiße Testgewebe wurden Streifen aus standardisiertem Baumwollgewebe (Wäschereiforschungs-anstalt Krefeld, WFK), Nessel (BN), Wirkware (Baumwolltrikot; B) und Frottiergewebe (FT) verwendet.
Waschbedingungen für Primärwaschvermögen:
Leitungswasser von 23 °d (äquivalent 230 mg CaO/l), eingesetzte Waschmittelmenge pro Mittel und Maschine 80 g, Waschtemperatur 60 "C und 90 °C, Flottenverhältnis (kg Wäsche : Liter Waschlauge im Hauptwaschgang) 1 :5,7, 3maliges Nachspülen mit Lei¬ tungswasser, Abschleudern und Trocknen.
Fett/Pigment-Anschmutzungen:
Staub-Wollfett auf Baumwolle (SW-B)
Staub-Hautfett auf Baumwolle (SH-B)
Staub-Hautfett auf Mischgewebe aus Polyester und veredelter Baumwolle (SH-PBV)
enzymatische Anschmutzungen: Milch-Ruß auf Baumwolle (MR-B)
Milch-Kakao auf Baumwolle (MK-B) Waschbedingungen für Vergrauungsinhibierung und Aschebestimmung: Leitungswasser von 23 βd (äquivalent 230 mg CaO/l), eingesetzte Waschmittelmenge pro Mittel und Maschine 80 g, Waschtemperatur 90 °C , Flottenverhältnis (kg Wäsche : Liter Waschlauge im Hauptwaschgang) 1:5,7, 3maliges Nachspülen mit Lei¬ tungswasser, Abschleudern und Trocknen, Anzahl der Wäschen: 25.
Tabelle 1 : Primärwaschvermöαen (Remission in %) bei 90 °C
W1 V1 W2 V2
SW-B 77,5 75,7 70,0 63,5
SH-B 79,4 76,8 71,3 67,8
SH-PBV 70,8 65,7 57,9 53,7
MR-B 78,5 77,6 75,9 71,2
MK-B 81,0 80,3 79,5 77,2
Tabelle 2: Vergrauungsinhibierung (Remission in %)
WFK BN B FT 0
Anfangswert 85,2 81,9 83,0 84,3 83,6
W1 85,0 87,4 85,7 85,0 85,8
V1 84,2 86,8 85.1 83,1 84,8
W2 80,1 84,7 83,8 82,3 82,7
V2 76,8 79,5 78,2 77,9 78,1
Tabelle 3: Aschebestimmung (Gew.-% Asche)
FT BN B WFK 0
Anfangswert 0,77 0,19 0,85 0,20 0,50 W1 7,73 4,52 5,48 4,60 5,58
V1 6,88 5,53 6,90 5,41 6,18

Claims

Patentansprüche
1. Waschmittel, enthaltend amoφhe Alkalisilikate und Percarbonat als Peroxybleich¬ mittel, dadurch gekennzeichnet, daß das Mittel a) mindestens 5 Gew.-% amoφhe Alkalisilikate mit Sekundärwaschvermögen und einem Molverhältnis M2O:SiO2 (M=Alkalimetall) zwischen 1:1,5 und 1:3,3 , b) bis 30 Gew.-% Percarbonat, wobei das Gewichtsverhältnis Alkalisilikat zu Percarbonat mindestens 1:1 beträgt, sowie c) 0 bis 10 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) und/oder kristalline Schichtsilikate der Formel NaMSixθ2χ*ι yH2O, wobei M Natrium oder Wasserstoff, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 bedeuten und die kristallinen Schichtsilikate nur in Mengen unterhalb 10 Gew.-% vorhanden sind, aufweist.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, daß es amoφhe Alkalisilikate bzw. alkalicarbonat- und alkalisilikathaltige Compounds mit Sekundärwaschvermögen in Mengen von 10 bis 45 Gew.-%, vorzugsweise in Mengen von 15 bis 40 Gew -% und insbesondere in Mengen von 20 bis 35 Gew.-% enthält.
3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es Percarbonat oder ein im wesentlichen percarbonathaltiges Granulat in Mengen von 10 bis 30 Gew.-%, insbesondere in Mengen von 15 bis 25 Gew.-% enthält.
4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es die amor¬ phen Alkalisilikate bzw. die alkalicarbonat- und alkalisilikathaltigen Compounds mit Sekundärwaschvermögen in Gewichtsverhältnissen zum Percarbonat von 1,1:1 bis 2,5:1 und insbesondere in Gewichtsverhältnissen von 1,2:1 bis maximal 2:1 enthält.
5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es keinen Zeolith oder Zeolith in Mengen bis maximal 5 Gew.-% (bezogen auf wasserfreie Ak¬ tivsubstanz) enthält.
6. Mittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es Natrium¬ percarbonat enthält, wobei das Gewichtsverhältnis Natriumpercarbonat zu Natrium¬ perborat vorzugsweise mindestens 1:1 beträgt.
PCT/EP1996/004743 1995-11-09 1996-10-31 Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel WO1997017421A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT96937318T ATE199932T1 (de) 1995-11-09 1996-10-31 Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel
DE59606648T DE59606648D1 (de) 1995-11-09 1996-10-31 Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel
EP96937318A EP0877789B1 (de) 1995-11-09 1996-10-31 Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19541755A DE19541755A1 (de) 1995-11-09 1995-11-09 Waschmittel, enthaltend amorphe Alkalisilikate und Peroxybleichmittel
DE19541755.0 1995-11-09

Publications (1)

Publication Number Publication Date
WO1997017421A1 true WO1997017421A1 (de) 1997-05-15

Family

ID=7777000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004743 WO1997017421A1 (de) 1995-11-09 1996-10-31 Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel

Country Status (5)

Country Link
EP (1) EP0877789B1 (de)
AT (1) ATE199932T1 (de)
DE (2) DE19541755A1 (de)
ES (1) ES2156298T3 (de)
WO (1) WO1997017421A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700775A1 (de) * 1997-01-13 1998-07-16 Henkel Kgaa Verfahren zur Herstellung aniontensidhaltiger wasch- und reinigungsaktiver Tensidgranulate
CA2344811A1 (en) * 1998-09-25 2000-04-06 Richard Timothy Hartshorn Detergent compositions
EP1752527A3 (de) * 1998-09-25 2010-05-05 The Procter & Gamble Company Feste Reinigungsmittelzusammensetzungen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135227A2 (de) * 1983-08-15 1985-03-27 Unilever N.V. Zusammensetzungen für Geschirrspülmaschinen
US5279756A (en) * 1992-08-27 1994-01-18 Church & Dwight Co., Inc. Non-phosphate machine dishwashing detergents
EP0634479A1 (de) * 1993-07-14 1995-01-18 The Procter & Gamble Company Stabile Reinigungsmittelzusammensetzungen welche Bleichmittel enthalten
EP0634482A1 (de) * 1993-07-14 1995-01-18 The Procter & Gamble Company Stabilisierte Reinigungsmittelzusammensetzungen
WO1995002672A1 (en) * 1993-07-14 1995-01-26 The Procter & Gamble Company Percarbonate bleach particles coated with a partially hydrated crystalline aluminosilicate flow aid
WO1995032273A1 (fr) * 1994-05-20 1995-11-30 Rhone-Poulenc Chimie Composition detergente en poudre a base de percarbonate stabilisee
EP0690122A2 (de) * 1994-06-30 1996-01-03 The Procter & Gamble Company Waschmittelzusammensetzungen
DE19501645A1 (de) * 1995-01-20 1996-07-25 Henkel Kgaa Silberkorrosionsschutzmittel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639639B2 (de) * 1993-08-17 2010-07-28 The Procter & Gamble Company Percarbonat-Bleichmittel enthaltende Waschmittelzusammensetzungen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135227A2 (de) * 1983-08-15 1985-03-27 Unilever N.V. Zusammensetzungen für Geschirrspülmaschinen
US5279756A (en) * 1992-08-27 1994-01-18 Church & Dwight Co., Inc. Non-phosphate machine dishwashing detergents
EP0634479A1 (de) * 1993-07-14 1995-01-18 The Procter & Gamble Company Stabile Reinigungsmittelzusammensetzungen welche Bleichmittel enthalten
EP0634482A1 (de) * 1993-07-14 1995-01-18 The Procter & Gamble Company Stabilisierte Reinigungsmittelzusammensetzungen
WO1995002672A1 (en) * 1993-07-14 1995-01-26 The Procter & Gamble Company Percarbonate bleach particles coated with a partially hydrated crystalline aluminosilicate flow aid
WO1995032273A1 (fr) * 1994-05-20 1995-11-30 Rhone-Poulenc Chimie Composition detergente en poudre a base de percarbonate stabilisee
EP0690122A2 (de) * 1994-06-30 1996-01-03 The Procter & Gamble Company Waschmittelzusammensetzungen
DE19501645A1 (de) * 1995-01-20 1996-07-25 Henkel Kgaa Silberkorrosionsschutzmittel

Also Published As

Publication number Publication date
DE19541755A1 (de) 1997-05-15
DE59606648D1 (de) 2001-04-26
EP0877789A1 (de) 1998-11-18
ATE199932T1 (de) 2001-04-15
ES2156298T3 (es) 2001-06-16
EP0877789B1 (de) 2001-03-21

Similar Documents

Publication Publication Date Title
EP0777721B1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten
WO1995022592A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
EP0802965B1 (de) Sprühgetrocknetes waschmittel oder komponente hierfür
EP0986629B1 (de) Granulares waschmittel
EP0877789B1 (de) Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel
EP0793708B1 (de) Verfahren zur herstellung extrudierter wasch- oder reinigungsmittel mit wasserlöslichen buildersubstanzen
EP0799302B1 (de) Amorphes alkalisilikat mit imprägnierung
DE19622443A1 (de) Granulare Waschmittel, enthaltend optischen Aufheller
WO1997034977A1 (de) Verfahren zur herstellung von granularen silikaten mit hohem schüttgewicht
DE19624415A1 (de) Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
EP0716683B1 (de) Sprühgetrocknetes wasch- oder reinigungsmittel oder komponente hierfür
WO2000037595A1 (de) Kompaktat mit silicatischem builder
EP0769045B1 (de) Waschmittel mit cellulase
WO1998055568A1 (de) Wasch- oder reinigungsmittel mit erhöhter reinigungsleistung
DE19611014A1 (de) Verfahren zur Herstellung rieselfähiger Wasch- oder Reinigungsmittel
WO2000022076A1 (de) Posphonathaltige granulate
EP1004658A2 (de) Citronensäurehaltiges Waschmittel
DE19846439A1 (de) Waschmittel mit kationischen Alkyl- und/oder Alkenylpolyglykosiden
DE19752388A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmitteln mit hoher Schüttdichte
WO1998001532A2 (de) Wasch- oder reinigungsmitteladditiv sowie ein verfahren zu seiner herstellung
DE19807807A1 (de) Pulverförmiges bis granulares Wasch- und Reinigungsmittel
WO2000039266A1 (de) Sprühgetrocknetes granulat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996937318

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97517814

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996937318

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996937318

Country of ref document: EP