WO1996026800A1 - Procede et appareil de regulation de la coulee continue - Google Patents

Procede et appareil de regulation de la coulee continue Download PDF

Info

Publication number
WO1996026800A1
WO1996026800A1 PCT/JP1996/000458 JP9600458W WO9626800A1 WO 1996026800 A1 WO1996026800 A1 WO 1996026800A1 JP 9600458 W JP9600458 W JP 9600458W WO 9626800 A1 WO9626800 A1 WO 9626800A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
molten steel
electrode
pseudo
random signal
Prior art date
Application number
PCT/JP1996/000458
Other languages
English (en)
French (fr)
Inventor
Koichi Tezuka
Akio Nagamune
Hiroshi Maeda
Hiroaki Miyahara
Atsushi Ohta
Akira Ohsumi
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP32876595A external-priority patent/JP3218953B2/ja
Priority claimed from JP01519496A external-priority patent/JP3214333B2/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to US08/718,530 priority Critical patent/US5918662A/en
Priority to EP96904264A priority patent/EP0776715B1/en
Publication of WO1996026800A1 publication Critical patent/WO1996026800A1/ja
Priority to KR1019960705972A priority patent/KR100223258B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/161Controlling or regulating processes or operations for automatic starting the casting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level

Definitions

  • the present invention relates to an operation control method and apparatus for continuous production of molten steel, and more particularly to an automatic start at the start of production. Background technology
  • Japanese Patent Application Laid-Open No. Sho 62-545642 proposes a control method for correcting a run-up pattern when the run-up pattern is deviated at an intermediate confirmation level.
  • the method of controlling the rising speed is disclosed in Japanese Patent Application Laid-Open No. Sho 62-183,951, Japanese Patent Application Laid-Open No. Hei 11-70568, No. in publications
  • Various methods have been proposed, but in each case, the detection level is grasped based on whether or not the level has reached a predetermined level, and the feedback information of the detection level is discontinuous.
  • Japanese Patent No. 426559 proposes a control method in which a plurality of electrodes having different lengths are provided and the level of each of the electrodes is detected.
  • the following problems are pointed out in this control method.
  • the conventional control method does not employ the method of continuously measuring the ascending speed of the molten metal level immediately after the start of pouring and performing feed pack control.
  • the molten steel in the tundish contains inclusions, and if the level of molten metal immediately after the start of pouring is too high, inclusions near the upper part of the molten steel in the tundish will be caught in the tundish.
  • the billet causes defects such as cracks due to inclusions, and there is a problem in that the failure rate increases if the bath speed is not optimized. This problem was particularly remarkable in the continuous fabrication of a billet having a small cross section and having a high run-up speed in the mold immediately after the start of pouring into the mold.
  • the present invention detects the level of molten steel in the mold and controls the discharge amount of molten steel appropriately from immediately after the start of pouring until the level reaches the level of steady operation. It is an object of the present invention to provide an operation control method and a device for a continuous structure capable of automatically starting the structure drawing.
  • the continuous production operation control method is a method for controlling an electrode-type hot water bath from immediately after the molten steel is poured into the mold in the continuous production until the molten steel level reaches the level in the steady operation.
  • the method includes a step of continuously measuring the level of the molten metal with a surface gauge, and a step of starting the drawing when the level of the molten metal reaches a reference level lower than the level of the molten metal in the normal operation.
  • the first and second two electrodes of the electrode type level meter are inserted vertically until immediately before the dummy bar in the mold before the start of the fabrication. Even if a signal is input to the first electrode before the operation starts, the signal is not transmitted to the second electrode because the first electrode and the second electrode are insulated.
  • the operation starts and molten steel is injected into the mold, the molten steel comes into contact with the first and second electrodes, and the signal input to the first electrode is applied to the second electrode via the molten steel. Transmitted.
  • the molten steel in the mold is started by fully opening the stopper or sliding nozzle of the tundish, and after a certain period of time, the stopper or sliding nozzle is lowered to a certain opening.
  • the level of molten steel in the mold gradually rises.
  • the time delay due to the propagation of the signal transmitted between the first electrode and the second electrode via the molten steel becomes shorter, and the time delay of this signal is reduced.
  • the level of the molten steel in the mold from the start of the injection of the molten steel can be measured continuously. Then, when the level of the molten metal reaches the reference level, ⁇ Start drawing.
  • the drawing speed and the molten steel injection amount are controlled in accordance with the molten metal level and the rising speed (rising speed), and the molten steel level in the molding and the rising speed are adjusted.
  • the level of the molten metal is converged to a predetermined constant value.
  • the operation shifts to control of the steady operation based on the value measured by the electromagnetic induction type level meter.
  • Normal electromagnetic induction level meter control does not measure the molten steel level in the mold from the start of the bath to the measurement range of the electromagnetic induction type level meter, but instead performs control after the molten steel level rises into the measurement range. However, depending on the rising speed in the mold, the control of the level of molten steel in the mold is delayed, and the level of the molten metal rises above the target level, and the level of the molten metal rises and falls. It may take some time.
  • the control according to the level of the molten steel in the mold and the level of the level of the molten steel from the start of the leveling are performed to prevent fluctuations in the level of the molten steel, and stable operation can be performed stably in the shortest time.
  • the measurement of the level of the molten steel according to the present invention when the electrode enters the molten steel, the electrode below the molten steel is melted. If there is a vertical fluctuation, the contact between the electrodes will be interrupted and signal detection will be difficult.However, for fine fluctuations, the melting time after the molten steel has penetrated by adjusting the electrode material and shape. To maintain the contact between the electrode and the molten steel and perform continuous measurement. Furthermore, continuous measurement can be performed by using a long electrode and sequentially inserting the electrode into the mold for the dissolution and wear of the electrode material.
  • the operation control method for a continuous structure according to another aspect of the present invention is the operation control method for a continuous structure according to the above (a), wherein the molten steel level is stable immediately after the molten steel is injected into the mold in the continuous structure.
  • the surface level is continuously measured, and Based on the change, the rising speed is calculated, for example, at a constant cycle.
  • the amount of correction of the opening of the stopper or the sliding nozzle is obtained, and an operation command is output to the stopper or the sliding nozzle, thereby performing feedback control at regular intervals.
  • the surface level reaches the reference level, the ⁇ drawing starts.
  • the above reference speed is an optimum bath speed at which no inclusions are generated, and is determined in advance for each billet diameter size according to operating conditions.
  • PI control proportional + integral control
  • the amount of hot water discharged from the tundish is adjusted based on the rising speed, so that the rising speed of molten steel in the mold is appropriately controlled. And, as a result of controlling the rising speed appropriately, the effect of reducing the incidence of defective chips after fabrication due to the inclusion of inclusions by about 20% is obtained. Also, as in the conventional technology, it is possible to achieve appropriate formation of solidified shells and to prevent the occurrence of breakthrough. Further, various phenomena occurring in the early stage of the structure, such as a sudden rise in the level of the molten metal caused by the separation of the refractory stopper or an overflow caused by a delay in the action of the stopper operation, can be prevented in advance. .
  • the operation control method for a continuous structure according to another aspect of the present invention is the operation control method for a continuous structure according to the above (a), wherein the molten steel level in the continuous structure immediately after the molten steel is injected into the mold. Until the level of the molten steel reaches the level of steady operation, the process of measuring the molten steel head and estimating the nozzle gain based on the molten steel level, the molten steel head and the opening of the stopper or sliding nozzle at that time Calculating a target discharge amount for satisfying a preset target pouring time based on the level of the molten metal, and calculating the target discharge amount based on the estimated nozzle gain and the target discharge amount.
  • the level of the molten steel in the mold rises, the level of the molten steel in the mold is continuously measured by the electrode type level gauge, and the molten steel head of the tandem is measured. . Then, for example, an increase value of the molten metal level from the previous time is obtained for each calculation cycle, and a current actual discharge amount is obtained based on the increase value. Next, an estimated value of the current nozzle gain is calculated from the actual discharge amount, the opening degree of the molten steel head and tundish stopper or sliding nozzle. Then, the current target discharge rate is obtained from the current level of the molten metal and the time remaining until the target pouring time.
  • the current stoppage rate is calculated.
  • an opening degree of the sliding nose for example, an opening area is obtained.
  • An operation control method for a continuous structure according to another aspect of the present invention is the operation control method for a continuous structure according to any one of the above (a to c), wherein, after starting the structure withdrawal, the rising speed is determined based on a change in the level of the molten metal.
  • the drawing speed of the structure and the amount of molten steel injected from the tundish are adjusted accordingly, and the molten steel level in the mold is adjusted.
  • the level reaches the level of steady operation, the operation shifts to steady operation.
  • the drawing speed and the molten steel injection amount are controlled in accordance with the level of the molten metal and the rising speed of the molten metal, so that Adjust the molten steel level to converge to a preset constant value.
  • the operation control method for a continuous structure according to another aspect of the present invention is the operation control method for a continuous structure according to any one of the above (a to d), wherein the molten steel molten metal in the mold measured by an electrode-type level gauge is used. Calibrate the measured value of the electromagnetic induction type level meter based on the surface level, and after the molten steel level in the mold reaches the level of normal operation, the level in the mold is measured based on the measured value of the electromagnetic induction type level meter. Of the molten steel level of the molten steel.
  • an electromagnetic induction type level meter and electrodes are separately provided on the mold, and the level of the molten metal in the mold from the start of production (start of the injection of molten steel) is measured by an electrode type level gauge, and the level in the mold is measured.
  • the measured value of the electromagnetic induction type level meter is calibrated by the measured value of the electrode type level meter, and thereby the temperature drift etc.
  • the measured value of the electromagnetic induction type level meter and calibrate the absolute value of the measurement value of the electromagnetic induction type level meter.
  • the operation control method for a continuous structure according to another aspect of the present invention is the operation control method for a continuous structure according to any one of (a) to (e), wherein the level of the molten metal reaches the level of the steady operation. After the transition to, the electrode of the electrode type water level gauge is held on the molten steel surface, the contact between the molten steel and the electrode is detected, and the detection adjusts the opening of the tundish nozzle. Prevents molten steel from overflowing from inside the mold.
  • the electrode in the continuous operation of the continuous structure, the electrode is installed at an arbitrary position above the level of the molten metal in the normal operation in the mold. Then, the contact between the molten steel and the electrode is constantly monitored. This allows, for example, electromagnetic induction level Even if the level of molten steel in the mold rises abnormally due to control failure due to failure of the gauge, etc., the abnormal rise in the level of the molten steel and the speed at which the molten metal rises can be detected by detecting the contact between the electrode and the molten steel. It is possible to detect. Based on these detections, overflow can be prevented by adjusting the drawing speed or molten steel injection amount.
  • the operation control method for a continuous structure is the operation control method for a continuous structure described in the above (a to f), wherein the electrode of the electrode type level gauge is used at the start of the structure.
  • a member that melts at a speed substantially equal to the rising speed of the molten steel level in the molten steel is used.
  • the electrode is melted at a speed substantially equal to the rising speed of the molten steel surface level at the start of the production, both adverse effects when the melting is too slow and too fast can be avoided.
  • the electrode will continue to be present at the bottom of the mold even at the start of drawing, the electrode will be caught in the solidified shell at the start of drawing, and the electrode will be pulled from the electrode holder with the start of drawing. It becomes unmeasurable because it is disconnected.
  • the melting is too early, if the molten metal level fluctuates, the contact between the molten steel and the electrode will be interrupted, and a situation will occur in which measurement becomes impossible.
  • the melting rate of the electrode by setting the melting rate of the electrode appropriately, the adverse effects of both melting too slow and too fast can be avoided, and even in a small section mold such as a billet, the level of the molten metal level can be reduced. Continuous measurement is possible.
  • a continuous structure operation control device includes an electrode inserted into molten steel of a mold, supplies a first pseudo-random signal to the electrode, and supplies a first pseudo-random signal to the electrode.
  • a first pseudo-random signal is multiplied by a second pseudo-random signal having a slightly different frequency in the same pattern as the random signal to calculate a first multiplied value.
  • a second signal is calculated by multiplying the first signal and the second signal by a random signal, and the first and second signals are respectively integrated.
  • An electrode-type water level gauge that measures the level of the bath from the Based on the deviation from the reference speed, the opening degree of the tundish stopper or sliding nozzle is controlled to adjust the flow rate of molten steel discharged from the tundish, and the level of the molten metal is maintained at a steady level. And a structure control device for starting structure withdrawal when a reference level lower than the level is reached.
  • the electrode level gauge is used to continuously maintain the level of the molten metal from immediately after the molten steel is injected into the mold in the continuous production until the level of the molten steel reaches the level of steady operation. Then, based on the change in the level of the molten metal, the rising speed is calculated, for example, at a constant cycle. Then, in order to eliminate the deviation between the rising speed and the reference speed, a correction amount of the stopper or the sliding nozzle is obtained, and an operation command is output to the stopper or the sliding nozzle, thereby providing feedback at regular intervals. Control is exercised. Then, when the level of the molten metal reaches the reference level, ⁇ the drawing starts.
  • a continuous structure operation control device includes an electrode inserted into molten steel of a mold, supplies a first pseudo-random signal to the electrode, and supplies a first pseudo-random signal to the electrode.
  • a first pseudo-random signal is multiplied by a second pseudo-random signal having a slightly different frequency in the same pattern as the random signal to calculate a first multiplied value.
  • a second signal is calculated by multiplying the first signal and the second signal by a random signal, and the first and second signals are integrated.
  • Electrode level gauge for measuring the level of molten metal, means for measuring the molten steel head of the tundish, and nozzle gain based on the level of molten steel, molten steel head and the opening of the stopper or sliding nozzle at that time Calculate the estimate of
  • a target discharge amount for satisfying a preset target pouring time is calculated based on the level of the molten metal, and a stopper or a sled is calculated based on the estimated value of the nozzle gain and the target discharge amount.
  • the opening degree of the sliding nozzle is calculated, and based on the opening degree, the opening degree of the stopper or the sliding nozzle is operated to adjust the flow rate of the molten steel discharged from the tundish.
  • the surface level is the level of normal operation.
  • a structure control device for starting the structure withdrawal when a reference level lower than the standard level is reached.
  • the opening degree of the stopper or the sliding nozzle is obtained based on the target discharge amount, the estimated nozzle gain value, and the current molten steel head.
  • the feedback control is performed by operating the stopper or the sliding nozzle based on the result. Therefore, in particular, the target injection time can be satisfied, and troubles such as nozzle clogging can be prevented.
  • a first pseudo-random signal generating means for generating a first pseudo-random signal; and a second pseudo-random signal for generating a second pseudo-random signal having a slightly different frequency in the same pattern as the first pseudo-random signal Generating means, a first electrode connected to the first pseudo-random signal generating means and inserted into the molten steel, a second electrode inserted into the molten steel, and an output of the first pseudo-random signal generating means
  • a first multiplier for multiplying the output of the second pseudo-random signal generation means by the first multiplier and outputting a first multiplied value; Multiply by the output of the means and A second multiplier that outputs a second multiplied value, a first integrator that integrates the first multiplied value and outputs a first integrated value, and a second integral that integrates the second multiplied value
  • a second integrator that outputs a value, and a level difference is measured from a
  • a calculating means for calculating a hot water speed from a temporal change Next, the operation of the above-mentioned electrode type level gauge will be described.
  • the first pseudorandom signal and the second pseudorandom signal have the same pattern and slightly different frequencies.
  • the multiplied value when the pulse of each cycle of the first pseudo-random signal and the second pseudo-random signal coincides indicates the maximum correlation value, and becomes the maximum value. Occurs at period T.
  • the period T is represented by the following equation.
  • T k / A f... (1)
  • k is a constant and represents the number of bits (the number of clocks) constituting one cycle of the first pseudo random signal Ml and the second pseudo random signal M2.
  • the maximum value of the time series pattern of the second multiplication value also occurs at a period T, but the first pseudo-random signal Ml is generated by the first electrode, the molten steel, and the second electrode. As shown in FIG. 9, the signal is delayed by X time from the maximum value of the second multiplication value because it is delayed from the second pseudorandom signal M2 by T d time.
  • X is represented by the following equation.
  • the displacement of the molten steel level can be obtained by measuring X from Eq. (3) and calculating Td. If the level displacement is known, the reference position can be determined and the distance from this reference position to the level can be obtained. In addition, in equation (3), if the value of ⁇ t is made smaller than Td and the value of P2 is increased, the value of Td can be enlarged by ⁇ 2 / ⁇ t, and measurement can be performed with high accuracy. Can be measured.
  • the signal is conducted through the electrode and the molten steel, and the reflection method is not used as in the past, so the S / N ratio is large, there is no effect of multiple reflection, and the molten steel level It can be measured accurately. Therefore, the rising speed can also be accurately measured.
  • the electrode type water level gauge has two electrodes (the first electrode and the second electrode)
  • a pseudo-random signal is transmitted to one electrode, and the reflected wave is transmitted.
  • the level of the molten metal can be measured by extracting it separately from the input signal.
  • FIG. 1 is a block diagram showing the configuration of a continuous structure operation control device and related equipment according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the electrode type level meter of FIG.
  • FIG. 3 is a block diagram showing the configuration of the clock generator of FIG.
  • Fig. 4 is a circuit diagram showing an example of the pseudo-random signal (M-sequence signal) generator of Fig. 2 a.
  • FIG. 5 is a timing chart showing a pseudo-random signal based on the three-stage shift register shown in FIG.
  • FIG. 6 is a timing chart for explaining the output of the correlation value.
  • FIG. 7 is a timing chart illustrating a method of calculating the correlation period T.
  • Figure 8 shows the output S1 of the ID-passfill evening and the output S of the second low-passfill evening.
  • FIG. 6 is a timing chart showing a second example.
  • FIG. 9 is a diagram for explaining the melting level and the signal transmission distance.
  • FIG. 10 is an explanatory diagram for calculating the phase difference X.
  • FIG. 11 is a characteristic diagram showing an example of measured values of the electrode type level meter of FIG.
  • FIG. 12 is a characteristic diagram showing measured values of the electrode level meter and the electromagnetic induction level meter in the embodiment of FIG.
  • FIG. 13 is a diagram showing a continuous structure operation control device according to another embodiment of the present invention.
  • FIG. 14 is a characteristic diagram showing measured values of the electrode level meter and the electromagnetic induction level meter in the embodiment of FIG.
  • FIG. 15 is a block diagram showing a configuration of a continuous structure control device and related equipment according to another embodiment of the present invention.
  • FIG. 16 is a timing chart of the continuous structure control of FIG.
  • FIG. 17 is a block diagram showing a configuration of a continuous structure automatic start control device and related equipment according to another embodiment of the present invention.
  • FIG. 18 is a timing chart of the continuous structure control of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing the configuration of a continuous structure operation control device and related equipment according to an embodiment of the present invention.
  • reference numerals 1 and 2 denote first and second electrodes
  • reference numeral 3 denotes an electrode type level meter
  • reference numeral 4 denotes a structure control device
  • reference numeral 5 denotes a drawing speed control device
  • reference numeral 6 denotes a nozzle opening adjusting device.
  • 7 is a mold
  • 8 is a tundish
  • 9 is a nozzle
  • 10 is molten steel
  • 11 is an electrode holding device
  • 12 is a dummy bar
  • 13 is an electromagnetic induction type (eddy current type) level meter.
  • the two electrodes 1 and 2 which are installed above the continuous structure mold 7 and vertically inserted into the mold by the electrode holding device 11 are held and installed.
  • the tips of the electrodes 1 and 2 are located immediately before the dummy bar 12 in the mold.
  • the electrodes 1 and 2 are SUS pipes (diameter 3 mm, wall thickness 0.1 mm), and the electrode spacing is 30 mm.
  • the electrode-type level meter 3 inputs the pseudo-random signal generated in the device to the first electrode 1 via a coaxial cable and transmits it to the second electrode 2 via molten steel 10 in the mold 7. Detect a pseudo-dumb signal.
  • the electrode level meter 3 calculates the molten metal level in the mold from the change in the time delay of the detected pseudo-random signal and the transmission speed of the signal, and furthermore, The ascending speed is calculated from the amount of change in the molten steel surface level.
  • FIG. 2 is a block diagram showing a detailed configuration of the electrode type level meter 3.
  • the first clock generator 21 generates a frequency ⁇ ⁇ per clock
  • the second clock generator 22 generates a frequency f2 slightly smaller than fl per clock. Generate frequency.
  • the first pseudo-random signal generator 23 generates a first pseudo-random signal Ml having a period P1
  • the second pseudo-random signal generator 24 has a second pseudo-random signal generator 24 having the same pattern as that of Ml and having a period P2 slightly different from PI. Generates a random signal M2.
  • the first pseudo-random signal M 1 is sent to the first electrode 1.
  • the signal obtained through the second electrode 2 is input to the multiplier 26.
  • the first multiplier 25 (1) Ml from the pseudo-random signal generator 23 through the transmission line Lc is multiplied by M2 from the second pseudo-random signal generator 4 through the transmission line La.
  • the second multiplier 26 multiplies Ml from the first pseudo-random signal generator 23 through the transmission line Ld by M2 from the second pseudo-random signal generator 24 through the transmission line Lb.
  • the first low-pass fill. Even 27 removes high frequency components from the output of the first multiplier 25 and outputs a time-series pattern having one cycle between the maximum correlation values.
  • the second mouth-one-pass filter 28 removes high-frequency components from the output of the second multiplier 26 and outputs a time-series pattern having one cycle between the maximum correlation values.
  • the arithmetic unit 29 calculates the molten steel surface level from the time difference between the maximum correlation value of the time series pattern of the first low-pass filter 27 and the second low-pass filter 28.
  • the molten steel level obtained in the arithmetic unit 29 is output to the structure control device 4.
  • the transmission line is provided with a first electrode 1 and a second electrode 2 partially inserted in a molten steel 10 in a mold 7, and the two electrodes 1 and 2 are electrically connected through the molten steel 10. ing.
  • FIG. 3 is a diagram showing the configuration of the first clock generator 21 and the second clock generator 22.
  • the first crystal oscillator 41 is a crystal oscillator with a frequency fa, for example, 30.00 1 MHz
  • the second crystal oscillator 42 is a crystal oscillator with a frequency fb, for example, 30.000 MHz
  • the common oscillator 43 is a frequency fc, For example, a 1470 MHz oscillator.
  • the first mixer 44 is composed of, for example, a balanced modulator or the like, and outputs a signal of fc ⁇ fa.
  • the second mixer 45 is a mixer that outputs a signal of fc soil fb.
  • the first band pass filter 46 passes fc soil fa out of the output of the first mixer 44
  • the second band pass filter 47 passes fc fb out of the output of the second mixer 45.
  • 30.00 1MHz signal output from the first crystal oscillator 41 and 1470MHz signal output from the common oscillator 43 are mixed by the first mixer 44.
  • 1500.00 1MHz and 1439.999 Outputs two signals of MHz.
  • a signal of 1500.001 MHz is passed through the first band pass filter 46 and output as the first clock cycle algebra.
  • a signal of 30.000 MHz output from the second crystal oscillator 42 and a signal of 1470 MHz output from the common oscillator 43 are mixed by the second mixer 45 to be 1500.000 MHz.
  • 2 signals of 1440MHz are output, and the second clock frequency f2 of 15000.000MHz is output by passing through the second band pass filter 47.
  • FIG. 4 is a diagram illustrating the configuration of the first and second pseudo-random signal generators 23 and 24.
  • This figure is a configuration diagram of a 3-bit M-sequence signal generator. For the sake of simplicity, a 3-bit case is shown, but larger bits, for example, a 7-bit shift register are used.
  • the M-sequence signal generator inputs the shift register 50 consisting of flip-flops synchronized with the clock signal, the final stage of the shift register 50, and the output signal of the previous stage, and outputs it to the first stage.
  • Exclusive logic circuit 51 inputs the shift register 50 consisting of flip-flops synchronized with the clock signal, the final stage of the shift register 50, and the output signal of the previous stage, and outputs it to the first stage.
  • Exclusive logic circuit 51 inputs the shift register 50 consisting of flip-flops synchronized with the clock signal, the final stage of the shift register 50, and the output signal of the previous stage, and outputs it to the first stage.
  • Exclusive logic circuit 51
  • Fig. 5 is a timing chart showing a pseudo-random signal (M-sequence signal) when the three-stage shift register shown in Fig. 4 is used.
  • FIG. 6 (a), (b) and (c) are explanatory diagrams of the correlation values obtained by the multipliers 25 and 26.
  • Fig. 6 (b) is an enlargement of the pseudo random signal Ml, M2 of one cycle of the three-stage shift register shown in Fig. 4 and its one bit, and the first bit of M2 and Ml is , The process of matching from a state shifted by one bit, and then shifting by one bit.
  • Fig. 6 (c) shows the correlation value at this time.
  • one cycle P2 of M2 and one cycle P1 of Ml are shifted by ⁇ t as shown in equation (6), and one cycle PI, P2 is composed of 7 bits.
  • the first bit in one cycle is shifted by ⁇ t / 7, and the last 7 bits is shifted by ⁇ 1 :.
  • (1) shows the case where Ml and M2 are shifted by 1 bit
  • (2) shows the case of the most matching
  • (3) shows the case of shifting again by 1 bit.
  • Fig. 6 (c) shows the case of Fig. 6 (b).
  • the vertical axis represents the magnitude of the correlation value corresponding to (1) and (3)
  • the horizontal axis represents the time axis. This represents the output of the mouth-to-pass fills 27 and 28 in Fig. 2, where the vertices of the triangle are the maximum correlation values.
  • ⁇ 2 / ⁇ t indicates the number of periods PI of Ml that are shifted by one bit, and the period corresponding to this number of periods P1 can be obtained by multiplying by P1, and this one-bit shift has a shift back and forth. Doubled. Next, after obtaining the correlation once, calculate the time (correlation period) until the correlation is obtained again.
  • FIG. 7 is a timing chart showing the phase change of the period P1 with respect to the period P2.
  • ⁇ t is set to a large value with respect to PI and P2 for easy understanding.
  • P1 is repeated from the position of A by the number of times that At is included in P2
  • the relationship between P2 and P1 becomes the position of B, which is the same as the position of A. Therefore, T is expressed by the following equation. .
  • Equation (8) represents equation (1) shown above.
  • Fig. 8 is an evening timing chart showing the outputs of the first and second low-pass filters 27 and 28 in Fig. 2.
  • S 1 indicates the output of the first mouth-one-pass filter 27 and S 2 indicates the output of the second low-pass filter 28.
  • Sl and S2 the maximum correlation value appears at the correlation period T. Note that the transmission lines La to Ld in Fig.
  • FIG. 9 is a diagram for explaining the change of Ld-Lc when the molten steel level changes.
  • Ld—Lc L '
  • the signal Ml transmitted from the first pseudo-random signal generator 23 to the multiplier 26 is delayed by a time T d (delay time) represented by the following equation as compared with Ml transmitted to the multiplier 25: Is transmitted.
  • Td (2L + L,) / V... (9)
  • V 3 x 10 8 m / sec (speed of light)
  • Fig. 10 is a timing chart showing the relationship between the delay time Td and the phase difference X.
  • the phases of the periods P2 and P1 coincide, and at the position A, the maximum correlation of S1 is obtained.
  • a value occurs, and the maximum correlation value of S 2 occurs at position B.
  • the phase difference X has n periods P2 and P1.
  • the difference between the n P2s and the n P1s is represented by ⁇ t. Since ⁇ t is equal to the delay time Td, the following equation holds.
  • a reference level H0 is set. If the level displacement L is set to 0 at H0 and the phase difference X0 at H0 is obtained, L ′ can be obtained from equation (12). Next, if the phase difference XI at the level HI that is L below the reference level H0 is determined, L can be determined by substituting L and X1 into Eq. (12). When the molten steel level rises above H0, the displacement L is calculated as a negative value.
  • phase differences XI and X2 at each displacement are given by the following equations.
  • phase difference change amount ⁇ at this time is expressed by the following equation.
  • the number of shift register stages ⁇ of the pseudo-random signal generator is seven.
  • FIG. 11 is a characteristic diagram showing measurement results of the electrode level meter 3 of FIG.
  • the horizontal axis indicates the liquid level of the molten steel, and the vertical axis indicates the voltage representing the measured level of the molten steel level.
  • the level or distance from the reference position could be easily and quickly processed by taking the phase difference X into the combi- nation and calculating it.
  • the electrodes 1 and 2 of the present embodiment use a metal having a melting point higher than that of the molten metal, or the electrodes 1 and 2 are automatically drawn into the molten metal. If the electrode is made of the same material as the molten metal, it will not affect the composition of the molten metal even if it is melted.
  • the detection signal of the electromagnetic induction type level meter 13 is also input, and the molten steel level in the mold rises, and the output of the electromagnetic induction type level meter 13 is obtained ( At the time when the molten steel level reaches within the measurement span), the output-to-distance characteristics of the electromagnetic induction type level meter 13 are obtained, and the characteristics are calibrated based on the measurement results of the electrode type level meter 3. Thereafter, based on the calibrated output of the electromagnetic induction type level meter 13, the measured value of the molten metal level in the mold is calculated.
  • Fig. 12 shows the measured values of the molten steel level in the mold continuously from the start of construction (at the start of molten steel) by the electrode type level meter 3 and the electromagnetic induction level meter.
  • FIG. The measurement values of the electromagnetic induction level meter 13 and the electrode level meter 3 do not initially match, but the measurement values of the electromagnetic induction level meter 13 were calibrated with the measurement values of the electrode level meter 3. From the point in time, the measured values match, and after that, the electrodes 1 and 2 melt and the measurement by the electrode type level meter 3 becomes impossible, but the measured value of the electromagnetic induction type level meter 13 is calibrated. The accuracy is high, and the measured value is used in the steady control of the molten steel surface level.
  • the structure control device 4 sends a control signal to the drawing speed control device 5 and the nozzle opening degree adjusting device 6 according to the level of the molten steel in the mold and the level of the molten metal measured by the electrode type level gauge 3.
  • the drawing speed control device 5 controls the rotation speed of the drawing roll 14 based on the control signal, and thereby controls the drawing speed.
  • the nozzle opening adjusting device 6 controls the position of the stopper 15, thereby adjusting the opening of the nozzle 9.
  • the position of the stopper 15 is controlled to set the nozzle 9 to a fixed opening and the molten steel is melted.
  • the drawing roll 14 is driven to start drawing. Furthermore, after the drawing was started, the opening degree of the nozzle 9 was adjusted and the drawing speed was controlled so that the molten steel level in the mold gradually decreased and the molten steel surface level converged to a constant value.
  • FIG. 13 is a diagram showing a control device for a continuous production operation according to another embodiment of the present invention.
  • an embodiment for detection of overflow is illustrated.
  • the tips of the electrodes 1 and 2 were placed several tens of mm above the upper limit of the fluctuation of the molten steel surface in the mold in the steady operation state, and the signal was detected by the electrode type level meter 3.
  • the drawing speed and the degree of noise are adjusted by the structure control device 4, but in this embodiment, in order to confirm the effects, the tips of the electrodes 1 and 2 are connected to the molten steel in the mold in a steady operation state. It was installed near the upper limit of the fluctuation of the surface level, and the output of the electrode level meter 3 was observed.
  • Figure 14 shows the observation results. Fluctuations in the molten steel surface during steady operation brought the electrode into contact with the molten steel surface, and intermittent measurements were obtained.Electromagnetic induction was achieved by placing electrodes 1 and 2 above the molten steel surface. Even if the level of molten steel in the mold rises abnormally due to failure of the system level meter 14, etc., the rise in the level of molten steel is detected, and it has been confirmed that overflow can be prevented. Although an example was shown in which electrodes 1 and 2 were of a fixed length, long rods were used as electrodes 1 and 2, and they were continuously immersed in molten steel and continuously worn according to electrode wear. Alternatively, by intermittently inserting the electrode port, not only the level of the molten steel when the molten metal rises, but also the level of the molten steel in a steady state can be measured continuously or intermittently. Is also good.
  • the rate of rise of the molten steel surface level is fast, so if a metal rod is used as an electrode, the time it takes for the electrode to melt in the molten steel is reduced. Due to its long length, the electrode may continue to the lower part of the mold even at the start of drawing, the electrode is caught in the solidified shell at the start of drawing, and the electrode is pulled out of the electrode holder at the start of drawing, and measurement is performed. It may not be possible.
  • the outer diameter is 3.0 mm
  • the inner diameter is 2.0 mm
  • the wall thickness is 0.5 mm as the two electrodes to be inserted into the small section mold of the continuous structure facility. A hollow SUS pipe of mm was used.
  • the time required for the electrode to melt in the molten steel is shortened, and the immersion part of the electrode in the molten steel is sequentially melted and damaged as the molten steel level in the mold rises. Is not continuous to the lower part of the mold, so that the electrode could not be caught by the shell and fall out of the holder, making measurement impossible.
  • the electrode since the thickness of the electrode pipe is adjusted optimally as described above, the electrode is present at 1 Omm to 2 Omm below the surface of the molten metal when the molten metal rises, and the fluctuation of the molten metal surface when the molten steel rises. Even in the event that this occurred, the contact between the molten steel and the electrode was cut off, making it impossible to measure. This enabled continuous measurement and control of the molten steel level. Furthermore, by using an electrode as a pipe, it was possible to adjust the erosion time of the electrode while maintaining the strength of the electrode.
  • the electrode is not limited to the above example of the metal pipe, but may be any other material such as a conductive material having appropriate radius rigidity and having a melting rate that meets the rising speed of the molten steel level. Plasticity (with carbon) may be used.
  • Embodiments 2 and 3 are similarly applied to the embodiment described later.
  • FIG. 15 is a block diagram showing the configuration of a continuous structure operation control device and related equipment according to another embodiment of the present invention
  • FIG. 16 is a timing chart showing the control state.
  • the present embodiment is suitable for a case where the mold capacity is small and the time until the molten metal level reaches a steady value is short (for example, 10 to 20 seconds) as in the case of continuously forming a billet.
  • a steady value for example, 10 to 20 seconds
  • a command to fully open the stopper is output from the manufacturing control device 4, and the steering cylinder 6a is driven.
  • the stopper 15 is fully opened by the driving of the steering cylinder 6a (see (b) of FIG. 16), and molten steel starts to be injected into the mold 7. Thereafter, when a certain time has elapsed, a command to close the stopper 15 is output from the manufacturing control device 4 to a certain opening, and the stopper 15 is closed to a certain degree (see (b) of FIG. 16). .
  • the level of the molten steel is continuously measured using the electrode type level meter 3, and the molten metal rising speed is calculated at regular intervals based on the change.
  • the calculated actually measured value of the rising speed is input to the structure control device 4 and compared with the optimum target rising speed that does not involve inclusions in the operation for each billet diameter size that is input in advance to the structure control device.
  • the structure controller 4 outputs a stopper opening correction value by, for example, PI (proportional + integral) control. 5 moves to the predetermined opening (see (b) and (d) in Fig. 16).
  • the electrode of the present embodiment may be made of a metal having a higher melting point than the molten metal, or may be automatically drawn into the molten metal.
  • FIG. 17 is a block diagram showing a configuration of a continuous structure operation control device and related equipment according to another embodiment of the present invention
  • FIG. 18 is a timing chart showing a control state thereof.
  • This embodiment can be used when the tundish is reused as in the case of continuous production of a slab, or when the mold capacity is relatively large and the time required to reach the surface level is long (for example, 1 minute or more).
  • the same reference numerals as those in Fig. 15 denote the same or corresponding parts, and a description thereof will be omitted. ⁇ In the device in Fig.
  • the construction control device 4 When the weight detected by the tundish weighing machine 7 reaches a certain value (see (a) of FIG. 18), the construction control device 4 outputs a command of the initial opening to the sliding nozzle 17.
  • the sliding nozzle 17 vibrates near the closed position to prevent nozzle clogging until receiving this command.
  • the sliding nozzle 17 opens the nozzle according to the command, and the molten steel starts to be injected into the mold 7.
  • the structure control device 4 first calculates the actual discharge amount from the previous value and the current value of the calculation cycle by the following equation (16).
  • the means for measuring the molten steel head of the present invention is constituted by the tundish weighing scale 16 and the structure control device 4.
  • the target discharge rate for injecting the remaining mold height to the remaining mold height based on the actual level of the molten metal at the time left before the target casting time is calculated by the following equation (18).
  • the sliding nozzle operation amount corresponding to the opening area target value A Ti of the sliding nozzle 17 obtained this time, which is obtained by estimating the nozzle gain i by the above calculation, is operated, and feedback control is performed.
  • the above control is performed at every operation cycle of the structure control device 4 up to the level of the molten metal that enters the steady level control of the steady operation (see FIG. 18 (c)).
  • steady-state level control is performed based on the measured value of the level of the molten metal by the electromagnetic induction type (eddy current type) level meter 13.
  • a pull-out command is output from the pull-out speed control device 5 and the pull-out of the dummy bar is started (see (d) in FIG. 18).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

明 細 書 連続錡造の操業制御方法及びその装置
- 技 術 分 野
本発明は溶鋼の連続錡造の操業制御方法及びその装置に関し、 特に铸造始時 の自動起動に関する。 背 景 技 術
従来この種の溶鋼の連続鎵造においては、 ダミーバーの引抜きの開始迄のモ ールド内の溶鋼保持時間を、 凝固殻の適切な生成を達成することを目的として、 最適に制御するための制御方法が各種提案されている。 例えば特開昭 5 8— 8 4 6 5 2号公報においては、 予め定められたモールド内の湯面レベルの上昇パ ターンに基いて、 タンディ ッシュ内の溶鋼深さから溶鋼の注入量とそれに対応 するスライディングノズルの開度目標値とを算出し、 それに従って溶鋼注入量 制御を実施する制御方法が提案されている。 しかし、 この制御方法においては、 時々刻々の湯面レベルと予め定めた湯面上昇パターンとの偏差をフィ一ドバッ クして制御していないため、 ノズル特性のばらつきや作動不良による変動を力 バーできず、 流速と合致しない状態が生じていた。
また、 特開昭 6 2— 8 4 8 6 2号公報においては、 上記のような制御技術を 改善するために、 予め定められた湯面の中間確認レベルに達する所要時間を設 定しておき、 その所要時間経過時に中間確認湯面レベルに達していないと、 こ れを トリガとして流量制御装置の閧度を予め設定された緊急処理開度まで開き、 基本湯上りパターンに追従させる制御方法が提案されている。
また、 特開昭 6 2 - 5 4 5 6 2号公報においては、 中間確認レベルで湯上り パターンがずれていた場合には、 湯上りパターンを修正する制御方法が提案さ れている。 また、 湯上り速度の制御方法には、 特開昭 6 2— 1 8 3 9 5 1号公 報、 特開平 1一 1 7 0 5 6 8号公報、 特閧平 2 - 1 4 2 6 5 9号公報等におい て各種提案されているが、 いずれも検出レベルを所定の湯面レベルに到達した かどうかで把握しており、 検出レベルのフィ一ドバック情報が不連続であった, また、 特開平 2 - 1 4 2 6 5 9号公報においては、 長さの異なる複数の電極 を設置してそれそれの湯面レベルを検出するようにした制御方法を提案してい る。 しかし、 この制御方法においては、 次のような不具合が指摘される。
( 1 ) 設備投資コス トが高くなる。
( 2 ) スブラッシュの影響による誤動作の影響を完全に除去できない。
( 3 ) ランニングコス トが高くなる。
(4 ) ビレッ トの連続錡造プロセスにおいて、 例えば直径 1 7 O mni 0以下の小 断面に複数の電極を取り付けることは、 設備の制約上困難である。
以上のように従来の制御方法においては、 注入開始直後から連続的に湯面上 昇速度を時々刻々計測してフィ一ドパック制御するという方式が採用されてい なかった。 しかし、 タンディ ッシュ内の溶鋼には介在物が含まれており、 注湯 開始直後の湯上り速度が速すぎると、 タンディ ッシュ内の溶鋼上部付近に有る 介在物を巻き込んでしまい、 それは銬造後のビレツ 卜に介在物要因による割れ 等の不良の原因となり、 この湯上り速度を最適値にしないと、 不良率が高くな るという問題点があった。 この問題点は、 モールドが小断面で、 モールドへの 注湯開始直後のモールド内の湯上り速度が速いビレッ 卜の連続铸造においては 特に顕著であった。
また、 スラブを連続銪造するときのようにタンディ ッシュを再使用する場合 には、 鎵造開始直後、 タンディ ッシュ内に残留したノロの影響でノズルゲイン が大きく変動し、 吐出流量が変動するため、 この制御領域についてはフィード バック制御を行わないと、 自動スタートが安定してできず、 このため、 スライ デイングノズルを手動操作して対応せざるを得なかった。 しかし、 手動操作の 場合にはオーバアクションになり易く、 ノズル詰りのトラブルの発生頻度が多 かった。 発 明 の 開 示
本発明は、 注湯開始直後から湯面レベルが定常操業の湯面レベルに達する迄 の間、 モールド内の溶鋼の湯面レベルを検出して溶鋼の吐出量を適切に制御し、 そして、 鎵造引き抜きを自動的に開始させることを可能にした連続銪造の操業 制御方法及びその装置を提供することを目的とする。
a ) 本発明の一つの態様による連続錶造操業制御方法は、 連続錶造における モールドへの溶鋼注入直後から溶鋼の湯面レベルが定常操業の湯面レベルに達 する迄の間、 電極式湯面計によって、 湯面レベルを連続的に計測する工程と、 湯面レベルが定常操業の湯面レベルよりも低い基準レベルに達すると、 鎵造引 き抜きを開始する工程とを有する。
本発明においては、 錡造開始前にモールド内のダミーバーの直前まで電極式 湯面計の例えば第 1及び第 2の 2本の電極を垂直に挿入する。 操業開始前には 第 1の電極に信号を入力しても、 第 1の電極と第 2の電極との間は絶縁されて おり、 その信号は第 2の電極に伝送されない。 操業を開始して、 モールド内に 溶鋼が注入されると、 溶鋼と第 1及び第 2の電極とが接触し始め、 第 1の電極 に入力された信号は溶鋼を介して第 2の電極に伝送される。 例えばタンディ ッ シュのス トッパー又はスライディングノズルを全開にしてモールド内への溶鋼 注湯を開始し、 それから一定時間経過後ス トッパー又はスライディ ングノズル を或る一定の開度迄下げる。 溶鋼注湯開始後、 モール ド内の溶鋼の湯面の高さ は次第に上昇してくる。 そして、 モールド内の溶鋼レベルの上昇に応じて、 溶 鋼を介して第 1の電極と第 2の電極との間に伝送される信号の伝搬による時間 遅れは短くなり、 この信号の時間遅れの変化を計測することにより溶鋼の注入 開始からのモールド内の溶鋼の湯面レベルを連続して計測することができる。 そして、 湯面レベルが基準レベルに達すると、 鎵造引き抜きを開始する。 そし て、 湯面レベル及びその湯上がり速度 (上昇速度) に応じて、 引き抜き速度及 び溶鋼注入量 (タンディ ッシュのノズル閧度) を制御し、 モール ド内の溶鋼レ ペル及び湯上がり速度を調整し、 湯面レベルを予め設定された一定値に収束さ せる。 そして、 モールド内の溶鋼レベルが定常操業の湯面レベルに達した時点で、 電磁誘導方式レベル計の計測値による定常操業の制御に移行する。 通常の電磁 誘導方式レベル計による制御では、 湯上がり開始から電磁誘導方式レベル計の 計測レンジまでのモールド内の溶鋼レベルを計測せず、 溶鋼レベルが計測レン ジ内に上昇してから制御を行うため、 モールド内の湯上がり速度によってはモ ールド内の溶鋼の湯面レベルの制御が遅れ、 湯面レベルの目標レベル以上への 上昇や湯面の上下変動が生じ、 定常操業へ移行するまでに時間がかかってしま う場合がある。 しかし、 本発明においては湯上がり開始からのモールド内の溶 鋼の湯面レベル及び湯上がり速度に応じた制御を行って湯面の変動等の発生を 防いでおり、 安定して最短時間で定常操業に移行することが可能になっている また、 本発明による湯面レベルの計測においては、 電極が溶鋼内に侵入した 時点で溶鋼の湯面から下の部分の電極は溶解するため、 溶鋼の湯面に上下の変 動があった場合には、 電極間の接触が途切れて信号検出が困難となるが、 細か い変動に対しては電極材料及び形状を調整することにより溶鋼侵入後の溶解時 間を調整し、 電極と溶鋼との間の接触を維持し、 連続計測を行う。 更に、 長尺 の電極を使用し、 電極材料の溶解損耗に対して電極をモールド内に順次挿入す ることにより連続した計測を行うことも可能である。
なお、 上記の説明においては、 電極式湯面計の電極が 2本ある例について説 明したが、 電極を 1本とし、 それに対する送信信号と反射信号との関係から湯 面レベルを計測するようにしてもよい。 b ) 本発明の他の態様による連続錶造の操業制御方法は、 上記 (a ) の連続錡 造の操業制御方法において、 連続錡造におけるモールドへの溶鋼注入直後から 溶鋼の湯面レベルが定常操業の湯面レベルに達する迄の間、 更に、 湯面レベル の変化に基づいて湯上がり速度を求める工程と、 湯上がり速度と基準速度との 偏差に基づいてタンディ ッシュから吐出される溶鋼の流量を調整する工程とを 更に有する。
本発明においては、 湯面レベルを連続的に計測し、 更に、 その湯面レベルの 変化に基づいて湯上り速度を例えば一定の周期で演算する。 この湯上がり速度 と基準速度との偏差をなくすべく、 ス トッパー又はスライディングノズルの開 度補正量を求め、 ス トッパー又はスライディングノズルに操作指令を出力する ことにより、 定周期毎にフィードバック制御がなされる。 そして、 湯面レベル が基準レベルに達すると、 铸造引き抜きを開始する。 なお、 上記の基準速度は 介在物の発生しない最適な湯上り速度であり、 ビレッ ト径サイズ毎に操業条件 に応じて予め求めておく。 また、 フィードバック制御には、 例えば後述の実施 形態においては P I制御 (比例 +積分制御) を使っているが、 他の方法を用い てもかまわない。
本発明によれば、 このようにその湯上り速度に基いてタンディシュから吐出 される湯量を調整するようにしたので、 モールド内の溶鋼の湯上り速度が適切 に制御される。 そして、 湯上り速度が適切に制御された結果、 介在物の巻き込 みによる铸造後の不良錡片の発生率が約 2 0 %削減するという効果が得られて いる。 また、 従来の技術と同様に凝固殻の適正な生成も達成でき、 ブレークァ ゥ トの発生の防止も達成できている。 更に、 錶造初期において発生する各種の 現象、 例えばス トッパー耐火物の剥離によって起きる湯面の急上昇、 或いはス トヅパ一操作のァクションが遅れることにより発生するオーバーフロー等も未 然に防止することができる。 c ) 本発明の他の態様による連続錡造の操業制御方法は、 上記 (a ) の連続錶 造の操業制御方法において、 連続銪造におけるモールドへの溶鋼注入直後から、 溶鋼の湯面レベルが定常操業の湯面レベルに達する迄の間、 更に、 溶鋼ヘッ ド を計測する工程と、 湯面レベル、 溶鋼ヘッ ド及びそのときのス トッパー又はス ライディ ングノズルの開度に基づいてノズルゲインの推定値を算出する工程と、 湯面レベルに基づいて予め設定された目標注上げ時間を満足するための目標吐 出量を算出する工程と、 これらのノズルゲインの推定値及び目標吐出量に基づ いてス トッパー又はスライディ ングノズルの開度を算出する工程と、 この開度 に基づいてス トッパ一又はスライディ ングノズルの開度を操作してタンディ ヅ シュから吐出される溶鋼の流量を調整する工程とを有し、 そして、 その処理を 所定の演算周期毎に繰り返す。
本発明においては、 、 モールド内の湯面が上昇してくると、 モールド内の溶 鋼の湯面レベルを電極式湯面計によって連続的に計測するとともに、 タンデッ シュの溶鋼ヘッ ドを計測する。 そして、 例えば、 演算周期毎に前回からの湯面 レベルの上昇値を求め、 この上昇値に基づき現在の実績吐出量を求める。 次に、 この実績吐出量、 溶鋼へッ ド及びタンディ ッシュのス トッパー又はスライディ ングノズルの開度から現在のノズルゲインの推定値を算出する。 そして、 現在 の湯面レベルと目標注上げ時間迄に残された時間から今回の目標吐出量を求め、 この目標吐出量、 ノズルゲイン推定値及び現在の溶鋼ヘッ ドに基づいて、 今回 のス トッパー又はスライディングノズの開度例えば開口面積を求める。 そして、 この結果に基づいてス トツバ一又はスライディングノズルを操作してフイード バック制御することにより、 特に、 タンディ ッシュを再使用する際の錡造ス夕 一ト直後のノ口の影響によるノズルゲインの大きな変動に対して、 タンディ ッ シュから吐出される溶鋼の流量が最適に制御され、 目標注上げ時間を満足する ことができ、 且つ、 ノズル詰り等のトラブルを防止できる。
更に、 本発明によれば、 特にタンディ ッシュを再使用したときに、 タンディ ッシュ内に残留したノロの影響でノズルゲインが大きく変動し吐出流量が変動 するような場合であっても、 吐出量が最適に制御され、 再使用タンディ ッシュ を使用した時のノズル詰り、 シール漏れ、 オーバーフロー等のトラブルを本発 明の適用前の 1 / 3の頻度に低減する効果が得られた P d ) 本発明の他の態様による連続錡造の操業制御方法は、 上記 (a〜c ) の連 続錡造の操業制御方法において、 錡造引き抜きを開始した後に、 湯面レベルの 変化に基づいて湯上がり速度を求め、 そして、 湯面レベル及びその湯上がり速 度に基いて、 錡造の引き抜き速度及びタンディ ッシュから吐出される溶鋼注入 量をそれそれ調整して、 モールド内の溶鋼の湯面レベルを制御し、 そして、 湯 面レベルが定常操業のレベルに達すると定常操業に移行する。 本発明においては、 錶片引き抜きを開始した後は、 湯面レベル及び湯上がり 速度に応じて、 引き抜き速度及び溶鋼注入量 (タンディッシュのノズル開度) を制御し、 湯面レベル及びその湯上がり速度を調整し、 溶鋼の湯面レベルをを 予め設定された一定値に収束させる。 e ) 本発明の他の態様による連続錶造の操業制御方法は、 上記 (a〜d ) の連 続鋅造の操業制御方法において、 電極式湯面計により計測されたモールド内の 溶鋼の湯面レベルに基いて電磁誘導方式レベル計の計測値を校正し、 モールド 内の溶鋼の湯面レベルが定常操業のレベルに達した後は、 電磁誘導方式レベル 計の計測値に基いて、 モールド内の溶鋼の湯面レベルの制御を行う。
本発明においては、 モールドに電磁誘導方式レベル計及び電極をそれそれ設 置し、 電極式湯面計により鋅造開始 (溶鋼注入開始) からのモールド内の湯面 レベルを計測し、 モールド内の溶鋼の湯面レベルが電磁誘導方式レベル計の計 測スパン内に到達した時点で、 電磁誘導方式レベル計の計測値を電極方式湯面 計による計測値によって校正し、 それによつて温度ドリフ ト等による、 電磁誘 導方式レベル計の計測値の誤差の発生を防ぎ、 電磁誘導方式レベル計の計測値 の絶対値校正を行い、 定常操業に移行した後は、 電磁誘導方式レベル計の計測 値により引き抜き速度及びタンディ ッシュ (T D ) ノズルの開度を調整し、 モ —ルド内の溶鋼の湯面レベルの絶対値での正確な制御を行う。 f ) 本発明の他の態様による連続錡造の操業制御方法は、 上記 (a〜e ) の連 続錄造の操業制御方法において、 湯面レベルが定常操業の湯面レベルに達して 定常操業へ移行した後に、 電極式湯面計の電極を溶鋼の湯面の上に保持し、 溶 鋼と電極間との接触を検出し、 その検出によって、 タンディ ッシュノズルの開 度を調整することにより、 モールド内からの溶鋼のオーバフローを防止する。 本発明においては、 連続錡造の定常操業において、 モールド内の定常操業の 湯面レベルの上方の任意の位置に電極を設置する。 そして、 溶鋼と電極間との 接触を常時監視する。 これにより、 定常操業における例えば電磁誘導方式レべ ル計の故障等による制御不良が発生してモールド内の溶鋼の湯面レベルが異常 上昇した場合においても、 電極と溶鋼との接触の検出により、 湯面レベルの異 常上昇及びその湯上がり速度を検出することが可能となっている。 これらの検 出により、 引き抜き速度又は溶鋼注入量を調整することによりオーバーフロー を防止する。 g ) 本発明の他の態様による連続錶造の操業制御方法は、 上記 (a〜: f ) の連 続錡造の操業制御方法において、 電極式湯面計の電極として、 錡造開始時にお ける溶鋼の湯面レベルの上昇速度にほぽ等しい速度で溶融する部材を用いる。 本発明においては、 電極が銪造開始時における溶鋼の湯面レベルの上昇速度 にほぼ等しい速度で溶融するので、 溶融が遅すぎる場合及び早すぎる場合の双 方の弊害が避けられる。 即ち、 溶融が遅すぎる場合には、 引き抜き開始時にお いても電極がモールド下部まで連続して存在する状態となり、 引き抜き開始時 に電極が凝固シェルに捕まり、 引き抜き開始にともない電極が電極ホルダから 引き抜かれ、 計測不能となる。 また、 溶融が早すぎる場合には、 湯面変動が生 じると、 溶鋼と電極との接触が断たれ、 計測不能となるような事態が発生する。 しかし本発明においては、 電極の溶融速度を適切に設定したことにより、 溶融 が遅すぎる溶禁及び早すぎる場合の双方の弊害が避けられ、 ビレツ ト等の小断 面モールドにおいても湯面レベルの連続測定が可能になっている。 h ) 本発明の他の態様による連続鋅造の操業制御装置は、 モールドの溶鋼に挿 入される電極を備え、 電極に対して第 1の擬似ランダム信号を供給するととも に、 第 1の擬似ランダム信号と同一のパターンで周波数が僅かに異なる第 2の 擬似ランダム信号を第 1の擬似ランダム信号と乗算して第 1の乗算値を算出し、 電極を介して得れる信号と第 2の擬似ランダム信号とを乗算して第 2の乗算値 を算出し、 第 1の乗算値及び第 2の乗算値をそれそれ積分し、 両積分値の時系 列パターンにそれそれ生じる最大相関値の時間差から湯面レベルを測定し、 更 に湯面レベルの変化から湯上り速度を算出する電極式湯面計と、 湯上り速度と 基準速度との偏差に基いてタンディ ッシュのス トッパー又はスライディ ングノ ズルの開度を制御してタンディ ッシュから吐出される溶鋼の流量を調整し、 そ して、 湯面レベルが定常操業の湯面レベルよりも低い基準レベルに達すると錡 造引き抜きを開始させる銪造制御装置とを有する。
本発明においては、 上述のように、 電極式湯面計によって、 連続銪造におけ るモールドへの溶鋼注入直後から湯面レベルが定常操業のレベルに達する迄の 間、 湯面レベルを連続的に計測し、 更に、 その湯面レベルの変化に基づいて湯 上り速度を例えば一定の周期で演算する。 そして、 この湯上がり速度と基準速 度との偏差をなくすべく、 ス トッパー又はスライディ ングノズルの閧度補正量 を求め、 ス トッパー又はスライディ ングノズルに操作指令を出力することによ り、 定周期毎にフィードバック制御がなされる。 そして、 湯面レベルが基準レ ベルに達すると、 鎵造引き抜きを開始する。 i ) 本発明の他の態様による連続錡造の操業制御装置は、 モールドの溶鋼に挿 入される電極を備え、 電極に対して第 1の擬似ランダム信号を供給するととも に、 第 1の擬似ランダム信号と同一のパターンで周波数が僅かに異なる第 2の 擬似ランダム信号を第 1の擬似ランダム信号と乗算して第 1の乗算値を算出し、 電極を介して得られる信号と第 2の擬似ランダム信号とを乗算して第 2の乗算 値を算出し、 第 1の乗算値及び第 2の乗算値をそれそれ積分し、 両積分値の時 系列パターンにそれそれ生じる最大相関値の時間差から湯面レベルを測定する 電極式湯面計と、 タンデッシュの溶鋼ヘッ ドを計測する手段と、 湯面レベル、 溶鋼へッ ド及びそのときのス トッパー又はスライディングノズルの開度に基づ いてノズルゲインの推定値を算出し、 また、 湯面レベルに基づいて予め設定さ れた目標注上げ時間を満足するための目標吐出量を算出し、 これらのノズルゲ ィンの推定値及び目標吐出量に基づいてス トッパー又はスライディ ングノズル の開度を算出し、 この開度に基づいてス トッパー又はスライディングノズルの 開度を操作してタンディ ッシュから吐出される溶鋼の流量を調整し、 そして、 上記の処理を所定の演算周期毎に繰り返し、 湯面レベルが定常操業の湯面レべ ルよりも低い基準レベルに達すると錡造引き抜きを開始させる錡造制御装置と を有する。
本発明においては、 上述のように、 目標吐出量、 ノズルゲイン推定値及び現 在の溶鋼へッ ドに基づいて、 今回のス トッパー又はスライディングノズの開度 例えば開口面積を求める。 そして、 この結果に基づいてス トッパー又はスライ デイングノズルを操作してフィードバック制御する。 このため、 特に、 目標注 上げ時間を満足することができ、 且つ、 ノズル詰り等のトラブルを防止できる j ) 本発明の他の態様による連続銪造の操業制御装置において、 電極式湯面計 は、 第 1の擬似ランダム信号を発生する第 1の擬似ランダム信号発生手段と、 第 1の擬似ランダム信号と同一パターンで周波数のわずかに異なる第 2の擬似 ランダム信号を発生する第 2の擬似ランダム信号発生手段と、 第 1の擬似ラン ダム信号発生手段に接続され、 溶鋼に挿入される第 1の電極と、 溶鋼に挿入さ れた第 2の電極と、 第 1の擬似ランダム信号発生手段の出力と第 2の擬似ラン ダム信号発生手段の出力とを乗算して第 1の乗算値を出力する第 1の乗算器と、 第 2の電極に接続され、 その出力と第 2の擬似ランダム信号発生手段の出力と を乗算して第 2の乗算値を出力する第 2の乗算器と、 第 1の乗算値を積分し第 1の積分値を出力する第 1の積分器と、 第 2の乗算値を積分し第 2の積分値を 出力する第 2の積分器と、 第 1の積分値及び第 2の積分値の時系列パターンに それそれ生じる最大相関値の時間差から湯面レベルを測定し、 更にその湯面レ ベルの時間的な変化から湯上がり速度を算出する演算手段とを備えている。 次に、 上記の電極式湯面計の動作について説明する。 この電極式湯面計にお いては第 1の擬似ランダム信号と第 2の擬似ランダム信号は同一のパターンで 周波数がわずかに異なっている。 第 1の乗算値の時系列パターンは第 1の擬似 ランダム信号と第 2の擬似ランダム信号の各周期のパルスが一致したときの乗 算値が最大相関値を示し、 最大値となり、 この最大値は周期 Tで発生する。 周期 Tは次式で表わされる。
T = k / A f … ( 1 ) ここで kは定数で第 1の擬似ランダム信号 Mlと第 2の擬似ランダム信号 M2の 1 周期を構成するビヅ ト数 (クロック数) を表わす。 また、 は Mlの 1 ビヅ ト のクロック周波数 flと M2の 1 ビッ トのクロック周波数 f2との差で次式で表わさ れる。
Δ f = fl - f2 … ( 2 ) 第 2の乗算値の時系列パターンも最大値が周期 Tで発生するが、 第 1の擬似 ランダム信号 Mlが第 1の電極、 溶鋼、 及び第 2の電極を経由してくるので、 T d時間第 2の擬似ランダム信号 M2に対して遅れるため、 第 2乗算値の最大値に 対し、 図 9に示すように X時間遅れている。
Xは次式で表される。
X = ( Td/ Δ t ) X P2 … ( 3 )
Δ t = P2 - PI … ( 4 ) ここで PIは Mlの周期、 P2は M2の周期である。
ここで Tdは溶鋼の湯面レベルの変位に応じ変化するので、 ( 3 ) 式より Xを 測定して Tdを求めれば溶鋼の湯面レベルの変位を得ることができる。 またレべ ルの変位がわかれば、 基準位置を決め、 この基準位置からレベルまでの距離を 求めることもできる。 また、 ( 3 ) 式において、 Δ tの値を Tdに比べて小さな 値とし、 P2の値を大きくすれば、 Tdの値を Ρ2/ Δ t倍に拡大して計測すること ができるので精度よく計測することができる。 また、 本方式による計測では、 信号は電極、 溶鋼内を伝導し、 従来のように反射方式を用いていないので、 S /N比が大きく、 多重反射の影響もなく、 溶鋼の湯面レベルを精度よく測定す ることができる。 従って、 湯上り速度も精度よく測定することができる。
なお、 電極式湯面計が電極が 2個 (第 1の電極, 第 2の電極) ある場合の例 について説明したが、 1個の電極に擬似ランダム信号を送信し、 そして、 その 反射波を入力信号とは分離して取り出すことにより、 湯面レベルを計測するこ とができる。 図 面 の 簡 単 な 説 明
図 1は本発明の一実施形態に係る連続鎵造の操業制御装置及びその関連設備 の構成を示すプロック図である。
図 2は図 1の電極式レベル計の構成を示すプロック図である。
図 3は図 2のクロック発生器の構成を示すプロック図である。
図 4は図 2の擬似ランダム信号 (M系列信号) 発生回路の一例を示す回路図 あ o。
図 5は図 4の 3段シフ ト レジス夕による擬似ランダム信号を示すタイミ ング チャートである。
図 6は相関値の出力を説明するタイミングチャートである。
図 7は相関周期 Tの算出方法を説明するタイミングチャートである。
図 8は第 I D—パスフィル夕の出力 S 1及び第 2ローパスフィル夕の出力 S
2を示すタイミングチャートである。
図 9は溶融レベルと信号伝送距離を説明する図である。
図 1 0は位相差 Xを算出する説明図である。
図 1 1は図 1の電極式レベル計の実測値の一例を示す特性図である。
図 1 2は図 1の実施形態における電極式レベル計及び電磁誘導方式レベル計 の計測値を示した特性図である。
図 1 3は本発明の他の実施形態に係る連続錡造の操業制御装置を示す図であ る ο
図 1 4は図 1 3の実施形態における電極式レベル計及び電磁誘導方式レベル 計の計測値を示した特性図である。
図 1 5は本発明の他の実施形態に係る連続铸造の制御装置及びその関連設備 の構成を示すブロック図である。
図 1 6は図 1 5の連続錶造制御のタイミングチャートである。
図 1 7は本発明の他の実施形態に係る連続铸造の自動起動制御装置及びその 関連設備の構成を示したプロック図である。
図 1 8は図 1 7の連続錶造制御のタイミングチャートである。 発明を実施するための最良の形態
(実施形態 1 . )
図 1は本発明の一実施形態に係る連続铸造の操業制御御装置及びその関連設 備の構成を示したブロック図である。 図 1において、 1, 2は第 1及び第 2の 電極、 3は電極式レベル計、 4は铸造制御装置、 5は引き抜き速度制御装置、 6はノズル開度調整装置である。 7はモールド、 8はタンディ ッシュ、 9はノ ズル、 1 0は溶鋼、 1 1は電極保持装置、 1 2はダミーバー、 1 3は電磁誘導 方式 (渦流式) レベル計である。 本実施形態においては、 連続鎵造モールド 7 の上部に設置され電極保持装置 1 1によってモールド内に垂直に挿入された 2 本の電極 1 , 2を保持し設置している。 ここで、 電極 1, 2の先端をモールド 内のダミーバー 1 2の直前の位置としているが、 電極 1, 2の先端がダミーバ 一 1 2に接触しても計測上支障はない。 また、 電極 1 , 2 としては S U Sのパ ィプ (直径 3 mm, 肉厚 0 . 1 mm ) を使用し、 電極間隔は 3 0 m mにしてい る。
電極式レベル計 3はその装置内において発生させた擬似ランダム信号を同軸 ケーブルを介して第 1の電極 1に入力し、 モールド 7内の溶鋼 1 0を介して第 2の電極 2に伝送された擬似ダンダム信号を検出する。 そして、 電極式レベル 計 3は、 検出された擬似ランダム信号の時間遅れの変化と、 その信号の伝送速 度からモールド内の溶鋼の湯面レベルを算出し、 更に、 単位時間内のモールド 内の溶鋼の湯面レベルの変化量からその上昇速度を算出する。
図 2は電極式レベル計 3の詳細な構成を示すプロック図である。 電極式レべ ル計 3において、 第 1クロック発生器 2 1は、 1クロック当たり周波数 Πの周 波数を発生し、 第 2クロック発生器 2 2は 1クロック当たり flよりわずかに小 さい周波数 f2の周波数を発生する。 第 1擬似ランダム信号発生器 2 3は周期 P 1の第 1擬似ランダム信号 Mlを発生し、 第 2擬似ランダム信号発生器 2 4は Ml と同一パターンで周期 P2が PIよりわずかに異なる第 2擬似ランダム信号 M2を発 生する。 第 1擬似ランダム信号 M 1は第 1電極 1に送り出される。 そして、 第 2電極 2を介して得られた信号は乗算器 2 6に入力する。 第 1乗算器 2 5は第 1擬似ランダム信号発生器 23から伝送線路 Lcを通つた Mlと第 2擬似ランダム 信号発生器 4から伝送線路 Laを通った M2とを乗算する。 第 2乗算器 26は第 1 擬似ランダム信号発生器 23から伝送線路 Ldを通った Mlと第 2擬似ランダム信 号発生器 24から伝送線路 Lbを通った M2とを乗算する。
第 1ローパスフィル.夕 27は第 1乗算器 25の出力より高周波成分を除き、 最大相関値間を 1周期とする時系列パターンを出力する。 第 2口一パスフィル 夕 28も同様に第 2乗算器 26の出力より高周波成分を除き、 最大相関値間を 1周期とする時系列パターンを出力する。 演算部 29は第 1ローパスフィル夕 27と第 2ローパスフィルタ 28の時系列パターンの最大相関値間の時間差か ら溶鋼の湯面レベルを算出する。 演算部 29において得られた溶鋼の湯面レべ ルは銪造制御装置 4に出力される。 なお、 上記の伝送線路にはモールド 7内の 溶鋼 10内に一部分を挿された第 1電極 1と第 2電極 2が設けられ、 両電極 1 , 2は溶鋼 10を介して電気的に接続されている。
図 3は第 1クロック発生器 2 1及び第 2クロック発生器 22の構成を示した 図である。 第 1水晶発振器 41は周波数 fa, 例えば 30. 00 1 MH zの水晶 発振器、 第 2水晶発振器 42は周波数 fb, 例えば 30. 000 MH zの水晶発 振器であり、 共通発振器 43は周波数 fc, 例えば 1470 MHzの発振器であ る。 第 1混合器 44は例えば平衡変調器等で構成され、 fc±faの信号を出力し、 第 2混合器 45は fc土 fbの信号を出力する混合器である。 第 1バン ドパスフィ ル夕 46は第 1混合器 44の出力の内 fc土 faを通過させ、 第 2バン ドパスフィ ルタ 47は第 2混合器 45の出力の内 fc士 fbを通過させる。
第 1水晶発振器 4 1から出力される 30. 00 1MHzの信号と、 共通発振 器 43から出力される 1470MH zの信号が、 第 1混合器 44で混合され 1 500. 00 1 MHzと 1439. 999 MH zの 2つの信号を出力する。 こ のうち 1 500. 00 1 MH zの信号が第 1バン ドパスフィル夕 46を通過し て第 1クロック周被数 Πとして出力される。 また、 同様に、 第 2水晶発振器 4 2から出力される 30. 000 MH zの信号と、 共通発振器 43から出力され る 1470 MH zの信号が第 2混合器 45で混合され 1500. 000MH z と 1440MHzの 2つの信号を出力し、 第 2パン ドパスフィル夕 47を通過 することにより 1 5000. 000MHzの第 2クロック周波数 f2が出力され る。 この構成により周波数 fl, f2の周波数の差が正確に 1 KHzに保持される c この局部部発振器に相当する第 1、 第 2水晶発振器 41, 42では既に 1 K H zの差を持たせてお.り、 また、 混合器 44, 45から出力される周波数差は 6 OMH zと広い周波数差があるため、 第 1 , 第 2バン ドパスフィルタ 46 , 47の特性はあまり急峻なものを必要とせず S A Wフィル夕、 水晶フィル夕の ような一般的フィル夕で実現できる。
図 4は第 1及び第 2擬似ランダム信号発生器 23, 24の構成を説明した図 である。 本図は 3ビッ トの M系列信号発生器の構成図であり、 分かり易く説明 するため 3ビッ 卜の場合を示すが、 より大きなビッ ト、 例えば 7ビッ トのシフ トレジス夕等が用いられる。 M系列信号発生器はクロック信号に同期したフリ ヅプフ口ヅプからなるシフ トレジス夕 50と、 シフ トレジス夕 50の最終段と その 1つ前の段の出力信号を入力して最初の段に出力する排他的論理回路 5 1 から構成される。
図 5は図 4に示した 3段シフ トレジス夕を用いた場合の擬似ランダム信号 (M系列信号) を示したタイ ミングチャー トである。 1周期のクロヅク数 (ビ ッ ト数) は段数を nとすると P = 2n — 1で表され、 3段シフ トレジス夕の場 合 n=3で、 P= 7となる。 図 4に示す第 1擬似ランダム信号発生器 23から 発生する第 1擬似ランダム信号 Mlの 1ビッ 卜のクロック周波数を fl, 第 2擬似 ランダム周波数発生器 24の第 2擬似ランダム信号 の 1ビッ トのクロック周 波数を f2とすると、 Mlの周期 Pl, M2の周期 P2は次式で表される。
Pl= ( 2 n 一 1 ) /fl, P2= ( 2 n - 1 ) /f2 … ( 5 ) 擬似ランダム信号 Ml, M2の 1周期における時間差厶 tは次式で表される。
Δ t =P2-P1= ( 2 n - 1 ) (fl-f2) / (fl · f2) … ( 6 ) ここで fl>f2とする。 具体例として fl= 1500. 00 1 MH z , f2= 1 5 00. 000MH zとし、 シフ トレジス夕を 7段 (n=7) とすると、
Pl= ( 2 n - 1 ) /fl = (27 - l ) /1500. 001 x l 06
= 84666. 6 1022 (psec)
P2= ( 2 n - 1 ) /f2
= (27 - l ) /1500. 00 1 x l 06
= 84666. 66667 (psec)
また、 1周期の差 Atは (6) 式より
Δ t =P2-P1= 0. 0565 (psec)
と非常に微少な時間差として得られる。
図 6 (a) , (b) , ( c ) は乗算器 25, 26で得られる相関値の説明図 である。 図 6 (b) は図 4に示した 3段シフ トレジス夕の 1周期の擬似ランダ ム信号 Ml, M2とその 1ビッ ト分を拡大したものであり、 M2と Mlの最初の 1ビッ 卜が、 1ビッ ト分ずれた状態から一致してゆき、 次に 1ビッ ト分ずれてゆく過 程を表す。 図 6 ( c ) はこのときの相関値を示す。 図 6 (b) において、 M2の 1周期 P2と Mlの 1周期 P1とは (6) 式に示すように△ tだけずれており、 1周 期 PI, P2は 7ビッ 卜から構成されているので、 1周期の最初のビッ トでは Δ t /7、 最後の 7ビヅ ト目では Δ1:ずれている。 ①は Mlと M2が 1ビヅ 卜ずれた場 合を示し、 ②は最も一致した場合を示し、 ③は再び 1ビッ トずれた場合を示す 図 6の (c) は図 6 (b) の①, 〜③に対応した相関値の大きさを縦軸にとり、 横軸に時間軸をとつて表したものである。 これは図 2の口一パスフィル夕 27, 28の出力を表し、 三角形の頂点が最大相関値である。
擬似ランダム信号 Ml, M2で相関があるのは周期 PI, P2の位相が一致している 場合である。 つまり、 P1と P2の位相が 1ビッ ト以上ずれていると相関がとれな くなる。 そこで Mlと M2が互いに相関が得られる時間△ Tは M2の 1ビッ ト当たり の時間を B2とすると次式で表される。
ΔΤ = 2 (Β2/Δ t ) xPl= 2 ( l/Δ f ) … ( 7 ) ただし、 B2= 1 /f2
Β2/Δ tは 1ビッ トずれる Mlの周期 PIの数を示し、 この数の周期 P1分の時間 は P1を掛ければ得られ、 しかもこの 1ビッ トずれは、 前後へのずれがあるので 2倍となっている。 次に一度相関を得た後、 再度相関を得られるまでの時間 (相関周期) を求める。
図 7は周期 P2に対する周期 P1の位相変化を示したタイ ミングチャートである, 図においては分かり易くするため Δ tを PI, P2に対し大きな値としている。 図 示のように、 Aの位置から Atが P2に含まれる数だけ P1を繰り返すと、 P2と P 1の関係が Aの位置と同じくなる Bの位置となるので Tは次式で表される。
Τ= (Ρ2/Δ t ) Pl
= (P2/ (P2-P1) ) xPl
= (2n - 1 ) /Δί ··· (8)
( 8 ) 式は先に示した ( 1 ) 式を表している。
図 8は図 2の第 1, 第 2ローパスフィル夕 27 , 28の出力を示した夕イ ミ ングチャートである。 S 1は第 1口一パスフィル夕 27の出力を示し、 S 2は 第 2ローパスフィル夕 28の出力を示す。 S l, S 2は相関周期 Tで最大相関 値が表れている。 なお、 図 2の伝送線路 La〜Ldはそれそれの線路の長さも表す ものとし、 伝送線路 Laは第 2擬似ランダム信号発生器 24から第 1乗算器 25 までの伝送距離、 伝送線路 Lbは第 2擬似ランダム信号発生器 24から第 2乗算 器 26までの伝送距離、 伝送線路 Lcは第 1擬似ランダム信号発生器 23から第 1乗算器 25までの伝送距離であり、 伝送線路 Ldは第 1擬似ランダム信号発生 器 23から第 1電極 4、 第 2電極 5を経由して第 2乗算器 26に至るまでの距 離である。 La = Lbとし、 Lc二 Ldとすると S1と S2の位相差 Xは 0となるが、 Lc≠ Ldとなると Lcと Ldの差に応じた位相差 Xが発生する。
図 9は溶鋼の湯面レベルが変化した時の Ld— Lcの変化を説明する図である。 レベル H0のとき : Ld— Lc= L '
レベル HIのとき : Ld— Lc = 2L+L,
とし、 レベルが L変位すると第 1擬似ランダム信号発生器 23から乗算器 26 に伝達される信号 Mlは、 乗算器 25へ伝達される Mlに比べて次式に示す時間 T d (遅延時間) 遅く伝達される。
Td= (2L+ L, ) /V … ( 9 ) ここで V= 3 x 108 m/sec (光の速度) で電極と溶鋼内を信号 Mlが伝わる 速度乙'ある。
図 10は遅延時間 Tdと位相差 Xとの関係を示したタイ ミングチャートである, 位置 Aと位置 Bにおいては周期 P2と周期 P1の位相は一致しており、 位置 Aでは S 1の最大相関値が発生し、 位置 Bでは S 2の最大相関値が発生している。 位 相差 Xには周期 P2と周期 P1が n個あり、 この n個の P2と n個の P1の差は ηΔ t で表され、 この ηΔ tが遅延時間 Tdに等しいので次式が成り立つ。
Td= η Δ t - ( 10) ここで n = X/P2であるので、
X= (Td/Δ t ) P2 - ( 1 1 )
= Tdxfl/Af
= ( (2L+L' ) xfl) / (VxAf ) - ( 12) この ( 1 1 ) 式は先に示した (3) 式を表す。
( 12) 式を用いて溶鋼の湯面レベルを求めるには次のようにする。 まず基 準となるレベル H0を設定する。 H0においてレベル変位 Lを 0とし、 H0における 位相差 X0を求めれば ( 12) 式より、 L' を求めることができる。 次に基準レ ベル H0より L下のレベル HIにおける位相差 XIを求めれば ( 12 ) 式に L, と X 1を代入して Lを求めることができる。 なお、 H0より溶鋼の湯面レベルが上に ゆく と変位 Lが負の値として算出される。
ここで溶鋼の湯面レベルの変位 Lが L1から L2に変化したとすると、 それそれ の変位における位相差 XI, X2は次式で表される。
XI = ( (2L1 + L, ) xfl) / (VxAf ) - ( 13)
Χ2= ( (2L2 +L' ) xfl) / (VxAf ) - ( 14) このときの位相差変化量 ΔΧ は次式で表れる。
ΔΧ =Χ2-Χ1
= (2 (L2-L1) xfl) / (VxAf )
= 2 Δ L xfl/ (V x Δ f ) - ( 1 5) ただし =L2-L1 これにより位相差変化 ΔΧ と変位差 の関係から得られるので厶 X から Δ L を算出することができる。 また が分かれば基準レベルからの変位量 Lや 溶鋼の湯面レベルも算出できる。
次に先に示した具体的数値を代入して検討を行う。
①擬似ランダム信号発生器のシフ トレジス夕段数 ηは 7段とする。
Ρ= 2 η - 1 = 127
②クロック周波数
fl= 1 500. 00 1 MH z
f2= 1500. O O OMHz
③変位差 AL = 1 mmとする。
以上の値を ( 1 5) 式に代入すると、
ΔΧ = =fl) / (Vxfl)
= 2 x l x l 0"3x l 500 x l 08 / (3 x l 08 1 x 103 ) = 0. 0000 1 (sec)
= 10 1 0 "6(sec)
通常 1 mm当たりの信号伝搬時間 ΔΧ' は
ΔΧ' = 2L/V
= (2 x 1 x 10— 3) / (3 x l 08 )
= 6. 7 x 10-12 (sec )
ΔΧ /ΔΧ' = 10 X 10 "6/ ( 6. 7 χ 10 -12 ) = 1. 5 x 106 これにより信号の伝達時間が約 150万倍遅延化されたことになり信号処理が 容易に、 かつ精度よく行われる。
図 1 1は図 1の電極式レベル計 3の計測結果を示した特性図である。 横軸に 溶鋼の湯面レベルをとり、 縦軸に溶鋼の湯面レベルの計測値を表す電圧をとる。 この時の計測条件は、 f = 1500 MH z, 厶 f = 1 KH z , 擬似ランダム信 号発生器のシフ トレジスト段数は 7段である。 実験では位相差 Xをコンビユー 夕に取り込み演算することでレベル又は基準位置からの距離を容易に、 かつ高 速に処理することができた。 なお、 本実施形態の電極 1, 2は溶融金属より高い融点の金属を用いるか、 或いは溶融金属内へ自動的に繰り込んでゆくようにするとよい。 電極は溶融金 属と同一の材料を用いれば融けても溶融金属の成分に影響を与えない。
以上の説明から電極式レベル計 3の内容が明らかになったところで、 次に再 び図 1に戻ってその説明を続ける。 鎵造制御装置 4においては、 電磁誘導方式 レベル計 1 3の検出信号も入力され、 モールド内の溶鋼の湯面レベルが上昇し て、 電磁誘導方式レベル計 1 3の出力が得られた時点 (溶鋼の湯面レベルが測 定スパン内に到達した時点) で、 電磁誘導方式レベル計 1 3の出力一距離特性 を求め、 その特性を電極式レベル計 3の計測結果に基いて校正する。 そして、 それ以降は電磁誘導方式レベル計 1 3の校正された出力に基いてモールド内の 溶鋼の湯面レベルの計測値を算出する。
図 1 2は本実施形態における電極式レベル計 3によって錡造開始時 (溶鋼開 始時) からのモールド内の溶鋼の湯面レベルを連続して計測した計測値と電磁 誘導方式レベル計 1 3の計測値とを示した図である。 電磁誘導方式レベル計 1 3の計測値と電極式レベル計 3の計測値とは当初一致していないが、 電磁誘導 方式レベル計 1 3の計測値を電極式レベル計 3の計測値によって校正した時点 から両計測値は一致したものとなり、 その後、 電極 1 , 2が溶融して電極式レ ベル計 3による計測は不能になるが、 電磁誘導方式レベル計 1 3の計測値は校 正されて精度の高いものとなっており、 溶鋼の湯面レベルの定常制御において は、 その計測値が使用される。
また、 錡造制御装置 4においては電極式レベル計 3により計測されたモール ド内の溶鋼の湯面レベル及び湯上がり速度に応じて引き抜き速度制御装置 5及 びノズル開度調整装置 6に制御信号をそれそれ送出し、 引き抜き速度制御装置 5はその制御信号に基いて引き抜きロール 1 4の回転速度を制御し、 それによ つて引き抜き速度を制御する。 また、 ノズル開度調整装置 6はストッパー 1 5 の位置制御を行い、 それによつてノズル 9の開度を調整する。 溶鋼の湯面レべ ルの制御方法としては多種多様なものが考えられるが、 本実施形態においては、 操業開始時に、 ス トッパー 1 5の位置を制御してノズル 9を一定開度にして溶 鋼の注入を開始し、 モールド内の溶鋼の湯面レベルが一定レベルに達した時点 で、 引き抜きロール 1 4を駆動させて引き抜きを開始する。 更に、 引き抜き開 始後に、 モールド内の溶鋼の湯上がり速度が順次減少し、 溶鋼の湯面レベルが 一定値に収束するようにノズル 9の開度調整及び引き抜き速度の制御を行った c
(実施形態 2 . )
図 1 3は本発明の他の実施形態に係る連続鎵造操業の制御装置を示す図であ る。 同図においては、 オーバーフローの検出についての実施形態が図示されて いる。 実際の操業では、 電極 1 , 2の先端を定常操業状態にあるモールド内の 溶鋼面の変動上限に対して上方数十 mmの位置に設置し、 電極式レベル計 3に より信号が検出された場合には、 鋅造制御装置 4により引き抜き速度及びノズ ル閧度の調整を行うが、 本実施形態では効果を確認するため電極 1, 2の先端 部を定常操業状態のモールド内の溶鋼の湯面レベルの変動の上限付近に設置し、 電極レベル計 3の出力を観察した。
図 1 4はその観測結果を示した図である。 定常操業状態での溶鋼面の変動に より電極と溶鋼面が接触し、 断続的に計測値が得られており、 電極 1 , 2を溶 鋼の湯面の上方位置に設置することにより電磁誘導方式レベル計 1 4の故障等 によりモールド内の溶鋼の湯面レベルが異常上昇した場合でも、 溶鋼の湯面レ ベルの上昇が検出され、 オーバーフローの防止が可能であることが確認された。 なお、 電極 1, 2を一定の長さのものを使用した例を示したが、 電極 1, 2 として長尺のロッ ドを使用し、 溶鋼への浸漬、 電極の損耗に応じて連続的に又 は断続的に電極口ッ ドを挿入することにより、 湯上がり時の溶鋼の湯面レベル の計測だけではなく、 定常状態における溶鋼の湯面レベルを連続的に又は断続 的に計測するようにしてもよい。
また、 電極式レベル計 3によって連続的に又は断続的に計測された溶鋼の湯 面レベルの計測値に基いて電磁誘導方式レベル計 1 3の計測値を校正すること で、 定常操業状態において、 電磁誘導方式レベル計による絶対値での正確な溶 鋼の湯面レベルの計測を行うことができる。 特に、 湯上がり時と定常操業状態 とで温度が異なったときに、 温度ドリフ トを適切に補正することができる。 (実施形態 3 . )
ところで、 連続錡造設備の特にビレッ ト等の小断面モールドにおいては、 溶 鋼の湯面レベルの上昇速度が速いため、 電極として金厲棒を使用すると電極が 溶鋼中で溶損するまでの時間が長いため、 引き抜き開始時においても電極がモ ールド下部まで連続して存在する状態となる場合があり、 引き抜き開始時に鼋 極が凝固シェルに捕まり、 引き抜き開始にともない電極が電極ホルダから引き 抜かれ、 計測不能となる場合がある。 この対策として、 電極を細く して電極の 溶損までの時間を調整する方法が考えられるが、 そのようにした場合には電極 を極端に細くする必要があり、 電極の設置、 保持に十分な強度が得られなくな る。 そこで、 本発明の他の実施形態においては、 連続錶造設備の小断面モール ド内に挿入する 2本の電極として、 外径 3 . 0 m m. 内径 2 . O m m、 肉厚 0 . 5 m mの中空の S U Sパイブを使用した。
その結果、 電極の溶鋼中で溶損するまでの時間が短くなり、 モールド内の溶 鋼の湯面レベルの上昇に追従して電極の溶鋼中の浸漬部が順次溶損し、 引き抜 き開始時に電極がモールド下部まで連続して存在する状況とはならないため、 電極がシェルに捕まって、 電極がホルダから抜け落ち計測不能となるような事 態が避けられた。 また、 電極パイブの厚みを上記のように最適に調整している ため、 湯面上昇時に電極が湯面の下 1 O m m〜 2 O m mの部分に存在し、 溶鋼 の上昇時に湯面変動が生じた場合でも溶鋼と電極の接触が断たれ、 計測不能と なるような事態が避けられ、 溶鋼の湯面レベルを連続的に計測し、 制御を行う ことができた。 更に、 電極をパイブとしたことにより、 電極の強度を保ったま まで、 電極の溶損時間を調整することができた。
なお、 電極は、 上記の金属パイプの例に限らず、 適当な橈み剛性があり、 溶 融速度が溶鋼の湯面レベルの上昇速度にみあうようなものであれば、 他の部材 例えば導電性 (カーボン入り) ブラスチック等を使用してもよい。
■ また、 上記の実施形態 2 , 3は後述する実施形態においても同様に適用され る
(実施形態 4 . )
図 1 5は本発明の他の実施形態に係る連続铸造の操業制御装置及びその関連 設備の構成を示したプロック図であり、 図 1 6はその制御状態を示したタイ ミ ングチャートである。 本実施形態はビレツ トを連続錡造する場合のようにモー ルドの容量が小さく湯面レベルが定常値に達するまでの時間が短い場合 (例え ば 1 0 ~ 2 0秒) に適している。 図 1 5の制御装置において、 レードル鍋から タンディ ッシュ 8に溶鋼が注入され、 タンディ ッシュ 8に設けられたタンディ ッシュ重量計 1 6により検出された溶鋼が重量が一定値に達したとき (図 1 6 の (a ) 参照) 、 鎵造制御装置 4からス トッパー開度全開の指令が出力されて ステツビングシリンダー 6 aが駆動される。 このステヅビングシリンダー 6 a の駆動によりス トッパー 1 5が全開となり (図 1 6の (b ) 参照) 、 モールド 7へ溶鋼が注入され始める。 その後、 一定時間経過時、 錡造制御装置 4から一 定開度にまでス トッパー 1 5を閉める指令が出力され、 ス トッパー 1 5が一定 閧度迄閉まる (図 1 6の (b ) 参照) 。
この時点で電極式レベル計 3を使用して湯面レベルを連続的に測定し、 そし て、 一定周期毎にその変化に基いて溶鋼の湯上り速度を演算する。 演算された 湯上り速度の実測値は鎵造制御装置 4に入力され、 同装置に予め入力されてい るビレツ ト径サイズ毎の操業上、 介在物を巻き込まない最適な目標湯上り速度 と比較される。 そして、 湯上り速度実測値と目榡湯上り速度との偏差を零にす ベく、 鋅造制御装置 4にて、 例えば P I (比例 +積分) 制御によりス トッパー 開度補正値が出力され、 ストッパー 1 5が所定開度へ移動する (図 1 6の (b ) , ( d ) 参照) 。
なお、 本実施形態の電極は溶融金属より高い融点の金属を用いるか、 或いは 溶融金属内へ自動的に繰り込んでゆくようにするとよい。
(実施形態 5 . ) 図 1 7は本発明の他の実施形態に係る連続錡造の操業制御装置及びその関連 設備の構成を示したブロック図であり、 図 1 8はその制御状態を示したタイ ミ ングチャートである。 本実施形態は、 スラブを連続鎵造する場合のようにタン ディ ッシュを再使用する場合や、 モールドの容量が比較的大きく湯面レベルに 達するまでの時間が長い場合 (例えば 1分以上) に適している。 図 1 7におい て図 1 5の装置と同一符号のものは同一又は相当部を示しその説明は省略する < 図 1 7の装置においては、 レードル鍋から夕ンディ ッシュ 8に溶鋼が注入さ れ、 タンディ ッシュ重量計 7により検出された重量が一定値に達したとき (図 1 8の (a) 参照) 、 銪造制御装置 4からスライディ ングノズル 1 7に初期開 度の指令が出力される。 なお、 スライディ ングノズル 1 7は、 この指令を受け るまでの間、 ノズル詰り防止のために閉位置近傍で加振している。 スライディ ングノズル 1 7は、 その指令を受け取ると、 その指令に応じてノズルを開き、 モールド 7へ溶鋼が注入され始める。
この時点においては、 電極式レベル計 3を使用して湯面レベルを連続的に測 定し、 そして、 その測定結果は銪造制御装置 4に入力される。 錶造制御装置 4 は、 まず、 演算周期の前回値と今回値から次の ( 1 6 ) 式にて実績吐出量を計 算する。
Mw ΧΜΤ χ Ρ χ (ML(i)-ML(i-l))
Q (1 6)
ここで、 Qi 今回の実績吐出量 ( g/sec )
Mw モールド幅 (mm)
MT モールド厚さ (mm)
P : 溶鋼密度 ( g/mm3 )
ML ti) :今回の湯面レベル (mm)
ML (i- i) :前回の湯面レベル (mm)
T c :演算周期 (sec ) である。
次に、 ( 1 6) 式で求めた Qi を使って実績ノズルゲインを ( 1 7 ) 式にて 計算する。
Q
β (17)
Figure imgf000027_0001
ここで、 β i : 今回の実績ノズルゲイン
AT (i - n :前回のスライディ ングノズル開口面積目標値 (mm2 ) g :重力加速度 (mm s 2 )
H i - i : 前回の溶鋼ヘッ ド (mm)
である。 なお、 Qi , /0は ( 1 6 ) 式の説明と同じである。 溶鋼へッ ド Hi-, は、 湯面レベル ML u- nを計測したタイ ミングにおいて、 タンディ ッシュ重 量計 7により検出された重量に基づいて求められる。 従って、 本発明の溶鋼へ ッ ドを計測する手段は、 本実施形態においては、 タンディ ッシュ重量計 1 6及 び鎵造制御装置 4によって構成されている。
次に、 湯面レベルの実績値に基づき残されたモールド高さまで、 目標注上時 間までに残された時間で注入するための目標吐出量を次の ( 1 8) 式にて計算 する。
My MT x x (M —Mし(!))
Q (18)
Ti
Figure imgf000027_0002
で、 QTi 今回の目標吐出量 [g/sec ]
MD モールド高さ (mm)
TM 目標注上げ時間 (sec ) である。 MW , Μτ , ρ, ML (i) , Tc は ( 1 6 ) 式の説明と同じである。 次に、 ( 1 7 ) 式で求めた Ji と ( 1 8 ) 式で求めた QTiに基づいてスライ ディ ングノズルの開口面積目標値を次の ( 1 9 ) 式にて計算する。
Q Ti
A (19)
Ti.
/3: p Χη/ 2 gH.
こで ATi :今回のスライディ ングノズルの開口面積目標値 (mm2 )
H , : 今回の溶鋼ヘッ ド (mm)
である。 なお、 QTi, /3 i , p, gは ( 1 6 ) 〜 ( 1 8 ) 式の説明と同じであ る o
以上の計算によりノズルゲイン ? iの推定により求まった、 今回のスライデ イ ングノズル 1 7の開口面積目標値 A Ti に対応したスライディ ングノズル操 作量分を操作し、 フィードバック制御する。 以上の制御を鎵造制御装置 4の演 算周期毎に、 定常操業の定常レベル制御に入る湯面レベルまで行う (図 1 8の ( c ) 参照) 。 そして、 以後は電磁誘導方式 (渦流式) レベル計 1 3による湯 面レベルの計測値に基づき定常レベル制御を行う。 なお、 定常レベル制御に入 る前 (基準レベルに達した時点) に引抜速度制御装置 5から引抜指令が出力さ れ、 ダミーバーの引抜きが開始される (図 1 8の (d) 参照) 。

Claims

請 求 の範 囲
1 . 連続銪造におけるモールドへの溶鋼注入直後から溶鋼の湯面レベルが定常 操業の湯面レベルに達する迄の間、 電極式湯面計によって、 湯面レベルを連続 的に計測する工程と、 前記湯面レベルが前記定常操業の湯面レベルよりも低い 基準レベルに達すると、 鎵造引き抜きを開始する工程とを有する連続錡造の操 業制御方法。
2 . 連続鋅造におけるモールドへの溶鋼注入直後から溶鋼の湯面レベルが定常 操業の湯面レベルに達する迄の間、 更に、 前記湯面レベルの変化に基づいて湯 上がり速度を求める工程と、 前記湯上がり速度と基準速度との偏差に基づいて タンディ ッシュから吐出される溶鋼の流量を調整する工程とを有する請求項 1 記載の連続錡造の操業制御方法。
3 . 連続鎵造におけるモールドへの溶鋼注入直後から、 溶鋼の湯面レベルが定 常操業の湯面レベルに達する迄の間、 更に、
タンディ ッシュの溶鋼へッ ドを計測する工程と、
前記湯面レベル、 溶鋼へッ ド及びそのときのス トッパー又はスライディング ノズルの開度に基づいてノズルゲインの推定値を算出する工程と、
前記湯面レベルに基づいて予め設定された目標注上げ時間を満足するための 目標吐出量を算出する工程と、
これらのノズルゲインの推定値及び目標吐出量に基づいてス 卜ッパー又はス ライディ ングノズルの開度を算出する工程と、
この開度に基づいてス トッパー又はスライディ ングノズルの開度を操作して タンディ ッシュから吐出される溶鋼の流量を調整する工程とを有し、 そして、 その処理を所定の演算周期毎に繰り返す請求項 1記載の連続錡造の操業制御方
4 . 銹造引き抜きを開始した後に、 前記湯面レベルの変化に基づいて湯上がり 速度を求め、 そして、 前記湯面レベル及びその湯上がり速度に基いて、 銪造の 引き抜き速度及び夕ンディ ッシュから吐出される溶鋼注入量をそれそれ調整し て、 モールド内の溶鋼の湯面レベルを制御し、 そして、 前記湯面レベルが定常 操業レベルに達すると定常操業に移行する請求項 1、 2又 3記載の連続鎵造の 操業制御方法。
5 . 前記電極式湯面計により計測されたモールド内の溶鋼の湯面レベルに基い て電磁誘導方式レベル計の計測値を校正し、 モールド内の溶鋼の湯面レベルが 定常操業レベルに達した後は、 前記電磁誘導方式レベル計の計測値に基いて、 モールド内の溶鋼の湯面レベルの制御を行う請求項 1、 2、 3又は 4記載の連 続銪造の操業制御方法。
6 . 前記湯面レベルが前記定常操業の湯面レベルに達して定常操業へ移行した 後に、 前記電極式湯面計の電極を溶鋼の湯面の上に保持し、 溶鋼と前記電極間 との接触を検出し、 その検出によって、 タンディ ッシュノズルの閧度を調整す ることにより、 モールド内からの溶鋼のオーバフローを防止する請求項 1、 2、 3、 4又は 5記載の連続錡造の操業制御方'法。
7 . 前記電極式湯面計の電極として、 錶造開始時における前記溶鋼の湯上がり 速度にほぼ等しい速度で溶融する部材を用いる請求項 1、 2、 3、 4、 5又は 6記載の連続銪造の操業制御方法。
8 . モールドの溶鋼に挿入される電極を備え、 該電極に対して第 1の擬似ラン ダム信号を供給するとともに、 前記第 1の擬似ランダム信号と同一のパターン で周波数が僅かに裒なる第 2の擬似ランダム信号を前記第 1の擬似ランダム信 号と乗算して第 1の乗算値を算出し、 前記電極を介して得れる信号と前記第 2 の擬似ランダム信号とを乗算して第 2の乗算値を算出し、 前記第 1の乗算値及 び前記第 2の乗算値をそれそれ積分し、 両積分値の時系列パターンにそれそれ 生じる最大相関値の時間差から湯面レベルを測定し、 更に前記湯面レベルの変 化から湯上り速度を算出する電極式湯面計と、
前記湯上り速度と基準速度との偏差に基いてタンディ ッシュのス トツバ一又 はスライディングノズルの開度を制御してタンディ ッシュから吐出される溶鋼 の流量を調整し、 そして、 前記湯面レベルが前記定常操業の湯面レベルよりも 低い基準レベルに達すると鎵造引き抜きを開始させる铸造制御装置と を有することを特徴とする連続鎵造の操業制御装置
9 . モールドの溶鋼に挿入される電極を備え、 該電極に対して第 1の擬似ラン ダム信号を供給するとともに、 前記第 1の擬似ランダム信号と同一のパターン で周波数が僅かに異なる第 2の擬似ランダム信号を前記第 1の擬似ランダム信 号と乗算して第 1の乗算値を算出し、 前記電極を介して得られる信号と前記第 2の擬似ランダム信号とを乗算して第 2の乗算値を算出し、 前記第 1の乗算値 及び前記第 2の乗算値をそれそれ積分し、 両積分値の時系列パターンにそれそ れ生じる最大相関値の時間差から湯面レベルを測定する電極式湯面計と、 タンディ ッシュの溶鋼へッ ドを計測する手段と、
前記湯面レベル、 溶鋼へッ ド及びそのときのス トッパ一又はスラィディ ング ノズルの開度に基づいてノズルゲインの推定値を算出し、 また、 前記湯面レべ ルに基づいて予め設定された目標注上げ時間を満足するための目標吐出量を算 出し、 これらのノズルゲインの推定値及び目標吐出量に基づいてス トツバ一又 はスライディ ングノズルの閧度を算出し、 この開度に基づいてストッパー又は スライディ ングノズルの開度を操作してタンディ ッシュから吐出される溶鋼の 流量を調整し、 そして、 上記の処理を所定の演算周期毎に繰り返し、 前記湯面 レベルが前記定常操業の湯面レベルよりも低い基準レベルに達すると銪造引き 抜きを開始させる鎵造制御装置とを有することを特徴とする連続錡造の操業制 御装置。
1 0 . 前記電極式湯面計は、 第 1の擬似ランダム信号を発生する第 1の擬似ラ ンダム信号発生手段と、 前記第 1の擬似ランダム信号と同一パターンで周波数 のわずかに異なる第 2の擬似ランダム信号を発生する第 2の擬似ランダム信号 発生手段と、 前記第 1の擬似ランダム信号発生手段に接続され、 溶鋼に挿入さ れる電極と、 前記第 1の擬似ランダム信号発生手段の出力と前記第 2の擬似ラ ンダム信号発生手段の出力とを乗算して第 1の乗算値を出力する第 1の乗算器 と、 前記電極に接続され、 その出力と前記第 2の擬似ランダム信号発生手段の 出力とを乗算して第 2の乗算値を出力する第 2の乗算器と、 前記第 1の乗算値 を積分し第 1の積分値を出力する第 1の積分器と、 前記第 2の乗算値を積分し 第 2の積分値を出力する第 2の積分器と、 前記第 1の積分値及び前記第 2の積 分値の時系列パターンにそれそれ生じる最大相関値の時間差から湯面レベルを 測定する演算手段とを備えたことを特徴とする請求項 8又は 9記載の連続錶造 の操業制御装置。
PCT/JP1996/000458 1995-02-28 1996-02-28 Procede et appareil de regulation de la coulee continue WO1996026800A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/718,530 US5918662A (en) 1995-02-28 1996-02-28 Method of controlling the operation of continuous casting and apparatus therefor
EP96904264A EP0776715B1 (en) 1995-02-28 1996-02-28 Method of controlling continuous casting and apparatus therefor
KR1019960705972A KR100223258B1 (en) 1995-02-28 1996-10-24 Method of controlling the operation of continuous casting and apparatus therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP4100795 1995-02-28
JP7/041007 1995-02-28
JP7/042116 1995-03-01
JP4211695 1995-03-01
JP7/328765 1995-12-18
JP32876595A JP3218953B2 (ja) 1995-02-28 1995-12-18 連続鋳造操業制御方法
JP01519496A JP3214333B2 (ja) 1995-03-01 1996-01-31 連続鋳造の自動スタート制御方法及びその装置
JP8/015194 1996-01-31

Publications (1)

Publication Number Publication Date
WO1996026800A1 true WO1996026800A1 (fr) 1996-09-06

Family

ID=27456341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000458 WO1996026800A1 (fr) 1995-02-28 1996-02-28 Procede et appareil de regulation de la coulee continue

Country Status (5)

Country Link
US (1) US5918662A (ja)
EP (1) EP0776715B1 (ja)
KR (1) KR100223258B1 (ja)
CN (1) CN1116138C (ja)
WO (1) WO1996026800A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732958A (zh) * 2011-04-06 2012-10-17 镇江荣德新能源科技有限公司 多晶炉长晶速度自动测量装置及其测量方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766113B1 (fr) * 1997-07-16 1999-09-17 Usinor Procede de demarrage d'une operation de coulee continue des metaux
EP0995523A1 (de) * 1998-10-23 2000-04-26 Alusuisse Technology &amp; Management AG Vertikalstranggiessanlage mit optimierter Metallniveaumessung
US6377871B1 (en) 1999-10-26 2002-04-23 Motoman, Inc. Integrated die cast
CA2404331A1 (en) * 2000-03-29 2001-10-04 Sms Demag Aktiengesellschaft Automatic start method and device for continuous casting systems
DE10111294A1 (de) * 2001-03-09 2002-09-12 Sms Demag Ag Verfahren und Einrichtung zum Wägen des Inhalts eines metallurgischen Gefäßes, insbesondere des Inhalts einer Verteilerrinne in Stahlstranggießanlagen
SE0301049A0 (en) * 2002-11-29 2004-05-30 Abb Ab Control system, computer program product, device and method
AT413084B (de) * 2003-12-02 2005-11-15 Voest Alpine Ind Anlagen Sequenzgiessverfahren zur herstellung eines gegossenen metallstranges hoher reinheit
US20050200056A1 (en) * 2004-03-12 2005-09-15 Heraeus Electro-Nite International N.V. Apparatus and method for determining fluid depth
US8006744B2 (en) * 2007-09-18 2011-08-30 Sturm, Ruger & Company, Inc. Method and system for drying casting molds
EP2696177A4 (en) * 2011-04-06 2014-11-05 Nireco Corp METAL LEVEL MEASURING DEVICE MELT
CN104950929A (zh) * 2011-12-13 2015-09-30 江西稀有稀土金属钨业集团有限公司 基于视觉的铸轮液位自动控制系统与控制方法
CN102728802A (zh) * 2012-03-29 2012-10-17 鞍钢股份有限公司 一种中间包液位测量方法
CN103317110B (zh) * 2013-06-13 2017-02-08 唐山渤海冶金设备有限责任公司 一种基于结晶器液位检测的高效自动开浇系统
CN105665675A (zh) * 2016-04-07 2016-06-15 江苏永钢集团有限公司 连铸机结晶器内钢水液位自动控制报警系统
US10478890B1 (en) 2016-06-21 2019-11-19 Nucor Corporation Methods of billet casting
CN106735140A (zh) * 2016-11-30 2017-05-31 天能电池(芜湖)有限公司 铅坯成型机液位调节控制装置
US11344946B2 (en) * 2018-09-18 2022-05-31 Nippon Steel Corporation Control device, control method, and program for controlling continuous casting process
CN110102730B (zh) * 2019-04-18 2024-03-22 宣化钢铁集团有限责任公司 一种结晶器浇注方法
CN110014130B (zh) * 2019-05-22 2020-10-20 湖南中科电气股份有限公司 钢连铸结晶器电磁搅拌的控制方法及其控制系统
CN110586885A (zh) * 2019-10-24 2019-12-20 广东工业大学 一种自动补液装置
CN111451466A (zh) * 2020-04-16 2020-07-28 山东莱钢永锋钢铁有限公司 一种钢厂连铸开浇的自动铸造方法及系统
CN111822689B (zh) * 2020-07-27 2021-08-31 宝武集团马钢轨交材料科技有限公司 一种高品质钢连铸吹氩塞棒、塞棒吹氩系统及吹氩方法
CN114309520B (zh) * 2020-09-30 2024-02-13 宝山钢铁股份有限公司 一种钢水液面稳定性监控的反馈方法
CN113878099B (zh) * 2021-10-12 2023-06-02 山东理工大学 一种抑制回流区温度下行的方法和应用该方法的双辊铸轧系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884652A (ja) * 1981-11-13 1983-05-20 Kawasaki Steel Corp 連続鋳造の自動鋳込み制御方法
JPS619104B2 (ja) * 1979-11-07 1986-03-19 Kobe Steel Ltd
JPS6257752A (ja) * 1985-09-04 1987-03-13 Nippon Kokan Kk <Nkk> 溶鋼注入量の自動制御方法
JPH02142659A (ja) * 1988-11-22 1990-05-31 Nippon Steel Corp 連続鋳造スタートアップ時の湯面制御装置
JPH0513746B2 (ja) * 1988-10-26 1993-02-23 Nippon Metal Ind
JPH06238412A (ja) * 1993-02-23 1994-08-30 Sumitomo Metal Ind Ltd 連続鋳造時の湯面高さ制御装置及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600047A (en) * 1984-03-29 1986-07-15 Sumitomo Metal Industries, Ltd. Process for controlling the molten metal level in continuous thin slab casting
JPS619104A (ja) * 1984-06-20 1986-01-16 Fuji Electric Co Ltd 磁気浮上搬送装置
DE3679950D1 (de) * 1985-09-02 1991-08-01 Nippon Steel Corp Verfahren zum regeln des anfangsstadiums beim stranggiessen.
JPS62192246A (ja) * 1986-02-19 1987-08-22 Fuji Electric Co Ltd 連続鋳造設備のモールド湯面レベル制御装置
DE3608503C2 (de) * 1986-03-14 1994-09-01 Stopinc Ag Verfahren zum automatischen Angießen eines Stranges einer Stranggießanlage
JPS62270264A (ja) * 1986-05-20 1987-11-24 Nippon Steel Corp 連続鋳造の鋳造初期制御方法
DE3905328C1 (ja) * 1989-02-17 1990-07-19 Mannesmann Ag, 4000 Duesseldorf, De
JPH04118163A (ja) * 1990-09-07 1992-04-20 Nippon Steel Corp 連続鋳造の鋳造初期湯面レベル制御方法
FR2677284B1 (fr) * 1991-06-07 1993-08-27 Pechiney Aluminium Procede et appareillage pour la coulee automatique de demi-produits.
JPH0513746A (ja) * 1991-06-28 1993-01-22 Mitsubishi Electric Corp 固体撮像装置
CA2094029C (en) * 1991-09-12 1997-04-29 Kazuya Asano Molten metal level control method and device for continuous casting
JP3107183B2 (ja) * 1993-12-27 2000-11-06 株式会社ニレコ 溶融金属の変位測定方法および装置
US5633462A (en) * 1994-07-19 1997-05-27 Apa Systems Method and apparatus for detecting the condition of the flow of liquid metal in and from a teeming vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619104B2 (ja) * 1979-11-07 1986-03-19 Kobe Steel Ltd
JPS5884652A (ja) * 1981-11-13 1983-05-20 Kawasaki Steel Corp 連続鋳造の自動鋳込み制御方法
JPS6257752A (ja) * 1985-09-04 1987-03-13 Nippon Kokan Kk <Nkk> 溶鋼注入量の自動制御方法
JPH0513746B2 (ja) * 1988-10-26 1993-02-23 Nippon Metal Ind
JPH02142659A (ja) * 1988-11-22 1990-05-31 Nippon Steel Corp 連続鋳造スタートアップ時の湯面制御装置
JPH06238412A (ja) * 1993-02-23 1994-08-30 Sumitomo Metal Ind Ltd 連続鋳造時の湯面高さ制御装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0776715A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732958A (zh) * 2011-04-06 2012-10-17 镇江荣德新能源科技有限公司 多晶炉长晶速度自动测量装置及其测量方法
CN102732958B (zh) * 2011-04-06 2016-01-20 镇江荣德新能源科技有限公司 多晶炉长晶速度自动测量装置及其测量方法

Also Published As

Publication number Publication date
EP0776715A4 (en) 1999-06-02
KR970702111A (ko) 1997-05-13
CN1116138C (zh) 2003-07-30
KR100223258B1 (en) 1999-10-15
CN1149845A (zh) 1997-05-14
EP0776715B1 (en) 2003-08-13
EP0776715A1 (en) 1997-06-04
US5918662A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
WO1996026800A1 (fr) Procede et appareil de regulation de la coulee continue
JP3107183B2 (ja) 溶融金属の変位測定方法および装置
JP3214333B2 (ja) 連続鋳造の自動スタート制御方法及びその装置
TWI762264B (zh) 用於預測鋼液溫度的方法
CN102029368A (zh) 一种在线检测连铸坯二冷区固液相分数及凝固末端的方法
EP0052514A1 (en) A method and apparatus for controlling the centrifugal casting of a metal pipe
EP2949410B1 (en) Method for continuously casting ingot made of titanium or titanium alloy
JPS5884652A (ja) 連続鋳造の自動鋳込み制御方法
JP5800241B2 (ja) 連続鋳造用鋳型内の溶融金属の湯面レベル及びモールドパウダー厚の測定方法
JPH08294762A (ja) 連続鋳造操業制御方法
JP2000141003A (ja) 連続鋳造機の操業制御方法
KR101412536B1 (ko) 연속주조시 연연주수 예측 장치 및 그 방법
JPH0124592B2 (ja)
JP3116299B2 (ja) 渦流式レベル計
JPS61279351A (ja) 連続鋳造方法およびその鋳型
JP2016123993A (ja) 出湯量の計測方法
JP5751144B2 (ja) 連続鋳造機の制御装置および制御方法
KR101277962B1 (ko) 침지노즐의 막힘 예측 방법 및 장치
JPH02200362A (ja) 連続鋳造装置におけるノズル詰まり予測方法およびノズル詰まり抑制方法
RU2215959C2 (ru) Способ контроля процесса вакуумной дуговой плавки
JPH0242409B2 (ja)
JP2008238257A (ja) 連続鋳造鋳片の製造方法、連続鋳造機
JP2015167956A (ja) 連続鋳造設備におけるブレークアウト予知方法
JP2003170257A (ja) スラグ流出検知方法および検知装置
JP3206353B2 (ja) 連続鋳造の鋳造初期制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190256.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08718530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019960705972

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996904264

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996904264

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996904264

Country of ref document: EP