WO1996009502A1 - Revetement spectral selectif pour collecteur et son procede de production - Google Patents

Revetement spectral selectif pour collecteur et son procede de production Download PDF

Info

Publication number
WO1996009502A1
WO1996009502A1 PCT/EP1995/003764 EP9503764W WO9609502A1 WO 1996009502 A1 WO1996009502 A1 WO 1996009502A1 EP 9503764 W EP9503764 W EP 9503764W WO 9609502 A1 WO9609502 A1 WO 9609502A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
absorbent
substrate
spectrally selective
Prior art date
Application number
PCT/EP1995/003764
Other languages
German (de)
English (en)
Inventor
Lothar Herlitze
Wolfgang Graf
Original Assignee
Interpane
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interpane filed Critical Interpane
Publication of WO1996009502A1 publication Critical patent/WO1996009502A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a device for heating a transport medium by means of solar radiation, in particular a solar collector, with a spectrally selective layer system, the layers of which are arranged on a heat-conducting substrate which is in heat-conductive contact with the transport medium to be heated.
  • Solar panels are used to heat a transport medium, such as. B. a liquid or a gas, with the help of solar radiation.
  • a highly absorbent layer system is applied to a heat-conducting substrate.
  • Loss of heat on the side of the solar collector facing away from the sun is reduced by opaque insulation, whereas losses on the side facing the sun are avoided by thermal insulation that is transparent to solar radiation.
  • collectors Copper, aluminum, steel or stainless steel are used as substrates for reasons of heat conduction and for reasons of cost.
  • collectors such as. B. flat collectors, vacuum and tube collectors, etc.
  • spectral absorption capacity oL Z depending on the wavelength • * of the solar radiation of 100%.
  • the emissivity £ () im Radiation range of the black body at the corresponding collector or working temperature must be minimal, so a spectrally selective collector coating is characterized by a high spectral Absorbance c in the area of solar radiation and a low emissivity € in the radiation area of the black body of the respective working temperature.
  • a vanishing reflection R (X) is aimed for in order to ensure a high absorption capacity.
  • various absorber concepts are used, e.g. B. intrinsically selective materials, gradient layers, cermet layers and anti-reflective layers. Usually several of these concepts are used at the same time.
  • the selectivity properties that can be achieved depend on the composition of the electrolyte used, the working conditions and the material of the substrate. As such, copper, aluminum, stainless steel and galvanized or non-galvanized steel are used. An intermediate layer of nickel is often applied to the substrates. It serves to protect against corrosion.
  • Chromium-chromium oxide cermet systems are among the selective selection of Chromium-chromium oxide cermet systems.
  • Black chrome coatings that can be produced in different ways. In addition to electroplating processes with different bath compositions, vacuum processes are also used.
  • the term "chrome black” has a superordinate meaning and is not restricted to a specific product.
  • Black chrome is considered stable in the working area of the low-temperature collectors and is more resistant to moisture.
  • the general disadvantage of many electroplated selective layers is that their properties deteriorate due to aging and in the environmentally hazardous use of toxic salt solutions in the manufacture.
  • the manufacturing process of nickel structure layers on aluminum substrates is comparable to the two-step process known from anodizing technology.
  • the too Coating aluminum absorbers are degreased, pickled and decapitated. This is followed by the creation of an anodized layer with a defined pore pattern and the deposition of the nickel into the pores.
  • the present invention is therefore based on the object of providing a spectrally selective coating for a solar collector and a method for producing such which have a high thermal resistance up to the standstill temperature, i.e. H. if the collector is operated without transport medium and has a high chemical resistance to environmental influences such as Ensure gases, dust, water vapor, etc. Further properties worth striving for include high resistance to temperature changes, high resistance to UV radiation, long service life, large-scale producibility and low manufacturing costs.
  • the object is achieved by a device according to the preamble of claim 1, which is characterized in that the layers of the spectrally selective layer system contain dielectric and absorbent materials which can be applied to the substrate by sputtering.
  • the above-mentioned object is achieved according to claim 8 by a method for producing a spectrally selective layer system on a thermally conductive substrate, which is characterized in that the layers of the spectrally selective layer system are applied in succession to the thermally conductive substrate by sputtering.
  • both the absorber substrate and the coating components must be considered in their individual properties and in their interactions.
  • Metals, metal foils, plastics (PTFE, EPDM), glass, rubber and the like can be used as materials for the heat-conducting substrate. Because of the heat conduction properties, it is usually limited to metals such as copper, Stainless steel or aluminum, the use of copper and aluminum or nickel being advantageous because of their inherently low emissivity in the heat radiation range.
  • the surface quality (roughness characteristics) of the substrate sheets used is of great importance for the resistance behavior of the absorbers.
  • a further possibility for improving the corrosion properties consists in the use of tin-plated or nickel-plated sheets, the layer thickness of the tin or nickel layer being greater than or equal to 1 ⁇ m.
  • the substrate sheets are pretreated either by degreasing in appropriate cleaning baths or preferably by a flame treatment, a silicon-containing compound, preferably tetraethoxylan-TEOS, being added to the combustion gas, which leads to the build-up of a very thin SiO x layer on the substrate sheet with an anti-corrosion effect.
  • a silicon-containing compound preferably tetraethoxylan-TEOS
  • the first option is to use substrates with a low emissivity, e.g. B. copper, aluminum, nickel or the like.
  • the other possibility is to apply a suitable layer with a low emissivity on the substrate.
  • Tin, nickel, molybdenum, gold, platinum metals or low-emitting compounds such as nitrides, in particular the nitrides of the subgroup elements such as titanium nitride or zirconium nitride, can be used as materials for these layers.
  • the layer thickness can be between 10 nm and a few ⁇ m.
  • the spectrally selective layer system which contains layers of dielectric and absorbent materials, is then applied to the low-emitting surface. It has been found that materials produced by sputtering processes, such as. B. the DC magnetron or HF sputtering method can be applied to the heat-conducting substrate, are characterized by a high thermal and chemical resistance and a high resistance to temperature changes. Furthermore, the resistance to UV radiation and the long service life of the materials that can be applied by sputtering are to be emphasized. Further advantages are the excellent layer uniformity, which is well manageable in terms of process technology Process control and the possibility of large-area coating of semi-finished substrate products and ready-made absorbers. The manufacturing process can be designed particularly economically, in particular by the DC magnetron sputtering method. The method is advantageously suitable for coil coating, coating using the inline method and batch coating.
  • the dielectric and the absorbent layers are deposited one above the other in a sandwich-like structure. It therefore contains at least one layer of a dielectric material and at least one further layer of an absorbent material, an absorbing layer and a layer containing a dielectric material being arranged alternately.
  • the individual layer thicknesses are between 1 nm and 100 nm. They are determined by the refractive index and the absorption capacity of the layers in such a way that a high absorption for solar radiation is achieved with a low emissivity of the entire layer system.
  • Carbides preferably silicon carbide, or oxides of the 4th main group or subgroup elements, preferably niobium oxide, zirconium oxide and tantalum oxide, are used as dielectric materials. Nitrides or oxynitrides of silicon, boron or the subgroup elements are also suitable.
  • absorbent reactive layers preferably chromium nitride or nitrides of chromium alloys such as, for. B. Ni / Cr used. Molybdenum and elemental carbon have also proven to be cheap.
  • a cermet structure is achieved by clustering the absorbent materials.
  • the second variant for the construction of the spectrally selective layer system is that the layers are a material mixture of absorbent and dielectric Contain material portions, the stoichiometry changes from layer to layer so that the absorbent material portion of the material mixture increases towards the substrate.
  • the layer system in such a way that it is only produced from a basic material.
  • the system CrO x represents an example.
  • x can be varied such that values 0 ⁇ x ⁇ 1, 5 are reached, with x increasing from the substrate to the light incidence side.
  • an additional absorbent material can also be built into the layers. All subgroup elements, their alloys, in particular Ni / Cr alloys, but also molybdenum or carbon can in turn be used as materials for this.
  • the concentration of the additional absorbent material towards the substrate can also increase.
  • an anti-reflective layer with a low refractive index can be arranged on the light incidence side of the layer system.
  • a layer with a low emissivity can be arranged between the heat-conducting substrate and the spectrally selective layer system. This layer can also function as a corrosion protection.
  • the nitride layers are sputtered from the metal target, e.g. B. Chrome target.
  • Silicon carbide can be produced by sputtering from the silicon target in a carbon-containing atmosphere or preferably by sputtering from the silicon carbide target.
  • the carbon layers are produced by sputtering from the graphite target.
  • Oxide layers are created by reactive sputtering in an oxygen atmosphere. In all cases, the working pressure is approximately 5 x 10 ⁇ bar, the sputtering power densities being between 1 and 10 W / cm ⁇ target surface.
  • the difficulty lies in finding stable working points for the coating process during the sputtering.
  • this problem is solved in that the stoichiometry of the material mixture from layer to layer is changed step by step or continuously by a time-modulated change in the reactive gas content in the sputtering gas.
  • the other possibility is to change the stoichiometry of the material mixture from layer to layer step by step or continuously by changing the sputtering power in a time-modulated manner.
  • the required parameter changes are made on the flow controller or the setpoint specification units for the power supplies of the sputtering system.
  • the silicon carbide layers in particular show very good mechanical resistance and are smudge-proof and easy to handle, properties such as scratch resistance also being influenced by the substrate material.
  • the layers mentioned above show very good stability in the climate change test at temperatures up to 90 ° C. and in saturated water vapor.
  • the reason for this can be seen in the fact that electrochemical corrosion processes are effectively prevented by the deposition of non-metallic layers which also contain hardly any metal impurities.
  • the layers are hydrophobic, so they are poorly wetted by water.
  • FIG. 1 schematically shows the sandwich-like variant of the layer structure of a spectrally selective layer system
  • FIG. 2 schematically shows the variant of the layer structure with changes in stoichiometry
  • FIG. 3 shows the dependence of the sputter voltage on the reactive gas flow
  • FIG. 4 shows a time-modulated change in the sputtering power
  • FIG. 5 a time-modulated change in the reactive gas content in the sputtering gas.
  • FIG. 1 shows a first variant of a spectrally selective layer system according to the invention, in which the dielectric and absorbent materials that can be applied to the substrate 1 by sputtering have a sandwich-like structure.
  • At least one layer 3 contains a dielectric material and at least one further layer 4 contains an absorbent material.
  • the layers 3 with dielectric material and the layers 4 with absorbent material are arranged alternately.
  • Materials with a high thermal conductivity are used for the substrate, in particular metals such as copper, stainless steel, aluminum or nickel.
  • a layer 2 with a low emissivity can be arranged between the heat-conducting substrate and the spectrally selective layer system.
  • Tin, nickel, molybdenum, gold, platinum metals or low-emitting compounds such as nitrides, in particular nitrides, can be used as the material for layer 2
  • Sub-group elements such as titanium nitride or zirconium nitride are used.
  • the layer thickness of layer 2 is between 10 nm and a few ⁇ m.
  • An anti-reflective layer 5 with a low refractive index can also be arranged on the light incidence side of the spectrally selective layer system. This anti-reflective layer 5 serves to lower the reflection in the visible region of the light.
  • the concentration of the absorbent material in the absorbent layers 4 increases from the light incidence side towards the substrate according to a certain function.
  • the layer 2 shows the structure of a spectrally selective layer system, the layers 6 of which contain dielectric and absorbing materials which can be applied to the substrate 1 by sputtering.
  • the layers 6a, 6b, 6c, 6d contain a material mixture of absorbent and dielectric material portions, the stoichiometry changing from layer to layer such that the absorbent material portion of the material mixture increases towards the substrate 1.
  • the layer 6a consists z. B. from CrO x ⁇ , the layer 6b from CrO ⁇ 2, the layer 6c from CrO x 3 and the layer
  • Stoichiometry changes from layer to layer in such a way that the absorbent material portion of the material mixture CrO x increases towards the substrate.
  • absorbent material can also be built into the layers. All subgroup elements and their alloys, in particular Ni / Cr alloys, but also elemental carbon or molybdenum, are also suitable as materials for this. The concentration of this additional absorbent material can also increase towards the substrate.
  • an anti-reflective layer 5 with a low refractive index can also be applied to the light incidence side in order to reduce the reflection in the visible region of the solar radiation.
  • a layer with a low emissivity can also be arranged here between the substrate 1 and the spectrally selective layer system.
  • the desired properties described above can be achieved if the layers are applied to the heat-conducting substrate in succession by sputtering.
  • the DC magnetron sputtering method is particularly preferred.
  • the stoichiometry changing from layer to layer such that the absorbent material portion of the material mixture increases towards the substrate either the reactive gas content in the sputtering gas or the sputtering power can be time-modulated be changed.
  • 3 illustrates these methods.
  • the diagram shown shows the sputtering voltage as a function of the reactive gas flow, the two curves P1 and P2 showing two different sputtering powers.
  • a brief transition is carried out between different working points AI, A2 and A3.
  • the arrows between the working points AI and A3 indicate the change in the sputtering performance during which the reactive gas flow remains constant.
  • FIG. 4 shows a diagram of the time-modulated change in the sputtering power.
  • the one working or operating point is held during a time period t1 and the other working or operating point is held for a time period t2, so that the time-modulated change in the sputtering power is equivalent to a step function.
  • 5 shows a diagram with the time-modulated change in the reactive gas content. One operating point is in turn held for a time t1 and the other for a time t2, so that the time-modulated change in the reactive gas content also presents itself as a step function.
  • the alternating frequencies between the respective working or operating points can be between 10 "! And 10 ⁇ Hz. It has proven to be particularly favorable if the frequencies are between 1 - 10 Hz.
  • the function type of the time-modulated change is not dependent on It is conceivable, in particular, to combine the two methods described above of the time-modulated change, the sputtering power and the time-modulated change of the reactive gas content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

L'invention concerne un dispositif permettant de chauffer un milieu de transport par rayonnement solaire, notamment un collecteur solaire, comportant un système à couches spectral sélectif dont les couches sont appliquées sur un substrat thermoconducteur qui est en contact thermoconducteur avec le milieu de transport à chauffer. Les couches (3, 4, 6a, 6b, 6c, 6d) du système à couches spectral sélectif contiennent des matériaux diélectriques et absorbants qui peuvent être appliqués sur le substrat par pulvérisation cathodique. Cette invention concerne en outre un procédé permettant de réaliser un système à couches spectral sélectif de ce type, sur un substrat (1) thermoconducteur, les couches (3, 4, 6a, 6b, 6c, 6d) dudit système à couches spectral sélectif étant appliquées successivement par pulvérisation cathodique sur le substrat (1) thermoconducteur.
PCT/EP1995/003764 1994-09-22 1995-09-22 Revetement spectral selectif pour collecteur et son procede de production WO1996009502A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4433863.5 1994-09-22
DE4433863A DE4433863A1 (de) 1994-09-22 1994-09-22 Spektralselektive Kollektorbeschichtung und Verfahren zu ihrer Herstellung

Publications (1)

Publication Number Publication Date
WO1996009502A1 true WO1996009502A1 (fr) 1996-03-28

Family

ID=6528917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003764 WO1996009502A1 (fr) 1994-09-22 1995-09-22 Revetement spectral selectif pour collecteur et son procede de production

Country Status (2)

Country Link
DE (1) DE4433863A1 (fr)
WO (1) WO1996009502A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818328A (zh) * 2010-04-22 2010-09-01 常州博士新能源科技有限公司 多层复合太阳能选择性吸收镀层的制备方法
CN102286720A (zh) * 2011-08-23 2011-12-21 北京天瑞星真空技术开发有限公司 一种具有SiO2和Cr2O3的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
EP2336811B1 (fr) 2009-12-21 2016-09-07 ALANOD GmbH & Co. KG Matériau composite

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742660A1 (de) * 1997-09-26 1999-06-02 Thomas Ertle Verfahren und Vorrichtung zur Nutzung von Sonnenenergie oder Wärmequellen zur Transformation von Entropie
DE19800758C2 (de) 1998-01-12 2000-08-31 Fraunhofer Ges Forschung Verfahren zum Beschichten von Folie aus Nickel oder einer Nickellegierung und beschichtete Folie aus Nickel oder einer Nickellegierung
DE19804751C2 (de) * 1998-01-12 2000-08-31 Fraunhofer Ges Forschung Verfahren zum Beschichten von Folie aus Nickel oder einer Nickellegierung und beschichtete Folie aus Nickel oder einer Nickellegierung
AT408715B (de) 1999-05-27 2002-02-25 Einsiedler Solartechnik Vakuumdusche
DE102005057833B4 (de) * 2005-01-12 2016-11-17 Frato Gmbh Aromabehältnis oder Aromafolie aus Aluminium
DE102006037872A1 (de) * 2006-08-11 2008-02-14 Viessmann Werke Gmbh & Co Kg Absorber, Vorrichtung zur Herstellung eines Absorbers und Verfahren zur Herstellung eines Absorbers
TW200925299A (en) * 2007-12-05 2009-06-16 Ind Tech Res Inst Solar selective absorber film and manufacturing method of the same
CN203274309U (zh) * 2010-11-19 2013-11-06 西门子公司 太阳能吸收涂层、涂层在衬底上的布置
DE202012103074U1 (de) * 2012-08-14 2013-11-15 Alanod Gmbh & Co. Kg Verbundmaterial
DE102013101106B4 (de) * 2013-01-24 2016-02-25 Von Ardenne Gmbh Solarabsorber-Schichtsystem und Verfahren zu dessen Herstellung
DE102013110118B4 (de) * 2013-08-20 2016-02-18 Von Ardenne Gmbh Solarabsorber und Verfahren zu dessen Herstellung
DE102015103396A1 (de) * 2015-03-09 2016-09-15 Viessmann Werke Gmbh & Co Kg Solarabsorber
DE102015103394A1 (de) * 2015-03-09 2016-09-15 Viessmann Werke Gmbh & Co Kg Solarabsorber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272986A (en) * 1963-09-27 1966-09-13 Honeywell Inc Solar heat absorbers comprising alternate layers of metal and dielectric material
FR2338475A1 (fr) * 1976-01-19 1977-08-12 Centre Nat Etd Spatiales Absorbeurs solaires a couches d'alliage nickel/chrome et de matiere dielectrique
US4125446A (en) * 1977-08-15 1978-11-14 Airco, Inc. Controlled reflectance of sputtered aluminum layers
US4282290A (en) * 1980-01-23 1981-08-04 The United States Of America As Represented By The Secretary Of The Air Force High absorption coating
US4309261A (en) * 1980-07-03 1982-01-05 University Of Sydney Method of and apparatus for reactively sputtering a graded surface coating onto a substrate
EP0043781A1 (fr) * 1980-06-06 1982-01-13 CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT Société dite: Procédé pour la fabrication d'une couche composite résistant à la fois au grippage, à l'abrasion, à la corrosion et à la fatigue par contraintes alternées, et couche composite ainsi obtenue
US4312915A (en) * 1978-01-30 1982-01-26 Massachusetts Institute Of Technology Cermet film selective black absorber
US4334523A (en) * 1980-06-23 1982-06-15 Owens-Illinois, Inc. Solar energy collector having solar selective coating of low reflectance
EP0107412A1 (fr) * 1982-10-08 1984-05-02 The University Of Sydney Revêtement superficiel absorbant sélectivement le rayonnement solaire
EP0430229A2 (fr) * 1989-11-30 1991-06-05 Applied Materials, Inc. Procédé et appareil pour former de couches stoechiométriques de métaux composés par pulvérisation réactive contrôlée par douche de tension

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176679A (en) * 1963-10-09 1965-04-06 Engelhard Ind Inc Solar energy collector
NL166322C (nl) * 1975-04-10 1981-07-15 Tno Werkwijze voor het vervaardigen van een metalen plaat met een spectraalselectieve bekleding en zonne- collector, voorzien van een aldus vervaardigde plaat.
DE2829779A1 (de) * 1978-07-06 1980-01-17 Wilhelm Dr Bruenger Selektiv absorbierende interferenzschicht zur sonnenenergiewandlung
DE3047703C2 (de) * 1980-12-18 1982-10-21 Battelle-Institut E.V., 6000 Frankfurt Absorber zur Umwandlung von Sonnenenergie in Wärme und Verfahren zu seiner Herstellung
US4814056A (en) * 1987-06-23 1989-03-21 Vac-Tec Systems, Inc. Apparatus for producing graded-composition coatings

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272986A (en) * 1963-09-27 1966-09-13 Honeywell Inc Solar heat absorbers comprising alternate layers of metal and dielectric material
FR2338475A1 (fr) * 1976-01-19 1977-08-12 Centre Nat Etd Spatiales Absorbeurs solaires a couches d'alliage nickel/chrome et de matiere dielectrique
US4125446A (en) * 1977-08-15 1978-11-14 Airco, Inc. Controlled reflectance of sputtered aluminum layers
US4312915A (en) * 1978-01-30 1982-01-26 Massachusetts Institute Of Technology Cermet film selective black absorber
US4282290A (en) * 1980-01-23 1981-08-04 The United States Of America As Represented By The Secretary Of The Air Force High absorption coating
EP0043781A1 (fr) * 1980-06-06 1982-01-13 CENTRE STEPHANOIS DE RECHERCHES MECANIQUES HYDROMECANIQUE ET FROTTEMENT Société dite: Procédé pour la fabrication d'une couche composite résistant à la fois au grippage, à l'abrasion, à la corrosion et à la fatigue par contraintes alternées, et couche composite ainsi obtenue
US4334523A (en) * 1980-06-23 1982-06-15 Owens-Illinois, Inc. Solar energy collector having solar selective coating of low reflectance
US4309261A (en) * 1980-07-03 1982-01-05 University Of Sydney Method of and apparatus for reactively sputtering a graded surface coating onto a substrate
EP0107412A1 (fr) * 1982-10-08 1984-05-02 The University Of Sydney Revêtement superficiel absorbant sélectivement le rayonnement solaire
EP0430229A2 (fr) * 1989-11-30 1991-06-05 Applied Materials, Inc. Procédé et appareil pour former de couches stoechiométriques de métaux composés par pulvérisation réactive contrôlée par douche de tension

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHÖN ET AL: "performance and stability of some new high-temperature selective absorber systems based on metal/dielectric multilayers", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 33, no. 4, AMSTERDAM NL, pages 403 - 416 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336811B1 (fr) 2009-12-21 2016-09-07 ALANOD GmbH & Co. KG Matériau composite
EP2336811B2 (fr) 2009-12-21 2024-08-07 ALANOD GmbH & Co. KG Matériau composite
CN101818328A (zh) * 2010-04-22 2010-09-01 常州博士新能源科技有限公司 多层复合太阳能选择性吸收镀层的制备方法
CN102286720A (zh) * 2011-08-23 2011-12-21 北京天瑞星真空技术开发有限公司 一种具有SiO2和Cr2O3的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法

Also Published As

Publication number Publication date
DE4433863A1 (de) 1996-03-28

Similar Documents

Publication Publication Date Title
WO1996009502A1 (fr) Revetement spectral selectif pour collecteur et son procede de production
DE102006056536B9 (de) Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
EP2093520B1 (fr) Revêtement d'absorbeur à rayonnement sélectif, tube d'absorbeur et son procédé de fabrication
EP3134756B1 (fr) Réflecteur de surface résistant à la chaleur et à la corrosion
EP2253737B1 (fr) Revêtement d'absorption à rayonnement sélectif et tuyau d'absorbeur avec un revêtement d'absorption à rayonnement sélectif
CH629543A5 (de) Verfahren zur herstellung einer selektiven solarabsorberschicht auf einem grundkoerper aus aluminium.
EP1765921A1 (fr) Structure multicouche destinee a des polymeres
WO2012123038A1 (fr) Système de couches de réflexion pour des applications solaires et procédé de fabrication
DE102010012573B4 (de) Verfahren und Vorrichtung zur Herstellung einer hochselektiv absorbierenden Beschichtung auf einem Solarabsorberbauteil
DE102004060982B3 (de) Beschichtung für einen Solarabsorber
DE102009030810B4 (de) Beschichtung für einen optischen Reflektor
DE19800758C2 (de) Verfahren zum Beschichten von Folie aus Nickel oder einer Nickellegierung und beschichtete Folie aus Nickel oder einer Nickellegierung
AT521011B1 (de) Bauelement mit einer zweilagigen, oxidischen Schutzschicht
DE2551832C2 (de) Verfahren zur Herstellung einer selektiv absorbierenden Oberfläche für Solarkollektoren und Vorrichtung zur Durchführung des Verfahrens
DE102007062876A1 (de) Selektive Solarabsorberschicht und Verfahren für das Herstellen derselben
EP0736612B2 (fr) Procédé pour le revêtement de collecteurs solaires
WO2012113464A1 (fr) Système de couches de réflexion et son procédé de fabrication
DE102005038901B4 (de) Verglasungselement
DE10006823A1 (de) Flexibles metallisches Substrat für CIS-Solarzellen und Verfahren zu seiner Herstellug
Aries et al. High performance selective surfaces from stainless steel for the photothermal conversion of solar energy
DE10355785B3 (de) Solarabsorber mit selektiver Oberfläche
DE10042194A1 (de) Wärmereflektierendes Schichtsystem für transparente Substrate und Verfahren zur Herstellung
DE19804751C2 (de) Verfahren zum Beschichten von Folie aus Nickel oder einer Nickellegierung und beschichtete Folie aus Nickel oder einer Nickellegierung
DE102016012460A1 (de) Vorrichtung und Verfahren zur Herstellung definierter Eigenschaften von Gradientenschichten in einem System mehrlagiger Beschichtungen bei Sputter - Anlagen
DE3031346C2 (de) Solarabsorberschicht und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase