WO1996011487A1 - Elektromagnetisches schaltgerät - Google Patents

Elektromagnetisches schaltgerät Download PDF

Info

Publication number
WO1996011487A1
WO1996011487A1 PCT/DE1995/001319 DE9501319W WO9611487A1 WO 1996011487 A1 WO1996011487 A1 WO 1996011487A1 DE 9501319 W DE9501319 W DE 9501319W WO 9611487 A1 WO9611487 A1 WO 9611487A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
contact pressure
shape memory
memory alloy
pressure spring
Prior art date
Application number
PCT/DE1995/001319
Other languages
English (en)
French (fr)
Inventor
Franz Hauner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1996011487A1 publication Critical patent/WO1996011487A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/504Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by thermal means

Definitions

  • the invention relates to a switching device with an electromagnetic release, a contact arrangement with a fixed contact, a movable contact and a contact pressure spring, which in the closed state caused by the release provides a contact pressure force for both contacts.
  • a generic switching device is e.g. known from DE-OS 35 40 460.
  • Such switchgear in particular low-voltage switchgear, including relays and switches for installation technology, requires good overtemperature behavior.
  • a certain temperature value must not be exceeded in the area of the contact point or at the connections, since this could impair the functionality of the switching device.
  • high excess temperature values have generally been achieved by selecting low-resistance contact materials or by increasing the contact pressure, e.g. by using springs of higher spring force, i.e. Avoid higher spring constant in the switchgear.
  • these measures have disadvantages, such as lower lifespan switching numbers, poorer compliance, etc. connected.
  • the invention has for its object to improve switching devices of the type mentioned above in terms of their upper temperature behavior in a simple manner.
  • the object is achieved in that an element produced using a shape memory alloy is provided which increases the contact pressure force as a function of temperature.
  • the contact pressure spring is produced using a shape memory alloy, which is particularly advantageous since the contact pressure spring is present anyway and therefore no additional part is required.
  • the shape memory alloy is reversible because additional means for resetting the contact pressure spring after its elongation into the initial state are unnecessary.
  • the contact pressure spring is designed like a bimetal as a composite spring made of steel and a shape memory alloy.
  • the production of bimetals is a common technique, in the connection of which a shape memory alloy with a one-way effect is advantageously sufficient.
  • the element is designed as an oval-shaped ring which approaches the circular shape when the temperature rises and thereby increases the spring travel of the contact pressure spring and the contact pressure force.
  • FIG 2 shows a contact arrangement with movable contacts and fixed contacts in the closed state
  • 3 shows a contact pressure spring made of a shape memory alloy in the martensitic state
  • FIG. 4 in the austenitic state
  • FIG. 6 shows an illustration of the contact arrangement according to FIG. 5 with the same ring with an approximately circular shape in the austenitic state.
  • FIG. 1 The basic structure of an electromagnetic switching device is shown in FIG. 1 with the device housing omitted. It has an electromagnetic release, to which a non-switching magnetic part 1 with an excitation coil
  • contact bridge carrier 4 in which contact bridges 6 are held in windows 5 via contact pressure springs 8 in a known manner.
  • the movable contact bridges 6 with the contacts 7 cooperate with fixed contacts 9 as normally closed or normally open contacts.
  • the symbolically represented back pressure springs 10 cause the moving magnetic part 3 with the contact bridge support 4 to be pushed back and the contact bridge 6 with the fixed contacts 9 to be closed, the contact pressure spring 8 being compressed for the break contact. as the contact arrangement in the upper right window 5 of the contact bridge support 4 shows.
  • FIG. 2 shows a section with fixed contacts 9, a contact bridge 6 and the contact pressure spring 8 acting thereon.
  • the latter can be produced using a shape memory alloy with a two-way effect, so that two states of the contact pressure spring 8 according to FIGS. 3 and 4 result depending on the temperature.
  • 3 shows the martensitic state of the contact pressure spring 8, in which e.g. the martensite end temperature Mf below 100 ° C and the
  • Austenite start temperature A s is above this temperature value according to the following condition: Mf ⁇ T: approx. 100 ° C ⁇ A s
  • the contact pressure spring 8 changes from the martensitic state to the austenitic state according to FIG. 4, which is associated with a longitudinal expansion of the contact pressure spring 8 from the state in FIG. 3 to the state in FIG.
  • the austenitic state is characterized in that the austenite end temperature Af is below 120 ° C. and the critical temperature Mj at which the shape memory effect is lost is above this temperature value.
  • the temperature conditions in the austenitic state The following equation can accordingly be described:
  • the contact pressure force of the closed contacts 7 and 9 is increased, as a result of which the contact resistance is reduced and, at the same time, the overtemperature is reduced when the current is carried.
  • the contact pressure spring 8 converts again from the austenitic state to the martensitic state and shortens to the original length, ie the shape memory alloy is reversible.
  • the contact pressure spring 8 acts here as an M thermomechanical control element ".
  • a contact pressure spring 8 made of a shape memory alloy with a two-way effect ie with a reversible expansion behavior as shown in FIGS. 3 and 4
  • a composite spring made of steel and a shape memory alloy with a one-way effect can also be used, the structure being similar to a bimetal. If an inadmissibly high temperature at contacts 7.9 is steps, the shape memory alloy leads to an additional change in the length of the spring and thus an increase in the contact force by converting martensite to austenite. When the current flow is interrupted and the contact system cools, the austenite changes back to martensite. As a result of the easy deformability of the martensitic shape memory alloy, the resetting takes place through the spring force of the steel spring.
  • the contact pressure spring 8 is not located directly on the contact bridge 6, as shown schematically in FIG. 2, but in the vicinity of the magnet system, as shown, for example, in FIGS. 5 and 6. If, for example, an oval ring 11 made of a shape memory alloy with a two-way effect is used in the area of the contact bridge 6, which was brought from a round shape into an oval shape in the martensitic state, this oval ring 11 will change when the austenite start temperature is exceeded Stretch A s of eg 120 ° C into the round shape and thereby exert an additional contact pressure force and reduce the contact resistance and thus the overtemperature. When cooling below the martensite start temperature M s , the ring 11 returns to the oval shape.
  • the elongation of the ring 11 has the consequence that the spring travel of the contact pressure spring 8 and thus also the contact pressure force is increased.
  • the spring travel ie the distance by which the spring is shortened to build up the contact pressure force, results on the one hand from the displacement of the contact bridge carrier 4 and on the other hand from the longitudinal expansion of the ring 11 from the oval shape into the circular shape.

Landscapes

  • Thermally Actuated Switches (AREA)

Abstract

Hohe Übertemperaturwerte im Bereich der Kontaktstellen von elektromagnetischen Schalgteräten müssen vermieden werden. Bisher wurden hierzu niederohmige Kontaktwerkstoffe und/oder stärkere Kontaktdruckfedern (8) verwendet. Erfindungsgemäß werden die Kontaktdruckfedern (8) unter Verwendung einer Formgedächtnislegierung hergestellt, die bei Temperaturerhöhung eine Längendehnung erfahren und auf diese Weise die Kontaktandruckkraft erhöhen.

Description

Beschreibung
Elektromagnetisches Schaltgerät
Die Erfindung bezieht sich auf ein Schaltgerät mit einem elektromagnetischen Auslöser, einer Kontaktanordnung mit einem Festkontakt, einem beweglichen Kontakt und einer Kontaktdruckfeder, die im durch den Auslöser bewirkt en, geschlossenen Zustand beider Kontakte eine Kontaktandruck- kraft bereitstellt.
Ein gattungsgemäßes Schaltgerät ist z.B. durch die DE-OS 35 40 460 bekannt. Bei derartigen Schaltgeräten, insbesondere Niederspannungsschaltgeräten, einschließlich Relais und Schaltern für die Installationstechnik, wird ein gutes Über- temperaturverhalten gefordert. Bei Stromführung darf im Be¬ reich der Kontaktstelle sowie an den Anschlüssen ein bestimm¬ ter Temperaturwert nicht überschritten werden, da dies die Funktionsfähigkeit des Schaltgerätes beeinträchtigen könnte. Hohe Ubertemperaturwerte werden bisher in der Regel durch Auswahl niederohmiger Kontaktwerkstoffe bzw. durch Erhöhung der Kontaktandruckkraft, z.B. durch Verwendung von Federn höherer Federkraft, d.h. höherer Federkonstante im Schalt- gerät vermieden. In vielen Fällen sind mit diesen Maßnahmen allerdings Nachteile, wie z.B. geringere Lebensdauerschalt- zahlen, schlechteres Einsehaltvermögen, usw. verbunden.
Daher liegt der Erfindung die Aufgabe zugrunde, Schaltgeräte der oben genannten Art hinsichtlich ihres Ober emperaturver- haltens auf einfache Weise zu verbessern.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß ein unter Verwendung einer Formgedächtnislegierung hergestelltes Element vorgesehen ist, das temperaturabhängig die Kontakt- andruckkraft verstärkt. Bei einer Weiterbildung der Erfindung gemäß Anspruch 2 wird die Kontaktdruckfeder unter Verwendung einer Formgedächtnis- legierung hergestellt, was besonders vorteilhaft ist, da die Kontaktdruckfeder ohnehin vorhanden ist und somit kein zu- sätzliches Teil benötigt wird.
Weiterhin ist es vorteilhaft, wenn die Formgedächtnislegie¬ rung reversibel ist, weil zusätzliche Mittel zur Rückstellung der Kontaktdruckfeder nach ihrer Längendehnung in den Ausgangszustand sich erübrigen.
Eine weitere vorteilhafte Ausführungsform erhält man, wenn die Kontaktdruckfeder bimetallartig als Verbundfeder aus Stahl und einer Formgedächtnislegierung ausgeführt ist. Die Herstellung von Bimetallen ist eine gängige Technik, in deren Verbindung eine Formgedächtnislegierung mit Einwegeeffekt gemäß Anspruch 5 vorteilhafterweise ausreicht.
Es ist außerdem vorteilhaft, wenn das Element temperaturab- hängig seine Abmessungen verändert und dadurch bedingt den
Federweg der Kontaktdruckfeder und damit die Kontaktandruck¬ kraft vergrößert.
Als besonders günstig erweist es sich, wenn das Element als oval geformter Ring ausgeführt ist, der bei Temperaturerhö¬ hung sich der Kreisform nähert und dadurch den Federweg der Kontaktdruckfeder sowie die Kontaktandruckkraft vergrößert.
Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand einer Zeichnung näher erläutert:
FIG 1 zeigt ein Schaltgerät mit elektromagnetischem
Auslöser und einer Kontaktanordnung gemäß dem Stand der Technik, FIG 2 zeigt eine Kontaktanordnung mit beweglichen Kontakten und Festkontakten im geschlossenen Zustand, FIG 3 zeigt eine Kontaktdruckfeder aus einer Formgedächt¬ nislegierung im martensitischen Zustand und FIG 4 im austenitischen Zustand,
FIG 5 zeigt eine Kontaktanordnung mit einem ovalen Ring im martensitischen Zustand,
FIG 6 zeigt eine Darstellung der Kontaktanordnung gemäß FIG 5 mit demselben Ring mit annähernder Kreisform im austenitischen Zustand.
In FIG 1 ist unter Weglassung des Gerätegehäuses der prinzi¬ pielle Aufbau eines elektromagnetischen Schaltgerätes darge¬ stellt. Es weist einen elektromagnetischen Auslöser auf, zu dem ein nicht schaltendes Magnetteil 1 mit einer Erregerspule
2 gehören, das in üblicher Weise im nichtdargestellten Gehäu- se befestigt ist. Ein schaltendes oder bewegliches Magnetteil
3 ist mit einem Kontaktbrückenträger 4 verbunden, in welchem in Fenstern 5 Kontaktbrücken 6 über Kontaktdruckfedern 8 in bekannter Weise gehalten sind. Die beweglichen Kontaktbrücken 6 mit den Kontakten 7 wirken mit Festkontakten 9 als Öffner- bzw. Schließerkontakt zusammen. Die symbolisch dargestellten Rückdruckfedern 10 bewirken das Zurückdrängen des beweglichen Magnetteils 3 mit dem Kontaktbrückenträger 4 und Schließen der Kontaktbrücke 6 mit den Festkontakten 9, wobei die Kon¬ taktdruckfeder 8 für den Öffnerkontakt zusammengedrückt wird. wie dies die Kontaktanordnung im oberen rechten Fenster 5 des Kontaktbrückenträgers 4 zeigt.
In FIG 2 ist ein Ausschnitt mit Festkontakten 9, einer Kon¬ taktbrücke 6 und der auf diese wirkenden Kontaktdruckfeder 8 dargestellt. Letztere kann erfindungsgemäß unter Verwendung einer Formgedächtnislegierung mit Zweiwegeeffekt hergestellt sein, so daß sich temperaturabhängig zwei Zustände der Kon¬ taktdruckfeder 8 gemäß den FIG 3 und 4 ergeben. FIG 3 zeigt den martensitischen Zustand der Kontaktdruckfeder 8, bei der z.B. die Martensit-Ende-Temperatur Mf unter 100 °C und die
Austenit-Start-Temperatur As oberhalb dieses Temperaturwertes gemäß folgender Bedingung liegt: Mf < T : ca . 100 °C < As
Bei Erreichen einer bestimmten Temperatur T geht die Kontakt- druckfeder 8 vom martensitischen Zustand in den austeniti¬ schen Zustand gemäß FIG 4 über, womit eine Längendehnung der Kontaktdruckfeder 8 vom Zustand in FIG 3 zum Zustand in FIG 4 verbunden ist. Der austenitische Zustand ist dadurch" charak¬ terisiert, daß die Austenit-Ende-Temperatur Af unterhalb von 120 °C liegt und die kritische Temperatur M-j, bei der der Formgedächtniseffekt verloren geht, über diesem Temperatur¬ wert liegt. Die Temperaturbedingungen im austenitischen Zu¬ stand lassen sich demgemäß durch folgende Gleichung beschrei¬ ben:
Af < T: ca. 120 °C < M-j
Durch die Längendehnung der Kontaktdruckfeder 8 beim Übergang in den austenitischen Zustand v.ird die Kontaktandruckkraft der geschlossenen Kontakte 7 und 9 erhöht, wodurch der Kon¬ taktwiderstand vermindert wird und zugleich die Übertempera¬ tur bei Stromführung erniedrigt wird.
Wird der Stromfluß unterbrochen und kühlt sich daraufhin das Kontaktsystem ab, so wandelt sich die Kontaktdruckfeder 8 wieder vom austenitischen Zustand in den martensitischen Zu¬ stand um und verkürzt sich auf die ursprüngliche Länge, d.h. die Formgedächtnislegierung ist reversibel. Die Kontaktdruck¬ feder 8 wirkt hier als ein Mthermomechanisehes Regelglied".
Anstelle einer Kontaktdruckfeder 8 aus einer Formgedächtnis- legierung mit Zweiwegeeffekt, d.h. mit entsprechend der Tem¬ peraturänderung reversiblem Ausdehnungsverhalten gemäß FIG 3 und 4 kann auch eine Verbundfeder aus Stahl und einer Form- gedächtnislegierung mit Einwegeeffekt verwendet werden, wobei der Aufbau ähnlich einem Bimetall ist. Wird bei Stromführung eine unzulässig hohe Temperatur an den Kontakten 7,9 über- schritten, so führt die Formgedächtnislegierung durch Umwand¬ lung von Martensit zu Austenit zu einer zusätzlichen Längen¬ änderung der Feder und damit Erhöhung der Kontaktkraft. Bei Unterbrechung des Stromflusses und Abkühlung des Kontaktsy- stems wandelt sich der Austenit wieder zu Martensit um. In¬ folge der leichten Verformbarkeit der martensitischen Formge¬ dächtnislegierung erfolgt die Rückstellung durch die Feder¬ kraft der Stahlfeder.
In manchen Schaltgeräten, wie z.B. Schützen größerer Baugrö¬ ße, befindet sich die Kontaktdruckfeder 8 nicht unmittelbar an der Kontaktbrücke 6, wie schematisch in FIG 2 gezeigt, sondern in der Nähe des Magnetsystems, wie z.B. in FIG 5 und 6 angezeigt. Wird im Bereich der Kontaktbrücke 6 z.B. ein ovaler Ring 11 aus einer Formgedächtnislegierung mit Zweiwe¬ geeffekt verwendet, der im martensitischen Zustand von einer runden Form in eine ovale Form gebracht wurde, so wird sich dieser ovale Ring 11 bei Überschreiten der Austenit-Start- Temperatur As von z.B. 120 °C in die runde Form dehnen und dadurch eine zusätzliche Kontaktandruckkraft ausüben und den Kontaktwiderstand und somit die Übertemperatur vermindern. Bei Abkühlung unter die Martensit-Start-Temperatur Ms nimmt der Ring 11 wieder die ovale Form ein. Die Längendehnung des Rings 11 hat zur Folge, daß der Federweg der Kontaktdruck- feder 8 und damit auch die Kontaktandruckkraft vergrößert wird. Bei hohen Temperaturen ergibt sich der Federweg, d.h. der Weg, um den die Feder zum Aufbau der Kontaktandruckkraft verkürzt wird, zum einen aus der Verschiebung des Kontak - brückenträgers 4 und zum anderen aus der Längendehnung des Rings 11 von der ovalen Form in die Kreisform.

Claims

Patentansprüche
1. Schaltgerät mit einem elektromagnetischen Auslöser (1,2,3), einer Kontaktanordnung mit einem Festkontakt (9), einem beweglichen Kontakt (7) und einer Kontaktdruckfeder
(8), die im durch den Auslöser (1,2,3) bewirkten, geschlosse¬ nen Zustand beider Kontakte (7,9) eine Kontaktandruckkraft bereitstellt, d a d u r c h g e k e n n z e i c h n e t , daß ein unter Verwendung einer reversiblen Formgedächtnis- legierung hergestelltes Element (8,11) vorgesehen ist, das temperaturabhängig die Kontaktandruckkraft verstärkt bzw. vermindert.
2. Schaltgerät nach Anspruch 1, d a d u r c h g e k e n n- z e i c h n e t , daß die Kontaktdruckfeder (8) unter Ver¬ wendung einer Formgedächtnislegierung hergestellt ist.
3. Schaltgerät nach Anspruch 2, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Kontaktdruckfeder (8) bi- metallartig als Verbundfeder aus Stahl und einer Formgedächt¬ nislegierung ausgeführt ist.
4. Schaltgerät nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das Element als oval geformter Ring (11) ausgeführt ist, der bei Temperaturerhöhung sich der Kreisform nähert.
PCT/DE1995/001319 1994-10-06 1995-09-22 Elektromagnetisches schaltgerät WO1996011487A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944435795 DE4435795A1 (de) 1994-10-06 1994-10-06 Elektromagnetisches Schaltgerät
DEP4435795.8 1994-10-06

Publications (1)

Publication Number Publication Date
WO1996011487A1 true WO1996011487A1 (de) 1996-04-18

Family

ID=6530141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001319 WO1996011487A1 (de) 1994-10-06 1995-09-22 Elektromagnetisches schaltgerät

Country Status (2)

Country Link
DE (1) DE4435795A1 (de)
WO (1) WO1996011487A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004621B2 (en) 2017-04-28 2021-05-11 Tdk Electronics Ag Relay

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857169A1 (de) * 1998-12-11 2000-06-15 Abb Patent Gmbh Kontaktanordnung für ein elektrisches Schaltgerät
NO312429B1 (no) * 1999-09-13 2002-05-06 Knut Ove Steinhovden Anordning ved utstöter- og/eller inntrekkingsmekanisme for stöpsel
DE10039203C2 (de) * 2000-08-10 2003-03-20 Siemens Ag Verwendung der Begrenzung des Bewegungsweges eines Aktors aus einer Formgedächtnis-Legierung in einem elektromechanischen Bauelement
DE102018116222A1 (de) 2018-07-04 2020-01-09 Tdk Electronics Ag Keramikmaterial, Varistor und Verfahren zur Herstellung des Keramikmaterials und des Varistors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634803A (en) * 1969-07-22 1972-01-11 Robertshaw Controls Co Temperature-responsive switch assemblies
EP0224081A1 (de) * 1985-11-14 1987-06-03 Siemens Aktiengesellschaft Elektromagnetisches Schaltgerät
SU1415253A1 (ru) * 1987-02-04 1988-08-07 Vasilenok Valerij S Контактна система мостикового типа
US5017898A (en) * 1989-07-13 1991-05-21 Omron Corporation Electromagnetic relay

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2285624A (en) * 1939-11-04 1942-06-09 Westinghouse Electric & Mfg Co Elimination of contact burning on controls
DE2315456B2 (de) * 1973-03-26 1978-06-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Schaltgerät mit einer Dämpfungsanordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634803A (en) * 1969-07-22 1972-01-11 Robertshaw Controls Co Temperature-responsive switch assemblies
EP0224081A1 (de) * 1985-11-14 1987-06-03 Siemens Aktiengesellschaft Elektromagnetisches Schaltgerät
SU1415253A1 (ru) * 1987-02-04 1988-08-07 Vasilenok Valerij S Контактна система мостикового типа
US5017898A (en) * 1989-07-13 1991-05-21 Omron Corporation Electromagnetic relay

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8907, 29 April 1989 Derwent World Patents Index; AN 89-052882, VASILENOK V S: "bridge-type contact system - has insert made with reversible shape memory" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004621B2 (en) 2017-04-28 2021-05-11 Tdk Electronics Ag Relay

Also Published As

Publication number Publication date
DE4435795A1 (de) 1996-04-11

Similar Documents

Publication Publication Date Title
EP1815490B1 (de) Schaltgerät mit einem thermischen und elektromagnetischen auslöser
DE102013211539A1 (de) Schaltmechanik und elektromechanisches Schutzschaltgerät
EP3602599B1 (de) Überstromschutzvorrichtung
EP1815487A1 (de) Schaltgerät mit einem elektromagnetischen auslöser
WO2006056335A1 (de) Schaltgerät mit einem elektromagnetischen auslöser
WO1996011487A1 (de) Elektromagnetisches schaltgerät
DE10354505B4 (de) Elektrischer Selbstschalter
EP3439004A1 (de) Auslöseelement eines druckauslösers, druckauslöser mit solch einem auslöseelement und elektrischer schalter
DE10013161A1 (de) Kombinierte Auslösevorrichtung für einen Leistungsschalter
DE3637102A1 (de) Vorrichtung mit vorverformten biegeelement und dessen verwendung
EP0813218B1 (de) Auslöse-Einrichtung für ein Überstrom-Abschaltgerät
EP3258231A1 (de) Elektromechanisches schutzschaltgerät mit einer überlastauslöseeinrichtung
DE3319868C2 (de) Überstromschalter
EP1292961B1 (de) Schaltereinrichtung mit einem aktuatorelement aus einer form-gedächtnis-legierung
DE2252004A1 (de) Elektrischer schalter
DE964969C (de) Schaltgeraet, insbesondere Installations-Selbstschalter mit thermischer und magnetischer Ausloesung
DE102017106694A1 (de) Aktuator mit magnetischer Formgedächtnislegierung und Installationsschaltvorrichtung mit einem derartigen Aktuator
DE10039203C2 (de) Verwendung der Begrenzung des Bewegungsweges eines Aktors aus einer Formgedächtnis-Legierung in einem elektromechanischen Bauelement
DE2702851A1 (de) Bimetallgesteuerter schalter
DE19851311B4 (de) Elektrische Bruchsicherung mit Memory-Einsatz und dafür geeignete Memory-Legierungen
DE19963501A1 (de) Aktuator und Verfahren zur Ansteuerung eines Stellgliedes
DE102004056283A1 (de) Schaltgerät mit einem thermischen und elektromagnetischen Auslöser
DE650624C (de) Elektrischer UEberstromselbstausschalter
DE3016467A1 (de) Elektromagnet fuer selbstschalter
AT412685B (de) Auslöserelais für fehlerstromschutzschalter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase