WO1995029269A1 - Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en ×uvre dudit procede - Google Patents

Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en ×uvre dudit procede Download PDF

Info

Publication number
WO1995029269A1
WO1995029269A1 PCT/FR1995/000522 FR9500522W WO9529269A1 WO 1995029269 A1 WO1995029269 A1 WO 1995029269A1 FR 9500522 W FR9500522 W FR 9500522W WO 9529269 A1 WO9529269 A1 WO 9529269A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
treatment
gas
depassivation
oven
Prior art date
Application number
PCT/FR1995/000522
Other languages
English (en)
Inventor
Jean-Pierre Souchard
Original Assignee
Innovatique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9405062A external-priority patent/FR2719057B1/fr
Priority claimed from FR9411483A external-priority patent/FR2725015B1/fr
Application filed by Innovatique S.A. filed Critical Innovatique S.A.
Priority to DE0707661T priority Critical patent/DE707661T1/de
Priority to EP95918040A priority patent/EP0707661B1/fr
Priority to DE69515588T priority patent/DE69515588T2/de
Publication of WO1995029269A1 publication Critical patent/WO1995029269A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Definitions

  • the method according to the invention is carried out by bringing the parts to a treatment temperature of the order of 500 ° C. to 600 ° C. in a low pressure atmosphere produced inside an enclosure (1), with injection. on the parts of a treatment gas, consisting of a gas mixture comprising at least ammonia and a catalyst promoting the dissociation of ammonia on contact with the parts to be treated and opposing the recombination of the active nitrogen from this dissociation into molecular nitrogen.
  • a treatment gas consisting of a gas mixture comprising at least ammonia and a catalyst promoting the dissociation of ammonia on contact with the parts to be treated and opposing the recombination of the active nitrogen from this dissociation into molecular nitrogen.
  • the present invention relates to a process for the nitriding at low pressure of a metal part, for example of steel, with a view to improving its mechanical properties on the surface and, in particular, its resistance to wear.
  • nitriding in salt baths namely: nitriding in salt baths, ionic nitriding and gaseous nitriding.
  • Nitriding in a salt bath is a particularly polluting and dangerous technique due to the release of toxic gases and the rinsing water it generates. In addition, it imposes difficult working conditions on the workforce. This is the reason why this technique tends to disappear.
  • Ion nitriding involves a heat treatment installation under relative vacuum, specially equipped so as to generate a luminescent discharge on the parts to be treated in an atmosphere of nitriding gas.
  • This technique has the disadvantage of being relatively expensive and not suitable for parts of complex shape and, in particular, of tubular shape, due to the phenomena of hollow cathode.
  • Gaseous nitriding consists in bringing the parts to a treatment temperature of the order of 500 ° C to 600 C C and sweeping them with a nitriding gas such as ammonia at atmospheric pressure.
  • This treatment has the disadvantage of being relatively long and of consuming large quantities of treatment gas. For this same reason, this type of treatment is also polluting.
  • the invention more particularly aims to eliminate these drawbacks. To this end, it proposes a treatment method according to which the nitriding process is carried out by bringing the parts to a treatment temperature of the order of 500 ° C. to 600 ° C. in a low pressure atmosphere, with injection on the parts. a treatment gas.
  • this process is characterized in that the treatment gas is a gaseous mixture comprising at least ammonia as well as a catalyst promoting the dissociation of ammonia in contact with the parts to be treated and opposing the recombination of active nitrogen from this dissociation into molecular nitrogen.
  • the treatment gas is a gaseous mixture comprising at least ammonia as well as a catalyst promoting the dissociation of ammonia in contact with the parts to be treated and opposing the recombination of active nitrogen from this dissociation into molecular nitrogen.
  • the abovementioned catalyst may consist of nitrous oxide (N20), of carbon monoxide (C0), or even of their hydrocarbon such as methane or propane.
  • the nitriding power of the mixture and, consequently, the over-nature type of the combination nitrided layer obtained as well as the quality of the diffusion layer can be controlled by diluting the gaseous mixture in a quantity of variable molecular nitrogen. depending on the desired result (elimination of iron carbonitrides in a network which weaken the part). This dilution makes it possible in particular to avoid or limit the formation of a combination layer called the white layer.
  • the nitrogen diffusion process in the surface layer of the metal constituting the parts to be treated can be further improved by preceding the actual treatment phase with a prior depassivation phase.
  • This depassivation phase can be obtained by injecting a depassivation gas composed for example of ammonia and / or hydrogen, the temperature of the parts then being above a threshold temperature of the order of 400 ° C.
  • treatment of depassivation may begin during the climb phase temperature of the parts and may continue for the parts holding phase at treatment temperature (between 500 ⁇ C and 600 ° C).
  • this depassivation can be carried out by generating on the parts a luminescent discharge in an atmosphere of hydrogen and argon at low pressure.
  • the oven allowing the implementation of the process described above preferably consists of an oven of the type used for low pressure carburizing which comprises an enclosure, for example with double walls, constantly cooled, a refractory muffle, housed at the interior of the enclosure, which delimits a laboratory inside which the parts to be treated can be placed, radiant heating means arranged inside the laboratory and treatment gas injectors passing through the enclosure and the muffle to lead inside the laboratory.
  • radiant heating means arranged inside the laboratory and treatment gas injectors passing through the enclosure and the muffle to lead inside the laboratory.
  • means are also provided for generating in the enclosure a relative vacuum and means for adjusting the flow rate of the treatment gas.
  • this type of oven makes it possible to obtain surprising results mainly due to the fact that it makes it possible to generate inside the laboratory a continuous and homogeneous flow of treatment gas which arrives on the parts to be treated at a relatively low temperature, below the dissociation temperature. This is due to the fact that between the cooled wall of the enclosure and the muffle, the temperature remains at a relatively low level and that the intense heat exchanges which take place essentially by radiation affect only the interior volume of the laboratory, that is to say areas relatively close to the parts to be treated.
  • the treatment gases reach the treatment temperature only in contact with the parts to be treated. Therefore, a significant part of the active nitrogen released during this dissociation acts on the parts to be treated even before the phenomenon of recombination of active nitrogen into molecular nitrogen can occur.
  • the gases resulting from this dissociation are then sucked up by the means used to generate the relative vacuum inside the oven.
  • Figure 1 is a schematic representation of the installation
  • FIG. 2 is a time diagram illustrating a nitriding treatment cycle that can be carried out using the installation shown in FIG. 1.
  • the oven used is of the “cold wall” type, that is to say that it comprises a sealed enclosure 1 with double walls 2, 3 between which a cooling fluid circulates such as water. Thanks to this feature, the furnace has a low thermal inertia and therefore significantly faster cooling rates than those obtained in an oven with hot walls. This point is essential when it comes to treating steel grades susceptible to corrosion by intergranular precipitation.
  • a muffle 4 made of refractory material which delimits a volume V constituting the laboratory, inside which the parts 5 are placed on a support 6 carried by the bottom of the enclosure 1.
  • the pieces can be arranged in. loose on several mesh elements arranged one above the other.
  • the parts 5 are heated inside the laboratory by heating resistors 7 connected to an external supply circuit.
  • the oven is also equipped with a gas circulation turbine which can be used in particular to accelerate the cooling of the interior volume of the enclosure 1. This cooling is usually obtained by introducing an inert gas (nitrogen or hydrogenated nitrogen) at a pressure lower than atmospheric pressure, convection of this gas being ensured by the turbine 8.
  • an inert gas nitrogen or hydrogenated nitrogen
  • the installation also involves pumping means 9 making it possible to establish, inside the enclosure, a vacuum limit of at least 10-2 bar in order to ensure a sufficient level of purge.
  • These pumping means 9 are controlled by a regulation system 10 designed so as to maintain the most constant pressure possible in the treatment enclosure 1 during the nitriding cycle. Measuring the pressure inside the enclosure requires two types of sensors: - "Pirani” or “Penning” gauges for low pressures, when a purge limit vacuum is desired, - a diaphragm pressure gauge for working pressure.
  • the working pressure must make it possible to ensure correct renewal of the atmosphere with good penetration of the atmosphere into complex forms (blind holes, etc.) and to limit gas consumption and therefore releases as much as possible.
  • the pressure has been fixed in a range of 200 to 400 mbar with a constant renewal rate:
  • the oven can also be equipped with means of treatment by ion bombardment, for example involving a high voltage electric generator connected to the wall of the enclosure and to the support structure of the parts to be treated.
  • these processing means can be used to carry out a pickling assisted by plasma.
  • the treatment gas injection pipe 11 successively crosses the double wall 2, 3 of the furnace, the intermediate space between the wall 3 and the muffle 4 before emerging in the laboratory near the parts to be treated 5 and, preferably, at a distance from the electrical resistances 7. Therefore, before entering the laboratory, the gas does not undergo a noticeable heating.
  • the invention is not limited to such an arrangement:
  • the injection could be carried out at another location, inside the laboratory, possibly inside the parts to be treated (case of tubulars).
  • the injection pipe may pass into the support structure 6, the suction then being carried out at another location in the furnace, preferably at a location allowing an axial flow of treatment gas to be obtained.
  • the injection pipe or the suction pipe may be extended by an injection nozzle or a suction nozzle of suitable shape, for example for carrying out the injection or the suction inside of a tubular.
  • the nitriding gas mixture used may consist of a mixture consisting of ammonia (NH3), nitrous oxide (N2O) and nitrogen (N2) -
  • NH3 ammonia
  • N2O nitrous oxide
  • N2O nitrogen
  • H2O hydrogen
  • Ar argon
  • the basic mixture consists of 95% to 97% NH3 and 5 to 3% N2O, depending on the grades of steel treated.
  • the atmosphere can be diluted with nitrogen.
  • the proportions of ammonia and nitrous oxide expressed above are then applied to the proportion of complement gas to 100%.
  • the treatment temperature can vary between 500 and 600 ° C depending on the nuances treated and the specifications.
  • FIG. 2 shows the different successive phases of a nitriding treatment at low pressure, in accordance with the method according to the invention.
  • a high vacuum is applied to the oven at a pressure of the order of 10-2 mbar, in order to obtain purging of the oven.
  • the actual depassivation phase is then carried out by keeping the parts at the temperature of treatment, under this partial pressure of ammonia for a T2 period.
  • the injection of ammonia is eliminated and the depassivation phase is carried out under a conventional depassivation atmosphere, for example of hydrogen and argon.
  • the nitriding phase itself is started by injecting the treatment gas onto the parts to be treated. During this nitriding phase which continues during the period T3, the temperature and pressure conditions are maintained.
  • the nitriding cycle ends with a rapid cooling phase, thanks to an injection of inert cooling gas (nitrogen or hydrogenated nitrogen), the circulation of this gas being ensured by the turbine (period T4).
  • inert cooling gas nitrogen or hydrogenated nitrogen
  • An important advantage of the method described above is that, thanks to the fact that the treatment is carried out at low pressure, it is possible to obtain rapid regulation of the nitriding potential: It suffices, in fact, to purge the oven and inject a different mixture (more or less rich in nitrogen) to vary this potential in a few minutes, which is not possible with conventional methods.
  • the gaseous releases caused by nitriding at low pressure are very low and are easily treatable compared to the releases generated by the salt baths and the rinsing waters necessary for nitriding treatments in salt baths.
  • the working conditions as well as the safety of the workplace are better.
  • the method according to the invention uses less expensive means. It makes it possible to carry out, in particular on tubulars, treatments which cannot be carried out by ionic route because of the phenomena of hollow cathode. It also allows bulk treatments (impossible in ionic), thereby reducing the cost of preparing the charge.
  • the process according to the invention makes it possible to improve the treatment of very long tubulars by injecting the gaseous mixture directly into the tubulars.
  • a first nitriding phase at 540 ⁇ C for one hour, under a treatment atmosphere comprising 50% N2 - 46.5% NH3 - 3.5% N2 ⁇ ,
  • nitriding phase at 540 ° C for 2.5 hours under a treatment atmosphere comprising 35% N2 - 60.5% NH3 - 4.5% N2 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Le procédé selon l'invention est réalisé en portant les pièces à une température de traitement de l'ordre de 500 DEG C à 600 DEG C dans une atmosphère à basse pression réalisée à l'intérieur d'une enceinte (1), avec injection sur les pièces d'un gaz de traitement, consistant en un mélange gazeux comprenant au moins de l'ammoniac ainsi qu'un catalyseur favorisant la dissociation de l'ammoniac au contact des pièces à traiter et s'opposant à la recombinaison de l'azote actif provenant de cette dissociation en azote moléculaire. L'invention permet de traiter des pièces en vrac ainsi que des pièces de formes complexes telles que des tubulaires.

Description

(57) Abrégé
Le procédé selon l'invention est réalisé en portant les pièces à une température de traitement de l'ordre de 500 °C à 600 °C dans une atmosphère à basse pression réalisée à l'intérieur d'une enceinte (1), avec injection sur les pièces d'un gaz de traitement, consistant en un mélange gazeux comprenant au moins de l'ammoniac ainsi qu'un catalyseur favorisant la dissociation de l'ammoniac au contact des pièces à traiter et s'opposant à la recombinaison de l'azote actif provenant de cette dissociation en azote moléculaire. L'invention permet de traiter des pièces en vrac ainsi que des pièces de formes complexes telles que des tubulaires.
UNIQUEMENT A TITRE D'INFORMATION
Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.
AT Autriche GB Royaume-Uni MR Mauritanie
AU Australie GE Géorgie MW Malawi
BB Barbade GN Guinée NE Niger
BE Belgique GR Grèce NL Pays-Bas
BF Burkina Faso HU Hongrie NO Norvège
BG Bulgarie IE Irlande NZ Nouvelle-Zélande
BJ Bénin IT Italie PL Pologne
BR Brésil JP Japon PT Portugal
BY Bélarus KE Kenya RO Roumanie
CA Canada KG Kirghizistan RU Fédération de Russie
CF République centrafricaine KP République populaire démocratique SD Soudan
CG Congo de Corée SE Suède
CH Suisse KR République de Corée I Slovénie
CI Côte d'Ivoire KZ Kazakhstan SK Slovaquie
CM Cameroun LI Liechtenstein SN Sénégal
CN Chine LK Sri Lanka TD Tchad es Tchécoslovaquie LU Luxembourg TG Togo
CZ République tchèque LV Lettonie TJ Tadjikistan
DE Allemagne MC Monaco TT Trinité-et-Tobago
DK Danemark MD République de Moldova UA Ukraine
ES Espagne MG Madagascar US Etats-Unis d'Amérique
FI Finlande ML Mali UZ Ouzbékistan
FR France MN Mongolie VN Viet Nam
GA Gabon
- 1 - PROCEDE POUR LA NITRURATION A BASSE PRESSION D'UNE PIECE METALLIQUE ET FOUR POUR LA MISE EN OEUVRE DUDIT PROCEDE.
La présente invention concerne un procédé pour la nitruration à basse pression d'une pièce métallique, par exemple en acier, en vue d'améliorer ses propriétés mécaniques en surface et, en particulier, sa résistance à 1'usure.
D'une façon générale, on sait qu'il existe à l'heure actuelle au moins trois types de traitement permettant d'effectuer cette nitruration, à savoir : la nitruration en bains de sels, la nitruration ionique et la nitruration gazeuse.
La nitruration par bain de sel est une technique particulièrement polluante et dangereuse en raison des rejets de gaz toxiques et des eaux de rinçage qu'elle engendre. En outre, elle impose a la main-d'oeuvre des conditions de travail difficiles. C'est la raison pour laquelle cette technique tend à disparaître.
La nitruration ionique fait intervenir une installation de traitement thermique sous vide relatif, spécialement équipée de manière à engendrer sur les pièces à traiter une décharge luminescente dans une atmosphère de gaz nitrurant. Cette technique présente l'inconvénient d'être relativement coûteuse et de ne pas convenir pour des pièces de forme complexe et, en particulier, de forme tubulaire, et ce, en raison des phénomènes de cathode creuse.
La nitruration gazeuse consiste à porter les pièces à une température de traitement de l'ordre de 500°C à 600CC et de les balayer avec un gaz de nitruration tel que de l'ammoniac à la pression atmosphérique. Ce traitement présente l'inconvénient d'être relativement long et de consommer de grandes quantités de gaz de traitement. Pour cette même raison, ce type de traitement est également polluant.
Pour tenter de réduire les quantités de gaz de traitement mises en jeu, on a également proposé d'effectuer le traitement à basse pression, à l'intérieur d'un four de traitement thermique sous vide. Toutefois, dans ce cas, on se heurte au fait qu'à la température de traitement, 1'ammoniac subit une dissociation puis une recombinaison des atomes d'azote actifs en azote moléculaire.
Il est clair que ce processus de recombinaison va à 1'encontre du but recherché, puisque seule une faible fraction du gaz injecté composée d'azote actif qui a échappé à la recombinaison pourra interagir avec le métal de la pièce à traiter pour obtenir le phénomène de nitruration.
L'usage de moyens permettant d'éviter que le gaz de traitement n'atteigne la température de traitement avant d'être à proximité immédiate de la pièce n'est possible que dans un nombre très limité de cas et ne convient pas bien notamment dans le cas de pièces tubulaires.
L'invention a plus particulièrement pour but de supprimer ces inconvénients. Elle propose à cet effet un procédé de traitement selon lequel le processus de nitruration est réalisé en portant les pièces à une température de traitement de l'ordre de 500°C à 600°C dans une atmosphère à basse pression, avec injection sur les pièces d'un gaz de traitement.
Selon l'invention, ce procédé est caractérisé en ce que le gaz de traitement est un mélange gazeux comprenant au moins de l'ammoniac ainsi qu'un catalyseur favorisant la dissociation de l'ammoniac au contact des pièces à traiter et s'opposant à la recombinaison de l'azote actif provenant de cette dissociation en azote moléculaire.
Avantageusement, le susdit catalyseur pourra consister en du protoxyde d'azote (N20), en de l'oxyde de carbone (C0), voire même en leur hydrocarbure tel que du méthane ou du propane.
Par ailleurs, le pouvoir nitrurant du mélange et, en conséquence, le type outre nature de la couche nitrurée de combinaison obtenue ainsi que la qualité de la couche de diffusion pourront être contrôlés en diluant le mélange gazeux dans une quantité d'azote moléculaire variable en fonction du résultat recherché (élimination des carbonitrures de fer en réseau qui fragilisent la pièce). Cette dilution permet notamment d'éviter ou de limiter la formation d'une couche de combinaison dite couche blanche.
Le processus de diffusion de l'azote dans la couche superficielle du métal constituant les pièces à traiter pourra être en outre amélioré en faisant précéder la phase de traitement proprement dite par une phase de dépassivation préalable. Cette phase de dépassivation peut être obtenue en effectuant une injection d'un gaz de dépassivation composé par exemple d'ammoniac et/ou de l'hydrogène, la température des pièces étant alors supérieure à une température de seuil de l'ordre de 400°C. En réalité, le traitement de dépassivation pourra débuter pendant la phase de montée en température des pièces et pourra se poursuivre pendant la phase de maintien des pièces à la température de traitement (entre 500βC et 600°C). Bien entendu, dans le cas où le four est équipé de moyens permettant d'effectuer un traitement par bombardement ionique, cette dépassivation pourra être effectuée en engendrant sur les pièces une décharge luminescente dans une atmosphère d'hydrogène et d'argon à basse pression.
Le four permettant la mise en oeuvre du procédé précédemment décrit consiste, de préférence, en un four du type de ceux utilisés pour la cémentation à basse pression qui comprend une enceinte, par exemple à double parois, constamment refroidie, un moufle réfractaire, logé à l'intérieur de l'enceinte, qui délimite un laboratoire à l'intérieur duquel les pièces à traiter peuvent être placées, des moyens de chauffage par rayonnement disposés à l'intérieur du laboratoire et des injecteurs de gaz de traitement traversant l'enceinte et le moufle pour déboucher à l'intérieur du laboratoire. Bien entendu, des moyens sont également prévus pour engendrer dans l'enceinte un vide relatif et des moyens de réglage du débit du gaz de traitement.
Il s'avère que contrairement aux préjugés défavorables résultant du coût élevé et des risques de corrosion de l'installation, ce type de four permet d'obtenir des résultats surprenants principalement dus au fait qu'il permet d'engendrer à l'intérieur du laboratoire un flux continu et homogène de gaz de traitement qui arrive sur les pièces à traiter à une température relativement basse, en dessous de la température de dissociation. Ceci est dû au fait qu'entre la paroi refroidie de l'enceinte et le moufle, la température demeure à un niveau relativement bas et que les échanges thermiques intenses qui s'effectuent essentiellement par rayonnement n'affectent que le volume intérieur du laboratoire, c'est-à-dire des zones relativement proches des pièces à traiter.
En conséquence, les gaz de traitement n'atteignent la température de traitement qu'au contact des pièces à traiter. De ce fait, une partie importante de l'azote actif libéré lors de cette dissociation agit sur les pièces à traiter avant même que le phénomène de recombinaison de l'azote actif en azote moléculaire puisse se produire. Les gaz résultant de cette dissociation sont ensuite aspirés par les moyens utilisés pour engendrer le vide relatif à l'intérieur du four.
Les effets de ce processus se combinent avec les effets du gaz catalyseur utilisé pour obtenir les résultats précédemment évoc s qui concernent aussi bien la qualité des résultats
Figure imgf000007_0001
nus, les possibilités d'action sur les différents paramètres de traitement pour obtenir exactement les nuances souhaitées et les quantités de gaz de traitement mis en oeuvre (celles-ci peuvent être très réduites du fait du gain en rendement obtenu et de la faible pression).
Une installation pour la mise en oeuvre du procédé selon l'invention sera décrite ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :
La figure 1 est une représentation schématique de l'installation ;
La figure 2 est un diagramme temporel illustrant un cycle de traitement de nitruration réalisable à l'aide de l'installation représentée figure 1. Dans l'exemple représenté sur la figure 1, le four utilisé est de type à "parois froides", c'est-à-dire qu'il comprend une enceinte étanche 1 à double parois 2, 3 entre lesquelles circule un fluide de refroidissement tel que de l'eau. Grâce à cette particularité, le four présente une faible inertie thermique et donc des vitesses de refroidissement sensiblement supérieures à celles obtenues dans un four à parois chaudes. Ce point est primordial lorsqu'il s'agit de traiter des nuances d'acier sensibles à la corrosion par précipitation intergranulaire. A l'intérieur de l'enceinte 1 est disposé un moufle 4 en matériau réfractaire qui délimite un volume V constituant le laboratoire, à l'intérieur duquel les pièces 5 sont placées sur un support 6 porté par le fond de l'enceinte 1. Les pièces pourront être disposées en . vrac sur plusieurs éléments grillagés disposés les uns au-dessus des autres. Le chauffage des pièces 5 à l'intérieur du laboratoire est assuré par des résistances chauffantes 7 connectées à un circuit d'alimentation extérieur. Le four est par ailleurs équipé d'une turbine de circulation des gaz utilisable notamment pour accélérer le refroidissement du volume intérieur de 1'enceinte 1. Ce refroidissement est habituellement obtenu par introduction d'un gaz inerte (azote ou azote hydrogéné) à une pression inférieure à la pression atmosphérique, la convection de ce gaz étant assurée par la turbine 8.
L'installation fait en outre intervenir des moyens de pompage 9 permettant d'établir, à l'intérieur de l'enceinte, un vide limite d'au moins 10-2 bar afin d'assurer un niveau de purge suffisant. Ces moyens de pompage 9 sont commandés par un système de régulation 10 conçu de manière à maintenir une pression la plus constante possible dans l'enceinte de traitement 1 lors du cycle de nitruration. La mesure de la pression à 1'intérieur de l'enceinte nécessite deux types de capteurs : - des jauges "Pirani" ou "Penning" pour les faibles pressions, lorsqu'on veut obtenir un vide limite de purge, - un manomètre à membrane pour la pression de travail.
'admission des gaz de traitement à l'intérieur du four est assurée par un circuit d'injection de gaz 11 alimenté à partir de sources de gaz Si, S2, S3 par l'intermédiaire d'un mélangeur-régulateur de débit 12.
La pression de travail doit permettre d'assurer un renouvellement correct de l'atmosphère avec une bonne pénétration de l'atmosphère dans les formes complexes (trous borgnes...) et de limiter au maximum les consommations de gaz et donc les rejets. Dans cet esprit, la pression a été fixée dans une fourchette de 200 à 400 mbar avec un taux de renouvellement constant :
- la pression de 200 mbar correspondant à un minimum de consommation, et
- la pression de 400 mbar correspondant à un maximum de pénétration dans les alésages, les cavités ou les formes complexes.
Le four peut être en outre équipé de moyens de traitement par bombardement ionique faisant par exemple intervenir un générateur électrique à haute tension connecté à la paroi de l'enceinte et à la structure de support des pièces à traiter. Dans le cadre du procédé selon 1'invention, ces moyens de traitement peuvent être utilisés pour effectuer un décapage assisté par plasma.
Une particularité importante du four précédemment décrit réside dans le fait que :
a) Le conduit d'injection de gaz de traitement 11 traverse successivement la double paroi 2, 3 du four, l'espace intercalaire entre la paroi 3 et le moufle 4 avant de déboucher dans le laboratoire à proximité des pièces à traiter 5 et, de préférence, à distance des résistances électriques 7. De ce fait, avant de pénétrer dans le laboratoire, le gaz ne subit pas d'échauffement notoire.
b) Le conduit d'aspiration 13 passe par la structure de support 6 des pièces à traiter 5 et débouche donc au niveau des pièces à traiter. De ce fait, le gaz de traitement se trouve aspiré vers les pièces. Il effectue donc un trajet axial de durée minimum avant de venir au contact desdites pièces. En conséquence, ce n'est qu'au contact des pièces qu'il se dissocie pour libérer de l'azote actif. Par contre, cet azote actif n'a pas le temps de subir une recombinaison en azote moléculaire.
Toutefois, l'invention ne se limite pas à une telle disposition : En effet, l'injection pourrait être réalisée en un autre emplacement, à l'intérieur du laboratoire, éventuellement à l'intérieur des pièces à traiter (cas des tubulaires). Dans ce cas, le conduit d'injection pourra passer dans la structure de support 6, l'aspiration s'effectuant alors en un autre emplacement du four, de préférence en un emplacement permettant d'obtenir un flux axial de gaz de traitement. A cet effet, le conduit d'injection ou le conduit d'aspiration pourront être prolongés par une buse d'injection ou une buse d'aspiration de forme appropriée par exemple pour réaliser l'injection ou l'aspiration à l'intérieur d'un tubulaire.
Le mélange gazeux nitrurant utilisé pourra consister en un mélange constitué d'ammoniac (NH3), de protoxyde d'azote (N2O) et d'azote (N2)- Dans le cas d'une dépassivation assistée par plasma, on peut également utiliser de l'hydrogène (H2) et de l'argon (Ar). Lors de la phase de nitruration, le mélange de base est constitué de 95 % à 97 % de NH3 et de 5 à 3 % de N2O, selon les nuances d'acier traitées.
Pour éviter ou limiter la formation d'une couche de combinaison dite "couche blanche", on peut diluer l'atmosphère avec de l'azote. Les proportions d'ammoniac et de protoxyde d'azote exprimées ci-dessus sont alors appliquées à la proportion de gaz de complément à 100 %.
La température de traitement peut varier entre 500 et 600°C selon les nuances traitées et le cahier des charges.
La figure 2 montre les différentes phases successives d'un traitement de nitruration à basse pression, conformément au procédé selon l'invention.
Une fois les pièces disposées sur la structure de support et le four refermé de façon étanche, on procède à une mise sous vide poussé du four à une pression de l'ordre de 10-2 mbar, afin d'obtenir un purgeage du four.
On procède ensuite au chauffage des pièces à la pression de 10~2 mbar (phase de montée en température) pendant une période Ti.
Lorsque les pièces atteignent une température de l'ordre de 400°C et dans le cas où l'on souhaite effectuer une dépassivation sans bombardement ionique, on procède à une injection d'ammoniac seul (point I) puis on poursuit le chauffage jusqu'à l'obtention de la température de traitement T SOUS une pression partielle d'ammoniac de l'ordre de 200 à 400 mbar.
On réalise ensuite la phase de dépassivation proprement dite en maintenant les pièces à la température de traitement, sous cette pression partielle d'ammoniac pendant une période T2.
Dans le cas où l'on effectue une dépassivation ionique, l'injection d'ammoniac est supprimée et la phase de dépassivation s'effectue sous une atmosphère de dépassivation classique, par exemple d'hydrogène et d'argon.
Une fois la phase de dépassivation achevée, on entame la phase de nitruration proprement dite en injectant le gaz de traitement sur les pièces à traiter. Pendant cette phase de nitruration qui se poursuit pendant la période T3, les conditions de température et de pression sont maintenues.
Le cycle de nitruration se termine par une phase de refroidissement rapide, grâce à une injection de gaz de refroidissement inerte (azote ou azote hydrogéné), la circulation de ce gaz étant assurée par la turbine (période T4).
Un avantage important du procédé précédemment décrit consiste en ce que, grâce au fait que le traitement est effectué à basse pression, il est possible d'obtenir une régulation rapide du potentiel nitrurant : Il suffit, en effet, de réaliser une purge du four et d'injecter un mélange différent (plus ou moins riche en azote) pour faire varier ce potentiel en quelques minutes, ce qui n'est pas possible avec les procédés classiques.
Par ailleurs, les rejets gazeux occasionnés par la nitruration à basse pression sont très faibles et sont facilement traitables comparés aux rejets engendrés par les bains de sels et les eaux de rinçage nécessaires aux traitements de nitruration en bains de sels. De plus, les conditions de travail ainsi que la sécurité du poste de travail sont de meilleure qualité. Vis-à-vis de la nitruration ionique, le procédé selon l'invention met en oeuvre des moyens moins onéreux. Il permet d'effectuer, notamment sur des tubulaires, des traitements non réalisables par voie ionique en raison des phénomènes de cathode creuse. Il permet en outre la réalisation de traitements en vrac (impossible en ionique) en diminuant ainsi le coût de préparation de la charge.
Par rapport à la nitruration gazeuse, le procédé selon 1'invention permet d'améliorer le traitement de tubulaires de forte longueur par l'injection du mélange gazeux directement dans les tubulaires.
En outre, il engendre une consommation de gaz et donc des rejets gazeux moins importants (3 à 5 fois moindre).
Des essais de traitement conformément au procédé selon 1'invention seront décrits ci-après :
Essai I
Dans cet essai, il s'agissait de réaliser sur des galets de 6 et de 9,5 mm de diamètre, en acier de nuance Z85 WDCV 6 5 4 2 un traitement de nitruration en vrac. Le cycle de traitement a plus précisément compris :
- une phase de dépassivation sous NH3 à 540 "C pendant une durée de 30 mn,
- une première phase de nitruration à 540βC pendant une heure, sous une atmosphère de traitement comprenant 50 % N2 - 46,5 % NH3 - 3,5 % N2θ,
- une deuxième phase de nitruration à 540°C pendant une heure et demi, sous une atmosphère de traitement comprenant 80 % N2 - 18,6 % NH3 - 1,4 % N20. Ce traitement a permis d'obtenir les résultats suivants :
- absence de couche de combinaison,
- absence de carbonitrures en réseau,
- profondeur conventionnelle de nitruration : 50 à 80 μm (HV0.1 coeur + 100),
- dureté superficielle ≥ 950 HV5.
Essai II
Au cours de cet essai, des pignons automobiles en acier de nuance 40 CD 4 ont subi le cycle de traitement suivant :
- une phase de dépassivation sous NH3 à 570°C pendant 30 mn,
- une phase de nitruration à 540°C pendant 2 heures et quart sous une atmosphère de traitement comprenant 35 % N2 - 60,5 % NH3 - 4,5 % N2θ.
Ce traitement a permis d'obtenir les résultats suivants :
- 10 à 20 μm de couche de combinaison,
- 0,15 à 0,2 mm de couche de diffusion (HV0.1 coeur + 100),
- dureté superficielle supérieure à 650 HVl.

Claims

Revendications
1. Procédé pour la nitruration à basse pression d'une pièce métallique selon lequel le processus de nitruration est réalisé en portant les pièces à une température de traitement de l'ordre de 500°C à 600°C dans une atmosphère à basse pression, avec injection sur les pièces d'un gaz de traitement, caractérisé en ce que le gaz de traitement est un mélange gazeux comprenant au moins de l'ammoniac ainsi qu'un catalyseur favorisant la dissociation de l'ammoniac au contact des pièces à traiter et s'opposant à la recombinaison de l'azote actif provenant de cette dissociation en azote moléculaire.
2. Procédé selon la revendication 1, caractérisé en ce que le susdit catalyseur consiste en du protoxyde d'azote (N20), en de l'oxyde de carbone (CO), ou même en leur hydrocarbure tel que du méthane ou du propane.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce qu'il comprend la dilution du mélange gazeux de traitement dans une quantité d'azote moléculaire variable pour contrôler le pouvoir nitrurant du mélange et les nuances de la couche nitrurée.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une phase de dépassivation préalable.
5. Procédé selon la revendication 4, caractérisé en ce que la phase de dépassivation comprend l'injection d'un gaz de dépassivation à une température supérieure à une température de seuil d'environ 400°C.
6. Procédé selon la revendication 5, caractérisé en ce que le gaz de dépassivation est de 1'ammoniac et/ou de l'hydrogène.
7. Procédé selon l'une des revendications 5 et
6, caractérisé en ce que la phase de dépassivation débute pendant la phase de montée en température des pièces et se poursuit pendant la phase de maintien des pièces à la température de traitement.
8. Procédé selon la revendication 4, caractérisé en ce que la phase de dépassivation comprend une dépassivation par bombardement ionique faisant intervenir un gaz de dépassivation tel que de l'argon.
9. Four pour la mise en oeuvre du procédé selon 1'une des revendications précédentes, ce four comprenant une enceinte (1), par exemple à double parois (2, 3), constamment refroidie, un moufle réfractaire (4), logé à 1'intérieur de l'enceinte (1), qui délimite un laboratoire à l'intérieur duquel les pièces à traiter (5) peuvent être placées, des moyens de chauffage (7) par rayonnement disposés à l'intérieur du laboratoire et des injecteurs de gaz de traitement traversant l'enceinte (1) et le moufle (4) pour déboucher à l'intérieur du laboratoire, des moyens (9) permettant d'engendrer dans l'enceinte un vide relatif et des moyens (12) de réglage du débit du gaz de traitement, caractérisé en ce qu'à l'intérieur du laboratoire, les pièces (5) sont portées par une structure de support (6) à travers duquel passe un conduit d'aspiration (13) raccordé aux moyens permettant d'engendrer le vide relatif (9), ou un conduit d'injection de gaz de traitement (11).
10. Four selon la revendication 9, caractérisé en ce que les orifices du susdit conduit d'aspiration (13) et d'injection de gaz de traitement (11) sont placés de manière à obtenir un flux axial de gaz de traitement à l'intérieur du laboratoire.
11. Four selon l'une des revendications 9 et 10, caractérisé en ce que le support comprend plusieurs éléments grillagés disposés les uns au-dessus des autres, sur lesquels les pièces sont disposées en vrac.
12. Four selon l'une des revendications 9 et 10, caractérisé en ce que le susdit conduit d'injection et/ou le conduit d'aspiration sont prolongés par une buse d'injection et/ou une buse d'aspiration de forme appropriée notamment pour réaliser une injection et/ou l'aspiration à l'intérieur d'un tubulaire.
PCT/FR1995/000522 1994-04-22 1995-04-21 Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en ×uvre dudit procede WO1995029269A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE0707661T DE707661T1 (de) 1994-04-22 1995-04-21 Verfahren und ofen zum nitrieren von metallischen formteilen bei niedrigen druck
EP95918040A EP0707661B1 (fr) 1994-04-22 1995-04-21 Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede
DE69515588T DE69515588T2 (de) 1994-04-22 1995-04-21 Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en oeuvre dudit procede

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9405062A FR2719057B1 (fr) 1994-04-22 1994-04-22 Procédé pour la nitruration à bsase pression d'une pièce métallique et four pour la mise en Óoeuvre dudit procédé.
FR94/05062 1994-04-22
FR94/11483 1994-09-23
FR9411483A FR2725015B1 (fr) 1994-09-23 1994-09-23 Four utilisable pour la nitruration a basse pression d'une piece metallique

Publications (1)

Publication Number Publication Date
WO1995029269A1 true WO1995029269A1 (fr) 1995-11-02

Family

ID=26231123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000522 WO1995029269A1 (fr) 1994-04-22 1995-04-21 Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en ×uvre dudit procede

Country Status (4)

Country Link
EP (1) EP0707661B1 (fr)
DE (2) DE69515588T2 (fr)
TW (1) TW279902B (fr)
WO (1) WO1995029269A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19947381B4 (de) * 1999-10-01 2011-06-22 METAPLAS IONON Oberflächenveredelungstechnik GmbH, 51427 Vorrichtung zur Wärmebehandlung von Werkstücken, insbesondere zum Gasnitrieren, Nitrocarburieren und Oxidieren
WO2013084034A1 (fr) * 2011-12-07 2013-06-13 Solaris Holdings Limited Procédé d'amélioration des propriétés mécaniques de produits composés de métaux et d'alliages

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118494C2 (de) * 2001-04-04 2003-12-11 Aichelin Gesmbh Moedling Verfahren zur Niederdruck-Carbonitrierung von Stahlteilen
DE102009002985A1 (de) * 2009-05-11 2010-11-18 Robert Bosch Gmbh Verfahren zur Carbonitrierung
DE102014213510A1 (de) * 2014-07-11 2016-02-18 Robert Bosch Gmbh Verfahren zum Nitrieren eines Bauteils eines Kraftstoffeinspritzsystems
CN110747430B (zh) * 2019-10-25 2020-12-15 西南交通大学 一种低压气体快速渗氮方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB564841A (en) * 1943-02-13 1944-10-16 John Fallon Improvements in furnaces heated by gaseous or liquid fuels
DE1933439A1 (de) * 1968-07-01 1970-01-15 Gen Electric Nitrierverfahren
FR2264891A1 (fr) * 1974-03-19 1975-10-17 Michel Henri
FR2339251A1 (fr) * 1976-01-22 1977-08-19 Western Electric Co Procede pour le depot de revetements protecteurs sur des substrats semi-conducteurs
FR2513660A1 (fr) * 1981-09-30 1983-04-01 Kymin Oy Kymmene Ab Procede pour la nitruration de materiaux a basse pression et en utilisant une decharge luminescente
EP0089885A2 (fr) * 1982-03-23 1983-09-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de durcissement superficiel de pièces métalliques
EP0158271A2 (fr) * 1984-04-05 1985-10-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Procédé pour la nitruration d'aluminium ou ses alliages
DE3705710A1 (de) * 1986-02-24 1987-08-27 Ohara Co Verfahren zum nitrieren der oberflaeche von formteilen aus titan und vorrichtung zur nitrierbehandlung
EP0242089A1 (fr) * 1986-04-10 1987-10-21 LUCAS INDUSTRIES public limited company Procédé pour augmenter la résistance à l'usure de la surface d'un composant métallique
EP0270991A2 (fr) * 1986-12-15 1988-06-15 Shin-Etsu Handotai Company Limited Appareil pour fabriquer des couches minces
US5039357A (en) * 1990-06-15 1991-08-13 Dynamic Metal Treating, Inc. Method for nitriding and nitrocarburizing rifle barrels in a fluidized bed furnace
FR2674618A1 (fr) * 1991-03-27 1992-10-02 Etudes Const Mecaniques Procede et four de nitruration.
EP0545069A1 (fr) * 1991-12-04 1993-06-09 Leybold Durferrit GmbH Procédé de traitement d'aciers et de métaux réfractaires

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB564841A (en) * 1943-02-13 1944-10-16 John Fallon Improvements in furnaces heated by gaseous or liquid fuels
DE1933439A1 (de) * 1968-07-01 1970-01-15 Gen Electric Nitrierverfahren
FR2264891A1 (fr) * 1974-03-19 1975-10-17 Michel Henri
FR2339251A1 (fr) * 1976-01-22 1977-08-19 Western Electric Co Procede pour le depot de revetements protecteurs sur des substrats semi-conducteurs
FR2513660A1 (fr) * 1981-09-30 1983-04-01 Kymin Oy Kymmene Ab Procede pour la nitruration de materiaux a basse pression et en utilisant une decharge luminescente
EP0089885A2 (fr) * 1982-03-23 1983-09-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de durcissement superficiel de pièces métalliques
EP0158271A2 (fr) * 1984-04-05 1985-10-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Procédé pour la nitruration d'aluminium ou ses alliages
DE3705710A1 (de) * 1986-02-24 1987-08-27 Ohara Co Verfahren zum nitrieren der oberflaeche von formteilen aus titan und vorrichtung zur nitrierbehandlung
EP0242089A1 (fr) * 1986-04-10 1987-10-21 LUCAS INDUSTRIES public limited company Procédé pour augmenter la résistance à l'usure de la surface d'un composant métallique
EP0270991A2 (fr) * 1986-12-15 1988-06-15 Shin-Etsu Handotai Company Limited Appareil pour fabriquer des couches minces
US5039357A (en) * 1990-06-15 1991-08-13 Dynamic Metal Treating, Inc. Method for nitriding and nitrocarburizing rifle barrels in a fluidized bed furnace
FR2674618A1 (fr) * 1991-03-27 1992-10-02 Etudes Const Mecaniques Procede et four de nitruration.
EP0545069A1 (fr) * 1991-12-04 1993-06-09 Leybold Durferrit GmbH Procédé de traitement d'aciers et de métaux réfractaires

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19947381B4 (de) * 1999-10-01 2011-06-22 METAPLAS IONON Oberflächenveredelungstechnik GmbH, 51427 Vorrichtung zur Wärmebehandlung von Werkstücken, insbesondere zum Gasnitrieren, Nitrocarburieren und Oxidieren
WO2013084034A1 (fr) * 2011-12-07 2013-06-13 Solaris Holdings Limited Procédé d'amélioration des propriétés mécaniques de produits composés de métaux et d'alliages
CN104093875A (zh) * 2011-12-07 2014-10-08 索拉里斯控股有限公司 改进由金属和合金制成的产品的机械性能的方法
US10081858B2 (en) 2011-12-07 2018-09-25 Solaris Holdings Limited Method of improvement of mechanical properties of products made of metals and alloys

Also Published As

Publication number Publication date
DE69515588T2 (de) 2000-09-07
EP0707661A1 (fr) 1996-04-24
TW279902B (fr) 1996-07-01
EP0707661B1 (fr) 2000-03-15
DE69515588D1 (de) 2000-04-20
DE707661T1 (de) 1996-10-10

Similar Documents

Publication Publication Date Title
EP0532386B1 (fr) Procédé et dispositif de cémentation d'un acier dans une atmosphère à basse pression
EP1735116B1 (fr) Procede de production de bandes en acier inoxydable austenititique d'aspect de surface mat
EP3218530B1 (fr) Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
EP0537062B1 (fr) Procédé de traitement pour déposer une couche de carbone en phase vapeur sur la surface d'une pièce métallique
EP0096602B1 (fr) Procédé de traitement thermique de pièces métalliques par carburation
EP2459765A1 (fr) Procede de traitement de pieces pour ustensiles de cuisine
EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
EP0707661A1 (fr) Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede
CA2280405A1 (fr) Procede de galvanisation d'une bande metallique
CN112210756B (zh) 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法
KR101742685B1 (ko) 저온 진공침탄방법
EP1737989B1 (fr) Procede de trempe sous gaz
FR2821362A1 (fr) Procede de cementation basse pression
FR2719057A1 (fr) Procédé pour la nitruration à bsase pression d'une pièce métallique et four pour la mise en Óoeuvre dudit procédé.
CA2855927C (fr) Procede de refroidissement de pieces metalliques ayant subi un traitement de nitruration / nitrocarburation en bain de sel fondu, l'installation pour la mise en oeuvre du procede et les pieces metalliques traitees
KR101866752B1 (ko) 저온 진공침탄방법
FR2725015A1 (fr) Four utilisable pour la nitruration a basse pression d'une piece metallique
KR101866754B1 (ko) 저압 범위 내에서의 침탄방법
EP0067098A1 (fr) Méthode de nitruration ionique d'une pièce en acier déformée plastiquement au préalable
FR3081884A1 (fr) Procede de cementation basse pression d'une piece comprenant de l'acier
FR2999607A1 (fr) Procede de traitement d'acier comprenant un pretraitement d'affinage du grain
FR2980803A1 (fr) Procede de realisation d'une piece en acier inoxydable resistant a l'usure et a la corrosion pour reacteur nucleaire, piece et grappe de commande correspondantes.
FR3023850A1 (fr) Procede de nitruration d'une piece en acier inoxydable
FR2674618A1 (fr) Procede et four de nitruration.
FR2999609A1 (fr) Procede de renforcement de l'acier par effets thermochimiques et effet de re-austenitisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995918040

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995918040

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995918040

Country of ref document: EP