WO1996032223A1 - Mecanisme a mouvement tournant - Google Patents

Mecanisme a mouvement tournant Download PDF

Info

Publication number
WO1996032223A1
WO1996032223A1 PCT/JP1995/001687 JP9501687W WO9632223A1 WO 1996032223 A1 WO1996032223 A1 WO 1996032223A1 JP 9501687 W JP9501687 W JP 9501687W WO 9632223 A1 WO9632223 A1 WO 9632223A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
axis
moving body
moving
rotating
Prior art date
Application number
PCT/JP1995/001687
Other languages
English (en)
French (fr)
Inventor
Ken Yanagisawa
Original Assignee
Yugen Kaisha Sozoan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yugen Kaisha Sozoan filed Critical Yugen Kaisha Sozoan
Priority to DE69527730T priority Critical patent/DE69527730T2/de
Priority to AU32652/95A priority patent/AU3265295A/en
Priority to EP95929225A priority patent/EP0872304B1/en
Publication of WO1996032223A1 publication Critical patent/WO1996032223A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • B23Q1/4804Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single rotating pair followed perpendicularly by a single sliding pair
    • B23Q1/4809Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single rotating pair followed perpendicularly by a single sliding pair followed perpendicularly by a single rotating pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q16/00Equipment for precise positioning of tool or work into particular locations not otherwise provided for
    • B23Q16/02Indexing equipment
    • B23Q16/04Indexing equipment having intermediate members, e.g. pawls, for locking the relatively movable parts in the indexed position
    • B23Q16/06Rotary indexing
    • B23Q16/065Rotary indexing with a continuous drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/18Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for positioning only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
    • F16H37/14Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types the movements of two or more independently-moving members being combined into a single movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Definitions

  • the present invention relates to a face-to-face motion mechanism, and more particularly, to a rotary motion mechanism for rotating an output power or a rotating body about an axis.
  • a machining index table converts the rotation of the motor into the rotation of the output W via a deceleration mechanism, and rotates the table attached to the output shaft about the sleeve of the output shaft.
  • the table is rotated by a predetermined angle according to each processing step of the work placed on the table, and the processing steps are sequentially advanced.
  • the angle of the table is controlled.
  • the rotation angle of the table is controlled by controlling the rotation of the motor, that is, the rotation angle of the output shaft.
  • the rotation angle of the table is controlled by controlling the rotation angle of the output shaft.
  • a high-precision control mechanism is used in this control, errors cannot be avoided.
  • the work, etc. is placed near the outer edge of the table for reasons such as securing work space. Therefore, even if the control error of the rotation angle on the output shaft is slight, the error is enlarged in the vicinity of the outer periphery far from the output shaft. As a result, the positioning accuracy of the workpiece etc. is improved. It was difficult to work.
  • the main body of the rotary motion mechanism includes an upper cover 10 and a lower cover 12.
  • the upper cover 10 and the lower cover 12 are connected via connection blocks 14 provided at the four corners.
  • the turntable 16 is rotatable above the upper cover 10. On the upper surface of the turntable 16, for example, a workpiece (not shown) to be processed is placed. The workpiece is moved to a predetermined position by the surface tilling table 16 which rotates as the machining process proceeds.
  • a pair of X-axis guides (first guide) 18a and 18b are arranged parallel to the X-axis direction (first direction).
  • the X-axis guides 18a and 18b are linear guides, and are fixed to the upper surface of the lower cover 12.
  • a pair of Y-axis guides (second guides) 20a and 20b are arranged parallel to the Yto direction (second direction).
  • ⁇ axis guides 20a and 20b are arranged in a direction perpendicular to ⁇ 1 ⁇ 2 guides 18a and 18b.
  • ⁇ Guides 203 and 2 Ob are also linear guides and are fixed to the upper surface of the lower cover 12.
  • the X Xiu rod (first movement guide) 22 is arranged in parallel with the X Xu guide 18a, 18b. Each end of the X-axis rod 22 is rotatably inserted into each of the sliders 24c and 24d capable of sliding in the Y-axis direction on the Y-axis guides 20a and 20b, respectively. . Accordingly, the X-axis port 22 is movable in the Y-axis direction in parallel with the X-axis guides 18a and 18b together with the sliders 24c and 24d. The X-axis rod 22 is immovable in the length direction with respect to the sliders 24c and 24d due to the retaining ring.
  • Y-axis rod (second movement guide) 26 is Y-axis guide 20a, 2 It is arranged parallel to O b. Each end of the Y-axis rod 26 has a slider 24 a, which can slide on the X-axis guides 18a and 18b in the X-axis direction.
  • the Y rod 26 can move in the X-axis direction in parallel with the Y-axis guides 20a and 20b together with the sliders 24a and 24b.
  • the YW rod 26 cannot be moved in the length direction with respect to the sliders 24a and 24b by the retaining ring.
  • the moving body 28 has an X-axis rod 22 inserted in the lower part so as to be able to roll, and a Y-axis rod 26 inserted rotatably in the upper part.
  • the moving body 28 can slide on the X-axis rod 22 and the Y-axis rod 26 through the slide X-axis, and can slide in the X-axis direction and the Y-axis direction. Therefore, the moving body 28 can move two-dimensionally in a rectangular plane 29 surrounded by the X-axis guides 18a and 18b and the Y-axis guides 20a and 20b. .
  • the X-axis ball screw 30 is screwed into a ball nut (not shown) fixed in the lower part of the moving body 28.
  • the moving body 28 When 30 rotates, the moving body 28 is moved in the X-axis direction. During this movement, the Y-axis rod 26 and the sliders 24a and 24b move together with the moving body 28 in the X direction.
  • a high-precision Y-axis ball screw 32 which is a second ball screw, is arranged in the Y-axis direction and is rotatably mounted between the sliders 24a and 24b.
  • the Y ⁇ ball screw 32 is screwed into a ball nut 54 fixed in the upper part of the moving body 28.
  • the moving body 28 is moved in the Y-axis direction.
  • the X-axis rod 22 and the sliders 24c and 24d move together with the moving body 28 in the Y-axis direction.
  • the output shaft 34 is connected to the upper cover 10 via a ball bearing. It is rotatable around the axis. The upper end of the output shaft 34 protrudes from the upper cover 10 and is connected to the turntable 16. Therefore, the rotation of the rotary table 16 is caused by the rotation of the output shaft 34.
  • the lever piece 36 rotates the output shaft 34 when the moving body 28 turns around the output shaft 34.
  • One end of the lever piece 36 is slidably fitted into the concave groove 40 of the connecting member 38 whose one end is axially mounted on the upper surface of the moving body 28 via a bearing. Accordingly, the moving body 28 is connected to the lever piece 36 so as to be movable and rotatable in the longitudinal direction of the lever piece 36.
  • the other end of the lever piece 36 is connected to and fixed to the lower end of the output shaft 34.
  • the first motor 42 rotates the X-axis ball screw 30.
  • the first motor 42 is a servomotor with a stop lock mechanism, and is mounted on a slider 24d. By selecting the rotation direction of the first motor 42, the rotation direction of the X glaze ball screw 30 can be selected, and thus the moving direction of the moving body 28 or the like in the X-axis direction can be determined.
  • the second motor 44 rotates the Y screw ball screw 32.
  • the second motor 44 is also a servomotor with a stop lock mechanism, and is mounted on the slider 24b. By selecting the rotation direction of the second motor 44, it is possible to select the face turning direction of the Yte ball screw 32, and thus to determine the moving direction of the moving body 28 in the Y direction. .
  • the X-axis racks 46a and 46b are fixed to the upper surface of the lower cover 12 and arranged in parallel in the X-axis direction.
  • the Y-axis racks 48a and 48b are fixed to the upper surface of the lower cover 12 and arranged in parallel in the Y ⁇ direction.
  • the Yte binions 50a and 50b are fixed to both ends of the X-axis rod 22 protruding outside the sliders 24c and 24d.
  • the Y-axis binions 50a and 50b are combined with the Y-axis racks 48a and 48b, respectively.
  • X rod 22 moves in the Y-axis direction together with the moving object 28.
  • the Y-axis binions 50a and 50b roll on the Y-axis racks 48a and 48b.
  • the X-axis rod 22 also rotates integrally with the Y-axis binions 50a and 5Ob.
  • the X-glazed vinyls 52 a and 52 b are fixed to both ends of a Y-pong rod 26 protruding outside the sliders 24 a and 24 b.
  • the X pongs 52a and 52b are combined with the X-axis racks 46a and 46b, respectively.
  • the Y-axis rod 26 is moved in the X-axis direction together with the moving body 28, the X-axis binions 52a and 52b roll on the X-axis racks 46a and 46b. .
  • the Y rod 26 also rotates integrally with the X-axis binions 52a and 52b.
  • the drive control of the X-axis ball screw 30 and the Y-axis ball screw 32 is performed by controlling the first motor 42 and the second motor 44 with a control device built in the microcomputer.
  • the first motor 42 is driven in the state shown in the drawing to turn the X-axis bottle screw 30 and the moving body 28 and the like are moved rightward in the X-axis direction.
  • the second motor 4 When the moving body 28 reaches a predetermined position below the Y-axis direction, the second motor 4 is stopped, the first motor 42 is driven, the X-axis ball screw 30 is rotated, and the moving body 28 and the like are moved to the left in the X X X direction.
  • the first motor 42 is stopped, the second motor 44 is driven, and the Y-axis ball screw 32 is rotated. Is moved upward in the Y-axis direction.
  • the moving body 28 can be moved in a clockwise rectangular motion around the output shaft 34.
  • one end of the lever piece 36 is provided with the connecting member 38 so that it can rotate with respect to the moving body 28 and can move in the length direction. ing.
  • the lever piece 36 becomes a crank, and the output shaft 34 can be rotated clockwise about the axis.
  • the rotary table 16 can also be rotated in the same direction.
  • the first motor 42 and the second motor 44 are controlled to move the moving body 28 in the opposite direction. What is necessary is just to make a rectangular motion.
  • the rotation angle of the rotary table 16 When controlling the rotation angle of the rotary table 16, it can be controlled by the position of the moving body 28 in the X-axis direction and the position in the Y-axis direction. Since the X-axis ball screw 30 and the Y-axis ball screw 32 are controlled by the servo motors 42 and 44, the X-Y position of the moving object 28 can be determined with extremely high accuracy. In addition, the position of the moving body 28 is located on the outermost side of the lever piece 36, that is, substantially equal to the position of one end having the largest rotational movement amount. Therefore, a relatively large number of position determination control positions can be set within a long movement locus.
  • the rotating torque can be increased, and the rotating table 16 having a heavy weight can be used. Even if there is, it can be easily turned.
  • An object of the present invention is to provide a surface rolling motion mechanism capable of reliably and accurately controlling the rotation angle of a rotating body and miniaturizing the device. Is provided.
  • the rotary motion mechanism according to the present invention includes:
  • a moving body movable in a two-dimensional plane
  • a circumferential bearing formed in a circular ring shape and provided in a plane parallel to the two-dimensional plane;
  • a guide portion provided on at least one surface of the rotating body and radially provided with respect to the line ⁇ ⁇ of the rotating body;
  • a glaze line provided on the moving body and parallel to the axis of the rotating body. It is rotatable around the center and can move to the guide part in the longitudinal direction of the guide part! ? And a linking member for rotating the surface-rotating body via the guide part with the movement of the moving body.
  • First guide means provided in a first direction provided on the two-dimensional plane, for guiding movement of the moving body in the first direction;
  • a second guide means which is provided in the two-dimensional plane, is provided in a second direction perpendicular to the first direction, and guides the movement of the moving body in the second direction.
  • the driving means includes: first driving means for moving the moving body in the first direction; and second driving means for moving the moving body in the second direction. It may be.
  • the first guide means comprises a pair of first guides arranged in parallel in the first direction
  • the second guide means comprises a pair of second guides arranged in parallel to the second direction,
  • a first guide which is arranged in parallel with the first guide, each end of which is movably connected to the second guide, and which is movable in the second direction with respect to the second guide; Establishing a moving guide for
  • the second guide is disposed parallel to the second guide, and each end is connected to the first guide so as to be movable, and the first guide is movable in the first direction along the first guide. Establishing the movement guide of 2,
  • the moving body is capable of moving on the first moving guide and the second moving guide, and the first driving unit moves the second moving guide together with the moving body to the second moving guide. Can be moved in the direction of 1.
  • the second driving means may be capable of moving the first moving guide in the second direction together with the moving body.
  • one said moving body A plurality of the link members may be mounted corresponding to the guide portions.
  • the surface rolling body is held by the girder support and is rotatable about the axis, and the guide portion is radially connected to at least one surface of the tillage body.
  • the connecting member is provided on the moving body, and is rotatable, and is connected to the guiding portion so as to be movable in the longitudinal direction of the guiding portion. Can be rotated.
  • the linking position between the rotating body and the moving body by the linking member can be set as far as possible from the axis of the rotating body, and the rotation angle resolution of the rotating body can be improved.
  • the connecting member is rotatably mounted on the moving body and is connected to the moving body in the longitudinal direction, the rotation angle of the rotating body can be controlled by an arbitrary moving path of the moving body. And can respond to various use conditions.
  • the rotating body is rotatably held by the circumferential bearing and the guide is provided directly on the rotating body, the inclination of the output shaft and the distortion of the lever piece generated in the rotating motion mechanism shown in Figs. No error occurs due to For this reason, the rotation angle control of the rotating body can be performed with higher accuracy and reliability.
  • FIG. 1 is a front sectional view of a first embodiment of the rotary motion mechanism according to the present invention
  • FIG. 2 is a partially broken perspective view of a second embodiment of the rotary motion mechanism according to the present invention.
  • FIG. 3 is a partial cross-sectional plan view showing the turning mechanism of the moving body according to the second embodiment.
  • FIG. 4 is a partially broken perspective view of a third embodiment of the rotary motion mechanism according to the present invention.
  • FIG. 5 is a partially broken plan view showing another driving means.
  • FIG. 6 is a plan view of a conventional rotary motion mechanism.
  • FIG. 7 is a plan view showing the internal structure of the rotary motion mechanism of FIG. 6, and FIG. 8 is a partial cross-sectional plan view showing the internal structure of the moving body and the like of the rotary motion mechanism of FIG.
  • FIG. 9 is a front sectional view of the rotary motion mechanism of FIG. Example
  • the first embodiment will be described with reference to FIG. 1 (front sectional view).
  • the same components as those shown in FIGS. 6 to 9 are denoted by the same reference numerals, and description thereof will be omitted.
  • an index table will be described as an example of the rotary motion mechanism.
  • the rectangular motion of the moving body 28 is converted into the rotary motion of the rotary table 16 via the output shaft 34 and the lever piece 36.
  • the rectangular motion of the moving body 28 is converted into the rotary motion of the rotary table 100 without using the output shaft 34.
  • a groove 102a is formed in the outer circumferential surface of the turntable 100 in the circumferential direction.
  • a central hole 104 is opened in the center of the upper cover 10 and a ring-shaped retainer 106 is fixed to the center of the central hole 104.
  • a groove 102b is formed in the inner peripheral surface of the central hole 104 in the circumferential direction.
  • Groove 1 0 2a and groove 1 0 2b Are opposed to each other, and a ball 108 is interposed between the two to form a ball bearing. Therefore, the turntable 100 is rotatable in the center hole 104. That is, the rotary table 100 is rotatably held by the above-described ball bearing, which is a circumferential bearing formed in a circular ring shape around the axis of the rotary table 100.
  • a lever piece 110 as an example of the guide portion is directly fixed to the lower surface of the turntable 100.
  • the lever piece 110 is disposed radially with respect to the center of the turntable 100.
  • the lever piece 110 is fitted in the concave groove 40 of the connecting member 38 rotatably provided on the movable body 28 so as to be able to slide. That is, the lever piece 110 acts as a guide, and the connecting member 38 rotatably mounted on the moving body 28 is moved at a speed K such that it can move in the longitudinal direction of the lever piece 110.
  • the lever piece 110 may be disposed radially with respect to the center of the turntable 100, and its length is not particularly limited.
  • the length of the lever piece 110 may be equal to the diameter of the turntable 100 as in the first embodiment, may be shorter than the diameter of the turntable 100, May be longer.
  • the lever piece 110 of the first embodiment is connected to the rotary table 100 via a linking member 38 inside the circumference of a ball bearing (circumferential bearing) holding the rotary table 100. It is linked to. Since the inner diameter of the circular shell is larger than that of the conventional rotary motion mechanism shown in FIGS. 6 to 9, the positioning accuracy of the rotary table can be increased.
  • the first motor 42 and the second motor 44 can be controlled to move the moving body 28 in a rectangular manner. During the rectangular movement of the moving body 28, the lever piece 110 is fitted so as to be able to slide to the connecting member 38 so that it can rotate with respect to the moving body 28 and move in the length direction. It has become. Therefore, the lever piece 110 becomes a crank, and the turntable 100 can be rotated.
  • the output II 34 shown in Figs. 6 to 9 was not provided, and the rotary table 100 was placed in the center hole 104 of the upper cover 10 so that it could be moved up and down.
  • the thickness in the direction can be reduced, and the rotary motion mechanism can be downsized.
  • the lever piece 110 is fixed to the lower surface of the rotary table 100, the lever piece 110 is prevented from being distorted due to the bending moment as compared with the rotary motion mechanism shown in FIGS. This ensures high accuracy and stable operation.
  • the moving trajectory of the moving body 28 is not limited to the rectangular motion as described above, and any trajectory such as a circular motion can be selected.
  • the connecting member 38 does not slide with respect to the lever piece 110, and is suitable for a case where a motion with a uniform rotation torque is required.
  • the moving body 28 may be moved near the rotation axis of the turntable 100.
  • the rotating table 100 can be rotated by moving the moving body 28 as follows.
  • the moving table 28 is moved from a certain first point to a second point, which is an opposite position that is point-symmetric with respect to the axis of the rotating table 100, so that the rotating table 100 is rotated half a turn. Let it.
  • the moving body 28 is moved in the length direction of the lever piece 110, and then moved to the first point again.
  • the mobile 2 8, between this which again moves from the first point to the second point - Menten table 1 0 0 is et c can half rotation i.e., rotating the tape le 1 0 0 below
  • the moving table 100 can be rotated by moving the moving body 28 in a half plane.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the face turning table 200 of the second embodiment is provided on the upper cover 10 via a ball bearing 202 so as to be able to face turn.
  • the inner peripheral portion 204 of the ball bearing 202 is fixed to the turntable 200, and the outer peripheral portion 206 is fixed to the upper cover 10.
  • a ball 208 is inserted between the inner peripheral portion 204 and the outer peripheral portion 206 to form a ball bearing, and the face turning table 200 is rotatable.
  • the lever piece 210 is directly fixed to the lower surface of the turntable 200.
  • the connecting member 38 is also rotatably mounted on the moving body 28 and is arranged so as to be movable (slid) in the longitudinal direction of the lever piece 210.
  • the rotating table 200 is provided so as to rotate the rotary table 200 via the lever piece 210 with the movement of the moving body 28.
  • a turning mechanism (two-dimensional motion mechanism) for turning the moving body 28 without changing the direction of the moving body 28 is different.
  • the turning mechanism will be described with reference to FIG.
  • the frame 218 is formed in a rectangular frame shape with the center removed.
  • the X-axis ball screws 220 and 222 are arranged in the same plane in parallel with each other.
  • the XI * ball screw 222 is directly driven and rotated by an X-axis motor 222 serving as an X-axis driving means.
  • the rotational force of the X-axis motor 224 is transmitted to the X ball screw 224 via a first transmission mechanism including a curved bevel gear and a transmission 230.
  • the tip (the left end in the drawing) of the X-axis ball screws 222 and 222 are pivotally supported by a suitable support frame.
  • These X-axis ball screws 220 and 222 act as guides in the X-axis direction, and also move the X-axis motor 222 and the slider 211 as a moving body in the X ⁇ direction.
  • Of the driving means are provided.
  • the ball screws 2 3 4 and 2 3 6 are parallel to each other, in the same plane, and Both the X-axis ball screws 220 and 222 are disposed so as to be orthogonal to each other in substantially the same plane.
  • the Y-axis ball screw 234 is driven directly by a Y-axis motor 238, which is a Y-axis driving means, to rotate.
  • the rotational force of the Y-axis motor 238 is transmitted to the Y ⁇ ball screw 236 via a second transmission mechanism including a bevel gear and a transmission shaft 244.
  • the distal ends (the lower end in the drawing) of the Y-axis ball screws 234, 236 are pivotally supported by appropriate support frames.
  • the Y-axis ball screws 2 3 4 and 2 3 6 act as guides in the Y-axis direction, and move the Y-axis motor 2 3 8 and the slider 2 14 as a moving body in the Y ⁇ direction.
  • the second driving means is configured.
  • the X screw driving bodies 2480 and 250 are respectively connected to the X-axis ball screws 220 and 222. Since the rotation of the X tsumugi body 248, 250 is prevented by the YW rod 256, the X axis is rotated by the rotation of the X axis ball screws 220, 222 in the same direction. It is possible to move in the same direction at the same time.
  • the driving bodies 25 2 and 25 4 are screwed into Y-axis ball screws 23 4 and 23 36, respectively. Since the rotation of the Y Wl driver 252, 254 is prevented by the X-axis rod 258, the rotation of the Y-axis ball screws 234, 236 in the same direction causes the Y It is possible to move simultaneously in the direction of the flag.
  • the YW port 2556 is arranged parallel to the Y axis and is inserted through the slider 214. Both ends of the Y-axis rod 256 are fixed to the X-axis body 248 and 250, respectively. Accordingly, the slider 2 14 moves in the X-axis direction along with the movement of the Y-axis rod 2 56 and the X-axis driving bodies 2 48, 250 in the X-axis direction.
  • the X ⁇ rod 258 is arranged parallel to the X axis, and is inserted into the slider 218. Both ends of the X-axis port 258 are fixed to the Y fth frame 255 and 254, respectively. Therefore, the X-axis rod 258 is orthogonal to the Y-axis rod 256 inside the slider 221.
  • Slider 2 1 4 is X It moves in the Y-axis direction along with the movement of the axis rod 2558 and the Ytt body 252, 2554 in the Y ⁇ direction. The combination of the movement in the X-axis direction and the movement in the direction enables the slider 214 to move to an arbitrary position in the rectangular plane 260 with an arbitrary trajectory.
  • Y-axis rod 256 and the X-axis rod 258 may be formed of metal rods having appropriate rigidity.
  • a third embodiment will be described with reference to FIG. Note that the third embodiment is also an index table, and the same reference numerals are given to the same components as those of the prior art shown in FIGS. 6 to 9 and the first and second embodiments, and the description is omitted. Omitted.
  • the difference between the third embodiment and the second embodiment is that a plurality of (four in the present embodiment) rotary tables 200 are provided.
  • a lever piece 210 is fixed to each rotary table 200 so that a plurality of rotary tables 200 rotate synchronously, and a moving body 28 has a lever piece 210 attached to each lever table 210.
  • a plurality of connecting members 38 are mounted.
  • a cross-shaped support member 300 is fixed to the upper surface of the moving body 28.
  • Each link member 38 is rotatably mounted near the tip of each projection of the cross-shaped support member 300.
  • the third embodiment it is possible to simultaneously obtain a plurality of identical rotations with high accuracy. Therefore, by using this rotary motion mechanism, it is possible to efficiently copy a storage medium and process a highly accurate product.
  • a plurality of rotary tables 200 are provided, a lever piece 210 is fixed to each rotary table 200, and each lever piece 210 is 2 1 0 Multiple Plural II members 3 8 With this arrangement, a plurality of rotating bodies (rotary tables) can be rotated synchronously.
  • the outermost part of the lever pieces 110, 210 is driven by the moving body 28, so that the control resolution of the surface turn tables 100, 200 is controlled. Can be higher. Therefore, if the length of the lever pieces 110 and 210 is increased, guide means or drive means, such as timing belts and timing pulleys, and chains and sub-blocks, which are not as accurate in position accuracy as ball screws, are used for servo control.
  • guide means or drive means such as timing belts and timing pulleys, and chains and sub-blocks, which are not as accurate in position accuracy as ball screws, are used for servo control.
  • a structure that drives the moving body 28 in the X-Y direction by driving with a motor for example, a rotation with sufficient accuracy even in the two-dimensional motion mechanism shown in FIG. 14 of US Pat. No. 4,995,277.
  • a movement mechanism can be realized.
  • this rotary motion mechanism is a mechanism that has the potential to develop an effective mechanism using guide means or drive means other than the ball screw.
  • FIG. 5 shows an example of another driving means.
  • a pair of X-axis guides 312a and 312b, which are the first guide means, are arranged parallel to the X-axis direction.
  • a pair of Y-axis guides 324 a and 324 b serving as a second guide means are arranged in parallel in the Y-axis direction.
  • the X-axis movement guide (rod) 328 which is the first movement guide, has a large diameter portion 338 formed in the center. Both ends of the X-axis movement guide 328 are connected to the Y-axis guides 324a and 324b, respectively, and can be moved in the Y-axis direction.
  • the moving body 340 can move on the X-axis movement guide 328 and the Y-axis movement guide 322. Inside the moving body 330, the chambers 34a, 34b, 34c, and 34d are formed by the large-diameter portion. Fluid to this channel, '340a, 340b, 340c, 340d
  • the moving body 330 can be moved two-dimensionally by selectively supplying and discharging compressed air, compressed oil, and compressed water.
  • the moving body 330 can rotate a rotating body (rotary table) via a linking member and a guide portion (not shown), as in the above-described embodiments.
  • the amount of movement of the moving body 330 can be regulated, so that the rotary table is positioned with respect to the four positions defined by the collar 350. It can be performed.
  • Means for adjusting the flow rate of the fluid for example, using a flow control valve to adjust the amount of fluid supplied to and discharged from the chambers 34a, 34b, 34c, and 34d.
  • a flow control valve to adjust the amount of fluid supplied to and discharged from the chambers 34a, 34b, 34c, and 34d.
  • the surface turning table can be positioned at an arbitrary position.
  • the adoption of the fluid pressure driving means enables the moving body 330 to be two-dimensionally moved with good balance. It is also effective when the rotating body is extremely heavy, such as a rotatable building, or when the weight load of the rotating body is extremely large.
  • the driving means by the fluid pressure the X-axis driving bodies 318a and 318b and the Y-axis driving bodies 326a and 326b are fluid-pressure driven. It is also possible to adopt a mechanism driven by a cylinder device.
  • the driving means for moving the moving body two-dimensionally is not limited to the above embodiment depending on the use conditions.
  • a sub moving body provided so as to be movable along the X-axis guide and a sub moving body An XY table having a fixed Y-axis guide extending in the Y-axis direction and a movable body provided along the Y-axis guide can be used.
  • a horizontal articulated mouth bot can be used as a driving means.
  • the first and second moving guides are not rods but are constituted by linear motion guides fixed on a blade, and the moving body 28 is moved by the linear motion guides. It may be movably engaged with the guide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Machine Tool Units (AREA)
  • Transmission Devices (AREA)

Description

明細書 発明の名称
回転運動機構 技術分野
本発明は面転運動機構に閲し、 一層詳細には出力岫または回転体 を軸線を中心として回転させる回転運動機構に関する。 背景技術
出力軸または回転体を軸線を中心として回転させる回転運動機構 としては、 例えば加工用イ ンデックステーブルが知られている。 ィ ンデッ クステーブルは、 モータの回転を滅速機構を介して出力 Wの 回転に変換し、 出力軸に取り付けられたテーブルを出力軸の袖線を 中心として回転させる構成になっている。
テーブル上に載置されたワークの各加工工程に応じてテーブルを 所定角度回動させ、 順次加工工程を進める。 テーブルを面動させて ワークを所定位置へ正確に移動させるために、 テーブルの面動角度 が制御される。 テーブルの回動角度の制御は、 モータの面転、 すな わち、 出力軸の回転角度を制御することで行われる。
しかしながら、 上記の従来の回転運動機構には次のような課題が あ -? 7こ β
例えばィ ンデッ クステーブルの場合、 テーブルの回動角度の制御 は出力軸の回転角度の制御で行われる。 しかし、 この制御において 高精度の制御機構を使用しても誤差は避けるこ とができない。 特に ワーク等は、 作業空間を確保する等の理由からテーブルの外縁部近 傍に載置される。 そのため、 出力軸における回転角度の制御誤差が 僅かであっても出力軸から遠く離れた当該外緣部近傍では当該誤差 が拡大されてしまう。 その結果、 ワーク等の位置決め精度を高くす るのが困難であつた。
上記の課題を解決するために本件発明者は、 さきに日本国特許公 報、 特開平 7 - 1 2 2 0 0号に開示される回転運動機構を発明した, この回転運動機構を図 6〜 9に示す。 なお、 図 6〜 9に示す回転運 動機構は、 イ ンデ ッ クステーブルに採用したものである。
回転運動機構の本体は、 上部カバー 1 0および、 下部カバー 1 2 から成る。 上部カバー 1 0 と下部カバー 1 2 は、 四隅に配設された 連結ブロ ック 1 4を介して連結されている。
回転テーブル 1 6 は、 上部カバー 1 0の上方において回転可能に なっている。 回転テーブル 1 6の上面には、 例えば加工されるヮー ク (不図示) が載置される。 ワークは、 加工工程の進行に伴い回転 する面耘テーブル 1 6 によつて所定位置へ移動される。
1対の X軸ガイ ド (第 1 のガイ ド) 1 8 a、 1 8 bは、 X軸方向 (第 1 の方向) へ平行に配設されている。 X軸ガイ ド 1 8 a、 1 8 bは直動ガイ ドであり、 下部カバー 1 2上面に固定されている。
1対の Y軸ガイ ド (第 2のガイ ド) 2 0 a、 2 0 bは、 Yto方向 (第 2の方向) へ平行に配設されている。 Υ軸ガイ ド 2 0 a、 2 0 bは、 Χ½ガイ ド 1 8 a、 1 8 bに対して直角な方向へ配設されて いる。 丫岫ガィ ド 2 0 3、 2 O b も直動ガイ ドであり、 下部カバー 1 2上面に固定されている。
X岫ロ ッ ド (第 1 の移動ガイ ド) 2 2 は、 X蚰ガイ ド 1 8 a、 1 8 b と平行に配されている。 X軸ロ ッ ド 2 2 の各端部は、 Y軸ガイ ド 2 0 a、 2 0 b上を Y軸方向ヘスライ ド可能なスライダ 2 4 c、 2 4 dへそれぞれ回転可能に挿通されている。 従って、 X軸口 ッ ド 2 2 は、 スライ ダ 2 4 c、 2 4 d と共に X軸ガイ ド 1 8 a、 1 8 b と平行な状態で Y軸方向へ移動可能になっている。 なお、 X軸ロ ッ ド 2 2 は、 スライダ 2 4 c、 2 4 dに対して長さ方向へは、 止輪に よつて移動不能になつている。
Y軸ロ ッ ド (第 2 の移動ガイ ド) 2 6 は、 Y軸ガイ ド 2 0 a、 2 O b と平行に配されている。 Y軸ロ ッ ド 2 6 の各端部は、 X軸ガイ ド 1 8 a 、 1 8 b上を X軸方向へス ラ イ ド可能なス ライダ 2 4 a 、
2 4 bへそれぞれ回転可能に挿通されている。 従って、 Y ロ ッ ド 2 6 は、 スライダ 2 4 a 、 2 4 b と共に Y軸ガイ ド 2 0 a、 2 0 b と平行な状態で X軸方向へ移動可能になっている。 なお、 YWロ ッ ド 2 6 は、 ス ライ ダ 2 4 a 、 2 4 bに対して長さ方向へは、 止輪に よって移動不能になっている。
移動体 2 8 は、 下部に X軸ロ ッ ド 2 2が面転可能に挿通され、 上 部に Y軸ロ ッ ド 2 6が回転可能に挿通されている。 移動体 2 8 は、 スライ ド岫受を介して X軸ロ ッ ド 2 2および Y軸ロ ッ ド 2 6上を X 軸方向および Y軸方向ヘスライ ド可能になっている。 従って、 移動 体 2 8 は X軸ガイ ド 1 8 a、 1 8 b と Y軸ガイ ド 2 0 a、 2 0 bに 囲繞されて成る矩形平面 2 9内において、 2次元運動可能になって いる。
第 1 のボールネ ジである高精度の X軸ボールネ ジ 3 0 は、 Xte方 向へ配されると共に、 ス ライダ 2 4 c、 2 4 d間へ面転可能に架設 されている。 X軸ボールネ ジ 3 0 は、 移動体 2 8の下部内に固定さ れているボールナ ッ ト (不図示) へ螺合している。 XWiボールネ ジ
3 0が回転すると移動体 2 8 は X軸方向へ移動される。 その移動の 際に、 Y軸ロ ッ ド 2 6およびス ライダ 2 4 a、 2 4 b等が移動体 2 8 と一体に X蚰方向へ移動する。
第 2のボールネ ジである高精度の Y軸ボールネ ジ 3 2 は、 Y軸方 向へ配されると共に、 ス ライダ 2 4 a 、 2 4 b間へ回転可能に架設 されている。 Y轴ボールネ ジ 3 2 は、 移動体 2 8の上部内に固定さ れているボールナ ツ ト 5 4 へ螺合している。 Y軸ボールネ ジ 3 2 が 回転すると移動体 2 8 は Y軸方向へ移動される。 その移動の際に、 X軸ロ ッ ド 2 2およびス ライダ 2 4 c 、 2 4 d等が移動体 2 8 と一 体に Y軸方向へ移動する。
出力蚰 3 4 は、 ボールベア リ ングを介し、 上部カバー 1 0 に対し て軸線を中心と して回転可能になっている。 出力軸 3 4 の上端は、 上部カバー 1 0 から突出しており、 回転テーブル 1 6 へ連結されて いる。 従って、 出力岫 3 4 が回転すると回転テーブル 1 6が回転す る。
レバ一片 3 6 は、 移動体 2 8 が出力軸 3 4 の周囲を旋回した際に は出力軸 3 4 を回転させる。 レバ一片 3 6 は、 一端部が移動体 2 8 の上面に軸受を介して軸着されている連^部材 3 8 の凹溝 4 0内へ スライ ド可能に嵌合している。 従って、 移動体 2 8 は、 レバ一片 3 6 に対してレバ一片 3 6 の長さ方向へ移動可能かつ回動可能に連 H されている。 また、 レバ一片 3 6 の他端部は出力軸 3 4 の下端へ連 結、 固定されている。
第 1 のモータ 4 2 は、 X軸ボールネジ 3 0 を回転させる。 第 1 の モータ 4 2 は停止ロ ッ ク機構付きのサーボモータであり、 スライ ダ 2 4 d に搭載されている。 第 1 のモータ 4 2 の回転方向を選択する こ とにより、 X釉ボールネジ 3 0 の回転方向を選択でき、 ひいては 移動体 2 8等の X軸方向の移動方向を決める こ とが可能となる。 第 2 のモータ 4 4 は、 Y蚰ボールネジ 3 2 を回転させる。 第 2 の モータ 4 4 も停止ロ ッ ク機構付きのサーボモータであり、 スライ ダ 2 4 bに搭載されている。 第 2 のモータ 4 4 の回転方向を選択する こ とにより、 Y teボールネジ 3 2 の面転方向を選択でき、 ひいては 移動体 2 8等の Y蚰方向の移動方向を決める こ とが可能となる。
X軸ラ ッ ク 4 6 a、 4 6 b は、 下部カバー 1 2上面に固定される と共に、 X軸方向へ平行に配設されている。
Y軸ラ ッ ク 4 8 a、 4 8 b は、 下部カバー 1 2上面に固定される と共に、 Y轴方向へ平行に配設されている。
Y teビニオ ン 5 0 a、 5 0 b は、 スラ イ ダ 2 4 c、 2 4 d の外側 へ突出している X軸ロ ッ ド 2 2 の両端部に固定されている。 Y軸ビ 二オ ン 5 0 a、 5 0 b は、 Y軸ラ ッ ク 4 8 a、 4 8 b とそれぞれ嚙 合している。 X轴ロ ッ ド 2 2が移動体 2 8 と共に Y軸方向へ移動さ れる場合、 Y軸ビニオ ン 5 0 a、 5 0 b は Y軸ラ ッ ク 4 8 a、 4 8 b上を転動する。 その際、 X軸ロ ッ ド 2 2 も Y軸ビニオ ン 5 0 a、 5 O b と一体に回転する。 X紬ロ ッ ド 2 2の回転、 移動中、 X軸口 ッ ド 2 2を X軸に対して傾斜させるような外力が作用しても Y軸ビ 二オ ン 5 0 a、 5 0 b と Y軸ラ ック 4 8 a、 4 8 bが嚙合している ので X紬ロ ッ ド 2 2 の X軸ガイ ド 1 8 a、
1 8 b との平行度を常時保持することが可能となる。
X釉ビニオ ン 5 2 a、 5 2 bは、 スライダ 2 4 a、 2 4 bの外側 へ突出している Y紬ロ ッ ド 2 6 の両端部に固定されている。 X紬ビ 二オ ン 5 2 a、 5 2 b は、 X軸ラ ッ ク 4 6 a、 4 6 b とそれぞれ嗨 合している。 Y軸ロ ッ ド 2 6が移動体 2 8 と共に X軸方向へ移動さ れる場合、 X軸ビニオン 5 2 a、 5 2 bは X軸ラ ッ ク 4 6 a、 4 6 b上を転動する。 その際、 Y ロ ッ ド 2 6 も X軸ビニオ ン 5 2 a、 5 2 b と一体に回転する。 Y軸ロ ッ ド 2 6 の回転、 移動中、 Yftfe口 ッ ド 2 6を Y軸に対して傾斜させるような外力が作用しても X軸ビ 二オ ン 5 2 a、 5 2 b と X軸ラ ック 4 6 a、 4 6 bが嚙合している ので Y軸ロ ッ ド 2 6 の Y轴ガィ ド 2 0 a、 2 0 b との平行度を常時 保持することが可能となる。
次に上記ィ ンデッ クステーブルの動作について説明する。
X軸ボールネジ 3 0 と Y軸ボールネジ 3 2 の駆動制御は、 第 1 の モータ 4 2および第 2 のモータ 4 4をマイ ク ロコ ン ピュータ内蔵の 制御装置で制御するこ とにより行われる。
図 7 において、 図示の状態で第 1 のモータ 4 2を駆動して X軸ボ 一ルネ ジ 3 0を面転させ、 移動体 2 8等を X蚰方向右方へ移動させ る。
移動体 2 8が X紬方向右方の所定位置へ達したら、 第 1 のモータ 4 2を停止し、 第 2 のモータ 4 4を駆動させ、 丫蚰ボールネ ジ 3 2 を回転させ、 移動体 2 8等を Y軸方向下方へ移動させる。
移動体 2 8が Y軸方向下方の所定位置へ達したら、 第 2のモータ 4 4を停止し、 第 1 のモータ 4 2を駆動させ、 X軸ボールネジ 3 0 を回転させ、 移動体 2 8等を X岫方向左方へ移動させる。
移動体 2 8が X軸方向左方の所定位置へ達したら、 第 1 のモータ 4 2を停止し、 第 2 のモータ 4 4 を駆動させ、 Y軸ボールネジ 3 2 を回転させ、 移動体 2 8等を Y軸方向上方へ移動させる。
この動作により、 移動体 2 8を出力軸 3 4 の周囲を時計方向へ矩 形運動させるこ とができる。 移動休 2 8の矩形運動の際、 レバ一片 3 6の一端部は連 Ϊ 部材 3 8が設けられているので、 移動体 2 8に 対して回動可能、 かつ長さ方向へ移動可能になっている。 その際、 レバ一片 3 6 はク ラ ンク となり、 出力軸 3 4を軸線を中心に時計方 向へ回転させるこ とができる。 出力軸 3 4 の回転により、 回転テー ブル 1 6 も同方向へ回転させることができる。 なお、 出力蚰 3 4お よび回転テーブル 1 6を反時計方向へ回転させる場合は、 第 1 のモ ータ 4 2および第 2のモータ 4 4 を制御して移動体 2 8を上述と逆 方向へ矩形運動させればよい。
回転テーブル 1 6 の回転角度を制御する場合は、 移動体 2 8 の X 軸方向の位置と Y軸方向の位置で制御することができる。 X軸ボー ルネジ 3 0 と Y軸ボールネジ 3 2をサーボモータ 4 2、 4 4 で制御 しているため、 移動体 2 8の X— Y位置を極めて高い精度で決める ことが可能である。 加えて、 移動体 2 8 の位置はレバ一片 3 6 の最 も外側であって、 すなわち最も回転移動量の大きな一端部の位置と 略等しい。 従って、 長い移動軌跡内に比較的多く の位置决め制御位 置を設定可能となる。 このことは移動体 2 8 の X Wl方向および Y軸 方向の制御分解能、 ひいては出力軸 3 4 と面転テーブル 1 6 の回動 角度の制御分解能を高く できることを意味する。 レバ一片 3 6 の最 も内側である出力軸 3 4近傍では回転軌跡が極めて短いため、 前記 制御分解能を向上させることは不可能である。
また、 レバ一片 3 6 の最も外側を移動体 2 8 で駆動するので、 回 転 トルク も大き く するこ とができ、 重量のある回転テーブル 1 6で あっても容易に面転させることができる。
さらに、 第 1 のモータ 4 2および第 2のモータ 4 4 を停止させた 場合、 モータ 4 2、 4 4 による X軸ボールネジ 3 0 と Y toボールネ ジ 3 2のロ ック機能に加え、 Y軸ラ ック 4 8 a、 4 8 b と Y紬ビニ オ ン 5 0 a、 5 0 bが嗨合し、 X軸ラ ック 4 6 a、 4 6 b と X軸ピ 二オン 5 2 a、 5 2 bが嗨合しているので回転テーブル 1 6 の保持 トルク も極めて大き く することができる。 技術的課題
しかしながら、 図 6〜 9に示す回転運動機構の場合、 出力蚰 3 4 の傾き、 およびレバ一片 3 6の歪みによる誤差が発生しやすく、 高 精度と安定した運用が保証できないという課題がある。 また、 上下 方向へ配設された出力軸 3 4を備えるため、 装置全体の上下方向の 厚みが厚く なつてしまう という課題がある。
発明の開示
本発明の目的は、 回転体の回転角度制御を高精度で確実に行い得 ると共に、 装置を小型化できる面転運動機構を提供することにある < 上記目的を達成するため、 本発明は次の構成を備える。
すなわち、 本発明に係る回転運動機構は、
2次元平面内において移動可能な移動体と、
該移動体を移動させる駆動手段と、
円形のリ ング状に形成されると共に、 前記 2次元平面と平行な面 内に設けられたた円周軸受と、
該円周軸受に保持されると共に、 軸線を中心として回転可能な回 転体と、
該回転体の少な く とも一方の面へ設けられると共に、 回転体の前 記轴線に対して径方向へ設けられた案内部と、
前記移動体へ設けられ、 前記回転体の前記軸線と平行な釉線を中 心に回動可能であると共に、 前記案内部へ案内部の長手方向へ移動 可能に連!?され、 移動体の移動に伴って案内部を介して面転体を回 転させる連 ϋ部材とを具備することを特徴とする。
また、 この回転運動機構において、
前記 2次元平面に舍まれる第 1 の方向へ配設され、 前記移動体の 該第 1 の方向への移動を案内する第 1 のガイ ド手段を設け、
前記 2次元平面に舍まれ、 前記第 1 の方向に対して直角な第 2の 方向へ配設され、 前記移動体の該第 2の方向への移動を案内する第 2 のガイ ド手段を設け、
前記駆動手段は、 前記移動体を前記第 1 の方向へ移動させるため の第 1 の駆動手段と、 前記移動体を前記第 2 の方向へ移動させるた めの第 2の駆動手段とから成るようにしてもよい。
また、 前記第 1 のガイ ド手段を、 前記第 1 の方向へ平行に配設さ れた 1 対の第 1 のガイ ドで構成し、
前記第 2のガイ ド手段を、 前記第 2 の方向へ平行に配設された 1 対の第 2のガイ ドで構成し、
前記第 1 のガイ ドと平行に配され、 各端部がそれぞれ前記第 2の ガイ ドへ移動可能に連 され、 第 2のガイ ドに ¾つて前記第 2の方 向へ移動可能な第 1 の移動ガイ ドを設け、
前記第 2 のガイ ドと平行に配され、 各端部がそれぞれ前記第 1 の ガイ ドへ移動可能に連 1 され、 第 1 のガイ ドに沿って前記第 1 の方 向へ移動可能な第 2 の移動ガイ ドを設け、
前記移動体は、 前記第 1 の移動ガイ ドと第 2 の移動ガイ ド上を移 動可能とし、 前記第 1 の駆動手段は、 前記第 2 の移動ガイ ドを前 記移動体と共に、 前記第 1 の方向へ移動可能とし、
前記第 2 の駆動手段は、 前記第 1 の移動ガイ ドを前記移動体と共 に、 前記第 2 の方向へ移勛可能にしてもよい。
さらに、 前記案内部を有する回転体を複数設け、
複数の該回転体を同期回転させるベく、 1個の前記移動体には各 案内部に対応して前記連繫部材を複数装着するようにしてもよい。 本発明に係る回転運動機構によれば、 面転体が円周紬受に保持さ れると共に、 軸線を中心として回転可能であり、 案内部は回耘体の 少な く とも一方の面へ径方向へ設けられ、 連 ϋ部材は移動体へ設け られ、 回動可能であると共に、 案内部へ案内部の長手方向へ移動可 能に連^されているので、 回転体は移動体の移動に伴つて回転可能 になっている。
従って、 連繋部材による回転体と移動体との連繫位置を、 回転体 の軸線から極力離れた位置とすることが可能となり、 回転体の回動 角度分解能を向上させることができる。
また、 回転体に、 その軸線から極力離れた位置で躯動力を伝達す ることができるため、 大きな回転 トルクを得ることもできる。
また、 連蘩部材が移動体に回動可能に装着されていると共に、 案 内部の長手方向に移動可能に連 されているため、 移動体の任意の 移動軌跡で、 回転体の回転角度制御を行う ことができ、 種々の使用 条件に対応できる。
また、 回転体が円周軸受に回転可能に保持され、 案内部が回転体 に直接設けられているので、 図 6 〜 9に示す回転運動機構において 発生した出力蚰の傾き、 およびレバ一片の歪みによる誤差が発生し ない。 このため、 回転体の回転角度制御を一層高精度で確実に行い 得る。
また、 案内部が回転体へ直接に設けられているので、 図 6 〜 9に 示す回転運動機構に設けられている上下方向の出力軸が不要となり 回転運動機構の小型化が可能となる。 図面の簡単な説明
図 1 は、 本発明に係る回転運動機構の第 1 実施例の正面断面図で あり、
図 2 は、 本発明に係る回転運動機構の第 2実施例の部分破断斜視 図であり、
図 3 は、 第 2実施例の移動体の旋回動機構を示す部分断面平面図 であり、
図 4 は、 本発明に係る回転運動機構の第 3実施例の部分破断斜視 図であり、
図 5 は、 他の駆動手段を示した部分破断平面図であり、
図 6 は、 従来の回転運動機構の平面図であり、
図 7 は、 図 6 の回転運動機構の内部構造を示した平面図であり、 図 8 は、 図 6 の回転運動機構の移動体等の内部構造を示した部分 断面平面図であり、
図 9 は、 図 6の回転運動機構の正面断面図である。 実施例
以下、 本発明にかかる好適な実施例を添付図面と共に詳細に説明 する。
(第 1実施例)
第 1実施例について図 1 (正面断面図) と共に説明する。 なお、 第 1実施例において、 図 6 〜 9に示した構成部材と同一の部材につ いては同一の符号を付し、 説明は省略する。 第 1実施例においても 回転運動機構の一例としてィ ンデックステーブルを例に挙げる。 図 6 〜 9 に示す従来の回転運動機構では、 移動体 2 8の矩形運動 を出力軸 3 4 とレバ一片 3 6を介して回転テーブル 1 6の回転運動 に変換した。 第 1実施例では出力軸 3 4を用いること無く 、 移動体 2 8 の矩形運動を回転テーブル 1 0 0 の回転運動に変換する。
回転テーブル 1 0 0 の外周面には周方向へ溝 1 0 2 aが刻設され ている。 一方、 上部カバー 1 0の中央には中央孔 1 0 4が開設され 中央孔 1 0 4 の緣にはリ ング状のリ テーナ 1 0 6が固定されている リ テーナ 1 0 6を固定するこ とにより、 中央孔 1 0 4 の内周面には 周方向へ溝 1 0 2 bが形成されている。 溝 1 0 2 a と溝 1 0 2 b と は対向し、 両者の間には鐧球 1 0 8が介挿され、 ボールベアリ ング が構成されている。 従って、 回転テーブル 1 0 0 は中央孔 1 0 4内 において酉転可能になっている。 すなわち、 回転テーブル 1 0 0 は, 回転テーブル 1 0 0 の軸線を中心とする円形のリ ング状に形成され た円周軸受である上記のボールベア リ ングに、 回転可能に保持され ている。
案内部の一例であるレバ一片 1 1 0 は、 回転テーブル 1 0 0の下 面に直接固定されている。 レバ一片 1 1 0 は、 回転テーブル 1 0 0 の中心に対してラジアル方向へ配設されている。 レバ一片 1 1 0 は- 移動体 2 8へ回転可能に設けられている連 部材 3 8の凹溝 4 0内 ヘスライ ド可能に嵌合されている。 すなわち、 レバ一片 1 1 0 は、 案内部として作用し、 移動体 2 8に回動可能に装着された連 部材 3 8が、 レバ一片 1 1 0の長手方向へ移動可能に速 Kされている。 なお、 レバ一片 1 1 0 は回転テーブル 1 0 0の中心に対してラジア ル方向へ配設されていればよ く、 その長さは特に限定されない。 例 えば、 レバ一片 1 1 0の長さは、 第 1実施例のように回転テーブル 1 0 0の直径と同等の長さでもよいし、 回転テーブル 1 0 0の直径 より短くてもよいし、 長くてもよい。
なお、 第 1実施例のレバ一片 1 1 0 は、 回転テーブル 1 0 0を保 持するボールベア リ ング (円周軸受) の円周の内側で、 連繋部材 3 8を介して回転テーブル 1 0 0 と連 ϋしている。 円周蚰受の内径が 図 6 〜 9に示す従来の回転運動機構より大径であるため、 回転テー ブルの位置決め精度を高精度にすることができる。 第 1実施例で は、 第 1 のモータ 4 2および第 2のモータ 4 4を制御して移動体 2 8を矩形運動させることができる。 移動体 2 8 の矩形運動の際、 レ バ一片 1 1 0 は連繋部材 3 8ヘスライ ド可能に嵌合されているので 移動体 2 8 に対して回動可能、 かつ長さ方向へ移動可能になってい る。 従って、 レバ一片 1 1 0 はクラ ンクとなり、 回転テーブル 1 0 0を回転させることができる。 第 1 実施例のィ ンデ ッ クステーブルでは、 図 6〜 9 に示す出力 II 3 4 を設けず、 回転テーブル 1 0 0 を上部カバー 1 0 の中央孔 1 0 4 内に配設したので上下方向の厚さを薄く でき、 回転運動機構の小 型化が可能になる。 また、 レバ一片 1 1 0 を回転テーブル 1 0 0 の 下面に固定しているので、 図 6〜 9 に示す回転運動機構と比べ、 曲 げモーメ ン トによる レバ一片 1 1 0 の歪みを防止する こ とができ、 高精度と安定した運用が保障されている。
なお、 移動体 2 8 の移動軌跡は、 上記のよう な矩形運動に限らず、 円運動等、 任意の軌跡を選択できる。 円運動であれば、 連 部材 3 8 はレバ一片 1 1 0 に対してスラ イ ドしない状態となり、 均一な回 転 トルクによる運動が要求される場合には適している。 また、 大き な回転 トルクを必要とせず、 回転テーブル 1 0 0 の回転速度を高め る必要のある場合は、 回転テーブル 1 0 0 の回転軸線近傍で移動体 2 8 を移動させればよい。
また、 移動体 2 8 を以下のよう に移動させて回転テーブル 1 0 0 を回転させるこ ともできる。
先ず、 移動体 2 8 を、 ある第 1 の点から、 回転テーブル 1 0 0 の 軸線に対して点対称となる反対位置である第 2 の点へ移動する こと で回転テーブル 1 0 0 を半回転させる。 次に、 移動体 2 8 を、 レバ 一片 1 1 0 の長さ方向へ移動させ、 再び第 1 の点へ移動する。 そし て、 移動体 2 8 を、 再び第 1 の点から第 2 の点へ移動させる こ とで- 面転テーブル 1 0 0をさ らに半回転できる c すなわち、 回転テープ ル 1 0 0下の半分の平面内で、 移動体 2 8 を移動する こ とで回転テ 一ブル 1 0 0 を回転させるこ とができる。
従って、 この移動方法を採用する と、 空間の有効利用を図る こ と が可能となる。
(第 2実施例)
第 2実施例について図 2 および図と共に説明する。 なお、 第 2実 施例もイ ンデッ ク ステーブルであり、 図 6 〜図 9 に示す従来の技術 および第 1 実施例と同一の構成部材については同一の符号を附し、 説明は省略する。
第 2実施例の面転テーブル 2 0 0 は、 ボールべァリ ング 2 0 2を 介して上部カバー 1 0に面転可能に設けられている。 ボールべァリ ング 2 0 2の内周部 2 0 4が回転テーブル 2 0 0に固定されており、 その外周部 2 0 6が上部カバー 1 0に固定されている。 内周部 2 0 4 と外周部 2 0 6 との間に鐧球 2 0 8が挿入されてボールべァリ ン グが構成され、 面転テーブル 2 0 0が回転可能になっている。
第 1実施例と同様にレバ一片 2 1 0 は、 回転テーブル 2 0 0 の下 面に直接固定されている。
連 ϋ部材 3 8 も第 1実施例と同様に、 移動体 2 8 に回動可能に装 着されると共に、 レバ一片 2 1 0の長手方向に移動 (スライ ド) 可 能に連整され、 移動体 2 8 の移動に伴ってレバ一片 2 1 0を介して 回転テーブル 2 0 0を回転させるように設けられている。
そして、 第 2実施例では、 移動体 2 8の向きを変えることな く、 移動体 2 8を旋回動させる旋回動機構 ( 2次元運動機構) が異なつ ている。 その旋回動機構を図 3 に基づいて説明する。
フ レーム 2 1 8 は、 中央が抜かれた矩形枠状に形成されている。
X軸ボールネジ 2 2 0 、 2 2 2 は、 互いに平行に同一面内に配設 されている。 X I*ボールネジ 2 2 0 は X蚰駆動手段である X軸モー タ 2 2 4 により直接躯動され回転するようになっている。 X蚰ボー ルネジ 2 2 2 へは曲歯笠歯車及び伝達轴 2 3 0等からなる第 1 の伝 達機構を介して X軸モータ 2 2 4 の回転力が伝達される。 X軸ボー ルネジ 2 2 0 、 2 2 2 の先端部 (図面上、 左端部) は適宜な支持フ レームに枢支されている。 この X軸ボールネジ 2 2 0 、 2 2 2 は、 X軸方向のガイ ドと して作用する と共に、 X軸モータ 2 2 4 と移動 体であるスライダ 2 1 4 を X轴方向に移動させる第 1 の駆動手段を 構成する。
Υ蚰ボールネジ 2 3 4 、 2 3 6 は、 互いに平行、 同一面内、 かつ 前記 X軸ボールネジ 2 2 0、 2 2 2 とも略同一面内で直交するよう 配設されている。 Y軸ボールネジ 2 3 4 は Y蚰躯動手段である Y軸 モータ 2 3 8 により直接駆動され回動するようになっている。 Y轴 ボールネジ 2 3 6 へは曲歯笠歯車及び伝達軸 2 4 4等からなる第 2 の伝達機構を介して Y軸モータ 2 3 8 の回転力が伝達される。 また Y軸ボールネジ 2 3 4、 2 3 6 の先端部 (図面上、 下端部) も適宜 な支持フ レームに枢支されている。 こ の Y軸ボールネジ 2 3 4、 2 3 6 は、 Y軸方向のガイ ドと して作用する と共に、 Y軸モータ 2 3 8 と移動体であるスラ イ ダ 2 1 4 を Y轴方向に移動させる第 2 の駆 動手段を構成する。
X蚰駆動体 2 4 8、 2 5 0 は、 それぞれ X軸ボールネジ 2 2 0、 2 2 2 へ j¾合されている。 X紬躯動体 2 4 8、 2 5 0 は、 Y Wロ ッ ド 2 5 6 により回動が阻止されているので X軸ボールネジ 2 2 0、 2 2 2が同一方向へ回転する こ とにより X軸方向に同時に移動可能 になっている。
躯動体 2 5 2、 2 5 4 は、 それぞれ Y軸ボールネジ 2 3 4、 2 3 6 へ螺合されている。 Y Wl駆動体 2 5 2、 2 5 4 は、 X軸ロ ッ ド 2 5 8 により回動が阻止されているので Y軸ボールネジ 2 3 4、 2 3 6 が同一方向へ回転するこ とにより Y蚰方向に同時に移動可能 になっている。
Y W口 ッ ド 2 5 6 は、 Y軸に平行に配され、 スラ イ ダ 2 1 4 へ貫 挿されている。 Y軸ロ ッ ド 2 5 6 の両端はそれぞれ X岫躯動体 2 4 8、 2 5 0 へ固定されている。 これにより スラ イ ダ 2 1 4 は、 Y軸 ロ ッ ド 2 5 6 および X軸駆動体 2 4 8、 2 5 0 の X軸方向の移動に 伴い X蚰方向へ移動する。
X轴ロ ッ ド 2 5 8 は、 X軸に平行に配され、 スラ イ ダ 2 1 4 へ貫 挿されている。 X軸口 ッ ド 2 5 8 の両端はそれぞれ Y fth躯動体 2 5 2、 2 5 4 へ固定されている。 従って X軸ロ ッ ド 2 5 8 は Y軸ロ ッ ド 2 5 6 とスラ イ ダ 2 1 4 内部で直交する。 スライ ダ 2 1 4 は、 X 軸ロ ッ ド 2 5 8および Y tt躯動体 2 5 2、 2 5 4 の Y轴方向の移動 に伴い Y軸方向へ移動する。 この X軸方向及び 方向への移動の 組み合わせによりスライダ 2 1 4 は矩形平面 2 6 0内の任意の位置 に任意の軌跡で移動が可能となる。 また、 スライ ダ 2 1 4に Y軸口 ッ ド 2 5 6 と X軸ロ ッ ド 2 5 8が直交するように挿通されることに より、 スライダ 2 1 4 は平面内で自転不能、 かつ X軸方向と Y軸方 向の向きも不変となる。
なお、 Y軸ロ ッ ド 2 5 6および X軸ロ ッ ド 2 5 8 は、 適宜な剛性 を有する金厲ロ ッ ドで構成するとよい。
(第 3実施例)
第 3実施例について図 4 と共に説明する。 なお、 第 3実施例もィ ンデックステーブルであり、 図 6〜図 9に示す従来の技術および第 1実施例ならびに第 2実施例と同一の構成部材については同一の符 号を附し、 説明は省略する。
第 3実施例と第 2実施例との相違点は、 回転テーブル 2 0 0が複 数 (本実施例では 4個) 設けられている点である。 第 3実施例では 複数の回転テーブル 2 0 0が同期回転すべく 、 各回転テーブル 2 0 0にはレバ一片 2 1 0が固定されており、 移動体 2 8には各レバー 片 2 1 0に対応して連 部材 3 8が複数装着されている。
移動体 2 8に複数の連 部材 3 8を装着するために、 十字状の支 持部材 3 0 0が移動体 2 8 の上面に固定されている。 その十字状の 支持部材 3 0 0の各突起部の先端近傍に各連憨部材 3 8力 それぞ れ回動可能に装着されている。
第 3実施例によれば、 精度の高い全く 同一の回転を複数同時に得 ることができる。 従って、 この回転運動機構を用いれば、 記憶媒体 のコ ピーや、 高精度な製品の加工を、 効率良く行う ことができる。
なお、 図 6〜図 9に示す従来の技術においても、 複数の回転テー ブル 2 0 0を設け、 各回転テーブル 2 0 0へレバ一片 2 1 0を固定 し、 移動休 2 8へ各レバ一片 2 1 0 に対応して複数の連 II部材 3 8 を設ければ、 複数の回転体 (回転テーブル) を同期回転させること ができる。
第 1 〜 3実施例では前述のように、 レバ一片 1 1 0、 2 1 0 の最 も外側を移動体 2 8 で駆動する こ とにより、 面転テーブル 1 0 0、 2 0 0 の制御分解能を高く できる。 従って、 レバ一片 1 1 0、 2 1 0の長さを長く すると、 ボールネジほど位置精度が高く ないガイ ド 手段または駆動手段、 例えばタイ ミ ングベル ト とタイ ミ ングプーリ、 チヱーンとスブロケ ッ ト等をサーボモータで駆動して移動体 2 8を X — Y方向へ移動させる構造、 例えば米国特許第 4 , 9 9 5 , 2 7 7号公報の図 1 4 に示す 2次元運動機構でも十分な精度の回転運動 機構を実現できる。 つまり、 この回転運動機構は、 ボールネジ以外 のガイ ド手段または駆動手段でも有効な機構を実現できる発展性を 舍む機構である。
図 5 に他の駆動手段の一例を示す。
第 1 のガイ ド手段である 1対の X軸ガイ ド 3 1 2 a、 3 1 2 bは X軸方向へ平行に配されている。 第 2のガイ ド手段である 1対の Y 軸ガイ ド 3 2 4 a、 3 2 4 bは Y軸方向へ平行に配されている。
第 1 の移動ガィ ドである X軸移動ガイ ド (ロ ッ ド) 3 2 8 は、 中 央に大径部 3 3 8が形成されている。 X軸移動ガイ ド 3 2 8 の両端 は、 それぞれ Y軸ガイ ド 3 2 4 a、 3 2 4 bへ連 ¾され、 Y軸方向 へ移勖可能になっている。 第 2 の移動ガイ ドである Y軸移動ガイ ド (ロ ッ ド) 3 2 2 は、 X軸移動ガイ ド 3 2 8 と同様、 中央に大径部 (不図示) が形成されている。 Y蚰移動ガイ ド 3 2 2 の両端は、 そ れぞれ X軸ガイ ド 3 1 2 a、 3 1 2 bへ連繫され、 X轴方向へ移動 可能になっている。
移動体 3 3 0 は、 X蚰移動ガイ ド 3 2 8 と Y蚰移動ガイ ド 3 2 2 上を移動可能である。 移動体 3 3 0の内部には、 前記大径部により チャ ンバ 3 4 0 a、 3 4 0 b、 3 4 0 c、 3 4 0 dが面成されてい る。 このチャ ンノ、 ' 3 4 0 a、 3 4 0 b、 3 4 0 c、 3 4 0 d へ流体 例えば圧空、 圧油、 圧水を選択的に給排することにより移動体 3 3 0を 2次元運動させるこ とができる。 移動体 3 3 0 は、 上述の各実 施例と同様、 連繋部材および案内部 (不図示) を介して回転体 (回 転テーブル) を面転可能になっている。
ス ト ツバ 3 5 0を配設するこ とにより移動体 3 3 0 の移動量を規 制可能であるため、 ス ト ツバ 3 5 0で規定される 4箇所の位置につ いて回転テーブルの位置決めを行う ことができる。
また、 流体の流量を調整するための手段、 例えば流量制御弁を用 いてチャ ンバ 3 4 0 a、 3 4 0 b、 3 4 0 c、 3 4 0 dへ給排する 流体の量を調整すれば、 移動体 3 3 0を任意の軌跡で移動させるこ とができるため、 面転テーブルを任意の位置に位置決めすることが できる。
流体圧による駆動手段を採用するこ とにより、 移動体 3 3 0をバ ラ ンス良く 2次元運動させることができる。 また、 回転可能に設け られた建造物のような非常に重量の大きな回転体や、 回転体の重量 負荷が非常に大きな場合に有効である。 なお、 流体圧による駆動手 段としては、 図 5に示す例の他に、 X軸駆動体 3 1 8 a、 3 1 8 b および Y軸駆動体 3 2 6 a、 3 2 6 bを流体圧シリ ンダ装置で駆動す る機構を採用することも可能である。
移動体を 2次元運動させる駆動手段としては、 使用条件によって は上記実施例に限らず、 例えば、 X軸ガイ ドに沿って移動可能に設 けられたサブ移動体と、 そのサブ移動体上に固定されて Y軸方向に 延びる Y軸ガイ ドと、 その Y蚰ガイ ドに沿って移動可能に設けられ た移動体を備える X Yテーブルを利用できる。 また、 水平多関節口 ボッ トを駆動手段として利用する こ ともできる。
その他、 回転テーブル 1 0 0、 2 0 0の実際の回転角度等を計測 するための検出手段、 例えばロータ リ エ ンコーダを設けてもよい。 また、 第 1 の移動ガイ ドと第 2 の移動ガイ ドはロ ッ ドではな く ブレ ー ト上に固定された直動ガイ ドで構成し、 移動体 2 8を当該直動ガ ィ ドへ移動可能に係合させてもよい。
以上、 本発明の好適な実施例について種々述べて来たが、 本発明 は上述の実施例に限定されるのではな く 、 発明の精神を逸脱しない 範囲でさ らに多 く の改変を施し得るのはもちろんである。

Claims

請求の範囲 . 2次元平面内において移動可能な移動体と、
該移動体を移動させる駆動手段と、
円形のリ ング状に形成されると共に、 前記 2次元平面と平行な 面内に設けられた円周軸受と、
該円周軸受に保持されると共に、 蚰線を中心として回転可能な 回転体と、
該回転体の少なく とも一方の面へ設けられると共に、 回転体の 前記轴線に対して径方向へ設けられた案内部と、
前記移動体へ設けられ、 前記回転体の前記軸線と平行な軸線を 中心に回動可能であると共に、 前記案内部へ案内部の長手方向へ 移動可能に連鬆され、 移動体の移動に伴って案内部を介して回転 体を回転させる連 部材とを具備することを特徴とする回転運動
. 前記案内部を有する回転体が複数設けられ、
複数の該回転体を同期回転させるベく、 1個の前記移動体には 各案内部に対応して前記連憨部材が複数装着されていることを特 徴とする請求の範囲第 1項記載の回転運動機構。 . 前記案内部は、 一端が前記回転体に固定され他端が該回転体の 軸線に対して径方向に延設されたレバ一片であることを特徴とす る請求の範囲第 2項記載の回転運動機構。 . 前記 2次元平面に舍まれる第 1 の方向へ配設され、 前記移動体 の該第 1 の方向への移動を案内する第 1 のガイ ド手段を設け、 前記 2次元平面に舍まれ、 前記第 1 の方向に対して直角な第 2 の方向へ配設され、 前記移動体の該第 2の方向への移動を案内す る第 2 のガイ ド手段を設け、
前記駆動手段は、 前記移動体を前記第 1 の方向へ移動させるた めの第 1 の駆動手段と、 前記移動体を前記第 2の方向へ移動させ るための第 2 の駆動手段とから成ることを特徴とする請求の範囲 第 1 項記載の回転運動機構。 . 前記案内部を有する回転体が複数設けられ、
複数の該回転体を同期回転させるベく 、 1個の前記移動体には 各案内部に対応して前記連^部材が複数装着されていることを特 徴とする請求の範囲第 4項記載の回転運動機構。 . 前記案内部は、 一端が前記回転体に固定され他端が該回転体の 軸線に対して径方向に延設されたレバ一片であることを特徴とす る請求の範囲第 5項記載の回転運動機構。 . 前記第 1 のガイ ド手段は、 前記第 1 の方向へ平行に配設された 1対の第 1 のガイ ドであり、
前記第 2のガイ ド手段は、 前記第 2 の方向へ平行に配設された 1対の第 2のガイ ドであり、
前記第 1 のガイ ドと平行に配され、 各端部がそれぞれ前記第 2 のガイ ドへ移動可能に連 され、 第 2 のガイ ドに沿って前記第 2 の方向へ移動可能な第 1 の移動ガイ ドを設け、
前記第 2 のガイ ドと平行に配され、 各端部がそれぞれ前記第 I のガイ ドへ移動可能に連 I され、 第 1 のガイ ドに沿って前記第 1 の方向へ移動可能な第 2 の移動ガイ ドを設け、
前記移動体は、 前記第 1 の移動ガイ ドと第 2 の移動ガイ ド上を 移動可能であり、
前記第 1 の驱動手段は、 前記第 2 の移動ガイ ドを前記移動体と 共に、 前記第 1 の方向へ移動させ、 前記第 2 の駆動手段は、 前記第 1 の移動ガイ ドを前記移動体と 共に、 前記第 2の方向へ移動させることを特徴とする請求の範囲 第 4項記載の回転運動機構。 . 前記案内部を有する回転体が複数設けられ、
複数の該回転体を同期回転させるベく、 1個の前記移動体には 各案内部に対応して前記連!?部材が複数装着されていることを特 徴とする請求の範囲第 7項記載の回転運動機構。 . 前記案内部は、 一端が前記回転体に固定ざれ他端が該回転体の 軸線に対して径方向に延設されたレバ一片であることを特徴とす る請求の範囲第 8項記載の回転運動機構。
PCT/JP1995/001687 1995-04-14 1995-08-24 Mecanisme a mouvement tournant WO1996032223A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69527730T DE69527730T2 (de) 1995-04-14 1995-08-24 Rotierender bewegungsmechanismus
AU32652/95A AU3265295A (en) 1995-04-14 1995-08-24 Rotational motion mechanism
EP95929225A EP0872304B1 (en) 1995-04-14 1995-08-24 Rotational motion mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7089758A JPH0849756A (ja) 1994-06-24 1995-04-14 回転運動機構
JP7/89758 1995-04-14

Publications (1)

Publication Number Publication Date
WO1996032223A1 true WO1996032223A1 (fr) 1996-10-17

Family

ID=13979627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001687 WO1996032223A1 (fr) 1995-04-14 1995-08-24 Mecanisme a mouvement tournant

Country Status (7)

Country Link
EP (1) EP0872304B1 (ja)
JP (1) JPH0849756A (ja)
KR (1) KR100357750B1 (ja)
CN (1) CN1074967C (ja)
AU (1) AU3265295A (ja)
DE (1) DE69527730T2 (ja)
WO (1) WO1996032223A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861004B1 (fr) * 2003-10-21 2006-12-08 Comau Systemes France Sa Dispositif porte-piece
JP4575674B2 (ja) * 2004-01-23 2010-11-04 Thk株式会社 回転テーブル装置
WO2007026632A1 (ja) * 2005-08-31 2007-03-08 Thk Co., Ltd. ガイドテーブル装置
DE202006020326U1 (de) * 2006-11-21 2008-05-21 Thyssenkrupp Drauz Nothelfer Gmbh Vorrichtung zur Positionierung von Bauteilen
JP4942046B2 (ja) * 2008-03-31 2012-05-30 学校法人法政大学 自由運動フライトシミュレータ装置
TWI458585B (zh) * 2012-04-25 2014-11-01 中原大學 斜向驅動式平台結構
JP5666041B1 (ja) * 2013-10-17 2015-02-04 株式会社エムエイチセンター R−θテーブル装置及びメネジの加工装置
KR101383174B1 (ko) * 2013-11-27 2014-04-09 윤슬(주) 동축 구동 다방향 제어장치
CN103692226B (zh) * 2013-12-24 2015-12-09 昆山鸿富洋机电有限公司 一种内置式微调滑台运动机构
TWI487593B (zh) * 2013-12-30 2015-06-11 中原大學 三軸共平面斜向驅動式平台
CH710257A1 (de) * 2014-10-16 2016-04-29 Rieter Ag Maschf Ballenöffner.
CN109094101A (zh) * 2018-09-24 2018-12-28 亚晟(东莞)自动化设备科技有限公司 一种纸盒折上三口装置
CN114603328A (zh) * 2022-03-15 2022-06-10 上海智能制造功能平台有限公司 一种用于智能装配的3prs-2pp双平台设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712200A (ja) * 1993-06-29 1995-01-17 Souzouan:Kk 回転運動機構
JPH0751962A (ja) * 1993-08-06 1995-02-28 Souzouan:Kk 回転運動機構

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048059A (en) * 1960-01-11 1962-08-07 Cross Co Index table for machine tools

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712200A (ja) * 1993-06-29 1995-01-17 Souzouan:Kk 回転運動機構
JPH0751962A (ja) * 1993-08-06 1995-02-28 Souzouan:Kk 回転運動機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0872304A4 *

Also Published As

Publication number Publication date
EP0872304A1 (en) 1998-10-21
CN1179742A (zh) 1998-04-22
EP0872304B1 (en) 2002-08-07
CN1074967C (zh) 2001-11-21
JPH0849756A (ja) 1996-02-20
DE69527730T2 (de) 2003-04-30
AU3265295A (en) 1996-10-30
KR19980703886A (ko) 1998-12-05
EP0872304A4 (ja) 1998-10-21
KR100357750B1 (ko) 2003-03-29
DE69527730D1 (de) 2002-09-12

Similar Documents

Publication Publication Date Title
US5481936A (en) Rotary drive positioning system for an indexing table
WO1996032223A1 (fr) Mecanisme a mouvement tournant
US4948330A (en) Alignment stage device
US5882158A (en) Drive assembly
JP4953599B2 (ja) 加工物のプロファイルの研削方法及び研削装置
JPH05200601A (ja) 工作機械
JPS5877428A (ja) ユニバ−サル式スピンドルヘツドを有する単軸スピンドル式工作機械及びそのスピンドルヘツド
JP2708056B2 (ja) 加工物を加工する工作機械装置
JPH10277985A (ja) 位置決め装置
JPS641242B2 (ja)
JPH0768437A (ja) 2次元運動機構
CN114769686B (zh) 大型回转类球面薄壁件镜像铣加工装备及方法
GB2320694A (en) Gear cutting apparatus
JP3753886B2 (ja) 高精度加工装置
JP3090257B2 (ja) マシニングセンタ
JP3395701B2 (ja) 加工機
JP3285061B2 (ja) 工作物クランプ装置
JP3418452B2 (ja) 複合運動駆動装置
JPH0751962A (ja) 回転運動機構
JP2002137131A (ja) 工作機械の機体形態
JPH1052784A (ja) レーザー加工装置
JPH02172667A (ja) 研磨方法及びその装置
JP2004160565A (ja) 研磨方法および形状可変研磨工具装置
JP2001259953A (ja) Nc工作機械用の駆動装置
JP2805093B2 (ja) ロボットハンド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95197806.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU KE KG KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995929225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970707287

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1995929225

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707287

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995929225

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970707287

Country of ref document: KR