WO1996021146A1 - Detecteur d'humidite - Google Patents

Detecteur d'humidite Download PDF

Info

Publication number
WO1996021146A1
WO1996021146A1 PCT/JP1995/002727 JP9502727W WO9621146A1 WO 1996021146 A1 WO1996021146 A1 WO 1996021146A1 JP 9502727 W JP9502727 W JP 9502727W WO 9621146 A1 WO9621146 A1 WO 9621146A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensitive resistor
humidity sensor
humidity
sensor according
Prior art date
Application number
PCT/JP1995/002727
Other languages
English (en)
French (fr)
Inventor
Mitsuteru Kimura
Mituyuki Takeda
Hiroyuki Sato
Original Assignee
Tokin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33897594A external-priority patent/JP3343801B2/ja
Priority claimed from JP33897494A external-priority patent/JPH08184575A/ja
Application filed by Tokin Corporation filed Critical Tokin Corporation
Priority to DE69516274T priority Critical patent/DE69516274T2/de
Priority to US08/702,602 priority patent/US5837884A/en
Priority to CA002184055A priority patent/CA2184055C/en
Priority to EP95942287A priority patent/EP0749013B1/en
Priority to KR1019960704759A priority patent/KR100230079B1/ko
Publication of WO1996021146A1 publication Critical patent/WO1996021146A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Definitions

  • the present invention relates to a humidity sensor for detecting the amount of water vapor in an atmosphere such as an air conditioner, a dehumidifier, a cooker, and a cultivation house.
  • Conventional humidity sensors use an electric resistance or capacitance type that applies the change in electrical characteristics due to moisture absorption of the moisture-sensitive material, or a heat conduction type that detects changes in the heat conduction of air due to the presence or absence of water vapor in the air.
  • the heat conduction type has no long-term stability because it does not absorb moisture.
  • the resistance value R 4 temperature sensing resistor 3 2 having temperature-sensitive resistor 3 1 and the resistance value R 4T with ,,, fixed resistor R 41, R 4 . , R 43 , R, and s constitute a Wheatstone bridge circuit, and the humidity is measured using the fact that the heat dissipation of the temperature-sensitive resistors 31 and 32 changes with humidity.
  • R4S is not necessary.
  • the resistance tt of R 4T and R i H is equal, R 41 and R 4 . Must also be equal.
  • the temperature sensitive resistor 31 is exposed to the outside air, and the temperature sensitive resistor 32 is enclosed in a dry atmosphere. At this time, due to the voltage V 4IN applied to the temperature-sensitive resistors 31 and 32, the current force flows through the temperature-sensitive resistors 31 and 32 to generate Joule heat, which becomes higher than the ambient temperature. .
  • the temperature of the temperature sensitive resistors 3 1 and 3 2 is determined by the power applied to the temperature sensitive resistors 3 1 and 3 2 and the dispersion of the temperature sensitive resistors 3 1 and 3 2.
  • the conventional heat conduction type humidity sensor has the configuration shown in the exploded perspective view of Fig. 2 and the perspective view of Fig. 3.
  • the temperature sensitive resistors 31 and 32 consist of a platinum thin film formed on an alumina substrate.
  • the temperature-sensitive resistors 31 and 32 may be made of a material other than the platinum thin film, whose resistance value changes with temperature.
  • the temperature sensitive resistors 3 1 and 3 2 are first attached to the holding stem 3 1 4 on different stems 3 4 respectively. And then fix it by welding or the like, and then connect the terminals by wire bonding.
  • a cap 33 a provided with a vent hole 35 is attached to the stem 34 fixed with the temperature-sensitive resistor 31 by welding.
  • the adhesive used is either inorganic or organic depending on the operating temperature.
  • the temperature sensitive resistor 32 is sealed in dry air by welding the cap 33b to the stem 34 at a low temperature of 140 ° C. Then, press the caps 33a and 33b into the cap fixing plate 36. Subsequently, a metal case 311 is put on the outside of the cap fixing plate 36, and a metal cover 310 is attached, thereby completing the humidity sensor.
  • an object of the present invention is to make it possible to measure humidity with a single temperature-sensitive resistor, and to provide a heat-conduction-type humidity sensor that has a small characteristic change due to a temperature change of a measurement atmosphere and can be manufactured at low cost. It is in. Disclosure of the invention
  • a humidity sensor for heating the temperature-sensitive resistor.
  • Heating control means for heating the temperature-sensitive resistor to control the temperature of the temperature-sensitive resistor to a first temperature that is a constant temperature, the heating control means having a source that generates heat by Joule heat;
  • An electronic circuit for outputting an output voltage related to a voltage drop of the temperature-sensitive resistor; and an output voltage value of the electronic circuit captured based on a change in an output ⁇ E value of the electronic circuit due to an ambient temperature of the temperature-sensitive resistor.
  • a correcting means for correcting the sensor force.
  • the heating control means applies two kinds of pulses ⁇ to the heating element within a certain period of time, thereby changing the temperature of the temperature-sensitive resistor to the first temperature, Switching means for switching to a second temperature lower than the first temperature, wherein the electronic circuit includes a voltage drop of the temperature-sensitive resistor when the temperature of the temperature-sensitive resistor is set to the second temperature. And an output voltage associated with the temperature of the electronic circuit when the temperature-sensitive resistor is set to the first temperature based on an output characteristic of the electronic circuit. It is preferable to correct so as to eliminate the influence of the temperature.
  • FIG. 1 is a circuit diagram showing an example of a conventional humidity sensor.
  • FIG. 2 is an exploded perspective view showing a conventional humidity sensor.
  • FIG. 3 is a perspective view showing a main part of a conventional humidity sensor.
  • FIG. 4 is a circuit diagram showing an example of a humidity sensor according to the present invention.
  • FIG. 5 is a perspective view showing a first example of the humidity sensor chip of FIG.
  • FIG. 6 is a perspective view showing the humidity sensor chip and the case of FIG.
  • FIG. 13 is a perspective view showing a second example of the humidity sensor chip of the present invention.
  • FIG. 14 is a sectional view showing the humidity sensor chip of FIG.
  • FIG. 15 is a perspective view showing a third example of the humidity sensor chip of the present invention.
  • FIG. 16 is a sectional view showing the humidity sensor chip of FIG.
  • FIG. 17 is a perspective view showing a fourth example of the humidity sensor chip in the embodiment of the present invention.
  • FIG. 18 is a sectional view showing the humidity sensor chip of FIG. 1'7.
  • FIG. 19 is a circuit diagram showing another example of the humidity sensor according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the correction terminal 4 is connected to the output terminal of the Wheatstone bridge circuit.
  • This correction device 4 is connected to a temperature detector 5 that detects the temperature of the measurement atmosphere.
  • the temperature detector 5 gives information on the temperature of the measurement atmosphere to the compensator 4.
  • the power supply unit 3 also serves as a heating element 2 that generates heat by Joule heat, and applies a DC voltage to the L.R.
  • the heating control section controls the temperature of the resistor 1 to a constant temperature of 300 or more.
  • Correction unit 4 outputs the corrected output mnifiVi based the output voltage value of the Wheatstone yellowtail Tsuji circuit change in the output voltage value V Q caused by the ambient atmosphere 3 ⁇ 4 of the temperature-sensitive resistor 1.
  • V 0 la S ( ⁇ - ⁇ 0 ) 1/2
  • ⁇ f 1 1 [R ⁇ SZ (TT Q ) ⁇ 0 ] / 2 (9)
  • ⁇ f 1 is expressed by the following equation (10).
  • Mm f [R (T— ⁇ ⁇ ) / (a ⁇ S)] mm a] / 2... (10)
  • ⁇ f 2 is a value based only on ⁇ (a function of humidity).
  • ⁇ Correction device 4 reduces v 0 to 1 by the first correction method or the second correction method described above. to correct.
  • the temperature-sensitive resistor 1 etc. are rated i3 ⁇ 4g as follows. However, one example of the present invention describes the case where the temperature-sensitive resistor 1 and the heating element 2 are the same element.
  • a SiO 2 film 7 is formed to a thickness of 3 m on a silicon substrate 6 by, for example, a sputtering method.
  • the temperature-sensitive resistor 1 and the temperature detecting resistor 8 are formed using photolithography technology. .
  • This temperature detecting resistor 8 constitutes the SJ3 ⁇ 4 detector 5.
  • the SiO 2 film 7 around the temperature-sensitive resistor 1 is removed by etching using a photolithography technique, and the temperature-sensitive resistor 1 becomes Si 0.
  • the film 7 is formed so as to be located on the bridge structure.
  • the temperature-sensitive resistor 1 and the members supporting the same constitute a humidity-sensitive section 9.
  • the humidity sensor chip 10 is cut by a dicing machine or the like.
  • the obtained humidity sensor chip 10 is assembled in case 11 as shown in Fig. 6. After that, the connection terminals are connected by wire bonding or the like to complete.
  • the temperature-sensitive resistor 1 can be made very small and the time constant can be several milliseconds.
  • ⁇ 3 ⁇ 4 ⁇ of the temperature-sensitive resistor 1 means that a predetermined DC voltage is applied to the Wheatstone bridge circuit by the power supply device 3 shown in FIG. Can be fixed.
  • the resistance-temperature characteristics of the temperature-sensitive resistor 1 correspond one-to-one. Therefore, keeping the resistance constant means keeping S constant.
  • FIGS. 8 and 9 show the humidity characteristics of the output voltage V Q at the end of the Wheatstone bridge circuit when the temperature T of the temperature sensitive resistor 1 is kept constant.
  • Fig. 8 shows the output voltage-humidity characteristics when the resistance of the temperature-sensitive resistor 1 is set at 450 and the ambient temperature is set at 20, 30 V, 40, and 50.
  • Fig. 9 shows the temperature of the temperature-sensitive resistor 1 as 1 1 The output voltage-humidity characteristics are shown when S is set to 0 and S in the atmosphere is set to 20, 30, 40 V, and 50.
  • FIG. 1 shows the experimental results of the temperature characteristics of the temperature-sensitive resistor.
  • sensitivity (change of output voltage) / (MSO.) Therefore, it is necessary for the temperature-sensitive resistor 1 to be 150.
  • the characteristic of the output 3 ⁇ 4EV 0 is the same as that of the temperature-sensitive resistor 1.
  • the sensitivity increases as the temperature of the temperature-sensitive resistor 1 increases.
  • the change in the output voltage due to the humidity change is almost zero. That is, when the temperature of the temperature-sensitive resistor 1 is 100 to 150, the output voltage does not depend on the temperature but depends on the temperature of the ambient air and the humidity sensing unit 9 of the sensor. This is also evident from the theoretical equation of the dependence of the thermal conductivity of a system containing pure air and water vapor on the water vapor concentration in this humidity range.
  • Fig. 1 shows the measured and calculated values.
  • the measured value (constant temperature drive measured value) with the temperature of the temperature sensitive resistor 1 kept constant is represented by the curve ⁇ .
  • the calculated value (constant temperature, calculated value) with the temperature of RTD 1 constant is represented by curve B. From FIG. 11, it can be seen that the tendency of the constant temperature drive measured value and the constant temperature drive calculated value substantially coincide.
  • the output voltage change rate is almost constant when the temperature of the temperature-sensitive resistor 1 is 300 or more, it is desirable to maintain the temperature of the temperature-sensitive resistor 1 at 300 or more. In addition, it is desirable to keep the temperature of the temperature-sensitive resistor 1 at 300 from the viewpoint of burung such as organic substances.
  • the constant temperature driving since it previously measured ⁇ vapor predicting changes in due that the output voltage V Q to temperature changes is, it is possible to correct the output voltage by the temperature information of the air ⁇ .
  • the above-described correction by the correction device 4 may be performed by a circuit in an analog manner, or may be calculated and calculated by a micro computer.
  • FIG. 12 shows the output voltage-humidity characteristics after the correction by the supplementary allocation 4. From FIG. 12, it can be seen that the output voltage after correction by the correction device 4 is proportional to humidity.
  • FIG. 13 Next, another example of the humidity sensor chip 10 will be described with reference to FIGS. 13 to 18.
  • FIG. 13
  • the heat generating element 2 of the thin film is formed on the S i 0 2 film 7, on the S i 0 2 film 7 and the heat generating element 2 It is formed by forming a thin-film temperature-sensitive antibody 1, and the other configuration is the same as the example in FIG. That is, in the humidity sensor chip 10 shown in FIGS. 13 and 14, the thin-film heating element 2 and the thin-film temperature-sensitive resistor 1 are integrally formed.
  • the humidity sensor chip 10 shown in FIGS. 15 and 16 has a humidity-sensitive part 9 formed in a cantilever shape.
  • the humidity sensor chip 10 shown in FIGS. 17 and 18 has a humidity-sensitive part 9 formed in a diaphragm shape.
  • the humidity sensor chip 10 of the humidity sensor according to an example of the present invention has a very small heat capacity and a time constant of about several ms, it is possible to reduce the power consumption by using a pulse drive of about 50 ms per second. it can.
  • the temperature-sensitive resistor 1 and the temperature detecting resistor 8 are formed on the same silicon substrate, miniaturization and cost reduction are realized.
  • the present invention is not limited to a Wheatstone bridge circuit, but can be applied to an electronic circuit that outputs an output voltage related to a voltage drop of the temperature-sensitive resistor 1.
  • FIG. 19 is a circuit diagram showing a humidity sensor according to another example of the present invention.
  • a humidity sensor according to another example of the present invention includes a temperature-sensitive resistor 1 having a resistance value R also serving as a heating element 2. Also, three fixed resistors or
  • Three input power supplies are connected to the input terminals of the Wheatstone bridge circuit.
  • compensator 4 is connected to the output terminal of the Wheatstone bridge circuit.
  • the compensator 4 is connected to a temperature detector 5 for detecting the temperature of the measurement atmosphere.
  • the temperature detector 5 gives the information on the temperature of the measurement atmosphere to the correction device 4.
  • the power supply 3 and the fixed resistors R 2 and R 3 are connected in series. Fixed resistors R 1 and R 1H are connected in parallel between the power supply 3 and the temperature-sensitive resistor 1 via the switch S. The operation of this switch S is controlled by the switching control device SC. SWITCHING controller SC controls the operation of Suitsuchi S to connect the fixed resistor R or R IH predetermined time for each power supply 3.
  • the power supply device 3 applies a voltage to the temperature resistor 1 through the switch S, causes a current to flow, generates joule heat, and brings the temperature sensor 1 to a predetermined temperature as follows. Things.
  • the switch S connects the fixed resistor R 1H to the power supply 3
  • the temperature of the temperature sensitive resistor 1 is set to 300 m or more for a short predetermined time, for example, several tens of ms
  • the switch S dehydrating resistor ftR ⁇ is connected to the power supply 3
  • the second temperature is set to 100 to 150 for a short predetermined time of, for example, several tens of ms. Have been.
  • the correction device 4 is configured to control the Wheatstone when the temperature of the thermosensitive resistor 1 is set to the first temperature based on the output characteristics of the Wheatstone bridge circuit when the fig of the thermosensitive resistor 1 is set to the second temperature. the output voltage value v H bridge circuit compensation and outputs an output voltage value d.
  • the temperature of the temperature-sensitive resistor 1 is set to the first ⁇ of 300 ° CJU: and the second ⁇ of 100 to 150 Experiments have confirmed that this temperature can be achieved.
  • Equation 4 Is the same as " ⁇ " of the 3 ⁇ 4 sensor described above.
  • thermal conductivity from 100 to 150 I is almost independent of the amount of water vapor in the humidity range of 0 to 300 g / m °. This is also evident from the theoretical equation of the dependence of the thermal conductivity ⁇ of the pure ⁇ water vapor mixture on the water vapor concentration in this S range: V Q at temperatures between 100 and 150 Does not depend on humidity.
  • V H [. H S ( T H -T 0) -. R H] 1/2 ⁇ (14) where, alpha "is the alpha at the temperature T Eta, T Eta than kept constant, alpha "is a function of only the humidity Eta, the R fl is R at the temperature T H.
  • V L [ ⁇ ⁇ ⁇ ( T L- T ())- R L ] ... 5 ) where is a at temperature 7 ⁇ and is R at temperature 1 ⁇ (
  • Equations 5 and 6 S, T H , R H , a L , ⁇ ⁇ , and RL are constants, so AV H is expressed by the following Equations 17 and 18.
  • V H a l ( ⁇ ⁇ - ⁇ 0 )] 1/2
  • Equation 17 if T Q ⁇ ⁇ and ⁇ 0 ⁇ are much smaller than 1, then the following Equations 19 and 20 It is expressed like a formula.
  • V u [ ⁇ , S ⁇ R, 1/2 [1— T n / (2T n )]... (19)
  • V L [" L. S. R 1/2
  • Equation 19 From Equation 19, Equation 20 and Equation 22, the following Equation 23 is derived ⁇ ⁇ f
  • Equation 28 is derived from Equation 26 and Equation 27 ⁇
  • the correction device 4 performs the first correction method or the second correction based on the output characteristic of the Wheatstone bridge circuit when the temperature of the temperature-sensitive resistor 1 is set to a second temperature of 100 ° C. to 150. the method allows you correct the output voltage value v H of the Wheatstone bridge circuit when the temperature sensing temperature of the resistor 1 and the first temperature of more than 300 0
  • the humidity sensor according to another example of the present invention will be described more specifically. Since the temperature-sensitive resistor 1 and the like are the same as in the above-described example of the present invention, the description of the manufacturing method and the like is omitted. As with the first example, the temperature-sensitive resistor 1 can be made very small and the time constant can be several milliseconds. For this reason, the temperature-sensitive resistor 1 can generate heat at two different temperatures in one second and can be cooled.
  • the temperature of the temperature-sensitive resistor 1 is determined by applying a predetermined DC voltage to the Wheatstone bridge circuit by the power supply device 3 shown in FIG. By doing so, a predetermined value can be obtained. Foreword Since the resistance-temperature characteristics of the self-sensing resistor 1 correspond to one-to-one as shown in Fig. 4, keeping the resistance constant means keeping the temperature constant.
  • the temperature characteristics of the temperature sensitive resistor were similar to those in Fig. 7.
  • the humidity characteristics of the output voltage v H depend on the temperature of the temperature-sensitive resistor 1, and the higher the temperature of the temperature-sensitive resistor 1, the higher the sensitivity.
  • the change in the output MffVjj due to the change in the temperature of the measured atmosphere can be predicted in advance by the constant temperature ⁇ , and the temperature of the atmosphere and the temperature of the temperature-sensitive resistor 1 can be predicted.
  • the compensator 4 Based on the output characteristics of the Wheatstone bridge circuit when the second JK at 100 to 150 is obtained, the compensator 4 outputs according to the first compensation method or the second compensation method. Viffcan be corrected.
  • the humidity can be measured with one temperature-sensitive resistor, and the characteristic change due to the change in the measurement ⁇ ambient S ⁇ is small and the cost is reduced. it can.
  • the humidity sensor of the present invention is capable of measuring humidity with one temperature-sensitive resistor. It can be used to measure the amount of water vapor in atmospheres such as cookers, cookers, and cultivation houses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

明 細 害 湿度センサ 技術分野
本発明は, 空調器, 除湿器, 調理器および栽培ハウス等の雰囲気の水蒸気量を 検出する湿度センサに関するものである。 背景技術
近年, 空調器, 除湿器, 加湿器, 調理器, 栽培ハウス等での相対湿度, 絶対湿 度等の^の検出制御の要求が高まつている。 この要求に応えるため種々の方式 の湿度センサ力、'提案されている。
従来の湿度センサは感湿材の水分吸収による電気特性の変ィ匕を応用した電気抵 抗式または静電容量式や, 空気中の水蒸気の有無による空気の熱伝導変化を検出 する熱伝導式等があるが, 熱伝導式は水分の吸収が無 、ため長期安定性に優れて いる。
従来の湿度センサは, 第 1図に示すように, 抵抗値 R4,,を有する感温抵抗体 3 1と抵抗値 R4Tを有する感温抵抗体 3 2 , 固定抵抗体 R41, R4。, R43, R ,sに よりホイートストンブリッジ回路を構成して, 感温抵抗体 3 1, 3 2の熱放散が 湿度により変化することを利用して湿度を測定する。 ここで, 固定抵抗体として 白金抵抗のように正 ttの温度特性を持つ感温抵抗体を用いる場合には, R4Sは '必要は無い。 また, R4Tと R iHの —抵抗 ttは等しく, R41と R4。の抵抗値 も等しくなければならない。
上述の湿度センサにおいて, 感温抵抗体 3 1は外気中にさらされており, 感温 抵抗体 3 2は乾燥棼囲気中に封入されている。 この時, 感温抵抗体 3 1 , 3 2に 印加されている電圧 V4IN により, 感温抵抗体 3 1, 3 2に電流力《流れてジユー ル熱が発生し, 周囲温度よりも高くなる。 感温抵抗体 3 1, 3 2の温度は, 感温 抵抗体 3 1 , 3 2に加わる電力と感温抵抗体 3 1 , 3 2の 散により決定する。
しかし, 外気中に水蒸気が含まれていると水蒸気が含まれていな t、場合に対し て水蒸気の熱伝導が作用して熱放散が大きくなる。 そのため, 感温抵抗体 3 1の 温度が感温抵抗体 3 2よりも低くなる。 このため固定抵抗 R43の両端に電位差 V 4m]Tが生じる。 この現象を利用し大気中の絶対湿度を検出することができる。 従来の熱伝導式の湿度センサは, 第 2図の組立分解斜視図および図 3の斜視図 に示すような構成である。 第 2図及び 3を参照して, 感温抵抗体 3 1 , 3 2は, アルミナ基板に形成された白金薄膜からなる。 感温抵抗体 3 1 , 3 2は, 白金薄 膜以外でも温度変化により抵抗値が変化する材料で形成しても良い。
従来の熱伝導式の湿度センサを作成する場合には, 第 2図および第 3図に示す ように, まず感温抵抗体 3 1 , 3 2をそれぞれ異なるステム 3 4に保持台 3 1 4 を介して接着剤による接着か, または溶接等によって固定し, その後ワイヤボン ディングにより端子接続をする。 感温抵抗体 3 1を固定したステム 3 4に通気孔 3 5を設けたキャップ 3 3 aを溶接でかぶせる。 なお, 接着剤は, 使用温度によ り無機, 有機接着剤を使い分けている。
—方, 感温抵抗体 3 2は, 一 4 0ての低温にてステム 3 4にキャップ 3 3 bを 溶接でかぶせることにより乾燥空気中に封入する。 その後, キャップ 3 3 a, 3 3 bをキャップ固定板 3 6に圧入する。 続いて, キャップ固定板 3 6の外側に金 属ケース 3 1 1をかぶせて, 金属カバー 3 1 0を取り付けることにより '湿度セン ザが完成する。
しかしながら, 従来の' Sセンサにおいては, 2個の感温抵抗体を用いており, 2個の感温抵抗体の特性を揃えることが困難なため温度変化による特性変化を小 さくすることが難しく, かつ, 感温抵抗体の棼囲気の温度分布を一定にするため の構成も複雑で低コスト化も困難であるという問題がある。
そこで, 本発明の目的は, 1個の感温抵抗体で湿度測定を可能としたものであ り, 測定雰囲気の温度変化による特性変化が小さく低コスト化できる熱伝導式の 湿度センサを提供することにある。 発明の開示
本発明によれば, 感温抵抗体の熱放散が湿度により変化することを利用して湿 度を測定する湿度センサにおいて, 前記感温抵抗体を加熱するために設けられた ジュール熱により自己発熱する発 を有し, 前記感温抵抗体を加熱して当該感 温抵抗体の温度を一定温度である第 1の温度に制御する加熱制御手段と, 前記第 1の温度における前記感温抵抗体の電圧降下に関する出力電圧を出力する電子回 路と, 前記電子回路の出力電圧値を前記感温抵抗体の雰囲気温度による前記電子 回路の出力 ¾E値の変化分に基いて捕正する補正手段とを備えていることを特徴 とする センサ力、'得られる。
ここで, 本発明の センサにおいて, 前記加熱制御手段は, 前記発熱体に一 定時間内に 2種のパルス ¾Εを印加することにより前記感温抵抗体の温度を前記 第 1の温度と, 前記第 1の温度よりも低い第 2の温度とに切り替える切り替え手 段を備え, 前記電子回路は, 前記感温抵抗体の温度を前記第 2の温度にした時に おける前記感温抵抗体の電圧降下に関連する出力電圧を出力し, 前記補正手段は, 前記電子回路の出力特性に基いて, 前記感温抵抗体の を前記第 1の温度とし た時の前記電子回路の出力電圧値を測定雰囲気の温度の影響を除くように補正す ることが好ましい。 図面の簡単な説明
第 1図は従来の湿度センサの一例を示す回路図である。
第 2図は従来の湿度センサを示す分解斜視図である。
第 3図は従来の湿度センサの要部を示す斜視図である。
第 4図は本発明に係わる湿度センサの一例を示す回路図である。
第 5図は第 4図の湿度センサチップの第 1の例を示す斜視図である。
第 6図は第 4図の湿度センサチップおよびケースを示す斜視図である。
第 7図乃至第 1 2図は第 4図の湿度センサの動作の説明に供せられる図である。 第 1 3図は, 本発明の湿度センサチップの第 2の例を示す斜視図である。
第 1 4図は第 1 3図の湿度センサチップを示す断面図である。
第 1 5図は, 本発明の湿度センサチップの第 3の例を示す斜視図である。
第 1 6図は第 1 5図の湿度センサチップを示す断面図である。
第 1 7図は本発明の実施例における湿度センサチップの第 4の例を示す斜視図 である。 第 1 8図は第 1 '7図の湿度センサチップを示す断面図である。
第 1 9図は本発明に係わる湿度センサの他の一例を示す回路図である。 発明を実施するための最良の形態
次に, 本発明を詳細に^するため, 添付の図面に従ってこれを説明する。 第 1図を参照して, 本発明の一例による湿度センサは, 発熱体 2も兼ねている 抵抗値 Rを備えた感温抵抗体 1を備えている。 また, 3つの固定抵抗体 1^, R 2 , Rg を備えている。 但し, 固定抵抗体 R2 = R3 である。 感温抵抗体 1と 3 つの固定抵抗体 , R2 , R3 とによって, 電子回路であるホイートストンブ リッジ回路が構成されている。 この湿度センサは, 感温抵抗体 1の熱放散が湿度 により変ィ匕することを利用して湿度を測定するものである。 ホイートストンプリ ッジ回路の入力端子には, 電源装置 3が接続されている。 また, ホイートストン ブリッジ回路の出力端子には, 補正装匿 4が接続されている。 この補正装匿 4に は, 測定棼囲気の温度を検出する温度検出器 5力 <接続されている。 この温度検出 器 5は, 測定雰囲気の温度の情報を補正装置 4に与えるものである。 また, 電源 装置 3は, ジュール熱により自己発熱する発熱体 2を兼ねて L、る感温抵抗体 1に 直流電圧を印加して電流と流して感温抵抗体 1を加熱してこの感温抵抗体 1の温 度を 3 0 0 以上の一定温度に制御する加熱制御部を構成している。 補正装置 4 は, ホイートストンブリツジ回路の出力電圧値 を感温抵抗体 1の周囲雰囲気 ¾による出力電圧値 VQ の変化分に基いて補正して出力 mnifiVi を出力する。 まず, 本発明の一例による湿度センサの測定原理について詳細に説明する。 前記感温抵抗素子 1と 感応部の温度は近似的に同じ温度として感温抵抗素 子 1の上昇温度 Δ Tは定常状態において, 次の数 1式で表される。 a S · Δ Τ = νη " /R ( 1 ) ここで, は熱伝達係数であり, Sは湿度感応部の面積や形状による定数であ り, は出力電圧であり, Rは感温度抵抗値の抵抗値である。
また, 厶 Tは感温抵抗体 1の温度を Tとし, 雰囲気温度を TQ とすると, 次の 数 2式で表わされる《 厶 T = T一 T, ( 2 ) 上記数 1式および数 2式から次の数 3式が成り立つ c
V0 = la S (τ-τ0 ) 1/2
R] ( 3 )
ころで, α · Sは次の数 4式で表わされる t a - S = 0 - λ … (4 ) ここで, ^は定数であり, スは感温度抵抗体 1の周囲雰囲気の熱伝導率である c
1 0 0て〜 1 5 0でにおいては熱伝導率; Iは 0〜3 0 0 の湿度範囲で は水蒸気の量にほとんど依存しないことが, 純粋空気に水蒸気が混在した系の熱 伝導率 Iのこの湿度範囲における水蒸気濃度依存性の理論式からも明らかにされ ている。 つまり, 温度 1 0 0 〜 1 5 0でにおける VQ の値は SJ度によらない。 このため, 感温抵抗体 1の温度 Tは 1 5 0 以上が必要である。
次に, v0 を に補正する第 1の補正方法を述べる。
Sの値はサンプルによってバラツキがあるため, 例えば, 湿度感応部の面積や 形 による定数が S ' であるサンプルの場合, 前記ホイートストンブリッジ回路 の出力電圧値を VJJ 'として, 次の数 5式の aの値を予め測定する。 = ( S / S ' ) U = V0 ZVO ' … (5 ) 次に, この aに VJJ 'を乗ずればサンプル間のバラツキはなくなる。 具体的に は, 基準温度, 基準湿度にて基準電圧 VQ を定めておけば, サンプル毎に基準温 度, 基準湿度にて ' を測定することで aの値は求められる。
一方, S , T, Rは定数であるので, 数 3式および数 5式より, 次の数 6式が 成り立つ。 一 厶 = { CR (T-T0 ) / (a - S) ] 1/2 · Aa
- [R ·な · SZ (T-TQ ) 1/2 · ΔΤ0 ] } /2 (6) いま, V0 と の関数 f i を次の数 7式のように表わす。
(7) i =v"ki · τ( の は, 次の数 8式のように表わすことができる <
1/2
Δ f χ = { [R (T-T0 ) / (a · S) ] 厶 a
1/2
一 [R a · S/ (T-TQ ) 厶 ] } /2
ΔΤ (8) "kl 数 8式において ATQ の変動によらず△ f 1 を一定とするためには次の数 9式 のように k1 の値を設定すれば良い。
1/2
kx =一 [R · SZ (T-TQ ) ΔΤ0 ] /2 (9) この場合に, ΙΒΔ f 1 は次の数 10式で表わされる <
1/2
厶 f = [R (T— ΤΛ ) / (a · S) ] 厶 a] /2 … (10)
0
TQ , aの変化が小さいとき Δ は Δ (湿度の関数) のみによる値となる t 次に第 2の補正方法を述べる。
第 1の補正方法と同様にして, 今 f 9 を次の数 1 1式のように定義する。 f = V — k · T (11)
12 v Λ2 0 k2 =R · a · Sである場合には, Δ f。 は次の数 12式で表わされる c Δ f Λ = R · S (τ-τ0 ) ] 1/2 Δ a ( 1 2 )
TQ , αの変化が小さいとき Δ f 2 は Δ (湿度の関数) のみによる値となる { 補正装置 4は, 前述した第 1の補正方法または前述した第 2の補正方法により v0 を に補正する。
次に, 本発明の一例による温度センサについて更に詳細に説明する。
感温抵抗体 1等は, 次のように i¾gされている。 但し, 本発明の一例は, 感温 抵抗体 1と発熱体 2を同一の素子とした場合について述べる。 第 5図を参照して, シリコン基板 6に, 例えばスパッタ法で S i 02膜 7を 3 m厚に形成する。 次 に, S i 02膜 7の上に薄膜状の白金パターンをスパッタ法で形成した後に, フ ォトリソグラフィー技術を用いて感温抵抗体 1と温度検出用抵抗体 8とを形成す る。 この温度検出用抵抗体 8は, SJ¾検出器 5を構成している。 更に, 感温抵抗 体 1の周辺の S i 02膜 7をフォトリソグラフィー技術を用いてエッチング除去 し, 感温抵抗体 1が S i 0。膜 7の橋架構造体上に位置するように形成する。 こ の感温抵抗体 1とこれを支持している部材は, 湿度感応部 9を構成している。 さ らに, ダイシングソ一等によりカツティングして湿度センサチップ 1 0とする。 得られた湿度センサチップ 1 0を第 6図に示すように, ケース 1 1に組み込む。 その後に, 接続端子をワイヤボンディング等により接続して完成する。 感温抵抗 体 1は, 非常に小型に構成でき時定数を数 m sにできる。 感温抵抗体 1の ί¾Κは, 図 4に示す前記電源装置 3により所定の直流電圧をホィートストンブリツジ回路 の与えて感温抵抗体 1に所定の電流を流してジユール熱を発生することにより一 定値にすることができる。 第 7図を参照して, 感温抵抗体 1の抵抗一温度特性は, 1対 1に対応する。 従って, 抵抗値を一定に保つことは, Sを一定に保つこと になる。
感温抵抗体 1の温度 Tを一定に保つた時のホイ一トストンブリツジ回路端の出 力電圧 VQ の湿度特性を第 8図および第 9図に示す。 第 8図は, 感温抵抗体 1の ^¾を4 5 0でとし, 棼囲気の温度を 2 0 , 3 0 V, 4 0で, 5 0てとした場 合の出力電圧 —湿度特性を示す。 第 9図は, 前記感温抵抗体 1の温度を 1 1 0 とし, 雰囲気の Sを 2 0 , 3 0 , 4 0 V, 5 0 とした場合の出力電 圧 —湿度特性を示す。
感度ー感温抵抗体の温度特性の実験結果を第 1図 0に示す。 但し, 感度 = (出 力電圧 の変化) / (MSO とした。 このため, 感温抵抗体 1の は 1 5 0で が必要である。 前記出力 ¾EV0の ¾特性は感温抵抗体 1の温度に依 存し, 感温抵抗体 1の温度が高いほど感度が大きくなる。
また, 感温抵抗体 1の温度が 1 0 0 〜 1 5 0 の時湿度変化に伴う出力電圧 の変化はほぼ 0となる。 つまり, 感温抵抗体 1の温度が 1 0 0 〜 1 5 0 のと きの出力電圧は温度によらず, 棼囲気の温度ゃセンサの湿度感応部 9に依存する。 このことは, 純粋空気に水蒸気が混在した系の熱伝導率のこの湿度範囲における 水蒸気濃度依存性の理論式からも明らかにされている。
湿度力一定である時の棼囲気の温度 TQ による出力電圧 VQ は棼囲気の温度 T 0 に対してほぼリニア一に変化し, 出力電圧変化率は感温抵抗体 1の温度 Tに依 存する。 出力電圧変化率 (Δ ν/Δ Τ) は, 次の数 1 3式で表わされる。
Δ ΥΖΔ Τ = [R · yS · ス (T - TQ ) ] に … (1 3 ) 但し, βの値が不明なため感温抵抗体 1温度 1 0 0でのときの変化率を 1とす る。 このとき測定値と計算値を第 1図 1に示す。 第 1図 1において, 感温抵抗体 1の温度を一定とした測定値 (定温駆動測定値) は曲線 Αで表される。 また, 感 温抵抗体 1の温度を一定とした計算値 (定温 ,計算値) は曲線 Bで表される。 第 1 1図より定温駆動測定値と定温駆動計算値の傾向が略一致することが分かる。 出力電圧変化率は感温抵抗体 1の温度が 3 0 0 以上である場合にほぼ一定に なるので, 感温抵抗体 1の温度を 3 0 0 以上に保持すること力、'望ましい。 また, 有機物等のバーユングの面からも, 感温抵抗体 1の温度を 3 0 0 に す ること力、'望ましい。
以上の理由により, 定温度駆動により, あらかじめ測定棼囲気の温度変化によ る出力電圧 VQ の変化が予測できるため, 棼囲気の温度 の情報により出力電 圧 の補正が可能となる。 前述した補正装置 4による補正は, 回路でアナログ的に実施してもよく, マイ クロコンピュー夕で数値計算して ¾ϋしてもよい。 前記補 1∑¾蠹4による補正後 の出力電圧一湿度特性を第 1 2図に示す。 第 1 2図から, 前記補正装置 4による 補正後の出力電圧 は, 湿度を比例していることが分かる。
次に, 湿度センサチップ 1 0の他の例を第 1 3図乃至第 1 8図に基いて説明す る。
第 1 3図および第 1図 4に示す湿度センサチップ 1 0は, S i 02膜 7の上に 薄膜の発熱体 2を形成し, この S i 02膜 7および発熱体 2の上に薄膜の感温抵 抗体 1を形成してなるものであり, その他の構成は, 第 2図の例と同じである。 すなわち, 第 1 3図および第 1 4図に示す湿度センサチップ 1 0は, 別々の薄膜 の発熱体 2と薄膜の感温抵抗体 1とが一体的に形成されている。
第 1 5図および第 1 6図に示す湿度センサチップ 1 0は, 湿度感応部 9がカン チレバー状に形成されている。 第 1 7図および第 1 8図に示す湿度センサチップ 1 0は, 湿度感応部 9がダイアフラム状に形成されている。
本発明の一例による湿度センサの湿度センサチップ 1 0は, 非常に熱容量が小 さくでき時定数を数 m s程度にできるため, 1秒間に 5 0 m s程度のパルス駆動 にすることにより, 低電力化できる。
また, 本発明の一例では, 感温抵抗体 1と温度検出用抵抗体 8を, 前述のよう に, 同一のシリコン基板上に形成することにより, 小型化, 低コスト化を実現し た。
なお, 本発明は, ホイートストンブリッジ回路に限定されるものでなく, 前記 感温抵抗体 1の電圧降下に関する出力電圧を出力する電子回路に適用することが できる。
本発明の Uによれば, 1個の感温抵抗体で湿度測定を可能としたものであり, 測定雰囲気雖の変化による特性変化が小さく低コスト化できる。
次に, 本発明の他の一例による SJSセンサを図面に基いて詳細に説明する。 第 1 9図は, 本発明の他の一例による湿度センサを示す回路図である。 第 1 9 図に示すように, 本発明の他の一例による湿度センサは, 発熱体 2も兼ねている 抵抗値 Rを有する感温抵抗体 1を備えている。 また, 3つの固定抵抗体 又は
一 R1H, R2, 及び R3 を備えている。 但し, R2 = R3 である。 抵抗値 Rを有す る感温抵抗体 1と 3つの固定抵抗体 R または R1H, R9 , R3 とでホイートス トンプリッジ回路を構成している。 感温抵抗体 1の熱放散が湿度により変化する ことを利用して湿度を測定するものである。 ホイートストンブリツジ回路の入力 端子には, 電源装置 3力接続されている。一方, ホイートストンブリッジ回路の 出力端子には, 補正装置 4が接続されている。 この補正装置 4には, 測定雰囲気 の温度を検出する温度検出器 5が接続されている。 この温度検出器 5は, 測定棼 囲気の温度の情報を補正装置 4に与えるものである。
電源装置 3と固定抵抗体 R2, R3が直列に接続されている。 電源装置 3と感 温抵抗体 1との間には, 固定抵抗体 R , R1Hが並列にスィツチ Sを介して接続 されている。 このスィッチ Sは, 切替制御装置 S Cにより動作が制御される。 切 替制御装置 S Cは, 前記固定抵抗体 R または R1Hを所定時間ごと電源装置 3に 接続するようにスィツチ Sの動作を制御する。
電源装置 3は, スィッチ Sを介して前言 温抵抗体 1に電圧を印加して電流を 流してジュ一ル熱を発生して前記感温抵抗体 1を次のように, 所定の温度にする ものである。 スィッチ Sが固定抵抗体 R1Hを電源装置 3に接続している時に, た とえば数十 m sの短い所定時間だけ感温抵抗体 1の温度を 3 0 0て以上の第 1の mとし, かつ, 前記スィッチ Sカ涸定抵抗 ftR^を電源装置 3に接続している 時に, たとえば数十 m sの短い所定時間だけ 1 0 0て〜 1 5 0の第 2の温度とす るように設定されている。 補正装置 4は, 感温抵抗体 1の figを第 2の温度にし た時の前記ホイ一トストンブリツジ回路の出力特性に基いて感温抵抗体 1の温度 を第 1の温度とした時の前記ホイートストンブリッジ回路の出力電圧値 vH を補 正して出力電圧値 エ を出力する。
感温抵抗体 1に数十 m sだけ電流を流すことにより, 感温抵抗体 1の温度を 3 0 0 °CJ U:の第 1の^とし, かつ, 1 0 0 〜 1 5 0の第 2の温度とすること ができることは, 実験により確認されている。
まず, 本発明の他の一例による涵度センサの測定原理を説明する。
感温抵抗体 1と湿度感応部の温度は近似的に同じ温度として感温抵抗体 1の上 昇温度 Δ Τは定常状態において, 前述した数 1式で表される。 また, Δ Τは感温
0 一 抵抗体 1の を Tとし, 雰囲気 を TJJ とすると, 前述した数 2式で表わさ れる。 前述した数 1式および数 2式から, 数 3式が成り立つ。 ここで, な * Sは 数 4式で表わされる。 までは, 前述した ¾センサの"^と同じである。 ここで, 100で〜 150でにおいては熱伝導率; Iは 0〜300 g/m° の湿 度範囲では水蒸気の量にほとんど依存しないことが, 純粋^に水蒸気が混在し た系の熱伝導率 λのこの S範囲における水蒸気濃度依存性の理論式からも明ら かにされている。 つまり, 温度 100て〜 150でにおける VQ の値は湿度によ らない。
このため, 温度 150で以上での出力電圧を VH とし温度を T„ とし, かつ, 温度 100て〜 150てでの出力電圧を VL とし温度を とすると, によ
Figure imgf000013_0001
り湿度 Hを除く雰囲気温度 Τ0 や '®¾感応部の形状効果 S等の情報が得られ こ の時の状態を基準にして更に高温 Τ„ (例えば 450 ) における J¾Hの測定 カ^!能となる。
次に, vH を エ に補正する第 1の補正方法を述べる。
出力電圧 VH , V, は次の数 14式および数 15式で表わされる。
VH = [ H . S . (TH -T0 ) - RH ] 1/2 〜 (14) ここで, α„ は温度 ΤΗ における αであり, ΤΗ は一定に保たれてので, α„ は湿度 Ηのみの関数, Rfl は温度 TH における Rである。
VL = [ · δ · (T L -T() ) - RL ]5) ここで, は温度 7^における aであり, は温度 1^ における Rである (
Sの値はサンプルによってバラツキがあるため, 例えば, 湿度感応部の や 形状による定数が S' であるサンプルの場合, 前記ホイートストンブリッジ回路 の出力 を VL 'として, 次の数 16式の aの値を予め測定する。 a= (SZS ') 1/2 =VL /VL … (16) この aの値に を乗ずればサンプル間のバラツキはなくなる。 具体的には, vL ' の値は湿度によらないので基準温度にて基準電圧 vLを定めておけば, サ ンプル毎に基準 fiJ¾にて VL ' を測定することで aの値は求められる。
数 5および数 6において, S, TH , RH , aL , Ύλ , RL は定数であるか ら, AVH およ は次の数 17式および数 18式で表わされる。
Figure imgf000014_0001
S · R
VH = al (τΗ0 ) ] 1/2
= [au · S · R τΗ (ΐ-τ0) κτΗ] 1/2 (17)
VL = [a 1/2
L S ' (TL - TG ) - RL ]
= La S · R TL (1
し L τ0 ZTL ) ] 1/2 (18) 数 17式および数 18式において, TQ ΖΤΗ および Τ0 Ζΐ 力く 1より非常 に小さい場合には, 次の数 19式および数 20式のように表される。
Vu = [α, S · R, 1/2 [1— Tn / (2Tn ) ] … (19)
H
VL = ["L . S . R 1/2
L TL ] [1 -TQ / (2TL ) ] … (20) いま, VH と の関数 fェ を次の数 21式のように表わす c
Figure imgf000014_0002
fl =VH -kl *VL (21) この場合に, f j 力次の数 22式の条件を満たすと, 1^ の変化による ^ の 変化が最小になる (
δ f
丄= 0 (22)
6T
0 数 19式と数 20式および数 22式から次の数 23式が導き出される < δ f
( α · S · Rn · Τπ ) 1/2
2 T 'Η
L
k. 1/2
2 Τ L S · R L TL ) (23)
Η この数 22式力、'成り立つように を設定すると, は次の数 24式のよう に表される。
kl = [ (an · Rl TL ) Z L . R L τΗ ) ] 1/2
(24) の場合に, f1 は次の数 25式のように表される。
= [ (au .RD ·Τ,し ) ΖΤΠ
Η 1/2 (T ΗD -T1? ) (25) この数 2 5式から, f 2 は TJJ によらないことが分かる。
次に, 第 2の補正方法を述べる。
第 1の補正方法と同様にして, VH2 の関数 f 2 を次の数 26式のよ うに表わす。
f2 =Vk2 ·Τ( (26) この場合に, f 2 が次の数 27式の条件を満たすと, の変化による fn の 変化が最小になる。 δ
=0 (27)
6Tt 数 2 6式および数 2 7式から次の数 28式が導き出される <
一 δ
1=— a
δΎ αΗ · S .RH +k2 L S . RL =0 (28) この数 28式が成り立つように k2 を設定すると, k2 は次の数 29式のよう に表される。 k0 = (α„ Η · R Ηn ) χ (α L RL ) (29) の場合に, foは次の数 30式のように表される <
= a
H S · R, (TH -TL ) (30) この数 30式から, f 0 は によらないこと力《分かる。
補正装置 4は, 前記感温抵抗体 1の温度を 100°C〜150 の第 2の温度に した時の前記ホイートストンブリッジ回路の出力特性に基いて, 前記第 1の補正 方法または第 2の補正方法により, 前記感温抵抗体 1の温度を 300で以上の第 1の温度とした時の前記ホイートストンブリッジ回路の出力電圧値 vH を補正す る 0
次に, 本発明の他の一例に係わる湿度センサについて, 更に, 具体的に説明す る。 感温抵抗体 1等は, 先の本発明の一例と同様なので, その製造方法等につい ては, 説明を省略する。 感温抵抗体 1も, 第 1の例によるものと同様に, 非常に 小型に構成でき時定数を数 msにできる。 このため, 前記感温抵抗体 1は, 1秒 '間に 2つの異なる温度に発熱させ, かつ, 冷却することが可能である。
感温抵抗体 1の温度は, 第 19図に示す前記電源装置 3により所定の直流電圧 を前記ホイ一トストンブリツジ回路の与えて感温抵抗体 1に所定の電流を流して ジュ一ル熱を発生することにより所定値にすることができる。 前言己感温抵抗体 1 の抵抗一温度特性は, 第 4図に示すように 1対 1に対応するので, 抵抗値を一定 に保つことは, 温度を一定に保つことになる。
また, 第 2の例において, 感温抵抗体の温度特性は, 第 7図と同様な結果が得 られている。 出力電圧 vHの湿度特性は感温抵抗体 1の温度に依存し, 感温抵抗体 1の温度 力高いほど感度が大きくなる。
湿度が一定である時の雰囲気の温度 τ0 による出力電圧 νΗ は雰囲気の M¾T
0 に対してほぼリニア一に変化し, 出力電圧変化率は感温抵抗体 1の温度 τ„に 依存する。 出力電圧変化率 (ΔνΖΔ Τ) は, 次の数 3 1式で表わされる。
△ V 厶 T = [R · yS · (TH - TQ ) ] 1/2 …(3 1 ) 但し, S力《不明なため感温抵抗体 1温度 1 0 0でのときの変化率を 1とする。 この時の測定値と計算値は, 図 1 1と同様な結果力得られている。
また, 第 1の例と同様な理由により, 定温度 ΙΚ»により, あらかじめ測定棼囲 気の温度変化による出力 MffVjjの変化が予測できるため, 棼囲気の温度 の および前記感温抵抗体 1の温度を 1 0 0で〜 1 5 0での第 2の JKにした時 の前記ホイ一トストンブリッジ回路の出力特性に基いて, 補正装置 4は第 1の補 法または第 2の補正方法により出力 V„の補正が可能となる。
以上, 説明したように, 本発明の第 2の例においても, 1個の感温抵抗体で湿 度測定を可能としたものであり, 測定棼囲気 S¾の変化による特性変化が小さく 低コスト化できる。 産業上の利用の可能性
以上の説明のように, 本発明の湿度センサは, 1個の感温抵抗体で湿度測定を 可能としたものであり, 測定雰囲気温度の変化による 変化が小さく低コスト 化でき, 空調器、 除湿器、 調理器や栽培ハウス等の雰囲気の水蒸気量の測定に用 いることができる。

Claims

請 求 の 範 囲
1. 感温抵抗体の熱放散が湿度により変化することを利用して' J¾を測定す る湿度センサにおいて,
前記感温抵抗体を加熱するために設けられたジュール熱により自己発熱する発 熱体を有し, 前記感温抵抗体を加熱して当該感温抵抗体の温度を一定温度である 第 1の温度に制御する加熱制御手段と,
前記第 1の温度における前記感温抵抗体の電圧降下に関する出力電圧を出力す る電子回路と,
前記電子回路の出力電圧値を前記感温抵抗体の雰囲気温度による前記電子回路 の出力電圧値の変化分に基いて補正する補正手段と
を備えていることを特徴とする湿度センサ。
2. 請求項 1記載の J¾センサにおいて, 前記電子回路は, 前記感温抵抗体 を含むホイートストーンブリッジ回路を備えていることを特徴とする湿度センサ。
3. 請求項 1記載の Sセンサにおいて, 前記感温抵抗体と前記発熱体とは, 薄膜からなり, かつ, 一体的に形成されていることを特徴とする祖度センサ。
4. 請求項 1記載の センサにおいて, 前記感温抵抗体と前記発熱体とは, 薄膜からなる同一の素子で形成されていることを特徴とする湿度センサ。
5. 請求項 1記載の湿度センサにおいて, 前記第 1の^は 3 0 0 以上で あることを特徴とする湿度センサ。
6. 請求項 1記載の S¾センサにおいて, 前記加熱制御手段は, 前記発熱体 に一定時間内に 2種のパルス電圧を印加することにより前記感温抵抗体の SJ¾を 前記第 1の温度と, 前記第 1の温度よりも低い第 2の S¾とに切り替える切り替 え手段を備え, 前記電子回路は, 前記感温抵抗体の温度を前記第 2の温度にした 時における前記感温抵抗体の電圧降下に関連する出力電圧を出力し, 前記補正手 段は, 前記電子回路の出力特性に基いて, 前記感温抵抗体の温度を前記第 1の温 度とした時の前記電子回路の出力電圧値を測定棼囲気の温度の影響を除くように 補正することを特徴とする湿度センサ。
7. 請求項 6記載の' ¾センサにおいて, 前記感温抵抗体と前記発熱体とは,
6 一 薄膜からなり, か , 一体的に形成されていることを特徴とする湿度センサ。
8. 請求項 6記載の S¾センサにおいて, 前記感温抵抗体と前記発熱体とは, 薄膜からなる同一の素子で形成されていることを特徴とする湿度センサ。
9. 請求項 6記載の センサにおいて, 前記電子回路は, 前記切り替え手 段によって, 前記感温抵抗体への前記 2種のパルス電圧による印加電圧を変化さ せる 2種の抵抗部を備えていることを特徴とする湿度センサ。
1 0. 請求項 6記載の湿度センサにおいて, 前記補正手段は, 測定棼囲気の ί¾¾情報を与える温度検出器と, 前記測定雰囲気の温度情報に基づいて前記出力 電圧値の補正を行う補正装置とを備えていることを特徴とする湿度センサ。
1 1. 請求項 6記載の SJSセンサにおいて, 前記加熱制御手段は, 前言 a¾温 抵抗体を加熱して前記第 1の温度と前記第 2の温度とにするための前記 2種のパ ルス電圧を出力する電源装置を備えていることを特徴とする 度センサ。
1 2. 請求項 6記載の湿度センサにおいて, 前記第 2の温度は, 1 0 0〜1 5 0ての範囲内の一定¾¾であることを特徴とする湿度センサ。
PCT/JP1995/002727 1994-12-29 1995-12-27 Detecteur d'humidite WO1996021146A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69516274T DE69516274T2 (de) 1994-12-29 1995-12-27 Feuchtigkeitssensor
US08/702,602 US5837884A (en) 1994-12-29 1995-12-27 Humidity sensor using temperature sensing resistor controlled to be at constant temperature of more than 150° C.
CA002184055A CA2184055C (en) 1994-12-29 1995-12-27 Humidity sensor
EP95942287A EP0749013B1 (en) 1994-12-29 1995-12-27 Humidity sensor
KR1019960704759A KR100230079B1 (ko) 1994-12-29 1995-12-27 습도 센서

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/338975 1994-12-29
JP33897594A JP3343801B2 (ja) 1994-12-29 1994-12-29 湿度センサ
JP33897494A JPH08184575A (ja) 1994-12-29 1994-12-29 湿度センサ
JP6/338974 1994-12-29

Publications (1)

Publication Number Publication Date
WO1996021146A1 true WO1996021146A1 (fr) 1996-07-11

Family

ID=26576277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002727 WO1996021146A1 (fr) 1994-12-29 1995-12-27 Detecteur d'humidite

Country Status (7)

Country Link
US (1) US5837884A (ja)
EP (1) EP0749013B1 (ja)
KR (1) KR100230079B1 (ja)
CN (1) CN1099590C (ja)
CA (1) CA2184055C (ja)
DE (1) DE69516274T2 (ja)
WO (1) WO1996021146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378961A (zh) * 2020-11-24 2021-02-19 五邑大学 一种仿生柔性湿度传感器及电子皮肤湿度监测装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295863B1 (en) * 2000-07-26 2001-10-02 Ford Global Technologies, Inc. Method and apparatus for determining seal failure in a ball joint
RU2267057C2 (ru) * 2000-11-21 2005-12-27 Эл Джи Электроникс Инк. Болометрический гигрометр, плита или печь с его использованием и способ регулирования плиты или печи
US6700389B2 (en) * 2001-08-17 2004-03-02 Delphi Technologies, Inc. Temperature compensation of an inductive sensor
JP4538175B2 (ja) * 2001-09-07 2010-09-08 本田技研工業株式会社 排気ガス浄化装置の状態判定装置
JP3855950B2 (ja) * 2003-03-19 2006-12-13 株式会社デンソー 容量式湿度センサ
US6960744B2 (en) * 2003-08-04 2005-11-01 International Business Machines Corporation Electrically tunable on-chip resistor
EP1810013B1 (en) * 2004-10-18 2012-06-13 Senmatic A/S A humidity sensor and a method for manufacturing the same
JP4976469B2 (ja) * 2009-08-28 2012-07-18 日立オートモティブシステムズ株式会社 熱式湿度センサ
JP5055349B2 (ja) * 2009-12-28 2012-10-24 日立オートモティブシステムズ株式会社 熱式ガスセンサ
JP6012515B2 (ja) 2013-03-15 2016-10-25 日立オートモティブシステムズ株式会社 ガスセンサ
US9164477B2 (en) 2013-12-02 2015-10-20 Xerox Corporation Current leakage correction in humid environments
JP2015227822A (ja) * 2014-06-02 2015-12-17 Tdk株式会社 熱伝導式ガスセンサ
JP6160667B2 (ja) * 2015-03-12 2017-07-12 Tdk株式会社 熱伝導式ガスセンサ
EP3093659B1 (en) * 2015-05-11 2017-06-14 Siemens Aktiengesellschaft Thermal conductivity detector and method for operating the same
WO2018047385A1 (ja) * 2016-09-08 2018-03-15 株式会社村田製作所 風速測定装置および風量測定装置
DE102016117088A1 (de) 2016-09-12 2018-03-15 Innovative Sensor Technology Ist Ag Vorrichtung zur kapazitiven Bestimmung des Feuchtegehalts und Verfahren zum Betreiben der Vorrichtung
GB201709639D0 (en) 2017-06-16 2017-08-02 Univ Oxford Innovation Ltd Sensing apparatus and sensing method
JP7070175B2 (ja) * 2017-09-26 2022-05-18 Tdk株式会社 ガスセンサ
CN108896612A (zh) * 2018-09-13 2018-11-27 中国科学院微电子研究所 微型湿度传感器
US11397047B2 (en) * 2019-04-10 2022-07-26 Minebea Mitsumi Inc. Moisture detector, moisture detection method, electronic device, and log output system
CN111007112B (zh) * 2019-10-24 2020-10-16 上海交通大学 一种基于电导率法的在线测量蒸汽湿度的系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361843A (ja) * 1989-02-06 1991-03-18 Alcan Internatl Ltd ガスの熱伝導率測定方法およびその装置
JPH05223770A (ja) * 1992-02-12 1993-08-31 Tokin Corp 熱伝導式絶対湿度センサ
JPH05288705A (ja) * 1992-04-10 1993-11-02 Sharp Corp センサー素子
JPH0755748A (ja) * 1993-08-10 1995-03-03 Ricoh Seiki Co Ltd 雰囲気計

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419021A (en) * 1980-02-04 1983-12-06 Matsushita Electric Industrial Co., Ltd. Multi-functional sensing or measuring system
US4532797A (en) * 1981-11-30 1985-08-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Instrumentation for sensing moisture content of material using a transient thermal pulse
CA1253592A (en) * 1985-02-15 1989-05-02 Tatsuya Tsuda Heating apparatus with humidity sensor
DE3751125T2 (de) * 1986-02-04 1995-08-10 Sharp Kk Feuchtigkeitsmesskreis.
DE3622307A1 (de) * 1986-07-03 1988-01-14 Draegerwerk Ag Messeinrichtung zum nachweis des anteils von brennbaren gasen in luftgemischen
US4735082A (en) * 1986-07-14 1988-04-05 Hewlett-Packard Company Pulse modulated thermal conductivity detector
US4911357A (en) * 1988-04-11 1990-03-27 Shibaura Electronics Company, Ltd. Humidity controller utilizing absolute humidity
EP0376721B1 (en) * 1988-12-29 1998-07-15 Sharp Kabushiki Kaisha Moisture-sensitive device
US4918974A (en) * 1989-02-06 1990-04-24 Alcan International Limited Method and apparatus for the measurement of the thermal conductivity of gases
AU657016B2 (en) * 1991-12-16 1995-02-23 Sharp Kabushiki Kaisha A circuit for humidity detection
JPH06242048A (ja) * 1993-02-19 1994-09-02 Tokin Corp 熱伝導式絶対湿度センサ
US5551283A (en) * 1993-08-10 1996-09-03 Ricoh Seiki Company, Ltd. Atmosphere measuring device and flow sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361843A (ja) * 1989-02-06 1991-03-18 Alcan Internatl Ltd ガスの熱伝導率測定方法およびその装置
JPH05223770A (ja) * 1992-02-12 1993-08-31 Tokin Corp 熱伝導式絶対湿度センサ
JPH05288705A (ja) * 1992-04-10 1993-11-02 Sharp Corp センサー素子
JPH0755748A (ja) * 1993-08-10 1995-03-03 Ricoh Seiki Co Ltd 雰囲気計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0749013A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378961A (zh) * 2020-11-24 2021-02-19 五邑大学 一种仿生柔性湿度传感器及电子皮肤湿度监测装置

Also Published As

Publication number Publication date
CA2184055A1 (en) 1996-07-11
CA2184055C (en) 2001-12-18
EP0749013A1 (en) 1996-12-18
DE69516274T2 (de) 2000-08-31
KR100230079B1 (ko) 1999-12-01
EP0749013A4 (ja) 1997-01-29
US5837884A (en) 1998-11-17
CN1099590C (zh) 2003-01-22
CN1142263A (zh) 1997-02-05
EP0749013B1 (en) 2000-04-12
KR970701347A (ko) 1997-03-17
DE69516274D1 (de) 2000-05-18

Similar Documents

Publication Publication Date Title
WO1996021146A1 (fr) Detecteur d&#39;humidite
JP3343801B2 (ja) 湿度センサ
US5792938A (en) Humidity sensor with differential thermal detection and method of sensing
US5551283A (en) Atmosphere measuring device and flow sensor
KR100379471B1 (ko) 절대습도센서 및 이를 이용한 온/습도 검출 회로
US7635091B2 (en) Humidity sensor formed on a ceramic substrate in association with heating components
JP2889909B2 (ja) 雰囲気計
EP0353996B1 (en) A flow sensor
EP0698786A1 (en) Atmosphere measuring device and flow sensor
JP3370801B2 (ja) 温度補償付き雰囲気検出装置
JPH08184575A (ja) 湿度センサ
JP2889910B2 (ja) 雰囲気検出装置
JP3402525B2 (ja) 熱依存性検出装置
JPH07280767A (ja) 湿度センサおよび湿度測定方法
JP3386250B2 (ja) 熱依存性検出装置
JPH08136491A (ja) 雰囲気検出装置
JP3358684B2 (ja) 熱依存性検出装置
JPH0688802A (ja) 雰囲気センサ
JPH0829370A (ja) 熱伝導式湿度センサ
JP2686878B2 (ja) 複合センサ装置
JPS6142122Y2 (ja)
Kunze et al. Thermal dewpoint sensing: a new approach for dewpoint detection and humidity sensing
JP2567373Y2 (ja) 絶対湿度センサー
JP2890287B2 (ja) センサ回路
JPH05223770A (ja) 熱伝導式絶対湿度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191843.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2184055

Country of ref document: CA

Ref document number: 08702602

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995942287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019960704759

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995942287

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995942287

Country of ref document: EP