WO1997011128A1 - Molded body of carbon black - Google Patents

Molded body of carbon black Download PDF

Info

Publication number
WO1997011128A1
WO1997011128A1 PCT/JP1996/002736 JP9602736W WO9711128A1 WO 1997011128 A1 WO1997011128 A1 WO 1997011128A1 JP 9602736 W JP9602736 W JP 9602736W WO 9711128 A1 WO9711128 A1 WO 9711128A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
pressure
black
molded
press
Prior art date
Application number
PCT/JP1996/002736
Other languages
English (en)
French (fr)
Inventor
Michihiro Ikeda
Takaharu Yamamoto
Tadashi Hashiguchi
Hiroshi Fukuyama
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7305641A external-priority patent/JPH09143389A/ja
Priority claimed from JP7330200A external-priority patent/JPH09169928A/ja
Priority claimed from JP7331820A external-priority patent/JPH09169927A/ja
Priority claimed from JP7331818A external-priority patent/JPH09169929A/ja
Priority claimed from JP7331821A external-priority patent/JPH09169511A/ja
Priority claimed from JP7331817A external-priority patent/JPH09169509A/ja
Priority claimed from JP7331816A external-priority patent/JPH09169926A/ja
Priority claimed from JP7331819A external-priority patent/JPH09169510A/ja
Priority claimed from JP7331815A external-priority patent/JPH09170992A/ja
Priority to DE69632485T priority Critical patent/DE69632485T2/de
Priority to EP96931287A priority patent/EP0945494B1/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to CA002201233A priority patent/CA2201233A1/en
Publication of WO1997011128A1 publication Critical patent/WO1997011128A1/ja
Priority claimed from CA002201233A external-priority patent/CA2201233A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/60Agglomerating, pelleting, or the like by dry methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Definitions

  • the present invention relates to a carbon black molded body.
  • furnace black carbon black manufactured by the furnace method
  • Power black has historically been lamp black and solar black.
  • most of the products on the market are based on the furnace method developed by Phillips in 1942, i.e., by spraying the raw oil into a furnace heated to more than 130 ° C The method is to obtain This not only excels in productivity, such as high yield, but also obtains the characteristics of furnace black, especially its particle size and structure, and enhances the blackness of inks and paints. It is considered that this is due to the ability to exhibit excellent performance.
  • the bead product has a bulk density of 0.3 to 0.5 g Zcc and a considerably higher bulk density than untreated Ribon Bon Black.
  • granulation deteriorates dispersibility in vehicles such as varnish and resin, which are raw materials for paints and inks, so that beads cannot be used in some cases.
  • carbon black particles having a long structure structure are granulated while being entangled with each other in the granulation process, so that the dispersibility is poor. It is also possible.
  • Furnace black is also disclosed in, for example, Japanese Patent Application Laid-Open No. 3-259692, in which a water slurry of carbon black is suction-filtered, dried as a block, and then dried.
  • An attempt is made to improve the handleability by applying a casein / starch / polyvinyl alcohol aqueous solution and styrene / butadiene latex or acryl-based latex to the surface of the pack.
  • the obtained blocks are considered to have greatly reduced dispersibility.
  • a molded body is obtained by charging carbon black powder into a closed mold container, reducing the pressure in the container, and restoring the pressure in the container to normal pressure. I have.
  • the molding pressure applied by reducing the pressure is lower than the atmospheric pressure (approximately 1.03 kg Z cm 2 ), and the bulk density cannot be increased as the transportation cost / warehouse cost is reduced.
  • furnace black solves the trade-off relationship between handling and dispersibility that was generally recognized in the past, and no technology has been found that satisfies both at the same time, and powdered or granular products are still available.
  • the above problems such as distribution and dust could not be solved.
  • storage and transportation costs, handling • Improving the environment would impair the basic characteristics of carbon black when used in paints, inks, resin coloring, rubber reinforcement, etc. It is not recognized as something to be done and cannot be accepted by the market. Disclosure of the invention
  • the present inventors have conducted intensive studies in order to solve the above problems. As a result, by controlling the molding density, particle diameter, and DBP oil absorption, which are the densities of molded bodies formed by pressure molding carbon black, to a specific relationship, it is possible to simultaneously improve bulk density and dispersibility.
  • the present inventors have surprisingly found the present invention. Furthermore, surprisingly, this molded one-three replacement sheet (Rule 26) It has also been found that the body can improve jetness (blackness) when used as a paint, etc., compared to carbon black powder (loose product) as a raw material. That is, the present invention
  • a carbon black pressure-molded product represented by the formula: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an example of a pressure molding apparatus that can be used for producing a pressure molded article of the present invention.
  • FIG. 2 shows an example of a pressure molding apparatus that can be used for producing the pressure molded article of the present invention.
  • 1 is an upper punch
  • 2 is a lower punch
  • 3 is a die
  • 5 is a decompression chamber.
  • carbon black used in the present invention includes carbon black and acetylene black manufactured by the furnace method.
  • furnace black produced by the Fouls method when furnace black produced by the Fouls method is used, a very remarkable effect is exhibited in maintaining its dispersibility. Furthermore, the effect of improving jetness is also significant.
  • carbon black produced by any of these methods which has been post-treated with an oxidizing agent for each electrode, may be used.
  • the particle size of carbon black is not particularly limited, but is particularly effective in improving the dispersibility and handleability in a small particle size range of l to 60 nm, especially 1 to 50 nm, and also for improving jetness. Demonstrate high effect.
  • Carbon black having a fine particle diameter in this range is the same as carbon black.
  • these carbon blacks are molded by pressing.
  • a mold of any material may be used as long as it has a strength that can withstand the applied pressure during molding.
  • a stainless steel mold such as SUS304 or SUS316, or a super steel such as tungsten carbide can be used.
  • resin molds examples include fluoroplastics such as polytetrafluoroethylene (PTFE), polytrifluorochloroethylene (PCTFE), polytetrafluoroethylene / propylene hexafluoride (FEP) : "Teflon") Molds, plastics such as nylon, polyethylene, polycarbonate, and phenolic resin; FRP such as CFRP and GFRP as composite materials; and alumina, zirconia, and mullite as ceramic molds Is used.
  • fluoroplastics such as polytetrafluoroethylene (PTFE), polytrifluorochloroethylene (PCTFE), polytetrafluoroethylene / propylene hexafluoride (FEP) : "Teflon”
  • plastics such as nylon, polyethylene, polycarbonate, and phenolic resin
  • FRP such as CFRP and GFRP as composite materials
  • alumina, zirconia, and mullite as ceramic molds Is used.
  • the size of the mold is not limited, but is practically 1 cc or more, preferably 100 cc or more. If it is less than 1 cc, transportation becomes complicated. If necessary, a large molded body may be manufactured, cut into a suitable size, and transported and used as an aggregate.
  • the press used for pressurization may be any press-molding press, such as a hydraulic mechanical press, a hydraulic hand press, a mechanical press, an air-cylinder press, etc., as long as it can be press-formed.
  • the shape of the mold is not particularly limited, and it can be formed into a columnar body having a triangular or other polygonal cross section, particularly a cubic or rectangular parallelepiped molded body, according to a desired shape of the molded body. Are also suitable.
  • the carbon black is placed in the mold described above and molded by applying pressure. At this time, the density of the obtained molded body is set to the following specific value.
  • D (nm) is the arithmetic average particle diameter of carbon black by an electron microscope
  • L (m 1/100 g) is the DBP oil absorption.
  • the DBP oil absorption is a value measured by a method in accordance with JIS K6221-1982.
  • the particle size of carbon black is a value measured by the following method. Force—Bon black is injected into a black hole form and irradiated with 200 ⁇ of ultrasonic waves for 20 minutes to disperse. Then, the dispersed sample is fixed to the supporting membrane. This is photographed with a transmission electron microscope, and the particle diameter is calculated from the diameter on the photograph and the magnification of the photograph. Perform this operation about 1,500 times, and calculate the arithmetic average of those values.
  • the molded carbon black of the present invention preferably has a powdering rate of 40% or less, more preferably 20% or less.
  • the eruption rate can be determined by the measurement method described in the examples described later.
  • the ratio of the bulk density of the powdered carbon black as the raw material to the bulk density of the carbon black molded body is 2.5 times or more and 8 times or less, and more preferably 3 times or more. It is better to be at least 7 times or less. If the bulk density ratio is lower than 2.5, the compactability of the molded body tends to decrease. On the other hand, the bulk density ratio exceeds 8
  • the pressure during molding under pressure is preferably 2 Kgf / cn ⁇ or more and 50 O KgiVcm 2 or less, more preferably 5 Kgf / cm 2 or more and 40 O Kgf / cm 2 or less. If the molding pressure is lower than 2 Kgf / cm 2 , the compactability tends to decrease and the powdering ratio tends to increase.
  • the molding pressure is higher than 50 O Kgf / cm 2 , the dispersibility may not be sufficient with a dispersing machine used in the production of ordinary inks and paints.
  • the pressure is further increased, the effect of improving the compactness can hardly be obtained. For this reason, as a rubber black molded body used for industrial production of inks, paints, colored resins, rubbers, etc., press molding at a pressure of 2 Kgf / cm 2 or more and 50 O Kgf / cm 2 or less It is appropriate to do so.
  • a mode in which the gas between the carbon black particles is previously degassed by using a decompression chamber and then pressure molded may be employed.
  • the following method can be employed. First, a mold having a slidable cylinder and a piston, as shown in FIGS. 1 and 2, is filled with carbon black powder, which is a raw material to be molded. The inside of the vacuum chamber and the inside of the cylinder set at the top of the cylinder are substantially isolated from the outside by the gasket material. Next, the vacuum pump connected to the vacuum chamber 1 is operated to maintain the vacuum state, and the biston is lowered to form the force black in the cylinder under pressure.
  • the operation of the vacuum pump is stopped, and the atmospheric pressure in the chamber and the cylinder is returned to the atmospheric pressure. Then, by raising the vacuum chamber and the piston and taking out the carbon black molded body, it is possible to perform degassing of the gas between the carbon black particles by the decompression chamber and subsequent pressure molding of the carbon black. it can.
  • the pressure at the time of decompression is preferably in the range of 0.01 to 500 Torr. At 500 Torr or less, degassing between particles is very easy.On the other hand, even at 0.01 Torr or less, there is no particular advantage and only the complexity of high vacuum is increased. Because there is.
  • the density of a pressed black black body when controlling the density of a pressed black black body, it can be performed by measuring the resistance value. At this time, during or after the pressure molding, the density can be controlled by measuring the resistance value of the molded body.
  • the resistance value can be measured by the 2-probe method, the 4-terminal method, the 4-probe method, the Van der Pauw method, etc. Of these methods, the 4-probe method can be measured simply by pressing the electrode needle against the sample. Because it is possible, it is most suitable for measuring the density of the carbon black molded article of the present invention. It is desirable to use the volume resistivity as an index of the specific resistance, which does not depend on the shape of the sample, as the resistance value.
  • the volume resistivity can be determined by performing arithmetic processing on the results measured by the four-terminal method.
  • the size of the pressed molding device is reduced by performing the filling of the raw material into the mold and the pressing operation several times. Is also possible. In this case, it is preferable to set the pressure force of the final pressurizing operation of the pressurizing operation to 1.2 times the maximum pressure of the previous pressurizing operation. Thereby, a molded body can be obtained as a continuous body having substantially no seams between the layers formed by each pressing operation.
  • Adhesion between the carbon black and the mold is achieved by pressure molding using a device that has a porous body with an average pore diameter of 10 ⁇ m or less on at least a part of the contact surface with the carbon black of the pressure molding device.
  • This embodiment can be performed by using, for example, paper, cloth, or a fluororesin as the porous body.
  • the pressure at the time of mold release at this time is 0.015 kgf cm 2 , and it is particularly effective to prevent breakage if the pressure does not exceed the pressure at the time of pressure molding.
  • the use of carbon black adjusted to a moisture content of 0.511% by weight or pre-granulated black carbon black is also effective in preventing damage depending on the application.
  • the shape of the carbon black molded body is not particularly limited, but is preferably a columnar body having a polygonal cross section, more preferably a rectangular parallelepiped or a cube. Molded bodies of these shapes are
  • the carbon black compact described above Since the carbon black compact described above has a large bulk density and excellent compactness, it is stored and transported in the form of the carbon black compact to produce and distribute carbon black. The cost of storage and transportation, which accounts for a large proportion of the costs, can be greatly reduced, which is extremely useful industrially.
  • the term “storage” used here includes temporary or long-term storage, storage, and storage in a warehouse or other covered or uncovered space. Usually, they are kept in a given space for a certain period of time before they are transported or used. Furthermore, in consideration of the convenience of taking in and out of the warehouse, it may be stored in the warehouse in a state of being stacked on a pallet or in various containers.
  • the carbon black molded article of the present invention described above can be used as a pigment for inks, paints, and resin compositions. This makes it possible to obtain an excellent jetness and gloss.
  • the carbon black pressure-molded product of the present invention is used as a pigment such as an ink.
  • a known method can be employed, for example, by blending the carbon black molded body with a varnish as a vehicle. Also, the dispersion step is not particularly limited except that a carbon black molded body is used, and any known method can be employed.
  • the varnish (vehicle) to be used is not particularly limited as long as it is used for ink.
  • varnish rosin-modified fuanol resin, alkyd resin, There is a mixture of drying oils.
  • natural resins such as gilsonite and rosin used in letterpress printing
  • synthetic resins such as rosin-modified phenolic resin, maleic acid resin, petroleum resin, alkyd resin, and ester gum
  • vegetable oils such as linseed oil and cutting oil
  • Mineral oils such as oils and sorbents
  • Resin such as rosin-modified maleic acid resin, styrene acrylate resin, styrene maleic acid resin, styrene methacrylic acid resin, acrylate atalylic acid resin, methacrylic acid acrylate resin used in flexo ink, and daricol
  • solvents such as alcohols, esters, aliphatic hydrocarbons and the like.
  • acrylic resins vinyl acetate copolymers, polyester resins, cellulosic resins, epoxy resins, melanin resins, various polyols, alkyd resins, and various acrylic resins used as screen inks
  • solvents including alcohols, various ethers, various ketones, various aromatic hydrocarbons, various aliphatic hydrocarbons, and various halogen solvents.
  • the target ink is not particularly limited.
  • a relief printing ink such as a newspaper ink, a rotary ink, a photo printing ink, etc.
  • a lithographic ink such as an offset ink, a dry offset ink, a roller type ink, etc.
  • Inks include engraved intaglio ink, gravure ink, quick-set ink, gloss ink, rub-resistant ink, heat-set ink, steam-set ink, press-set ink, plastisol ink, balanced ink, cold-set ink, lace-set ink, and other rubbers.
  • the method of dispersion is not particularly limited. Solution to 0.1 lmm to l C m in diameter to reduce the size of the mouth
  • the crushed material may be put into a kneader to be dispersed. Even if crushed material is used, the effect of improving jetness can be exhibited.
  • the method of crushing is not particularly limited.
  • a shearing crusher such as a cutting mill, a rotary crusher, or a shear roll mill
  • the density of particles is not condensed during the crushing. is there.
  • the resin applicable when the carbon black molded article of the present invention is used as a pigment of a resin composition is not particularly limited.
  • a thermoplastic resin low-density polyethylene, high-density polyethylene, polypropylene, polystyrene, chloride
  • examples include vinyl resin, polyvinyl alcohol, vinylidine chloride resin, methacrylic resin, polyamide, polycarbonate, polyacetone, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene ether, and nylon.
  • the thermosetting resin include a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin, and a urethane foam. Further, a mixture of these resins or a resin to which various additives are added may be used.
  • the carbon black press-molded body of the present invention is added to these resin components, and kneaded as necessary.
  • rubber kneaders that are usually used as rubber kneaders, such as a roll mixer for a batch-type open type, a Banbury type mixer for a batch-type closed type, and a single-shaft kneading extruder for a continuous screw type Machine, twin-screw extruder, single rotor kneader for a continuous rotor set, and twin-screw kneader for a continuous rotor set.
  • the varnish (vehicle) that can be used when the pressure-cured black molded article of the present invention is used as a pigment of a paint is not particularly limited as long as it is used for a paint.
  • oil-based paints include drying oils, improved drying oils, natural resins, and bitumen.
  • shellac as a spirit paint and cellulose derivative paint as nitrocellulose, acetyl cellulose, acryl resin, phenol formaldehyde resin, and resin-modified phenol formaldehyde resin.
  • the target paint is also not particularly limited.
  • the rubber composition can also be obtained by blending the carbon black pressure-molded product of the present invention with one or more of natural rubber and synthetic rubber. At this time, the compounding amount is suitably 30 to 150 parts by weight based on 100 parts by weight of the rubber. As a result, it is possible to obtain a rubber having a small loss coefficient and a small amount of heat generation.
  • the rubber used at this time is not particularly limited.
  • synthetic rubbers styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), chloroprene rubber (CR), and nitrile butadiene rubber (NBR)
  • Isobutylene isoprene rubber (IIR) ethylene propylene rubber (EPM), silicone rubber, fluoro rubber, chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CM), polysulfide rubber, urethane rubber (AU), Acrylic rubber (ACM), epichlorohydrin rubber (ECO), propylene oxide rubber (PO), ethylene • butyl acetate copolymer (EVA), liquid rubber, polyalkylene sulfide, nitroso rubber, etc.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • CR chloroprene rubber
  • NBR
  • a vulcanizing agent a crosslinking agent, a vulcanization accelerator, a vulcanization accelerator, an activator, a dispersant, a vulcanization retarder, an aging inhibitor, a reinforcing agent other than Ripbon black, Fillers, softeners, plasticizers, tackifiers, colorants, curing agents, foaming agents, lubricants, solvents, surfactants, emulsifiers, stabilizers, wetting agents, thickeners, coagulants, gelling agents, creaming Agents, preservatives, defoamers, etc.
  • the carbon black pressure molded product of the present invention is added to the above rubber component and kneaded to obtain a rubber composition.
  • the kneader used here may be a kneader usually used as a rubber kneader.
  • a roll mixer is used for a batch type open type
  • a Banbury type mixer is used for a batch type closed type
  • a single type is used for a continuous screw type.
  • the one shown in Table 1 was used as carbon black, and a 37 ton 4-post single-acting hydraulic press (ram diameter 152.4 mm) manufactured by Oji Machine Industry Co., Ltd. was used as the press machine.
  • the mold was SUS 304. Carbon black was pressure molded using a mold (inner method 7 OmmX 70 mm, height 40 mm, manufactured by Mitsubishi Kasei Engineering Corporation).
  • the method for measuring the ink sieving residual ratio for testing the dispersibility of carbon black during ink production is shown below.
  • a stirring blade (four blades, blade diameter: 4.5 cm) set in a TK photo homomixer SL 10A (manufactured by Tokusan Rika Kogyo) was inserted 2 cm above the bottom of the stainless steel container. The stirring blade was stirred at 5000 rpm for 1 hour.
  • Residual sieving rate (%) (AX 600 / (50 X 120)) x 100
  • the length, width, and thickness of the rectangular parallelepiped were measured with calipers, and the volume (cc) of the molded body was calculated from the values.
  • the weight (g) of the molded body was measured using an electronic direct-reading type upper plate balance.
  • the density (g / CC) of the molded body was calculated from the weight and volume of the molded body.
  • the method for measuring the powdering rate is described below.
  • the powder density and the granulated product of the same brand used in the examples were used to measure the bulk density, the residual ink sieve, and the powdering ratio described in the examples.
  • Tables 2 to 7 show the measurement results of the examples and the comparative examples, and the total judgment results obtained by comprehensively judging the compactness and dispersibility judged from these results, and further, the compactness and dispersibility.
  • the bulk density is higher than that of the powdered product and lower than that of the granulated product.
  • Example 1-2 Comparing Example 1-2 with Comparative Examples 1-9, the bulk density was 0.562 g / cc and 0.488 g / cc, and the bulk density of Example 1-2 was compared. In spite of the fact that the bulk density is higher than that of Example 1-9, the ink sieving residue, which is a dispersibility factor, is 11.0% in Example 1-2, and 78% in Comparative Example 1-9. Thus, the molded product of Example 1-2 maintains the dispersibility before molding.
  • Example 2-2 Comparative Example 2-9
  • the bulk densities were 0.385 g / cc and 0.393 g / cc, and the density of Example 2-2 was compared.
  • the ink sieving residue which is one of the factors of dispersibility, is 0.7% in Example 2_2 and 100% in Comparative Example 2-9, though it is almost the same as the bulk density of Example 2-9.
  • the molded article of Example 2-2 maintains the dispersibility before molding.
  • Example 2-7 the dispersibility was equal to or higher than that of Comparative Example 2-9.
  • the present invention can provide a force-bon black excellent in both the properties of compactness (handling property) and dispersibility, which were conventionally considered to be in conflict with each other.
  • Example 3-2 Comparative Example 3-10
  • the bulk density was 0.240 g / cc and 0.303 g / cc
  • the density of Example 3-2 was Comparative Example 3-10.
  • the ink sieving residue, which is one of the dispersibility factors, is about 0 in Example 3-2, although the bulk density is almost the same.
  • Example 3-2 maintained the same degree of dispersibility as before molding.
  • Example 3-9 achieves about 2.5 times increase in bulk density.
  • the ink sieving residue which is a factor of dispersibility, is 77.0% in Example 3-9.
  • the value is 84.5%, and Example 3-9 shows a dispersibility higher than or equal to that of Comparative Example 3-10.
  • the present invention can provide bonbon black excellent in both compactness (handling properties) and dispersibility, which were conventionally considered to be in conflict with each other. .
  • Example 4-2 The ink sieve residue, which is one of the dispersibility factors, was 0 in Example 4-2, even though it was 49 7 cc and the bulk density of Example 4-2 was almost the same as the bulk density of Comparative Example 419. It is 100% in Comparative Example 4-19 and 3%, and the molded body of Example 4-2 maintains the same degree of dispersibility as before molding.
  • Example 4-8 Comparing Example 4-8 with Comparative Example 4-9, the densities were 0.990 g / cc and 0.497 g / cc, and Example 4-8 achieved approximately twice the bulk density increase.
  • the ink sieving residue which is one of the dispersibility factors, was 99.0% in Examples 418 and 100% in Comparative Examples 4 to 9, and Example 418 was Comparative Example 4 — Shows a level of dispersibility equal to or higher than 9.
  • both the compactness (handling property) and the dispersibility which were conventionally considered to be in conflict with each other, according to the present invention.
  • Example 5-2 Comparative Example 5_7
  • the bulk densities were 0.52 g and 0.517 g / cc
  • the bulk density of Example 5-2 was Comparative Example 5.
  • the ink sieving residue which is a dispersibility factor
  • the molded body of Example 5-2 maintains the dispersibility before molding.
  • Example 5-7 Comparing Example 5-7 with Comparative Example 5-8, the bulk density was 0.945 g / cc and 0.517 g / cc. In Example 5-7, the bulk density increased about 1.8 times. However, the ink sieving residue, which is a dispersibility factor, was 79.5% in Examples 5-7 and 80.0% in Comparative Examples 5-8, and Examples 5-7 were compared. Example 5-8 shows the same or higher level of dispersion. As can be seen from the above, it can be seen that the present invention can provide carbon black having both compact (handling) and dispersing properties, which were conventionally considered to be in conflict with each other.
  • Example 6-2 Comparing Example 6-2 with Comparative Example 6-9, the second density was 0.345 g / cc and 0.364 g / cc, and the bulk density of Example 6-2 was Comparative Example 6-9.
  • the ink sieving residue which is one of the dispersibility factors, is 0.50% in Example 6-2 and 56.7% in Comparative Examples 419.
  • the molded article of Example 6_2 maintains the same level of dispersibility as before molding.
  • Example 6-7 Comparing Example 6-7 with Comparative Example 6-8, the bulk density was 0.804 g and 0.364 g / cc. In Example 6-7, the bulk density increased about 2.2 times. Although achieved, the ink sieving residue, which is one of the factors of dispersibility, was 28.1% in Examples 6-7 and 56.7% in Comparative Examples 6-8. Examples 6-7 were compared. It shows about half the dispersibility of Example 6-8. As can be seen from the above, it can be seen that the present invention can provide carbon black excellent in both compactness (handling properties) and dispersibility, which were conventionally considered to be in conflict with each other.
  • a gel gage was used for dispersibility, a method using a colorimeter and a method using visual perception for color difference measurement, and a visual perception for gloss.
  • the ⁇ ground gauge '' is a steel plate engraved on a steel plate with two grooves that vary in depth from 0 to 25 x 10-6 m.Ink is placed at the deepest point, and it is stretched to a shallower depth with a scraper. Calculate the particle size from the scale at the position of the streak formed at a position shallower than the diameter of the coarse particles ("Color Material Science Handbook", Asakura Shoten, P.1052-1053).
  • L ab color system is proposed by RS Hunter. If the tristimulus values of standard light in XYZ color system are X, ⁇ , and Z, then the following L is a lightness index, and a and b are hue and saturation indices.
  • the measurement of color difference by visual perception is measured according to the following method. “Place the sample and the standard ink on the specified paper, and stretch it out with a spatula with a wide blade. Tilt the spatula a little toward you, pull it firmly, and when it is near the end, tilt the spatula about 30 ° against the paper and pull gently. A thin part of the ink film and a thick part that is not affected by the base are created. In the thin part, the color of the light reflected from the underlying paper and passing through the pigment, that is, the undertone, is seen. Visually evaluate the top color of the ink or the color of the ink at the thick part. (“Color Material Engineering Handbook" P.1058 Asakura Shoten)
  • the gloss was measured according to the following method. “Gloss is an important characteristic that greatly affects the quality of printing, as well as color. There are two methods for measuring gloss: visual and measuring. The visual method evaluates comparatively with the sample at a light incident angle of 60 °. ("Color Material Engineering Handbook" ⁇ .1058 Asakura Shoten) Example 7
  • Oji Machine Industry Co., Ltd. puts 50g of carbon black “CF9” manufactured by Mitsubishi Chemical Corporation into a SUS 304 mold (internal method 70mmX 70mm, height 40mm) manufactured by Mitsubishi Chemical Engineering Co., Ltd. It was set on a 37t0n 4-post single-acting hydraulic press (ram diameter 152.4 mm). Pressure molding was performed at a molding pressure of 7.4 kgf / cm 2 to obtain a force-bon black molded body. The density (the value obtained by dividing the mass of the molded body by the volume of the molded body) of the molded body was 0.530 g / cc.
  • the above-prepared carbon black molded body (114 g) was charged into the above-prepared varnish for new pink, and stirred at 5000 rpm for 120 minutes to prepare a newspaper ink.
  • This newspaper ink was kneaded with a roll mill machine (model: "BR-500") manufactured by Asada Ironworks Co., Ltd. After milling, the size of the undispersed mass carbon black was measured. The measurement was performed using a grind gage (model: “SKS-3”) manufactured by Toyo Seiki Seisaku-sho, Ltd. for undispersed lump carbon black in the range of 50 to 100 ⁇ m, and a grind gage manufactured by Kamishima Seisakusho (model: “R11”).
  • the size of undispersed lump carbon black in the range of 0 to 50 ⁇ m was measured. If the size of the undispersed lump carbon black was larger than 10 m, it was passed through a single mill again. As a result, the maximum particle size was 37 ⁇ m for the first measurement, 241 m for the second measurement, and 9 ⁇ m for the third measurement.
  • the ink whose measurement result was 10 ⁇ m or less was aged at room temperature for 1 week. Using this aged ink, a color test was carried out by reducing printing and using a spatula. 0.6 cc of the ink was dispensed, and five sheets were printed on A4 size paper with a Toyo Seiki sheet-fed offset printing press (printing area: 198 mm x 192 mm). The first and fifth printed sheets were measured for color difference using an Suga Test Machine (14) SM color computer, and the L, a, and b values were measured. As a result, the L value of the first sheet was 25.9, and the L value of the fifth sheet was 37.8.
  • the molding pressure was 18.6 Kgf / cm 2 using Mitsubishi Chemical Corporation Bonbon Black “CF31” and the density of the completed molded body was 0.432 g / cc.
  • An experiment was performed in the same manner as in Example 7 except for the above.
  • the measurement result of the grind gauge was 9 / im for the first measurement and 7m for the second measurement.
  • the above-prepared carbon black molded product (114 g) was added to the above-prepared varnish for new ink, and the mixture was stirred at 5000 rpm for 120 minutes to prepare a newspaper ink.
  • This new ink was milled with a roll mill (model: "BR-500") manufactured by Asada Ironworks Co., Ltd. After grinding, a grind gauge manufactured by Toyo Seiki Seisakusho (Model: “SKS-3” ranges from 50 to 100, and a grind gauge manufactured by Kamishima Seisakusho Co., Ltd.
  • Example 7 An ink was prepared in the same manner as in Example 7 except that carbon black non-granulated product “CF9” (bulk density: 0.250 g / cc) manufactured by Mitsubishi Chemical Corporation was used as it was without molding. An experiment was performed.
  • CF9 carbon black non-granulated product
  • the measurement results of the grind gauge were 48 mm for the first time, 37 / m for the second time, 32 / im for the third time, 30 ⁇ for the fourth time, 19 / im for the fifth time, and 9 ⁇ for the sixth time. I got it. Compared to Example 7 which became 10 m or less in the third run, six times of meat cutting were required.
  • Example 7 An ink was prepared in the same manner as in Example 7, except that a carbon black granulated product “CF 9B” (bulk density: 0.423 g / cc) manufactured by Mitsubishi Chemical Corporation was used as it was without molding. An experiment was performed.
  • CF 9B carbon black granulated product
  • the measurement results of the grind gauge were 62 m for the first measurement, 46 m for the second measurement, 38 ⁇ for the third measurement, 15 / xm for the fourth measurement, and seven for the fifth measurement.
  • Example 8 Compared to Example 8 where the particle size became 10 ⁇ m or less in the fourth time, 5 times of meat cutting was required.
  • Example 7 An ink was prepared in the same manner as in Example 7 except that carbon black non-granulated product “CF31” (bulk density: 0.136 g / cc) manufactured by Mitsubishi Chemical Corporation was used without molding. It was fabricated and tested.
  • CF31 carbon black non-granulated product
  • the measurement results of the grind gauge were 25 / im for the first measurement, 13 ⁇ m for the second measurement, and 7 zm for the third measurement.
  • Example 9 Compared to Example 9 having a thickness of 10 ⁇ m or less at the first time, three times of meat cutting were required.
  • Example 10 Compared to the case where 10 became 10 m or less in the second time, three times of meat cutting were necessary.
  • Example 11 An ink was prepared in the same manner as in Example 11 except that a non-granulated carbon black product “MA7” (bulk density: 0.220 g / cc) manufactured by Mitsubishi Chemical Corporation was used without molding. An experiment was performed.
  • the measurement result of the grind gauge was 3 3 / im for the first time, 25 ⁇ m for the second time, 2 2 / im for the third time, 4th power S l 6 / zm, 10 m for the 5th time, 6
  • the second time was 8 m.
  • Example 11 Compared to the case where 11 became 10 ⁇ m or less in the third time, 8 times of meat cutting was required.
  • Example 11 An ink was produced in the same manner as in Example 11 except that the granulated product of Mitsubishi Chemical Corporation, “MA7B” (bulk density: 0.40 Og / cc) was used without molding. Was fabricated and an experiment was conducted.
  • the measurement result of the grind gauge was 100 ⁇ for the first measurement, 68 ⁇ for the second measurement, 18 / xm for the third measurement, 15 ⁇ for the fourth measurement, 10 ⁇ for the fifth measurement, and 6 ⁇ m for the fifth measurement.
  • the round was 7 ⁇ m.
  • Example 1 2 having a thickness of 10 ⁇ m or less in the second time, 6 times of
  • Table 8 shows the results of the examples
  • Table 9 shows the results of the comparative examples
  • Table 10 shows the results of the color drawing test.
  • Oil carbon # 4 5 (bulk density: 0.218 g / cc) manufactured by Mitsubishi Chemical Corporation in a carbon steel mold (internal method: 15 OmmX 15 Omm, height: 360 mm) manufactured by Yuken Co., Ltd. Kg was added and set in a 20-ton hydraulic press manufactured by Yuken Co., Ltd. Pressure molding was performed at a molding pressure of 4 Okg f Zcm 2 , and the molded density was measured to be 0.761 g / cc.
  • This carbon black molded body is pulverized to obtain a mesh of 100 mesh (150 ⁇ ), 60 mesh (250 / im), 30 mesh (500 ⁇ ), 16 mesh (1 mm), 8.6 mesh (2 mm ) Classified with a standard sieve.
  • the mixer temperature was set at 165 ° C, and the mixture was kneaded for 12 minutes to prepare one master batch having a carbon black concentration of 40 wt%.
  • Dispersion index total area of coarse particles / observed visual field area ⁇ 100,000 As a result, the dispersion index was 133.36.
  • the dispersion index was measured in exactly the same manner as in Example 13 except that the particle size of Ribon Black was changed to 500 ⁇ m to 1 mm. As a result, the dispersion index was 1884.
  • the dispersion index was measured in exactly the same manner as in Example 13 except that the particle size of the carbon black was changed from 250 ⁇ to 500 ⁇ . As a result, the dispersion index is 1 1 1 3 7
  • the dispersion index was measured in exactly the same manner as in Example 13 except that the particle size of Ribon Black was changed to 150 m to 250 m. As a result, the dispersion index was 1268, which was 7 points.
  • Example 17 the particle size of bonbon black was 500 ⁇ !
  • the dispersion index was measured by exactly the same operation except that the distance was set to 1 mm. As a result, the dispersion index was 1520.
  • Example 1 (2) The particle size of the carbon black in Example 1 (2) was 250 ⁇ rr!
  • the dispersion index was measured by exactly the same operation except that the value was set to ⁇ 500 jum. As a result, the variance index is 1502.
  • the dispersion index was measured in exactly the same manner as in Example 17 except that the particle size of Ribon Black in Example 17 was from 150 ⁇ m to 250 ⁇ m. As a result, the dispersion index was 1478.
  • Example 13 In the same manner as in Example 13, a carbon black molded body was produced, pulverized and classified.
  • the mixer was set at a temperature of 115 ° C and kneaded for 7 minutes to prepare a master batch having a carbon black concentration of 40 wt%.
  • the dispersion index was 334.
  • the dispersion index was measured in exactly the same manner as in Example 21 except that the particle size of Ribon Black was set at 250 m to 500 ⁇ m. As a result, the dispersion index was 327.
  • the dispersion index was measured in exactly the same manner as in Example 13 except that the particle size of the carbon black was changed to 150 m to 25 m. As a result, the dispersion index was 341.
  • the dispersion index was measured in the same manner as in 1. As a result, the dispersion index was 242.
  • the dispersion index was measured in exactly the same manner as in Example 25 except that the particle size of Ribonbon black was 500 ⁇ m to 1 mm. As a result, the dispersion index was 405.
  • the dispersion index was measured in exactly the same manner as in Example 25 except that the particle size of Ribon Black was changed from 250 ⁇ m to 500 / m. As a result, the dispersion index was 446.
  • Dry granulated product # 45B manufactured by Mitsubishi Chemical Corporation was classified into 1-2 mm. Using these particles, the dispersion index was measured in exactly the same manner as in Example 13. As a result, it was 1739.
  • the dry granulated product # 45B manufactured by Mitsubishi Chemical Corporation was pulverized and classified into 150 m to 250 / im. Using these particles, the dispersion index was measured in exactly the same manner as in Example 16. As a result, it was 211.10.
  • Dry granulated product # 45B manufactured by Mitsubishi Chemical Corporation was classified into lmm to 2mm. Using these particles, the dispersion index was measured in exactly the same manner as in Example 17. As a result, it was 553.
  • the dry granulated product # 45B manufactured by Mitsubishi Chemical Corporation was pulverized and then classified to 150 ⁇ to 250 ⁇ m . Using these particles, the dispersion index was measured in exactly the same manner as in Example 20. As a result, it was 734.
  • the wet granulated product # 45 BW manufactured by Mitsubishi Chemical Corporation was pulverized and classified into 250 / im to 500 ⁇ . Using these particles, the dispersion index was measured in exactly the same manner as in Example 23. As a result, it was 216.
  • the wet-granulated product # 45 BW manufactured by Mitsubishi Chemical Corporation was pulverized and classified into 150 ⁇ to 250. Using these particles, the dispersion index was measured in exactly the same manner as in Example 22. As a result, it was 2 307.
  • a grind gauge measurement was performed on the paint dispersed with a paint shaker for a predetermined time, and the value was used as an index of dispersibility.
  • the measurement of the grind gauge is as follows. “What is a grind gauge, but chopped the two grooves that vary from board to depth 0 ⁇ 2 5 X 1 0 _ s m of steel, put the ink to the deepest part, to the shallower in the scraper The grain size is obtained from the scale at the position of the streaks formed at a position shallower than the diameter of the coarse particles by stretching. ("Color Material Engineering Handbook"
  • the degree of blackness by visual perception was measured according to the following method.
  • the paint prepared in the example and the paint prepared in the comparative example were arranged on a polyethylene terephthalate (PET) film, and stretched forward with a bar coater. A coating film with a thickness corresponding to the setting of the bar coater can be formed.
  • the PET film coated with the paint was placed in a ventilation dryer set at 120 ° C. for 20 minutes to perform baking. Assuming that the blackness of the paint of the comparative example was 10 points, a sample having a higher blackness was given a large number, and the blackness of the paint of the example was relatively compared.
  • the gloss was measured by visual feeling.
  • the coating film prepared for the above blackness was tilted by about 60 degrees, and the degree of light reflection was measured visually.
  • the paint prepared in the comparative example taken as 10 points, higher gloss samples were given larger numbers, and the gloss of the coating films of the examples was compared relatively.
  • the coloring power is determined by the following method.
  • the prepared black paint and white paint were mixed, applied to a PET film, and baked, and the L value was measured with a color difference meter. As a result, it was determined that a paint having a small L value had a high coloring power.
  • SUS 304 mold made by Mitsubishi Kasei Engineering Co., Ltd. (Inner method 7 O mm X 7 O mm, Height 30 mm, put 30 g of Mitsubishi Chemical Corporation carbon black # 2650 into a) and set it on a 37 ton four-post single-acting hydraulic press (ram diameter 152.4 mm) manufactured by Oji Machine Industry Co., Ltd. I did it. Pressure molding was performed at a molding pressure of 1.9 kgf / cm 2 , and the molding density was measured to be 0.266 g / cc.
  • a glass bead made of Tokyo Glass having a diameter of 2.5 to 3.5 mm was placed in a 140 cc mayonnaise bottle.
  • 16 g of a melamine alkyd resin varnish (Amirac 1026) manufactured by Kansai Paint Co., Ltd., 10 g of Amirac Thinner manufactured by Kansai Paint Co., Ltd. and 3 g of a carbon black molded body were weighed and placed.
  • This mayonnaise bottle can be used with Red Devil's single type paint shaker (R
  • the gloss of the example sample was evaluated by visual sensation assuming that the paint gloss of Comparative Example 1 was 10.
  • the evaluation criteria are as follows: "Ten or one has a difference of young thousand, 11 is somewhat good, 12 is clearly good, and 13 or more is very good.” As a result, the number of samples in Example 1 was 12.
  • Example 28 The same operation as in Example 28 was performed except that the shaking time per paint shear was 30 minutes.
  • the measured value of the grind gauge is 9 / im
  • the L value of the black paint is 4.68
  • the blackness by sight is 10+
  • the gloss by sight is 11+
  • the L of the coloring evaluation sample is 4 1. It was 7.
  • Example 28 The same operation as in Example 28 was performed except that the shaking time of the paint tossier was set to 1 hour.
  • the measured value of the grind gauge is 7.5 m
  • the L value of the black paint is 4.48
  • the blackness by visual perception is 11-
  • the gloss by visual perception is 12
  • the L value of the coloring evaluation sample is 3 9 Was 5.
  • Example 28 The same operation as in Example 28 was carried out except that the shaking time of the paint shaker was changed to 2 hours.
  • the measured value of the grind gauge was 7.5111
  • the L value of the black paint was 4.23
  • the blackness by sight was 10+
  • the gloss by sight was 10+
  • the L value of the coloring evaluation sample was 3 It was 9.6.
  • Example 28 Exactly the same operation was performed except that the molding pressure in Example 28 was changed to 372 kgf / cm 2 .
  • the molding density of the molded product was 0.842 g / cc.
  • the measured value of the grindage was 15 ⁇
  • the L value of the black paint was 4.13
  • the blackness due to visual perception was 1 1-
  • gloss by sight was 15 and L value of the coloring evaluation sample was 39.7.
  • Example 32 The same operation as in Example 32 was performed except that the shaking time of the paint shaker was changed to 30 minutes. Measured value of grind gauge is 7.5 m, L value of black paint is 4.33, blackness by visual perception is 11, gloss by visual perception is 12, coloring evaluation sample
  • Example 32 The same operation as in Example 32 was performed except that the shaking time of the vant shaker was changed to 1 time.
  • the measured value of the grind gauge was 7.5 / zm
  • the L value of the black paint was 4.19
  • the blackness by sight was 13
  • the gloss by sight was 13
  • the L value of the coloring evaluation sample was 38.
  • Example 32 The same operation as in Example 32 was performed except that the shake time of the paint shaker was changed to 2 hours.
  • the measured value of the grind gauge was 8.0 m
  • the L value of the black paint was 3.96
  • the blackness by visual perception was 12
  • the gloss by visual perception was 11
  • the L value of the coloring evaluation sample was 38.3. there were.
  • Example 28 Except that the carbon black molded body used in Example 28 was replaced by Mitsubishi Chemical Co., Ltd. Ribon Black # 2650 (density 0.077 g / cc), the same operation as in Example 28 was performed.
  • the measured value of the grind gauge was 17 / im
  • the L value of the black paint was 4.83
  • the L value of the coloring evaluation sample was 45.8.
  • the degree of blackness and gloss by visual perception were set to 10 as the standard.
  • Example 29 Except that the carbon black molded body used in Example 29 was replaced with Mitsubishi Chemical Corporation's Rikibon Black # 2650 (bulk density: 0.077 g / cc), the same operation as in Example 29 was performed. .
  • the measured value of the grind gauge was 10 ⁇ m
  • the L value of the black paint was 4.76
  • the L value of the coloring evaluation sample was 41.9.
  • the blackness and gloss of the visual perception were set to the standard of 10.
  • Example 30 Except that the carbon black molded body used in Example 30 was replaced with Carbon Black # 2650 (bulk density: 0.077 g / cc) manufactured by Mitsubishi Chemical Corporation, the same operation as in Example 1 was performed. .
  • the measured value of the grind gauge was 7.5 ⁇ m
  • the L value of the black paint was 4.50
  • the L value of the coloring evaluation sample was 39.7.
  • the degree of blackness and gloss by visual perception were set to 10 as the standard.
  • Example 31 The same operation as in Example 4 was performed, except that carbon black molded product # 2650 (bulk density 0.077 g / cc ) manufactured by Mitsubishi Chemical Corporation was used instead of the carbon black molded body used in Example 1.
  • the measured value of the grind gauge was 8.0 im
  • the L value of the black paint was 4.23
  • the L value of the coloring evaluation sample was 39.7.
  • the blackness and gloss of the visual perception were set to the standard of 10.
  • Example 32 Exactly the same as Example 32 except that carbon black dry granulated product # 2650B (bulk density 0.463 g / cc) manufactured by Mitsubishi Chemical Corporation was used instead of the carbon black molded body used in Example 32 The operation was performed.
  • carbon black dry granulated product # 2650B bulk density 0.463 g / cc
  • the measured value of the grind gauge was 19 ⁇ m, the L value of the black paint was 4.35, and the L value of the coloring evaluation sample was 43.4.
  • Example 33 Exactly the same as Example 33 except that carbon black dry granulated product # 2650 B (bulk density 0.463 g / cc) manufactured by Mitsubishi Chemical Corporation was used instead of the carbon black molded body used in Example 33 The operation was performed.
  • carbon black dry granulated product # 2650 B bulk density 0.463 g / cc
  • the measured value of the grind gauge was 7.5 / m
  • the L value of the black paint was 4.46
  • the L value of the coloring evaluation sample was 40.4.
  • the blackness and gloss by visual perception were set to the standard of 10.
  • Example 34 Exactly the same as Example 34 except that the carbon black molded body used in Example 34 was replaced with carbon black dry granulated product # 2650 B (four density 0.463 g / cc) manufactured by Mitsubishi Chemical Corporation. The operation was performed.
  • Example 8 was repeated except that carbon black dry granulated product # 2650B (bulk density: 0.463 g / cc) manufactured by Mitsubishi Chemical Corporation was used instead of the Ribonbon black molded body used in Example 35. Exactly the same operation was performed.
  • Table 12 shows the results of these examples and comparative examples.
  • Yuken Co., Ltd. carbon steel (SS400) metal mold (internal method: 150 mm x 150 mm, height: 360 o'clock) and Mitsubishi Chemical Co., Ltd. 500 g of (granules) (bulk density: 0.169 g / cc) was placed in a 20-ton hydraulic press manufactured by Yuken Co., Ltd. Pressure molding was performed at a molding pressure of 88.9 kgf / cm 2 , and the molding density was measured. The result was 0.522 g / cc.
  • This carbon black molded product was mixed with a Banbury mixer and an open roll mixer in the composition shown in Table 13 to prepare a rubber composition. These rubber compositions were press-vulcanized at 160 ° C. to prepare vulcanized rubber test pieces. Each test was performed according to the following test methods, and the physical properties were measured.
  • the loss coefficient (ta ⁇ ) was measured under the following conditions using "DVE EleoSpectra” manufactured by Rheology Co., Ltd.
  • a strong carbon black molded body was produced in exactly the same manner as in Example 36 except that the carbon black was changed to Mitsubishi Chemical DIA-H (ungranulated product) (bulk density: 0.192 g / cc).
  • the loss coefficient at 60 ° C was 0.107
  • the heat build-up was 26.0 ° C
  • the D% was 99.6%.
  • a carbon black molded body was produced in exactly the same manner as in Example 36 except that the carbon black was changed to Mitsubishi Chemical DIAG (ungranulated product) (bulk density: 0.192 g / cc).
  • the loss coefficient at 60 ° C was 0.058, the heat build-up was 17.0 ° C, and the D% was 99.9%.
  • Example 36 A rubber test was conducted in exactly the same manner as in Example 36 except that the carbon black was changed to DIA-I (beads) (bulk density: 0.351 g / cc) manufactured by Mitsubishi Chemical Corporation. As a result, the loss coefficient at 60 ° C was 0.152, the heat build-up was 35.0 ° C, and the D% was 95.4%.
  • DIA-I beads
  • Example 37 carbon black was replaced with Mitsubishi Chemical DIA-H (beads) (bulk).
  • Example 36 A rubber test was performed in exactly the same manner as in Example 36 except that the carbon black was changed to Mitsubishi Chemical DIAG (beads) (bulk density: 0.445 g / cc). As a result, the loss coefficient at 60 ° C was 0.065, the heat build-up was 19.0 ° C, and the D% was 98.0%.
  • the rubber produced using the pressed rubber black body of the present invention exhibits high dispersibility, low loss and low heat generation.
  • Natural rubber * 1 (100 100 100 100 100 100 100 100 100 100
  • Anti-aging agent * 5 1 1 1 ⁇ 1 Sulfur 2. 2; 2 2 2
  • the pressure-resistant black pressure-molded body suitable for handling is obtained, without impairing the basic characteristics of carbon black.
  • the carbon black pressure-molded body may have an improved jetness as compared with before the molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

明 細 書 カーボンブラック成型体
技術分野
本発明は、 カーボンブラック成型体に関する。 背景技術
現在、 ファーネス法により製造されたカーボンブラック (以下、 「ファーネス ブラック」 という。 ) 力 カーボンブラック市場における主流として流通してい 力一ボンブラックは歴史的にはランプブラック、 サ一マルブラックが存在した 力 現在では市場の製品のほぼ大部分が、 1 9 4 2年にフィリ ッブスが開発した ファーネス法、 すなわち 1 3 0 0 °C以上に加熱した炉内に、 原料油を噴霧して力 一ボンブラックを得る方法によるものとなっている。 これは、 その収率の高さ等 の生産性に優れると同時に、 ファーネスブラックの特性、 特にその粒子径及びス トラクチャ一の小さいものを得ることができ、 インク、 塗料の黒色度を高め便れ た性能を発揮することができることに起因していると考えられる。
—方、 上述のファーネスブラックは、 その小粒子径、 小ス トラクチャー及び表 面吸着物質が少ないことに起因し、 ビヒクルへの分散が困難となる傾向にある c 更に小粒子径であり嵩密度が低いために、 発塵性、 汚染性等の問題があり、 使 用 ·輸送に際して環境上の問題も大きい。 すなわち、 ファーネス法で製造された カーボンブラックは、 通常、 製造直後の嵩密度が 0 . 1 g Z c c前後という極め て低い値を示す。 この低い嵩密度の値が起因して、 包装袋のコス ト、 、 倉廐での 保管費用、 トラック ·貨車、 船舶での輸送コス 卜が高く、 流通 ·使用時の発塵も 多く、 環境を汚染しやすい。
かかる問題を解決するために、 通常、 ビーズ品と呼ばれる乾式造粒品や湿式造 粒品が用いられている。 ビーズ品は嵩密度が 0 . 3〜0 . 5 g Z c c と未処理の 力一ボンブラックに比較してかなり嵩密度が高い。 しかし、 計量時における粉塵 発生の抑制や輪送時の造粒物の粉化の抑制は充分とは言えない。 また、 造粒によって塗料やインクの原料であるワニスや樹脂といったビヒ クル への分散性が悪くなり、 ビーズ品は使用できない場合がある。 これに関して本発 明者らの知見によれば、 ビース品はその造粒過程において、 長いス トラクチャ一 構造を有するカーボンブラック粒子が相互に絡まりながら造粒されるため、 分散 性が劣るものとなることも考えられる。
このように、 力一ボンブラック、 特に小粒径とすることができるファーネスブ ラックのハンドリング性すなわち取り扱い時の容易さと、 ビヒクルへの分散性は、 二律背反関係にあり、 ハンドリ ング性と分散性とを同時に解決することは、 極め て困難であると考えられてきた。 例えば、 カーボンブラック協会編 「力一ボンブ ラック便覧く第三版〉」 (P . 5 6 3 ) には、 『汚染が少なくハン ドリング性の 優れるカーボンブラック、 ィンキの生産や品質を更に向上させる為の易分散性力 —ボンブラックの開発が大きなニーズとなって来るものと考えられる。 カーボン ブラックのハンドリング性と分散性は二率背反関係にあり、 界面化学やレオロジ ―、 カーボンブラック形態や包装、 出荷形態等の垣根を越えた改善が必要である。 』 と記載されていることからも判るように、 カーボンブラック業界において、 ハン ドリング性と分散性を同時に解決することは極めて困難であると広く認識されて おり、 従来から様々な提案がなされているが、 この 2つの問題を同時に解決した 例は無い。
ファーネスブラック登場以前に存在したランプブラック等のカーボンブラック については、 例えばイギリス特許 5 5 1, 8 6 2号 ( 1 9 4 1年出願) ではラン プブラック等をプレス脱気して篙密度を向上し、 ハンドリング性を向上すること が試みられており、 ィギリス特許 6 1 8, 9 5 5号 ( 1 9 4 6年出願) では、 ィ ギリス特許 5 5 1 , 8 6 2号におけるプレス脱気を行うための装置が提案されて いる。
また、 ドィッ特許 1 3 0 2 3 8 2号 ( 1 9 6 6年出願) では、 プレスにより密 度を高くする装置により 0 . 1 6 0〜0 . 4 8 0 g Z c cのランプブラック成形 体を得たと記載されている。
また、 ファーネスブラックについても、 例えば特開平 3— 2 5 9 9 6 2号公報 ではカーボンブラックの水スラリーを吸引滤過後プロックのまま乾燥して、 プロ ックの表面にカゼィン ·デンプン ·ポリ ビニルアルコール水溶液と、 スチレン · ブタジェンラテツクスまたはァクリル系ラテツクスを塗布することによりハンド リング性を向上することを試みている。 しカゝし、 この方法では超微粉である力一 ボンブラックのスラ リーを作製し、 更にこのスラリーを濾過、 乾燥する必要があ り、 多大な労力及びコス トを要する。 しかも得られるブロックは、 分散性が大き く低下することが考えられる。
また、 特開平 6— 1 2 2 1 1 1号公報ではカーボンブラック粉体を密閉型成形 容器に仕込み、 減圧処理した後、 該容器内の圧力を常圧に復元することにより成 形体を得ている。 しカゝし、 減圧により加えられる成形圧力は大気圧 (約 1 . 0 3 k g Z c m 2 )以下であり、 輸送コストゃ倉庫費用を小さくするほど嵩密度を大き くすることはできない。
また、 得られる成形体表面には大きな凹凸が発生することが判った。 これは、 嵩高い粉である力一ボンブラックを気圧差により圧密するため、 仕込んだカーボ ンブラックの一部が吹き飛んだりするためではないかと考えられる。
このため、 輸送中の粉化や破損が発生し、 ハンドリ ング性 (コンパク ト性) と 分散性を同時に解決してはいない。
このように、 ファーネスブラックについては、 従来一般的に認識されていたハ ンドリング性と分散性の二律背反関係を解決し、 これらを同時に満足する技術は 未だ見出されず、 依然として粉末状、 又は粒状の製品が流通し、 粉塵等上述の問 題を解決することはできなかった。 すなわち、 貯蔵 '輸送コス ト、 ハンドリ ング •環境の向上を図ることによってカーボンブラックを塗料、 インキ、 樹脂着色や ゴム補強用等各用途に使用した際の基本特性を損なったのでは、 製品として满足 されるべきものとは認められず、 市場に受け入れられることはできなレ、。 発明の開示
本発明者らは上記課題を解決すべく、 鋭意検討を重ねた。 その結果、 カーボン ブラックを加圧成型してなる成型体の密度である成型密度、 粒子径、 D B P吸油 量を特定の関係に制御することにより、 嵩密度の向上及び分散性を同時に満足し うるという驚くべき知見を得、 本発明に達した。 更に、 意外なことに、 この成型 一 3 - 差替 え 用紙(規則 26) 体は、 原料であるカーボンブラック粉末 (ルース品) より も、 塗料等とした際の 漆黒度 (黒色度) を向上させることができることをも見出した。 すなわち、 本発 明は、
密度 P ( g c C ) 力;、
,0 = 8. 1 90 X 1 0— 3D— 3. 8 24 X 1 0— 3L+ 0. 5 1 6
以上、
= 3. 26 5 X 1 0— 3D— 3. 334 X 1 0_3L+ 1. 1 73 以下
で表されるカーボンブラック加圧成型体、 に存する。 図面の簡単な説明
図 1は本発明の加圧成型体の製造に用いることのできる加圧成型装置の一例で ある。
図 2は本発明の加圧成型体の製造に用いることのできる加圧成型装置の一例で ある。
図 1及び図 2中、 1は上パンチ、 2は下パンチ、 3はダイ、 5は減圧チャンバ —である。 以下、 本発明を詳細に説明する。
まず、 本発明で使用する力一ボンブラックは、 ファーネス法で製造したカーボ ンブラック、 アセチレンブラック等が挙げられる。 これらのうち特に、 ファール ス法で製造したファーネスブラックを用いた場合、 その分散性の保持に極めて顕 著な効果を発揮する。 更に、 漆黒度向上の効果も大きなものとなる。
また、 これらの方法により製造したカーボンブラックを各極の酸化剤等で後処 理したものを使用することもできる。
カーボンブラックの粒子径は、 特に制限されないが、 特に l〜60 nm、 就中 1〜50 nmの小粒子径の範囲で分散性、 ハンドリング性向上の効果が高く、 ま た漆黒度の向上にも高い効果を発揮する。
かかる範囲の微細な粒子径を有するカーボンブラックは、 カーボンブラック同
- 4 - *5 田 /^目 BIIゥ Rヽ 土の凝集性が強く、 インク、 塗料、 着色榭脂、 ゴム等を製造する際に分散が特に 困難であった。 これらの分散が困難なカーボンブラック程、 本技術の利点が大ぃ に発揮できるという利点も挙げられる。
本発明においては、 これらカーボンブラックを加圧して成型する。 この際使用 する型としては、 成型時の印加圧力に耐えうる強度を有していれば如何なる材質 の型を用いてもよい。 例えば金属製の型としては SUS 304、 SUS 31 6等 のステンレス製金型、 タングステンカーバイ ド等の超鋼等が使用できる。 又、 樹 脂製型としては、 ポリ四フッ化工チレン (PTFE) 、 ポリ三フッ化塩化工チレ ン (PCTFE) 、 ポリ四フッ化工チレン · 六フッ化プロピレン (F EP) 等の フッ素樹脂 (商標: 「テフロン」 ) 製型、 ナイロン、 ポリエチレン、 ポリカーボ ネイ ト、 フエノール樹脂等のプラスチック類、 更に複合材料として C FRP、 G FRP等の FR P、 セラミックス製型としては、 アルミナ、 ジルコニァ、 ムライ ト等が使用挙げられる。
型の大きさは制限されないが、 実用的には 1 c c以上、 好ましくは 100 c c 以上のものが挙げられる。 1 c c未満では輸送が煩雑となるためである。 また、 必要に応じて、 大型の成型体を作製し、 これを適当な大きさに切断し、 その集合 体として輸送 ·使用してもよレ、。
加圧に使用するプレス機としては、 油圧機械式プレス機、 油圧ハンドプレス機、 機械式プレス機、 エア一シリンダー式プレス機等、 加圧成型できるものであれば 如何なるプレス成型機でもよい。
型の形状も特に制限されず、 所望の成型体の形状にしたがって、 三角形あるい はその他の多角形の断面を有する柱状体、 特に立方体あるいは直方体の成型体と することができ、 取り扱いの点からも好適である。
カーボンブラックを上述の型に入れ、 加圧することにより成型する。 この際、 得られる成型体の密度を以下の特定値とする。
すなわち、 密度 P (g/ c c ) を、
= 8. 190 X 1 0 D— 3. 824 X 1 0"3L+ 0. 5 1 6
以上、
p = 3. 265 X 1 0~ D— 3. 334 X 1 0— 3L+ 1. 1 73 以下、 とする。
より好ましくは、
= 8. 686 X 1 0_aD— 4. 03 1 X 10— :'L+ 0. 543
以上、
= 3. 1 23 X 1 0"3D— 3. 1 8 9 X 1 0— 3L+ 1. 072
以下、 がよい。
上記の各式において、 D (nm) はカーボンブラックの電子顕微鏡による算術 平均粒子径、 L (m 1 / 100 g ) とする) は D B P吸油量である。
ここで、 D B P吸油量は、 J I S K 6221— 1 982に準拠した方法で測 定した値である。
また、 力一ボンブラックの粒子径は、 以下に示す方法による測定値である。 力 —ボンブラックをクロ口ホルムに投入し 200 ΚΗ ζの超音波を 20分間照射し 分散させた後、 分散試料を支持膜に固定する。 これを透過型電子顕微鏡で写真撮 影し、 写真上の直径と写真の拡大倍率により粒子径を計算する。 この操作を約 1 500回にわたって実施し、 それらの値の算術平均により求める。
密度を上記の範囲とすることにより、 ビヒクルへの分散性等カーボンブラック の基本特性を損なうことなく、 取り扱い性に優れた成型体とすることができる。 更に、 インキ、 塗料等に用いた際の漆黒度が原料粉末に比べ、 向上させること ができるという、 意外な効果をも発揮する。 これらの効果は、 上記のより好まし い範囲として記載した範囲において、 特に顕著に発現される。
なお、 本発明のカーボンブラック成型体は、 粉化率が 40%以下、 より好まし くは 20%以下としたものが特に好ましい。 噴火率と しては、 後述する実施例に 記載した測定方法で求めることができる。 粉化率を 40%以下とすることにより , 輸送中に成型体に加わる振動や摩擦等の外力による粉化を防止でき、 ハンドリン グ性が特に優れたものとなる。
また、 原料である粉状カーボンブラックの嵩密度とカーボンブラック成型体の 嵩密度との比 (以下、 「嵩密度比」 ともいう。 ) が 2. 5倍以上 8倍以下、 より 好ましくは 3倍以上 7倍以下とするのが良い。 この嵩密度比が 2. 5より も低い 場合、 成型体のコンパク 卜性が低下する傾向にある。 一方、 嵩密度比が 8を超え
- 6 - 差替 え 用紙 (規則 26) ると、 分散性が低下する傾向にある。 嵩密度比が 2 . 5以上 8以下とすれば、 コ ンパク ト性と分散性とが同時に極めて好ましい範囲で満足される。
加圧成型時の圧力 (成型圧力) は、 2 Kgf/cn ^以上 5 0 O KgiVcm2 以下、 より好 ましくは 5 Kgf/cm2 以上 4 0 O Kgf/cm2以下とするのがよい。 成型圧力が 2 Kgf/c m2を下回ると、 コンパク ト性が低下、 粉化率が増加する傾向にある。
一方、 成型圧力が 5 0 O Kgf/cm2 より も高い場合、 通常のインクや塗料等の製造 時に使用される分散機では、 分散性が十分でないことがある。 一方、 これ以上圧 力を高く してもコンパク ト性向上の効果は殆ど得ることができない。 このため、 インク、 塗料、 着色樹脂、 ゴム等を工業的に製造する際に使用する力一ボンブラ ック成型体としては、 2 Kgf/cm2以上 5 0 O Kgf/cm2 以下で加圧成型するのが適当 である。
なお、 加圧成型に際しては、 予めカーボンブラック粒子間の気体を減圧チャン バーを用いて脱気した後、 加圧成型する態様を採ることもできる。 例えば図 1及 び図 2に示す装置を用いて説明すると、 以下の如き方法を採ることができる。 まず、 図 1及び図 2に示す、 摺動可能なシリンダーとピス トンとを有する型に、 成型しょうとする原料であるカーボンブラック粉末を充填する。 シリンダー上部 にセッ トした真空チャンバ一内及びシリンダ一内はガスケッ ト材によりその外部 と実質的に遮断される。 次に、 真空チャンバ一に接続した真空ポンプを機動させ て真空状態を保持したまま、 ビス トンを下降させシリンダー内の力一ボンブラッ クを加圧成型する。 その後、 真空ポンプの運転を停止し、 チャンバ一及びシリ ン ダー内の雰囲気圧力を大気圧に戻す。 その後、 真空チャンバ一とピス トンを上昇 させてカーボンブラック成型体を取り出すことにより、 減圧チヤンバ一による力 一ボンブラック粒子間の気体の脱気及びこれに引き続くカーボンブラックの加圧 成型を行うことができる。
この際、 減圧時の圧力は、 0 . 0 1〜 5 0 0 T o r rで行うのが好ましレ、。 5 0 0 T o r r以下において、 粒子間の脱気が非常に容易であり、 一方 0 . 0 1 T o r r以下としても格別の優位性を示すことなく、 高真空にする煩雑性が増すの みであるためである。
所望の减圧度を達成する方法は特に限定されず、 例えば、 油回転式真空ポ
- 7 - え 紙 規則 26) ァスピレーター、 摺動式真空ポンプ'、 フリーピス トン式真空ポンプ、 ダイヤフラ ム式真空ポンプ、 拡散ポンプ、 ターボ型真空ポンプ等が挙げられる。
なお、 力一ボンブラック加圧成型体の密度管理を行うに際し、 その抵抗値の測 定により行うことができる。 この際、 加圧成型中又は加圧成型後に、 成型体の抵 抗値を測定することにより密度管理することもできる。 抵抗値の測定は、 2探針 法、 4端子法、 4探針法、 ファンデルポー法等があるが、 これらのうち 4探針法 は、 試料に電極の針を押しつけるだけで測定することができることから、 本発明 のカーボンブラック加圧成型体の密度測定には最も適している。 また、 抵抗値と して、 試料の形状に依存しない、 固有抵抗の指標としての体積抵抗率を用いるの が望ましい。 4端子法で測定した結果を演算処理することにより、 体積抵抗率を 求めることができる。
また、 加圧成型体を工業的に利用しやすい厚さを有するものとするため、 原料 の型への充填及び加圧操作を複数回行うことにより、 加圧成型装置の大きさを抑 えることも可能である。 この場合には、 加圧操作のうち最終の加圧操作の圧力力 それ以前の加圧操作の際の圧力のうちの最大の圧力の 1 . 2倍とすることが好ま しい。 これにより、 各加圧操作により形成された層同士の継ぎ目が実質的に存在 しない連続体として成型体を得ることができるためである。
加圧成型装置の力一ボンブラックとの接触面の少なく とも一部に平均細孔径が 1 0 μ m以下の多孔質体を有する装置により加圧成型することにより、 カーボン ブラックと型との付着、 加圧成型体の破損を防止することも有効である。 この態 様の実施は、 例えば滤紙、 滤布、 フッ素樹脂を多孔質体として用いることにより 行うことができる。 例えば、 これらの多孔質体を、 加圧装置のピス トン部に貼り 付ける、 等の手段を採ることができる。
加圧成型体の型からの取り出しに際しては、 離型する際に、 加圧状態にて離型 することにより、 加圧成型体の破損を防止することも有効である。 この際の離型 時の圧力は、 0 . 0 1 5 k g f ノ c m 2であって加圧成型時の圧力を超えない圧 力とするのが、 破損防止に特に効果的である。 また、 水分量 0 . 5 1 1重量% に調整したカーボンブラックや、 予め造粒した力一ボンブラックを用いるのも、 用途によっては破損防止に有効である。
- 8 - Λ m / 4 F?IIOC カーボンブラック成型体の形状は特に制限されないが、 多角形の断面を有する 柱状体、 より好ましくは直方体或いは立方体が良い。 これらの形状の成型体は力
—ボンブラックを輪送する トラックゃ貨車或いは倉 IEが一般的に直方体であり、 これらの空間を隙間無く充填できるためである。 これにより輸送コス トゃ倉靡保 管費用を効率的に削減できる。
以上説明したカーボンブラック加圧成型体は嵩密度が大きくコンパク ト性に優 れたものであるため、 このカーボンブラック加圧成型体の形態で、 貯蔵 '移送す ることにより、 カーボンブラック製造〜流通におけるコス 卜の大きな割合を占め る貯蔵 ·移送コス トを大幅に削減することができ、 工業的に極めて有用である。 なお、 ここでいう 「貯蔵」 とは、 倉庫、 その他の有蓋又は無蓋の空間に、 一時 的又は長期的に保管、 収納、 格納することを含むものである。 通常、 次に輸送又 は使用するまでの一定期間、 所定の空間に保持するものである。 更に、 倉庫への 出し入れの利便性を考慮してパレッ トに積んだ状態や各種コンテナに入れた状態 で倉庫に収納してもよい。
以上説明した本発明のカーボンブラック加圧成型体を、 インク、 塗料、 樹脂組 成物の顔料として用いることができる。 これにより、 漆黒度、 光沢に優れたもの を得ることができる。
この場合、 ィンク等の顔料として本発明のカーボンブラック加圧成型体を用い る以外は、 公知の方法を採用することができる。
インクの顔料としての使用に際しては、 具体的には上記カーボンブラック成型 体を、 ビヒクルであるワニスに配合する等、 公知の方法が採用できる。 また、 分 散工程も、 カーボンブラック成型体を用いる以外は、 特に制限されず公知の方法 をいずれも採用することができる。
使用するワニス (ビヒクル) としても、 インクに用いられるものであれば特に 制限されず用いることができ、 例えば印刷用に使用されるものとして、 平版印刷 で使用されるロジン変性フユノール樹脂、 アルキド樹脂、 乾性油の混合物がある。 また凸版印刷で使用されるギルソナイ ト、 ロジン等の天然樹脂、 ロジン変性フエ ノール樹脂、 マレイン酸樹脂、 石油樹脂、 アルキド樹脂、 エステルガム等の合成 樹脂、 アマ二油、 きり油等の植物油、 インキオイル類、 ソルベン ト類等の鉱物油
- 9 - 差转 え 用紙(規則 26 等の混合物がある。 また新聞オフ輪インキで用いられるギルソナイ ト、 ロジン変 性フエノール樹脂、 ロジンエステル樹脂、 マレイン酸樹脂、 アルキ ド樹脂等の樹 脂、 アマ二油、 キリ油等の乾性油、 インキオイル、 インキソルベン ト、 スピンド ル油、 マシン油等の鉱物油の混合物がある。 またグラビアインキで用いられる口 ジン変性樹脂、 マレイン酸樹脂、 ギルソナイ ト等の樹脂、 トルエン、 n—へキサ ン、 シクロへキサン等の溶剤等の混合物がある。 水性グラビアインキで用いられ るポリ ビエルアルコール、 でんぷん、 等の樹脂と各種アルコールの混合物がある。 フレキソインキで使用されるロジン変性マレイン酸樹脂、 スチレンァク リル酸樹 脂、 スチレンマレイン酸榭脂、 スチレンメタクリル酸榭脂、 アクリル酸エステル アタリル酸榭脂、 メタクリル酸エステルァクリル酸樹脂等の樹脂とダリコール、 アルコール、 エステル、 脂肪族炭化水素等の溶媒の混合物がある。 またスク リー ンインキとして使用されるアクリル樹脂、 塩ビ '酢ビコポリマー、 ポリエステル 樹脂、 セルロース系樹脂、 エポキシ樹脂、 メラニン樹脂、 各種ポリオ一ル、 アル キド榭脂、 各種アクリル酸エステル等の榭脂、 各種アルコール、 各種エーテル、 各種ケトン、 各種芳香族炭化水素、 各種脂肪族炭化水素、 各種ハロゲン系溶剤か らなる溶剤の混合物等がある。
対象となるインキも特に限定されることはなく、 例えば、 凸版インキと して、 新聞インキ、 輪転インキ、 写真版墨インキ等、 平版インキとして、 オフセッ トィ ンキ、 ドライオフセッ トインキ、 コロタイプインキ等、 凹版インキとしては彫刻 凹版インキ、 グラビアインキ、 クイックセッ トインキ、 グロスインキ、 耐摩擦性 インキ、 ヒー トセッ トインキ、 スチームセッ トインキ、 プレツスァセッ トインキ、 プラスチゾルインキ、 バランス トインキ、 コールドセッ トインキ、 ラセッ トイン キ等、 その他ゴム版インキ、 ァニリ ンインキ、 ブリキ印刷インキ、 プラスチック フィルム用インキ、 シルクスク リーンインキ、 水性インキ等が挙げられ、 これら のいずれのィンキの製造に際しても本発明のカーボンブラック加圧成型体を採用 することができる。
本発明のカーボンブラック加圧成型体のべヒクルへの分散に際しては、 その分 散方法は特に限定されず、 成型に使用した型から取り出したままの大きさで使用 しても、 混練機の投入口の大きさ以下とするために直径 0 . l m m〜 l C mに解
- 1 0 - 差替 え 用紙 (視刖ク6、 砕したものを混練機に投入して分散してもよい。 解砕したものを用いても、 漆黒 度向上の効果は発揮することができる。
ここで解砕方法も特に限定されないが、 例えば、 カッティングミル、 ロータリ —クラッシャー、 剪断ロールミル等の剪断粉砕型粉砕機を使用すれば、 粉碎時に 粒子の密度が圧密されることがないので、 好適である。
本発明のカーボンブラック加圧成型体を樹脂組成物の顔料として使用する際に 適用可能な樹脂も特に限定されず、 例えば、 熱可塑性樹脂として低密度ポリェチ レン、 高密度ポリエチレン、 ポリプロピレン、 ポリスチレン、 塩化ビニル樹脂、 ポリ ビニルアルコール、 塩化ビニリジン樹脂、 メタク リル樹脂、 ポリアミ ド、 ポ リカ一ボネー ト、 ポリアセタ一ノレ、 ポオリエチレンテレフタレー ト、 ポリブチレ ンテレフタレート、 変性ポリフエ二レンエーテル、 ナイロン等が挙げられる。 熱 硬化性樹脂としては、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂、 不飽和ポリ エステル樹脂、 ウレタンフォーム等が挙げられる。 更に、 これらの樹脂の混合物 或いは各種添加物を加えたものであってもよい。
これらの樹脂成分に本発明のカーボンブラック加圧成型体を添加し、 必要に応 じて混練する。 この際、 ゴムの混練機として通常ゴムの混練機として使用されて いるもの、 例えば、 バッチ式開放型ではロールミキサー、 バッチ式密閉型ではバ ンバリータイプミキサー、 連続スクリュー式では、 単軸混練押出機、 2軸混練押 出機、 連続ロータ一式では単軸混練機、 連続ロータ一式では 2軸混練機等を使用 することもできる。
本発明の力一ボンブラック加圧成型体を塗料の顔料として使用するに際し使用 できるワニス (ビヒクル) としては、 塗料用に使用されるものであれば特に限定 されず用いることができる。 例えば、 油性塗料として乾性油、 改良乾性油、 天然 樹脂、 ビチューメンが挙げられる。 酒精塗料としてセラック、 セルロース誘導体 塗料としてニ トロセルロース、 ァセチルセルロース、 アク リル樹脂、 フエノール ホルムアルデヒ ド樹脂、 樹脂変性フエノールホルムアルデヒ ド樹脂が举げられる。 合成樹脂塗料として酸化型油変性アルキド樹脂、 変性アルキド樹脂、 プチル化ァ ミノアルキ ド樹脂、 アミノアルキド樹脂ポリ酢酸ビエル、 ポリ塩化ビニル、 塩化 ゴム、 スチレン ' ブタジエン樹脂、 熱硬化性アク リル樹脂、 エポキシ樹脂、 不飽
- 1 1 - 铁 田: ίάΒ Β ^£\ 和ポリエステル、 ポリイ ソシァネート樹脂、 シリ コーンとアルキ ド樹脂、 チタン 酸ブチル等が、 合成樹脂ェマルジヨ ンペイン トと してポリ酢酸ビニル、 ポリ スチ レン ' ブタジエン、 ポリアク リル化合物が、 水性焼付塗料としてフヱノールアル デヒ ド初期重合物、 エーテル化メラニン樹脂、 ァミン中和アルキド樹脂が、 水性 塗料としてタンパク質 · でんぷん ·アルギン酸塩 ·ポリ ビニルアルコール、 パル ボキシメチルセルロースが挙げられる。 漆等には、 天然高級フエノール、 天然フ ェノールアルデヒ ド樹脂が使用できる。
目的とする塗料も特に限定されず、 例えば塗膜主要素別分類として油ペイント、 油エナメル、 フ-ノール樹脂又はマレイン酸樹脂、 アルキド樹脂塗料、 アミ ノア ルキド樹脂塗料、 尿素樹脂塗料、 酒精塗料、 ラッカ一、 ビニル樹脂塗料、 ァク リ ル樹脂塗料、 ポリエステル樹脂塗料、 エポキシ樹脂塗料、 ポリウレタン樹脂塗料、 シリ コーン樹脂塗料、 ェマルジヨン樹脂塗料、 水溶性樹脂塗料が挙げられる。 また、 本発明のカーボンブラック加圧成型体を、 天然ゴム及び合成ゴムの一種 以上と配合して、 ゴム組成物を得ることもできる。 この際、 配合量は、 ゴム 10 0重量部に対して 30〜1 50重量部が適当である。 これにより、 損失係数や発 熱量の少ないゴムとすることが可能である。
この際使用されるゴムも特に限定されず、 例えば、 合成ゴムとしてスチレンブ タジェンゴム (S BR) 、 ブタジエンゴム (BR) 、 イソプレンゴム ( I R) 、 クロロプレンゴム (CR) 、 二 ト リルブタジエンゴム (NBR) 、 イソブチレン イソプレンゴム ( I I R) 、 エチレンプロピレンゴム (E PM) 、 シリコーンゴ ム、 フッ素ゴム、 クロロスルホン化ポリエチレン (C SM) 、 塩素化ポリエチレ ン (CM) 、 多硫化ゴム、 ウレタンゴム (AU) 、 アク リルゴム (ACM) 、 ェ ピクロルヒ ドリンゴム (ECO) 、 プロピレンォキシドゴム (PO) 、 エチレン • 酢酸ビュル共重合体 (EVA) 、 液状ゴム、 ポリアルキレンスルフイ ド、 ニ ト ロソゴム等が、 天然ゴム、 上記ゴムの混合物が挙げられる。 更に、 必要に応じて、 加硫剤、 架橋剤、 加硫促進剤、 加硫促進助剤、 活性剤、 分散剤、 加硫遅延剤、 老 化防止剤、 力一ボンブラック以外の補強剤や充填剤、 軟化剤、 可塑剤、 粘着付与 剤、 着色剤、 硬化剤、 発泡剤、 滑剤、 溶剤、 界面活性剤、 乳化剤、 安定剤、 湿潤 剤、 増粘剤、 凝固剤、 ゲル化剤、 クリーミング剤、 防腐剤、 消泡剤等を加えるこ
- 12 - 釜鎵 用絍 (視目 1126) ともできる。
上記ゴム成分に本発明のカーボンブラック加圧成型体を添加し混練してゴム組 成物とする。 ここで使用する混練機としては通常ゴムの混練機として使用されて いるものでよく、 例えば、 バッチ式開放型ではロールミキサー、 バッチ式密閉型 ではバンバリ一タイプミキサー、 連続スク リ ユー式では、 単軸混練押出機、 2軸 混練押出機、 連続ロータ一式では単軸混練機、 連続口一ター式では 2軸混練機が 挙げられる。 実施例
以下に、 本発明を実施例により更に詳細に説明する。
実施例 1〜 6
カーボンブラックとして表 1に示すものを用い、 プレス機として王子機械工業 株式会社製 3 7 t o n 4本柱単動油圧プレス (ラム直径 1 52. 4 mm) を用レ、、 金型は SUS 304製金型 (内法 7 OmmX 70mm、 高さ 40mm、 三菱化成 エンジニアリング社製) を用いてカーボンブラックを加圧成型した。
インク製造時のカーボンブラックの分散性を試験するインク篩残率の測定方法 を以下に示す。 約 1. 8 リ ツ トルのステンレス容器 (直径 1 1 c m、 高さ 1 8. 5 c m) に 4 80 gのレダクタス # 220 (共石製) と 1 20 gのカーボンブラ ック成型体あるいはカーボンブラック造粒品を加えた。 TKォ一トホモミキサ一 S L 1 0A (特殊理化工業製) にセッ トした撹拌翼 (4枚羽根、 羽根の直径 4. 5 c m) をステンレス容器の底面より 2 c m上方に挿入した。 撹拌翼を 5000 r. p.m.で 1時間撹拌した。 この中から 50 gを分取し 3 25メッシュ (目開き ; 46 μ m) のステンレス製篩で滤過した。 濾過後、 金網面に約 200 c cの軽油 を振りかけて洗浄した。 この篩を 1 50°Cに設定した乾燥機に 1時間入れ乾燥し た。 乾燥機から取り出し、 冷却後、 篩の重量を測定した。 予め測定しておいた篩 の重量を差し引いて篩上に残ったカーボンブラックの重量 (Ag) を測定し、 次 の式より篩い残率を計算した。 篩い残率 (%) = (A X 600/ (50 X 1 20) ) x 1 00 密度の測定に際しては、 直方体の縦と横と厚さをノギスにて測定し、 その値か ら成型体の体積 (c c ) を算出した。 また、 電子式直読型上皿天秤にて成型体の 重量 (g ) を測定した。 成型体の重量と体積から成型体の密度 (gノ C C ) を算 出した。
粉化率の測定方法を以下に記載する。 力一ボンブラック加圧成型体を 25 ± 1 g (W) 0. O l g迄精秤し、 J I S K— 622 1に準拠した直径 200 mm. 目開き 1 mmの篩んい入れる。 この篩に受け皿と蓋を取り付け、 J I S K— 6 221に準拠した振とう機で 20秒問打擊を与えながら振とうする。 振とう機か ら受け皿を取り外し、 受け皿中の力一ボンブラックの重量を 0. 0 1 g迄精秤し, これを振とう後の重量 (WK)とし、 次式によって粉化率を算出した。 粉化率 (%) = (WR/W) X 100 比較例 1〜 6
実施例で用いた同一銘柄の粉状品及び造粒品を用いて、 実施例に記載した嵩 密度の測定、 インク篩残、 粉化率の測定を実施した。
また、 #45 (三菱化学社製カーボンブラック) と # 990 (三菱化学 (株) 製 カーボンブラック) に関しては、 特開平 6— 122 1 1 1号に記載されてい る 減圧 ·復圧品を作製し比較例に記載した。
(結果の判定基準)
表 2から表 7に実施例及び比較例の測定結果及びこれらの結果から判断した コンパク ト性及び分散性、 更にコンパク ト性と分散性等を総合的に判断した総 合判定結果を示した。
ここで、 コンパク ト性の判断基準としては、
粉状品程度の嵩密度を X
粉状品より も高く造粒品以下の嵩密度を △
造粒品より も高い嵩密度のものを 〇
とした。
- 14 - 差替え用紙 (規則 26) また、 分散性の判断基準としては
造粒品程度以下の分散性のものを X
造粒品より も若干分散性が優れているものを △
造粒品よりも分散性が優れているものを 〇
とした。
更に、 総合判定の基準としては、
コンパク ト性或いは分散性の何れかが Xであるものを X
コンパク ト性、 分散性更に使用した感触が優れているものを 〇
コンパク ト性、 分散性、 使用した感触が特に優れたものを ◎
とした。
(結果の考察)
(1) 実施例 1一 2と比較例 1— 9を比較すると、 嵩密度が 0 . 5 6 2 g/ccと 0 . 4 8 8 g/ccであり実施例 1一 2の嵩密度が比較例 1— 9の嵩密度よりも高くなつ ているにも係わらず、 分散性のファクターであるインク篩残は実施例 1—2では 1 1 . 0 %、 比較例 1— 9では 7 8 % となっており、 実施例 1― 2の成型体は、 成型前の分散性を保っている。
実施例 1— 8と比較例 1一 9を比較すると、 嵩密度が 1 . 0 5 0 g/ccと 0 . 4
8 8 g/ccであり、 実施例 1一 8において約 2倍の嵩密度ァップを達成している力;、 分散性のファクタ一であるインク篩残は実施例 1 一 2では 7 4 . 0 %、 比較例 1 一 9では 7 8 . 0 % となっており、 実施例 1一 8は比較例 1一 9と同等レベル以 上の分散性を示している。 このことから判るように、 本発明により従来二律背反 関係にあると考えられていたコンパク ト性 (ハン ドリ ング性) 及び分散性の両方 の特性が優れた力一ボンブラックが得られることが判る。
(2) 実施例 2— 2と比較例 2— 9を比較すると、 嵩密度が 0 . 3 8 5 g/ccと〇. 3 9 3 g/ccであり実施例 2— 2の离密度が比較例 2— 9の嵩密度と同程度である にも係わらず、 分散性のファクタ一であるインク篩残は実施例 2 _ 2では 0 · 7 %、 比較例 2— 9では 1 0 0 % となっており、 実施例 2— 2の成型体は成型前の 分散性を保っている。
実施例 2— 7と比較例 2— 9を比較すると、 嵩密度が 0 . 8 5 0 g/ccと 0 . 3
- 15 - ¾珐 田^ (相目 IIゥ 93g/cじであり、 約 2. 2倍の嵩密度アップを達成しているが、 分散性のファタ ターであるインク篩残は実施例 2— 7では 98. 0 %、 比較例 2— 9では 1 0〇 % となっており、 実施例 2— 7は比較例 2— 9と同等レベル以上の分散性を示し ている。 このことから判るように、 本発明により従来二律背反関係にあると考え られていたコンパク ト性 (ハンドリング性) 及び分散性の両方の特性が優れた力 —ボンブラックを得られることが判る。
(3) 実施例 3— 2と比較例 3— 1 0を比較すると、 嵩密度が 0. 240g/ccと 0. 303g/ccであり実施例 3— 2の ¾密度が比較例 3— 1 0の嵩密度と同程度であ るにも係わらず、 分散性のファクタ一であるインク篩残は実施例 3— 2では 0.
25%、 比較例 3— 1 0では 84. 5% となっており、 実施例 3— 2の成型体は 成型前と同程度の分散性を保っている。
実施例 3— 9と比較例 3— 1 0を比較すると、 嵩密度が 0. 7 50g/cc^ 0.
303g/ccであり、 実施例 3— 9約 2. 5倍の嵩密度アップを達成しているが、 分散性のファクターであるインク篩残は実施例 3— 9では 77. 0%、 比較例 3 一 1 0では 84. 5% となっており、 実施例 3— 9は比較例 3— 1 0と同等レべ ル以上の分散性を示している。 このことから判るように、 本発明により従来二律 背反関係にあると考えられていたコンパク 卜性 (ハンドリ ング性) 及び分散性の 両方の特性が優れた力一ボンブラックを得られることが判る。
(4) 実施例 4— 2と比較例 4— 9を比較すると、 嵩密度が 0. 4 3 3 g/ccと 0.
49 7 ccであり実施例 4一 2の嵩密度が比較例 4一 9の嵩密度と同程度であるに も係わらず、 分散性のファクタ一であるインク篩残は実施例 4— 2では 0. 3%、 比較例 4一 9では 1 00 % となっており、 実施例 4— 2の成型体は成型前と同程 度の分散性を保っている。
実施例 4一 8と比較例 4— 9を比較すると、 密度が 0. 990g/ccと 0. 4 97 g/ccであり、 実施例 4— 8では約 2倍の嵩密度アップを達成しているが、 分 散性のファクタ一であるインク篩残は実施例 4一 8では 9 9. 0%、 比較例 4— 9では 1 00% となっており、 実施例 4一 8は比較例 4— 9と同等レベル以上の 分散性を示している。 このことから判るように、 本発明により従来二律背反関係 にあると考えられていたコンパク ト性 (ハン ドリング性) 及び分散性の両方の特
- 16 - 生 &Si. iHBll^:ヽ 性が優れたカーボンブラックを得られることが判る。
(5) 実施例 5— 2と比較例 5 _ 7を比較すると、 嵩密度が 0. 5 2 2gん cと 0. 5 1 7g/ccであり実施例 5— 2の嵩密度が比較例 5— 7の嵩密度より も高くなつ ているにも係わらず、 分散性のファクターであるインク篩残は実施例 5— 2では 0. 5%、 比較例 5— 7では 8 0% となっており、 実施例 5— 2の成型体は成型 前の分散性を保っている。
実施例 5— 7と比較例 5— 8を比較すると、 嵩密度が 0. 94 5g/ccと 0. 5 1 7g/ccであり、 実施例 5— 7では約 1. 8倍の嵩密度アップを達成しているが、 分散性のファクターであるインク篩残は実施例 5— 7では 79. 5%、 比較例 5 — 8では 80. 0% となっており、 実施例 5— 7は比較例 5— 8と同等レベル以 上の分散性を示している。 このことから判るように、 本発明により従来二律背反 関係にあると考えられていたコンパク ト性 (ハン ドリ ング性) 及び分散性の両方 の特性が優れたカーボンブラックを得られることが判る。
(6) 実施例 6— 2と比較例 6— 9を比較すると、 第密度が 0. 34 5g/ccと 0. 364 g/ccであり実施例 6— 2の嵩密度が比較例 6— 9の嵩密度と同程度である にも係わらず、 分散性のファクタ一であるインク篩残は実施例 6— 2では 0. 5 0%、 比較例 4一 9では 56. 7% となっており、 実施例 6 _ 2の成型体は成型 前と同程度の分散性を保っている。
実施例 6— 7と比較例 6— 8を比較すると、 嵩密度が 0. 804gん cと 0. 3 64g/ccであり、 実施例 6— 7では約 2. 2倍の嵩密度アップを達成しているが、 分散性のファクタ一であるインク篩残は実施例 6— 7では 28. 1 %、 比較例 6 — 8では 56. 7 % となっており、 実施例 6— 7は比較例 6— 8の約半分の分散 性を示している。 このことから判るように、 本発明により従来二律背反関係にあ ると考えられていたコンパク ト性 (ハンドリング性) 及び分散性の両方の特性が 優れたカーボンブラックを得られることが判る。
(インクへの適用 実施例 7〜 1 2 )
以下の実施例及び比較例における評価方法としては、 分散性に関してはゲライ ン ドゲージを、 色差測定に関しては色差計による方法と視感による方法を、 光沢 に関しては視感を用いた。
- 17 - 法 田 ^ 日 IIつ:、 グラインドゲージの測定は以下の方法で行ったものである。 すなわち 『グライ ンドゲージとは、 鋼の盤に深さ 0〜 25 X 1 0- 6mまで変化している 2本の潸を 刻んだもので、 最深部にインキを置き、 スク レーパーで浅い方に引き伸ばし、 粗 粒子の直径より浅い所にできるすじの位置の目盛りから粒度を求める ( 「色材ェ 学ハン ドブック」 P.1052〜1053 朝倉書店) 。
色差計による色差の測定は以下の方法で行ったものである。 すなわち 『L a b 表色系は R. S. H u n t e rの提唱になるもので、 XYZ表色系における標準 光の 3刺激値を X, Υ, Z とすると、 L, a, bとの間には次の関係があり、 Lは明度指数、 a と bは色相彩度を表す指数である。
L = 10Y1/2
a =17.2 (1.02X-Y) /Y1/2
b =7.0 (Y - 0.847Z) /Υ'/2
』 (清野 学著 「酸化チタン」 Ρ.92 技報堂出版)
視感による色差の測定は以下の方法に従って測定したものである。 『定められ た用紙の上に試料と標準ィンキを並べ、 幅広の刃先のへらで手前に引き伸ばす。 ヘラを手前に少し傾け、 しっかり力を入れて手前に引き、 終わり近くなつたらへ ラを紙に対して 30° く らい傾け軽く引く。 インキ膜の薄い部分と下地の影響の ない厚い部分ができる。 薄い部分で下地の紙から反射し顔料を通過した光の色つ まり底色を見る。 厚い部分でィンキの上色またはィンキ自身の色を目視で評価す る。 』 ( 「色材工学ハン ドブック」 P.1058 朝倉書店)
光沢の視感による光沢の測定は以下の方法に従って測定した。 『光沢は色とと もに印刷の質を大きく左右する重要な特性であるが、 その測定は視感による方法 と測定器による方法とがある。 視感による方法は、 光の入射角 60° で見本と比 較定性的に評価する。 』 ( 「色材工学ハン ドブック」 Ρ.1058 朝倉書店) 実施例 7
日本新聞インキ (株) 製ワニス Αを 1 50 g、 日本新聞インキ (株) 製ワニス Bを 90 g、 日本新聞インキ (株) 製ワニス Cを 48 g、 日本新聞インキ (株) 製鉱物油を 90 g、 日本新聞インキ (株) 社製 6号ソルベン トを 30 g秤取り、 ベッセル (直径 1 1 c m、 高さ 1 8. 5 c m) に入れた。 このワニスを特殊迎化
- 18 - 差替え用紙 (規則 26) 工業 (株) 製ホモミキサー (型式: 「TK AUTO HOMO IXER SL-lOAj ) を用いて 5000 r . p. m.にて 1時間撹拌し、 新聞ィンキ用ワニスを調製した。
三菱化成エンジニアリ ング (株) 製 SUS 304製金型 (内法 70mmX 70 mm、 高さ 40mm、 ) に三菱化学 (株) 製カーボンブラック 「CF 9」 を 50 g入れ、 王子機械工業 (株) 製 37 t 0 n 4本柱単動油圧プレス (ラム直径 1 5 2. 4 mm) にセッ トした。 成型圧力 7. 4 K g f/ c m2で加圧成型して力一ボン ブラック成型体を得た。 成型体の密度 (成型体の質量を成型体の体積で割った値) を測定したところ、 0. 530 g/c cであった。
上記の調製した新閱ィンキ用ワニスに、 上記カーボンブラック成型体 1 1 4 g を投入し、 5000 r . p. m.で 120分間撹拌して、 新聞用インクを作製した。 この新聞用インクを浅田鉄工所 (株) 株式会社製ロールミル機 (型式: 「BR— 500」 ) で練肉した。 練肉後、 未分散塊カーボンブラックの大きさを測定した。 測定は、 東洋精機製作所製グラインドゲージ (型式: 「SKS— 3」 ) で 50〜 100 μ mの範囲の未分散塊カーボンブラックの、 また株式会社上島製作所製グ ラインドゲージ (型式: 「R 1 1 10」 ) で 0~50 μ mの範囲の未分散塊カー ボンブラックの大きさを測定した。 未分散塊カーボンブラックの大きさが 1 0 mよりも大きい場合は、 再度口一ルミル機を通した。 その結果、 最大粒子径は、 1回目の測定結果は 37 μ m、 2回目の測定結果は 24 1 m、 3回目の測定結果 は 9 μ mであった。
また、 測定結果が 10 μ m以下になったインクを室温で 1週間熟成させた。 こ の熟成したィンクを使用して刷り減らしとヘラ引きによる展色試験を実施した。 インクを 0. 6 c c分取して東洋精機製枚葉式オフセッ ト印刷機で A4版の更紙 に 5枚印刷した (印刷面積; 198mm X 192mm) 。 印刷した 1枚目と 5枚目をス ガ試験機 (14) 社製 SMカラーコンピュータで色差測定を行い L値, a値, b 値を測定した。 その結果、 1枚目の L値が 25. 9、 5枚目の L値が 37. 8で あった。 更に、 この熟成したインクと以下の比較例 1で作製したインクとを各々 適量を計量紙に分取し、 軟膏ヘラを用いてインクのヘラ引きを実施した。 このへ ラ引きした紙の黒度と光沢を視感で評価した。 その際、 比較例 1で作製したイン クのヘラ引き品の黒度と光沢を 1 0とした。 その結果、 黒度、 光沢ともに 1 0で 一 19 一 え用紙 (規貝 IJ26) あり、 比蛟例 1のインクと差が無かった。
実施例 8
「C F 9J の成型圧力を 1 6 2 Kgf/c m2とし、 出来上がった成型体の密度が 0. 7 88 g/ c cであった以外は実施例 7と同様の方法で実験をおこなった。 その結果、 グラインドゲージの測定結果は、 1回目が 5 1 μ ιη、 2回目が 3 5 μ m, 3回目が 1 6 m、 4回目が 7 μ πιであった。
展色試験の結果、 刷り減らし試験における L値の 1枚目が 26. 3、 L値の 5枚 目が 3 8. 5であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 10であつ た。 展色試験の結果比較例 8のイ ンクと差が無かった。
実施例 9
三菱化学 (株) 製力一ボンブラック 「C F 3 1」 を用い、 成型圧力を 1 8. 6 K gf/c m2とし、 出来上がった成型体の密度が 0. 4 3 2 g/c cであった以外 は実施例 7と同様の方法で実験をおこなった。
その結果、 グラインドゲージの測定結果は、 1回目が 9 /im、 2回目が 7 m であった。
展色試験の結果、 刷り減らし試験における L値の 1枚目が 22. 8、 L値の 5 枚目が 34. 0であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 1 0であ つた。 展色試験の結果比較例 9のインクと差が無かった。
実施例 1 0
「C F 3 1」 の成型圧力を 3 7 2 Kgf/c m2とし、 出来上がった成型体の密度 が 0. 53 1 g/c cであった以外は実施例 7と同様の方法で実験をおこなった。 その結果、 グラインドゲージの測定結果は、 1回目が 1 3 /im、 2回目力; 1 0 μ m, 3回目が 7 μπιであった。
展色試験の結果、 刷り減らし試験における L値の 1枚目が 22. 6、 L値の 5 枚目が 3 3. 9であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 1 0+であ つた。 展色試験の結果比較例 1 0のインクと差が無かった。
実施例 1 1
昭和ワニス (株) 製ワニス 「MS— 800」 を 380 g、 昭和ワニス (株) 製 ワニス 「F 1 04」 を 20 g、 日本石油 (株) 製 「6号ソルベント」 を 5 7 g秤 取り、 ベッセル (直径 1 1 c m、 高さ 1 8. 5 c m) に入れた。 このワニスを特 殊理化工業 (株) 製ホモミキサー (型式: 「TK AUTO HOMO IXER SL-10Aj ) を 用いて 5000 p. m.にて 1時間撹拌し、 商業オフセッ ト用のワニスを調整し た。
三菱化学 (株) 製カーボンブラック 「CF 9」 に代えて三菱化学 (株) 製カー ボンブラック 「MA 7」 を用いた以外は実施例 7と同様の操作により加圧成型し、 成型体の密度を測定したところ 0. 51 8 g/c cであった。
上記の調製した新閱インキ用ワニスに、 上記のカーボンブラック成型体 1 14 gを投入し、 5000 r. p.m.で 1 20分間撹拌して、 新聞用インクを作製した。 この新閜用インクを浅田鉄工所 (株) 株式会社製ロールミル機 (型式: 「BR 一 500」 ) で練肉した。 練肉後、 東洋精機製作所製グラインドゲージ (型式: 「SKS— 3」 で 50〜 1 00 の範囲のまた、 株式会社 (株) 上島製作所 製グラインドゲージ (型式: R 1 1 10) で 0〜 50 μ mの範囲の未分散塊カー ボンブラックの大きさを測定した。 未分散塊カーボンブラックの大きさが 1 0 mよりも大きい場合は、 再度ロールミル機を通した。 その結果、 最大粒子径は、 1回目の測定結果は 18 μ m、 2回目の測定結果は 1 5 μ m、 3回目の測定結果 は 7 μ mであった。
実施例 1 2
「MA 7」 の成型圧力を 149 K gf/c m2とし、 出来上がった成型体の密度が 0. 748 g/c cであった以外は実施例 1 1と同様の方法で実験をおこなった。 その結果、 グラインドゲージの測定結果は、 1回目が 40 μπι、 2回目が 7 μ mでめつ /こ。
比較例 7
三菱化学 (株) 製カーボンブラック未造粒品 「C F 9」 (嵩密度 0. 250 g /c c) を成型することなくそのまま使用した以外は実施例 7と同様の方法でイン キを作製し、 実験をおこなった。
その結果、 グラインドゲージの測定結果は、 1回目が 48 ΓΠ、 2回目が 3 7 / m、 3回目が 32 /i m、 4回目が 30 μπι、 5回目 1 9 /i m、 6回目 9 μπであ つた。 実施例 7が 3回目で 1 0 m以下になったのに比べて、 6回の練肉が必要であ つた。
展色試験の結果、 刷り減らし試験における 1枚目の L値が 26. 0、 5枚目の し値が 3 7. 4であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 1 0であ つた。 展色試験の結果実施例 7のインクと差が無かった。
比較例 8
三菱化学 (株) 製カーボンブラック造粒品 「C F 9 B」 (嵩密度 0. 423 g /c c) を成型することなくそのまま使用した以外は実施例 7と同様の方法でイン キを作製し、 実験をおこなった。
その結果、 グラインドゲージの測定結果は、 1回目が 6 2 m、 2回目が 4 6 m、 3回目が 38 μπι、 4回目が 1 5 /x m、 5回目 7 つであった。
実施例 8が 4回目で 1 0 μ m以下になったのに比べて、 5回の練肉が必要であつ た。
展色試験の結果、 刷り減らし試験における 1枚目の L値が 25. 4、 5枚目の 値が37. 7であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 1 0であ つた。 展色試験の結果実施例 8のインクと差が無かった。
比較例 9
三菱化学 (株) 製カーボンブラック未造粒品 「C F 3 1」 (嵩密度 0. 1 3 6 g/c c ) を成型することなくそのまま使用した以外は実施例 7と同様の方法でィ ンキを作製し、 実験を実施した。
その結果、 グラインドゲージの測定結果は、 1回目が 2 5 /i m、 2回目が 1 3 μ m, 3回目が 7 z mであった。
実施例 9が 1回目で 1 0 μ m以下になったのに比べて、 3回の練肉が必要であ つた。
展色試験の結果、 刷り減らし試験における 1枚目の L値が 22. 8、 5枚目の 値が3 3. 9であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 1 0であ つた。 展色試験の結果実施例 9のインクと差が無かった。
比較例 1 0
三菱化学 (株) 製力一ボンブラック油添加造粒品 「OC F 3 1 B」 (嵩密度 0. 一 22 - 別 26) 2 7 2 g/c c ) を成型することなくそのまま顔料として使用した。 「OC F 3 l B」 は 5重量%の油を含んでいる為、 力一ボンブラックを 1 1 4 gから 1 20 g に増量した。 また、 同様の理由からワニス中の鉱物油を 90 gから 84 gに減量 した。 これら以外は実施例 7と同様の操作により実施例 7と同様の炭素含有量を 有するインキを作製した。 それ以降は実施例 7と同様の方法で実験を実施した。 その結果、 グラインドゲージの測定結果は、 1回目が 8 1 m、 2回目が 1 1 μ m, 3回目が 7 μιυであった。
実施例 1 0が 2回目で 1 0 m以下になったのに比べて、 3回の練肉が必要で あ 7こ
展色試験の結果、 刷り減らし試験における 1枚目の L値が 23. 8、 5枚目の 値が34. 5であった。 また、 ヘラ引き試験における黒度 1 0、 光沢 1 0であ つた。 展色試験の結果実施例 1 0のインクと差が無かった。
比較例 1 1
三菱化学 (株) 製カーボンブラック未造粒品 「MA 7」 (嵩密度 0. 220 g /c c) を成型することなくそのまま使用した以外は実施例 1 1 と同様の方法でィ ンキを作製し、 実験をおこなった。
その結果、 グラインドゲージの測定結果は、 1回目が 3 3 /im、 2回目が 2 5 μ m. 3回目が 2 2 /im、 4回目力 S l 6 /z m、 5回目 1 0 m、 6回目 8 mで あった。
実施例 1 1が 3回目で 1 0 μ m以下になったのに比べて、 8回の練肉が必要で あつ 7こ。
比較例 1 2
三菱化学 (株) 製力一ボンブラック造粒品 「MA 7 B」 (嵩密度 0. 40 O g /c c ) を成型することなくそのまま使用した以外は実施例 1 1 と同様の方法でィ ンキを作製し、 実験をおこなった。
その結果、 グラインドゲージの測定結果は、 1回目が 1 00 μ πι、 2回目が 6 8 μ πι、 3回目が 1 8 /x m、 4回目が 1 5 μ πι、 5回目 1 0 μ ΐη、 6回目 7 μ m であった。
実施例 1 2が 2回目で 1 0 μ m以下になったのに比べて、 6回の練肉が必要で
- 23 - 差替え用紙 (規則 26) あった。
実施例の結果を表 8に、 比較例の結果を表 9に記した。 また、 展色試験の結果 を表 1 0に示した。
(樹脂への適用 実施例 1 3〜 2 7 )
実施例 1 3
(1)成型体の作製
油研株式会社製炭素鋼金型 (内法 1 5 OmmX 1 5 Omm、 高さ 3 6 0 mm) に三菱 化学社製カーボンブラック # 4 5 (嵩密度 0. 2 1 8 g/cc) を 1 K g入れ、 油研 株式会社製 20 t o n油圧プレスにセッ トした。 成型圧力 4 Okg f Zcm2で加圧 成型し、 成型密度を測定した所 0. 76 1 g/ccであった。
このカーボンブラック成型体を粉砕し、 1 00メ ッシュ (1 5 0 μπι) 、 6 0 メッシュ (250 /im) 、 30メッシュ (500 μπι) 、 1 6メッシュ (1mm) 、 8. 6メッシュ (2 mm) の標準ふるいで分級した。
(2)着色樹脂の作製
東洋精機製作所社製バンバリ一ミキサー (8— 250型) に三菱化学社製 A B S樹脂 (サンレックス SAN— C) 1 1 4. 2 1 g、 C i b a -G e i g y社製 老化防止剤 (ィルガノ ックス 1 0 10) 1. 14 g、 ステアリ ン酸カルシウム 1. 1 gと前項で記載した力一ボンブラックを粉砕し、 1〜 2mmに分級したもの 7 7. 6 6 gを入れた。
ミキサー温度を 1 65°Cに設定して、 1 2分間混練し、 カーボンブラック濃度 が 40 w t %のマスタ一バッチを作製した。
この 40%マスタ一バッチ 2. 5 gに三菱化学社製 A B S榭脂 (タフレックス 450) を 9 7. 5 gを加え、 1 50°Cに設定した安田精機製作所製 2本ロール ミル (N o. 1 9 1—丁1^型) で 1 0分問混練し、 着色樹脂試料を作製した。 着色樹脂試料は、 0. 3 mmの厚みにシート化し、 3 X 3 mm角の小片を切り 出した。 240°Cに設定したホッ トプレート上にスライ ドガラスを置いた。 3 X 3 mmに切り出した小片を乗せ、 更に別のスライ ドガラスで挟んだ。 加重を 1 0 分間加えて、 小片を引き伸ばした。
(3)分散度測定
- 24 - 差替え用紙 (規則 26) 引き伸ばした試料は三菱化学社製画像処理装置 (MKS I P S— 1 000) を 用いて、 直径 7 μ m以上の粒子の面積をカウントした。 観察視野面積と 7 μ πι以 上の粒子総面積から以下の式に従って分散指数を算出した。
分散指数 =粗大粒子総面積/観察視野面積 X 1 00000 その結果、 分散指数は 1 3 3 6であった。
実施例 1 4
実施例 1 3における力一ボンブラックの粒度を 500 μ m〜 1 mmとした以外 は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 1 8 84であつ た。
実施例 1 5
実施例 1 3におけるカーボンブラックの粒度を 250 μ πι〜500 μΐηと した 以外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 1 1 1 3で ¾>つ 7こ。
実施例 1 6
実施例 1 3における力一ボンブラックの粒度を 1 50 m〜 2 50 mとした 以外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 1 26 8で めつ 7こ。
実施例 1 7
油研株式会社製炭素鋼金型 (内法 1 5 OmmX 1 5 Οπιπκ 高さ 3 60 mm) に三菱 化学社製カーボンブラック # 4 5 ( 密度 0. 2 1 8 g/cc) を 1 K g入れ、 油研 株式会社製 20 t o n油圧プレス機にセッ トした。 成型圧力 88 kg f Zc mzで加 圧成型し、 成型密度を測定した所 0. 850 g/ccであった。 この力一ボンブラッ ク成型体を粉砕、 分級し、 1〜 2 mmの粒を作製した。 この粒を用いて実施例 1 3と同様の操作で分散指数を測定した。 その結果、 分散指数は 1 1 5 7であった。 実施例 1 8
実施例 1 7における力一ボンブラックの粒度を 500 μ π!〜 1 mmとした以外 は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 1 520であつ た。
実施例 1 9
- 25 - 実施例 1 Ίにおけるカーボンブラックの粒度を 2 50 μ rr!〜 5 00 jumと した 以外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 1 5 2 0で めつに。
実施例 20
実施例 1 7における力一ボンブラックの粒度を 1 50 μ m〜 2 50 μ mと し 7こ 以外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 1 4 7 8で あった。
実施例 2 1
(1)成型体の作製
実施例 1 3と同様の操作でカーボンブラック成型体を作製し、 粉砕、 分級した。
(2)着色樹脂の作製
東洋精機製作所製バンバリ一ミキサー (B— 2 50型) に三菱化学社製低密度 ポリエチレン樹脂 (L F 440HA) 1 0 1. 49 g、 C i b a— G e i g y社 製老化防止剤 (ィルガノックス 1 0 1 0) 0. 8 7 g、 ステアリン酸カルシウム 1. 3 9 gと前項で記載したカーボンブラックを粉砕し、 l〜2mmに分級した もの 6 9. 44 gを入れた。
ミキサ一温度を 1 1 5°Cに設定して、 7分間混練し、 カーボンブラック濃度が 40 w t %のマスターバッチを作製した。
この 40%マスタ一バッチ 1. 5 gに三菱化学社製低密度ポリエチレン樹脂 (F 1 20) を 58. 3 gを加え、 1 30°Cに設定した安田精機製作所製 2本口 一ルミル (N o. 1 9 1— TM型) で 1 0分間混練し、 着色榭脂試料を作製した。 着色樹脂試料は、 0. 3 mmの厚みにシート化し、 3 X 3mm角の小片を切り 出した。 24 0°Cに設定したホッ トプレート上にスライ ドガラスを置いた。 3 X 3 mmに切り出した小片を乗せ、 更に別のスライ ドガラスで挟んだ。 加重を 1 0 分間加えて、 小片を引き伸ばした。
(3)分散度測定
実施例 1 3と同様の操作で測定した。
その結果、 分散指数は 3 34であった。
[実施例 22 ]
- 26 - 差替え用紙 (規則 26) 実施例 2 1におけるカーボンブラックの粒度を 500 m〜 1 mmとした以外 は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 34 7であった。
[実施例 23 ]
実施例 2 1における力一ボンブラックの粒度を 25 0 m〜 500 μ mと した 以外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 327であ つた。
[実施例 24 ]
実施例 1 3におけるカーボンブラックの粒度を 1 50 1 m〜 2 5 mとした以 外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 34 1であつ た。
[実施例 25 ]
油研株式会社製炭素鋼金型 (內法 1 50瞧 X 1 50mm、 高さ 3 60mm、 ) に三 菱化学社製力一ボンブラックヰ 45 (¾密度 0. 2 1 8 g/cc) を 1 Kg入れ、 油 研株式会社製 20 t o n油圧プレス機にセッ トした。 成型圧力 8 8 kg f /c m2で 加圧成型し、 成型密度を測定した所 0. 850 g/ccであった。 この力一ボンブラ ック成型体を粉砕、 分級し、 l〜2mmの粒を作製した。 この粒を用いて実施例
1 と同様の操作で分散指数を測定した。 その結果、 分散指数は 24 2であった。
[実施例 26 ]
実施例 25における力一ボンブラックの粒度を 500 μ m〜 1 mmとした以外 は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 40 5であった。
[実施例 27 ]
実施例 25における力一ボンブラックの粒度を 2 50 μ m〜 500 / mとした以 外は全く同様の操作で分散指数を測定した。 その結果、 分散指数は 446であつ た。
[比較例 1 3]
三菱化学社製乾式造粒品 # 4 5 Bを 1〜 2mmに分級した。 この粒子を用いて、 実施例 1 3と全く同様の操作で分散指数を測定した。 その結果、 1 7 39であつ た。
[比較例 1 4 ]
- 27 - 差替 え 用紙(規則 26) 三菱化学社製乾式造粒品 # 4 5 Bを粉砕後、 500 μ m〜 1 mmに分級した。 この粒子を用いて、 実施例 1 4 と全く同様の操作で分散指数を測定した。 その結 果、 1 6 76であった。
[比較例 1 5 ]
三菱化学社製乾式造粒品 # 4 5 Bを粉砕後、 2 50 /ζ π!〜 500 /i mに分級し た。 この粒子を用いて、 実施例 1 5と全く同様の操作で分散指数を測定した。 そ の結果、 1 9 53であった。
[比較例 1 6 ]
三菱化学社製乾式造粒品 # 4 5 Bを粉砕後、 1 50 m〜250 /i mに分級し た。 この粒子を用いて、 実施例 1 6と全く同様の操作で分散指数を測定した。 そ の結果、 2 1 1 0であった。
[比較例 1 7 ]
三菱化学社製乾式造粒品 # 45 Bを lmm〜2mmに分級した。 この粒子を用い て、 実施例 1 7と全く同様の操作で分散指数を測定した。 その結果、 553であ つた。
[比較例 1 8 ]
三菱化学社製乾式造粒品 # 4 5 Bを粉砕後、 500 μ IT!〜 1 mmに分級した。 この粒子を用いて、 実施例 1 8と全く同様の操作で分散指数を測定した。 その結 果、 5 30であった。
[比較例 1 9 ]
三菱化学社製乾式造粒品 # 4 5 Bを粉砕後、 2 50 /χπ!〜 500 μ mに分級し た。 この粒子を用いて、 実施例 1 9と全く同様の操作で分散指数を測定した。 そ の結果、 64 6であった。
[比較例 20]
三菱化学社製乾式造粒品 # 4 5 Bを粉碎後、 1 50 μ ιη〜250 μ mに分級し た。 この粒子を用いて、 実施例 20と全く同様の操作で分散指数を測定した。 そ の結果、 734であった。
[比較例 2 1 ]
三菱化学社製湿式造粒品 # 4 5 BWを 1 mm〜2mmに分級した。 この粒子を
- 28 -
:差替え用紙 (規則 26) 用いて、 実施例 2 1 と全く同様の操作で分散指数を測定した。 その結果、 2 1 4 1であった。
[比較例 22]
三菱化学社製湿式造粒品 # 4 5 BWを粉砕後、 500 /z π!〜 1 mmに分級した c この粒子を用いて、 実施例 22と全く同様の操作で分散指数を測定した。 その結 果、 2086であった。
[比較例 23 ]
三菱化学社製湿式造粒品 # 4 5 BWを粉砕後、 250 /i m〜500 μ τηに分級 した。 この粒子を用いて、 実施例 23と全く同様の操作で分散指数を測定した。 その結果、 2 1 6 8であった。
[比較例 24 ]
三菱化学社製湿式造粒品 # 4 5 BWを粉砕後、 1 50 μ ιη〜2 50 に分級 した。 この粒子を用いて、 実施例 22と全く同様の操作で分散指数を測定した。 その結果、 2 30 7であった。
[比較例 25 ]
三菱化学社製湿式造粒品 # 4 5 BWを 1 mn!〜 2 mmに分級した。 この粒子を 用いて、 実施例 25と全く同様の操作で分散指数を測定した。 その結果、 54 1 であった。
[比較例 26 ]
三菱化学社製湿式造粒品 # 4 5 BWを粉碎後、 500 μ m〜 1 mmに分級した。 この粒子を用いて、 実施例 26と全く同様の操作で分散指数を測定した。 その結 果、 584であった。
[比較例 2 7 ]
三菱化学社製湿式造粒品 # 45 BWを粉砕後、 2 50 μ π!〜 500 μ mに分級し た。 この粒子を用いて、 実施例 2 7と全く同様の操作で分散指数を測定した。 そ の結果、 584であった。
実施例 1 3〜 2 7、 比較例 1 3〜 2 7の結果を表 1 1にまとめた。
(塗料への適用 実施例 28〜 3 5)
以下の実施例中、 実施例及び比較例の評価方法として作製した黒色塗料中の力
- 29 - 差替 え 用紙(規則 26) —ボンブラックの分散性と塗膜の黒色度、 光沢を評価した。
カーボンブラックの分散性に関しては、 所定時間ペイントシユイカーで分散し た塗料のグラインドゲージ測定を実施し、 その値を分散性の指標とした。
グラインドゲージの測定は以下のものである。 『グラインドゲージとは、 鋼の 盤に深さ 0 〜 2 5 X 1 0 _ s mまで変化している 2本の溝を刻んだもので、 最深部 にインキを置き、 スク レーパーで浅い方に引き伸ばし、 粗粒子の直径より浅い所 にできるすじの位置の目盛りから粒度を求める。 』 ( 「色材工学ハンドブック」
P. 1052〜1053 朝倉書店)
塗膜の黒色度に関しては色差計による方法と視感による方法を用いた。
色差計による黒色度の評価は、 J I S Z 8 7 3 0 - 1980 (色差表示方法) の 中のハンターの色差式の L値 (明度指数) を測定し、 L値が小さい試料が、 黒色 度が高いと判断した。
視感による黒色度の測定は以下の方法に従って測定した。 ポリエチレンテレフ タレート (P E T ) フィルムの上に実施例で作製した塗料と比較例で作製した塗 料を並べ、 バーコ一ターで手前に引き伸ばした。 バーコータ一の設定に応じた厚 さの塗膜のができる。 この塗料を塗布した P E Tフィルムを 1 2 0 °Cに設定した 通風乾燥機に 2 0分間入れて、 焼き付けを実施した。 比較例の塗料の黒度を 1 0 点として、 より高い黒色度の試料には大きな数字を与え実施例の塗料の黒度を相 対比較した。
光沢は視感による測定を実施した。 上記の黒色度用に作製した塗膜を約 6 0度 傾け、 光の反射度合いを目視にて測定した。 比較例で作製した塗料を 1 0点とし て、 より高い光沢の試料には大きな数字を与え実施例の塗膜の光沢を相対比較し た。
着色力は以下方法による。
作製した黒色塗料と白色塗料を混合し、 P E Tフィルムに塗布し、 焼き付けし た塗膜を色差計にて L値を測定した。 この結果、 L値が小さい塗料が着色力が高 いと判断した。
実施例 2 8
三菱化成エンジニアリング社製 S U S 3 0 4製金型 (内法 7 O m m X 7 O m m , 高さ 4 0mm、 ) に三菱化学社製カーボンブラック # 26 50を 30 g入れ、 王 子機械工業株式会社製 3 7 t o n 4本柱単動油圧プレス (ラム直径 1 5 2. 4 m m) にセッ トした。 成型圧力 1 · 9 k gf/c m2で加圧成型し、 成型密度を測定し た所 0. 26 6 g/c cであった。
1 40 c cのマヨネーズ瓶に直径 2. 5〜3. 5 mmの東京ガラス製ガラスビー ズを 9 0 g入れた。 関西ペイント社製メラミンアルキド樹脂ワニス (アミラック 1 02 6) を 1 6 gと関西ペイント社製アミラックシンナー 1 0 gとカーボンブ ラック成型体 3 gを秤量して入れた。
このマヨネーズ瓶をレッ ドデビル社製シングルタイプペイントシェイカ一 (R
C- 500 OA) にセッ トして 1 5分間振とうした。 この黒色ワニスを室温まで 冷却した後、 株式会社上島製作所製グラインドゲージ (型式: R l 1 10) で 0 〜50 μ mの範囲の未分散塊力一ボンブラックの大きさを測定した。 グラインド ゲージの測定結果は 1 5 μ mであった。
更にこのマヨネーズ瓶にァミラック 1 026クリァ一を 50 g入れペイン トシ エイカーで 1 0分間混合し黒色塗料を作製した。
この黒色塗料の一部を分取して (約 l c c) 、 実施例 1の塗料と比較例 1の塗 料を富士フィルム社製 P E Tフィルム (トランシー G 厚さ 1 80 ju m) に約 5 era間隔で乗せ、 東洋精機社製バーコ一ター (No. 24番) で展色した。 この展色 した P ETフィルムを 1 20°Cに設定した池田理化製通風乾燥機 (Automatic Dr ying Oven SS-200N) に 20分間入れ焼き付けを実施した。 この焼き付けした黒色 塗膜の L値を日本電色社製色差計 (Spectro Color Meter SE-2000) で測定した。 L値は 4· 78であった。 また、 比較例 1の塗料黒色度を 1 0として視感にて実 施例サンプルの黒色度を評価した。 黒色度は 1 0+であった。
また、 比較例 1の塗料光沢を 1 0として視感にて実施例サンプルの光沢を評価 した。 評価の基準としては、 「十或いは一は若千の差が認められる、 1 1はやや 良い、 1 2は明らかに良い、 1 3以上は極めて良い」 である。 その結果、 実施例 1の試料は 1 2であった。
次に、 着色力を評価する試料を作製した。 1 4 0 c cのマヨネーズ瓶に関西べ ィント社製白色塗料 (アミラック 1 5 3 1ホワイ ト) を 4 0 g秤量した。 二の中
- 31 - 用紙 (規則 26) に先程作製した黒色塗料 8 gを入れ、 レツ ドデビル社製ペイントシヱイカーで 2 1分 (7分問 X 3回) 間混合し着色力評価試料とした。 この試料を用いて、 黒色 塗料と同様の操作で PETフィルム上に塗膜を作製し、 日本電色社製色差計で L 値を測定した。 し値は44. 9であった。
実施例 29
実施例 28におけるペイントシエ一力一の振と う時間を 30分にした以外は全 く同じ操作を実施した。 グラインドゲージの測定値は 9 /i m、 黒色塗料の L値は 4. 68、 視感による黒色度は 1 0+、 視感による光沢は 1 1+、 着色力評価試料の L直は 4 1. 7であった。
実施例 30
実施例 28におけるペイン トシエ一力一の振とう時間を 1時間にした以外は全 く同じ操作を実施した。 グラインドゲージの測定値は 7. 5 m、 黒色塗料の L 値は 4. 48、 視感による黒色度は 1 1-、 視感による光沢は 1 2、 着色力評価試 料の L値は 3 9. 5であった。
実施例 3 1
実施例 28におけるペイントシエ一カーの振とう時間を 2時間にした以外は全 く同じ操作を実施した。 グラインドゲージの測定値は 7. 5 111、 黒色塗料の L 値は 4. 23、 視感による黒色度は 1 0+、 視感による光沢は 1 0+、 着色力評価試 料の L値は 3 9. 6であった。
実施例 32
実施例 28における成型圧力を 372 k gf/c m2にした以外は全く同じ操作を 実施した。 その結果、 成型体の成型密度は 0. 84 2 g/c cであった。 また、 こ の力一ボンブラック成型体を用いて作製した塗料を測定した結果、 グラインドゲ —ジの測定値は 1 5 μιη、 黒色塗料の L値は 4. 1 3、 視感による黒色度は 1 1 -、 視感による光沢は 1 5、 着色力評価試料の L値は 3 9. 7であった。
実施例 3 3
実施例 3 2におけるペイントシエ一カーの振とう時間を 30分にした以外は全 く同じ操作を実施した。 グラインドゲージの測定値は 7. 5 m、 黒色塗料の L 値は 4. 3 3、 視感による黒色度は 1 1、 視感による光沢は 1 2、 着色力評価試料
- 32 - 差替え用紙 (規則 26) の L値は 39. 0であった。
実施例 34
実施例 32におけるべィントシェーカーの振とう時問を 1時問にした以外は全 く同じ操作を実施した。 グラインドゲージの測定値は 7. 5 /zm、 黒色塗料の L 値は 4. 1 9、 視感による黒色度は 1 3、 視感による光沢は 1 3、 着色力評価試料 の L値は 38. 3であった。
実施例 35
実施例 32におけるペイン トシエーカーの振とう時間を 2時間にした以外は全 く同じ操作を実施した。 グラインドゲージの測定値は 8. 0 m、 黒色塗料の L 値は 3. 96、 視感による黒色度は 12、 視感による光沢は 1 1、 着色力評価試 料の L値は 38. 3であった。
比較例 28
実施例 28で使用したカーボンブラック成型体の代わりに、 三菱化学社製力一 ボンブラック # 2650 ( 密度 0. 077 g/c c) を使用した以外は実施例 2 8と全く同じ操作を実施した。 グラインドゲージの測定値は 1 7 /im、 黒色塗料 の L値は 4. 83、 着色力評価試料の L値は 45. 8であった。 視感による黒色 度と光沢は基準の 1 0とした。
比較例 29
実施例 29で使用したカーボンブラック成型体の代わりに、 三菱化学社製力一 ボンブラック # 2650 (嵩密度 0. 077 g/c c) を使用した以外は実施例 2 9と全く同じ操作を実施した。 グラインドゲージの測定値は 10 μ m、 黒色塗料 の L値は 4. 76、 着色力評価試料の L値は 41. 9であった。 視感による黒色 度と光沢は基準の 10とした。
比較例 30
実施例 30で使用した力一ボンブラック成型体の代わりに、 三菱化学社製カー ボンブラック # 2650 (嵩密度 0. 077 g/c c) を使用した以外は実施例 1 と全く同じ操作を実施した。 グラインドゲージの測定値は 7. 5 ^ m, 黒色塗料 の L値は 4. 50、 着色力評価試料の L値は 39. 7であった。 視感による黒色 度と光沢は基準の 1 0とした。
- 33 - 替 え 用紙 (規則 26) 比較例 3 1
実施例 3 1で使用したカーボンブラック成型体の代わりに、 三菱化学仕製カー ボンブラック # 2650 (嵩密度 0. 077 g/c c) を使用した以外は実施例 4 と全く同じ操作を実施した。 グラインドゲージの測定値は 8. 0 im、 黒色塗料 の L値は 4. 23、 着色力評価試料の L値は 39. 7であった。 視感による黒色 度と光沢は基準の 10とした。
比較例 32
実施例 32で使用したカーボンブラック成型体の代わりに、 三菱化学社製カー ボンブラック乾式造粒品 # 2650 B (嵩密度 0. 463 g/c c) を使用した以 外は実施例 32と全く同じ操作を実施した。
グラインドゲージの測定値は 1 9 μ m、 黒色塗料の L値は 4. 35、 着色力評 価試料の L値は 43. 4であった。
比較例 33
実施例 33で使用したカーボンブラック成型体の代わりに、 三菱化学社製カー ボンブラック乾式造粒品 # 2650 B (嵩密度 0. 463 g/c c) を使用した以 外は実施例 33と全く同じ操作を実施した。
グラインドゲージの測定値は 7. 5 / m、 黒色塗料の L値は 4. 46、 着色力 評価試料の L値は 40. 4であった。 視感による黒色度と光沢は基準の 1 0とし た。
比較例 34
実施例 34で使用したカーボンブラック成型体の代わりに、 三菱化学社製カー ボンブラック乾式造粒品 # 2650 B (寓密度 0. 463 g/c c) を使用した以 外は実施例 34と全く同じ操作を実施した。
グラインドゲージの測定値は 7. 5 /zm、 黒色塗料の L値は 4. 29、 着色力評 価試料の L値は 38. 6であった。 視感による黒色度と光沢は基準の 10と した。 比較例 35
実施例 35で使用した力一ボンブラック成型体の代わりに、 三菱化学社製カー ボンブラック乾式造粒品 # 2650 B (嵩密度 0. 463 g/c c) を使用した以 外は実施例 8と全く同じ操作を実施した。
- 34 - 着替 え 用紙 (規則 26) グライン ドゲージの測定値は 9. 0 μ τη, 黒色塗料の L値は 4. 0 1、 着色力 評価試料の L値は 3 8. 6であった。 視感による黒色度と光沢は基準の 1 0 と し た。
これらの実施例と比較例の結果を表 1 2に示した。
実施例 2 8〜 3 5の全試料の黒色度、 光沢、 着色力は、 対応する比較例試料に 比べて、 同等以上の性能を有している。
(ゴムへの適用 実施例 3 6〜 3 8 )
実施例 3 6
油研株式会社製炭素鋼 (S S 4 0 0 ) 製金型 (内法 1 5 0瞧 X 1 5 0mm、 高さ 3 6 0隱) に三菱化学社製力一ボンブラック D I A— I (未造粒品) (嵩密度 0. 1 6 9 g/cc) を 5 0 0 g入れ、 油研株式会社製 2 0 t o n油圧プレスにセッ トし た。 成型圧力 8 8. 9kg f / c m2で加圧成型し、 成型密度を測定した所 0. 5 2 2 g/ccであった。
このカーボンブラック成型体を表 1 3に示す配合で、 バンバリ一ミキサー及び オープンロールミキサーで混合してゴム組成物を調整した。 これらのゴム組成物 を 1 6 0°Cでプレス加硫し加硫ゴム試験片を作製した。 以下の試験方法で各試験 を行い、 その物性を測定した。
(1)損失係数
損失係数 ( t a η δ ) は (株) レオロジ製 「DV Eレオスぺク トラー」 を 用いて次の条件で測定した。
静的歪み 1 0 %、 動的歪み (振幅) 2 %、 周波数 1 0 H z、 測定温度 6 0 。C
(2)発熱性
発熱性は、 (株) 上島製作所製グッ ドリ ッチ · フレキソメーターを用い、 次の条件で測定した。
試験温度 3 5 、 荷重 2 4ボンド、 試験時間 2 5分
(3)ゴム中での補強粒子分散度 (D%) ; カーボンブラックの分散度測定法
A S TM D 2 6 6 3— B法 (凝集塊カウン卜法) に準拠した。 即ち、 力 0 硫ゴムをスレツジ型ミクロ トーム (L e i t Z社製) で薄膜にスライス し、
- 35 - 差替え用紙 (規則 26) 光学顕微鏡で配合物中の 5 μ m以上の補強粒子 (カーボンブラック) 凝集 塊占める総断面積を測り、 配合物に加えた補強粒子の総断面積 (計算値) から 5 μ m以下に分散している補強粒子のパーセン トを求め、 分散度 (D %) とした。
その結果、 60°Cにおける損失係数が 0. 1 39、 発熱性が 3 1. 0°C、 D%が 99. 2%であった。 表 14にまとめた。
実施例 37
実施例 36において力一ボンブラックを三菱化学製 D I A-H (未造粒品) (嵩密度 0. 1 92 g/cc) にした以外は全く同様の操作で力一ボンブラック成型 体を作製した。
成型圧力 88. 9 kg f /cm2で加圧成型し、 成型密度を測定した所 0. 491 g/ccであった。 また、 実施例 36と全く同様の操作でゴム試験を実施した。
その結果、 60°Cにおける損失係数が 0. 107、 発熱性が 26. 0°C、 D%が 99. 6 %であった。
実施例 38
実施例 36においてカーボンブラックを三菱化学製 D I A— G (未造粒品) (嵩密度 0. 1 92 g/cc) にした以外は全く同様の操作でカーボンブラック成型 体を作製した。
成型圧力 88. 9kg f Zcm2で加圧成型し、 成型密度を測定した所 0. 639 g/ccであった。 また、 実施例 36と全く同様の操作でゴム試験を実施した。
その結果、 60°Cにおける損失係数が 0. 058、 発熱性が 1 7. 0°C、 D%が 99. 9%であった。
比較例 36
実施例 36においてカーボンブラックを三菱化学製 D I A— I (ビーズ) (嵩 密度 0. 35 1 g/cc) にした以外は全く同様の操作でゴム試験を実施した。 その結果、 60°Cにおける損失係数が 0. 1 52、 発熱性が 35. 0°C、 D%が 95. 4 %であった。
比較例 37
実施例 37においてカーボンブラックを三菱化学製 D I A— H (ビーズ) (嵩
- 36 - 差巷え用紙 (規則 26) 密度 0. 352 g/cc) にした以外は全く同様の操作でゴム試験を実施した。 その結果、 60°Cにおける損失係数が 0. 1 23、 発熱性が 29. 0 :、 D%が 97. 3 %であった。
比較例 38
実施例 36においてカーボンブラックを三菱化学製 D I A— G (ビーズ) (嵩 密度 0. 445 g/cc) にした以外は全く同様の操作でゴム試験を実施した。 その結果、 60°Cにおける損失係数が 0. 065、 発熱性が 1 9. 0°C、 D% が 98. 0 %であった。
(結果の考察)
上記の実施例及び比較例から明らかにように、 、 本発明の力一ボンブラック加 圧成型体を使用して製造したゴムは、 高分散性、 低損失、 低発熱性を示す。
一 37 差巷 m 相日 II ^ 芙施 I Άび比較 Iに使用した カーホ ンフラ j ク
½子¾ D B 由] gj
品潘
s 1
j
71 1 . に' 三 *化
フ ラ
1 " 1 o . o a ! ン
5 j ;
1 o ^ ί . 1 8
38 -
差巷え用紙 (規目 1126) 2 = 4 5
Figure imgf000041_0001
- 39 差替え用紙 (規則 26) 表 4 = 9 9 0
圧力 成 度 密度比 ィン yi 粉化率
コンパク 卜 '主 分 K性 合判定 / cm . - '
比較例 3一 }
Figure imgf000042_0001
1.0 0 100 X 〇 X 雄!'列 3一 2 2.7 0.2; △ 〇 〇 議 2一 3 , 3. 345 3.9 δ. 9 17 〇 〇 ◎
¾½ί列 3 - 4 25. } 0. 0 5.1 ! 4. 〇 0 ◎ 真施例 3一 5 3 . 3 0.509 5.7 36. 3 一 〇 〇 ◎ 編 'J 3 - 5 ί 02. ^ 0. 5 ;3 6.3 : 一 〇 〇 ◎ 臭 例 3 一 7 0.5 '· 6.8 3 D. : 〇 〇 ◎ 芙施例 3一 3 2 " . 3 0. c3i 7.7 U. ; 〇 △ 〇 実施例 3一 9 0. 75'〕 8.5 77, j 〇 A 〇 比較例 3 - 1 0 0. 303 3.4 5 △ X X 比較例 3 - 1 1
(大気圧) 2.4 42 X
(滅圧 · 圧品) 0.212 0 〇 X
表 5 = 2 3 0 0
Figure imgf000042_0002
40 差替え用紙 (規貝 IJ26) 表 6 MA 8
Figure imgf000043_0001
表 7 MA 1 0 0
Figure imgf000043_0002
- 41 - 差替え用紙 (規貝 IJ26)
10〃miiJ下にする為に必要 成形 ΙΞ力 ¾®度 な口 ルミルの通過回数
½柄 m
kgf cnt 3 cc 回 実施例 C F 9 成型休 0.530
C卜— 9 成 Si小' 162 0.766 4 荬½例 C F 3 1 18.6 0.437 1 実施例 |0 C F 3 1 372 0.531 2
実繊 11 M A 7 7.4 0.5Ί8 3 実施例 1 A 7 成型体 149 0.748 2
- 42 差替え用紙 (規則 26) °i 比較例
Figure imgf000045_0001
Figure imgf000045_0002
- 43 - -z m (相 siiっ 11 実施例及び比較例
Figure imgf000046_0001
- 4
差替え用紙 (規則 26)
Figure imgf000047_0001
表 13 実施例及び比較例
Figure imgf000048_0001
46
差替 え 用紙 (規則 26) 配合割合
i実施例 2 6実施例^ 実施例 比較例^ 6 I比較例:^比較例^ 力一ボンフラッ ク
, DIA-I , DIA-H DIA-G DIA-I DIA-H DIA-G の種類 I
力一ボンブラッ ク
体 jiii.iaiJinn
の ¾ (ヒ - a 成型 -ズ) iusS
天然ゴム * 1 ( 100 100 100 100 100 100
C B * 2 50 50
C B * 3 50 50
C B * 4 50 50 亜鉛華 5 5 5 5 5
5
ステアリン酸 3 3 3 3 3
3
老化防止剤 * 5 1 1 1 ί 1 硫黄 2. 2 2 ; 2 2
2
加 促進剤 * 6 0.7 0.7 0.7 ! 0.7 0.7 0.7 合計 161.7 161.7 161.7 161.7 161.7 161.7
* 1 ) S R— L
* 2 ) D I A - I
* 3 ) D I A— H
* 4 ) D I A— G
* 5 ) N-(1 ,3-dimethylbutyl)-N'-phenylenediamine;Santof!ex13(Monsanttt ¾)
* 5 ) N-Cyclohexy卜 2-benzothiazylsuifenamide;ノクセラ-CZ (大内新興ネ土 )
- 47 差替 え 用紙 (規則 26) 産業上の利用可能性
本発明により、 カーボンブラックの基本特性を損なうことなく、 コンパク ト性 に優れ、 取り扱いに適した力一ボンブラック加圧成型体を得る。 更に、 このカー ボンブラック加圧成型体は、 成型前に比較して漆黒度が向上したものとすること もできる。
48

Claims

請 求 の 範 囲
1. 密度 p ( g / c c ) 力
= 8. 1 9 0 X 1 0 "3D- 3. 8 2 4 X 1 0 "3L+ 0. 5 1 6
以上、
p = 3. 2 6 5 X 1 0 "3D- 3 - 3 3 4 X 1 0— 3L+ 1. 1 7 3
以下
(ただし力一ボンブラックの電子顕微鏡による算術平均粒子径を D ( n m) D B P吸油量を L (m l Z l O O g ) とする)
で表される力一ボンブラック加圧成型体。
2. 密度 p ( g/c c ) 、
= 8. 6 8 6 X 1 0 "3D- 4. 0 3 1 X 1 0— 3L+ 0. 5 4 3
以上、
3 2 3 X 1 0— 3D— 3 8 9 X 1 0— 3L+ 1. 0 7 2 以下
(ただしカーボンブラックの電子顕微鏡による算術平均粒子径を D (nm) D B P吸油量を L (m l Z l O O g ) とする)
で表される請求項 1記載の力一ボンブラック加圧成型体。
3. カーボンブラックがファーネス法により得られたものであることを特徴 とする請求項 1又は 2記載のカーボンブラック加圧成型体。
4 - 力一ボンブラックの粒子径が 1 n m以上 6 0 n m以下であることを特徴 とする請求項 3記載のカーボンブラック加圧成型体。
5. 粉化率が 4 0%以下である請求項 1〜4のいずれかに力一ボンブラック 加圧成型体。
6. 力一ボンブラック加圧成型体の嵩密度が原料力一ボンブラックの嵩密度 の 2. 5倍以上 8倍以下である請求項 1〜 5のいずれかに記載ののカーボンブラ ック加圧成型体。
7. カーボンブラック加圧成型時の圧力が、 2 K g f ノ era2以上、 5 0 0 K g f cm2以下である請求項 1〜 6のいずれかに記載のカーボンブラック加圧成型体。
8. 形状が三角形あるいはその他の多角形の断面を有する柱状体である請求
- 49 - 差替 え ffl l*¾aU26) 項 1〜 7のいずれかに記載の力一ボンブラック加圧成型体。
9. 成型体の形状が立方体あるいは直方体である請求項 8記載のカーボンブ ラック加圧成型体。
1 0. カーボンブラック加圧成型体が、 予め、 力一ボンブラック粒子間の気体 を滅圧チャンバ一を用いて脱気した後、 加圧成型して得られたものである請求項 1〜9のいずれかに記載のカーボンブラック加圧成型体。
1 1. カーボンブラック粒子間の気体の脱気を 0. 0 1〜 500 T o r rでの予 備減圧により行うことを特徴とする請求項 1 0記載のカーボンブラック加圧成型 体。
1 2. カーボンブラック加圧成型体が、 その密度管理を、 その抵抗値を測定す ることにより行うものであることを特徴とする請求項 1〜 1 1のいずれかに記載 の力一ボンブラック加圧成型体。
1 3. 抵抗値が体積抵抗率であることを特徴とする請求項 1 2記載のカーボン ブラック加圧成型体。
14. 密度管理が、 カーボンブラック加圧成型中又は加圧成型後に型内で成型 体の体積抵抗率を測定することにより行うことを特徴とする請求項 1 3に記載の カーボンブラック加圧成型体。
1 5. 抵抗値の測定が、 4探針法で行われることを特徴とする請求項 1 2〜 1 4のいずれかに記載のカーボンブラック加圧成型体。
1 6. 加圧成型に際して、 原料の充填及び加圧操作を複数回行うことを特徴と する 1〜 1 5のいずれかに記載のカーボンブラック加圧成型体。
1 7. 加圧操作のうち最終の圧力が、 それ以前の加圧操作の際の圧力のうちの最 大の圧力の 1. 2倍であることを特徴とする請求項 1 6記載のカーボンブラック 加圧成型体。
1 8. 型内に充填した力一ボンブラックを加圧成型する装置であって、 カーボ ンブラックとの接触面の少なく とも一部に平均細孔径が 1 0 μ m以下の多孔質体 を有してなることを特徴とするボンブラック成型体により得られることを特徴と する請求項 1〜1 7記載のカーボンブラック加圧成型体。
1 9. 細孔径 1 Ο μτη以下の多孔質が、 濂紙、 濂布又はフッ素樹脂多孔質フィ
- 50 - 差替 5 田 iff (^目 iゥ ルムであることを特徴とする請求項 1 8記載の力一ボンブラック加圧成型体。
20. 多孔質体が、 加圧装置のピス トン面に形成されていることを特徴とする 請求項 1 8又は 1 9のいずれかに記載のカーボンブラック加圧成型体。
2 1. カーボンブラック加圧成型体を型から離型する際に、 加圧状態で離型す ることを特徴とする請求項 1〜 20のいずれかに記載のカーボンブラック加圧成 型体の製造方法。
22. 離型時の圧力が、 0. 0 1〜5 k g f / c m2であって加圧成型時の圧力 を超えない範囲であることを特徴とする請求項 2 1記載の力一ボンブラックの製 造方法。
23. 水分量が 0. 5〜 1 1重量%であるカーボンブラックを加圧成型してな ることを特徴とする請求項 1〜 20のいずれかに記載の力一ボンブラック加圧成 型体。
24. 予め造粒された力一ボンブラックを加圧成型してなることを特徴とする 請求項 1〜20、 及び請求項 23のいずれかに記載の力一ボンブラック加圧成型 体。
25. 予め造粒されたカーボンブラックが平均粒径 1 5 μπιであることを特徴 とする請求項 24記載のカーボンブラック加圧成型体。
26. 請求項 1〜20、 2 3及び 24のいずれかに記載の力一ボンブラック加 圧成型体を顔料として使用することを特徴とするインクの製造方法。
27. 請求項 1〜20、 23及び 24のいずれかに記載のカーボンブラック加 圧成型体を顔料として使用することを特徴とする塗料の製造方法。
28. 天然ゴム及び合成ゴムのうち 1種以上 1 00重量部に、 請求項 1〜20、 23及び 2 のいずれかに記載のカーボンブラック加圧成型体 30〜 1 50重量 部を配合することを特徴とするゴム組成物の製造方法。
29. 請求項 1〜20、 2 3及び 24のいずれかに記載のカーボンブラック加 圧成型体を樹脂成分に配合することを特徴とする樹脂組成物の製造方法。
30. 力一ボンブラックを体積が請求項 1〜 20、 2 3及び 24のいずれかに 記載のカーボンブラック加圧成型体として貯蔵することを特徴とするカーボンブ ラックの貯蔵方法。
- 51 - 差替 i κ if (*s R\
3 1. カーボンブラックを請求項 1〜 20、 23及び 24のいずれかに記載の カーボンブラック加圧成型体と して移送することを特徴とするカーボンブラック の移送方法。
PCT/JP1996/002736 1995-09-22 1996-09-24 Molded body of carbon black WO1997011128A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96931287A EP0945494B1 (en) 1995-09-22 1996-09-24 Molded body of carbon black
DE69632485T DE69632485T2 (de) 1995-09-22 1996-09-24 Formkörper aus russ
CA002201233A CA2201233A1 (en) 1995-09-22 1997-03-27 Molded product of carbon black

Applications Claiming Priority (23)

Application Number Priority Date Filing Date Title
JP24443095 1995-09-22
JP7/244430 1995-09-22
JP7/305641 1995-11-24
JP7305641A JPH09143389A (ja) 1995-11-24 1995-11-24 カーボンブラック成型体及びその製造方法
JP7330200A JPH09169928A (ja) 1995-12-19 1995-12-19 カーボンブラックの移送方法
JP7/330200 1995-12-19
JP7331818A JPH09169929A (ja) 1995-12-20 1995-12-20 カーボンブラック成型体の製造方法
JP7/331817 1995-12-20
JP7331821A JPH09169511A (ja) 1995-12-20 1995-12-20 カーボンブラック成型体の製造方法及びカーボンブラック加圧成型装置
JP7331820A JPH09169927A (ja) 1995-12-20 1995-12-20 カーボンブラック成型体の製造方法
JP7331817A JPH09169509A (ja) 1995-12-20 1995-12-20 カーボンブラック成型体の製造方法
JP7/331818 1995-12-20
JP7331816A JPH09169926A (ja) 1995-12-20 1995-12-20 カーボンブラックの貯蔵方法
JP7/331819 1995-12-20
JP7/331816 1995-12-20
JP7/331820 1995-12-20
JP7331819A JPH09169510A (ja) 1995-12-20 1995-12-20 カーボンブラック成型体の製造方法
JP7/331815 1995-12-20
JP7/331821 1995-12-20
JP7331815A JPH09170992A (ja) 1995-12-20 1995-12-20 カーボンブラック成型体の製造方法及びその密度管理方法
JP10136196 1996-04-23
JP8/101361 1996-04-23
CA002201233A CA2201233A1 (en) 1995-09-22 1997-03-27 Molded product of carbon black

Publications (1)

Publication Number Publication Date
WO1997011128A1 true WO1997011128A1 (en) 1997-03-27

Family

ID=27582872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002736 WO1997011128A1 (en) 1995-09-22 1996-09-24 Molded body of carbon black

Country Status (2)

Country Link
EP (1) EP0945494B1 (ja)
WO (1) WO1997011128A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025872A1 (de) * 2000-05-25 2001-12-06 Wacker Chemie Gmbh Verfahren zur Herstellung von feststoffhaltigen Kautschukmassen
CN105136538B (zh) * 2015-08-19 2017-12-22 吉林省交通规划设计院 一种碎石封层试件制备装置及使用型模的试件制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114192A (ja) * 1974-07-26 1976-02-04 Denki Kagaku Kogyo Kk Kaabonburatsukupuresuho
JPS532554A (en) * 1976-06-29 1978-01-11 Tokai Carbon Kk New rubber compositions
JPH02142858A (ja) * 1988-11-25 1990-05-31 Mitsubishi Kasei Corp 易分散性カーボンブラック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259962A (ja) * 1990-03-12 1991-11-20 Bridgestone Corp ハンドリング性の改良されたカーボンブラックの製造方法
JP3306921B2 (ja) * 1992-09-29 2002-07-24 三菱化学株式会社 カーボンブラック成形体及びその製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114192A (ja) * 1974-07-26 1976-02-04 Denki Kagaku Kogyo Kk Kaabonburatsukupuresuho
JPS532554A (en) * 1976-06-29 1978-01-11 Tokai Carbon Kk New rubber compositions
JPH02142858A (ja) * 1988-11-25 1990-05-31 Mitsubishi Kasei Corp 易分散性カーボンブラック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0945494A4 *

Also Published As

Publication number Publication date
EP0945494A4 (ja) 1999-09-29
EP0945494B1 (en) 2004-05-12
EP0945494A1 (en) 1999-09-29

Similar Documents

Publication Publication Date Title
CN101831210B (zh) 一种固态水彩颜料及其制作方法
Maiti et al. Effect of carbon black on properties of rubber nanocomposites
EP0839875B1 (en) Carbon black aggregate
WO1997011128A1 (en) Molded body of carbon black
JPH06136285A (ja) 酸化亜鉛および沈降ケイ酸からなる良好に分散可能な顆粒の製造方法、該顆粒およびそれを含有するゴムコンパウンド
EP1995284A1 (en) Rapid dispersing hydrous kaolins
CA2324238A1 (en) Soot granules
JP2003026866A (ja) オレフィン系樹脂シート用添加剤、及びそれを配合してなるシート用樹脂組成物
JPH107930A (ja) インク用顔料及びこれを用いたインクの製造方法
JPH10114869A (ja) 塗料用顔料及びこれを用いた塗料の製造方法
JP3862327B2 (ja) カーボンブラック成型体
KR100494215B1 (ko) 카본블랙응집물
CA2201233A1 (en) Molded product of carbon black
DE69632485T2 (de) Formkörper aus russ
JPH10140039A (ja) ゴム配合用カーボンブラック成型体及びカーボンブラック含有ゴム組成物
JPH10140036A (ja) カーボンブラック成型体及びその製造方法
JPH10251541A (ja) カーボンブラック成型体
JP6710846B1 (ja) 内装シート及びその製造方法
JPH10140041A (ja) 包装されたカーボンブラック成型体及びその製造方法
JPH10140032A (ja) カーボンブラック成型体及びその製造方法
JPH10140040A (ja) 樹脂組成物用顔料及びその製造方法並びにこれを用いた樹脂組成物
JPH10130530A (ja) カーボンブラック加圧成型体及びその製造方法
TW510915B (en) Carbon black aggregate
JPH10140038A (ja) インク用顔料及びその製造方法並びにこれを用いたインクの製造方法
JP3525646B2 (ja) カーボンブラック含有ゴム組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996931287

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996931287

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996931287

Country of ref document: EP