EP1737989B1 - Procede de trempe sous gaz - Google Patents

Procede de trempe sous gaz Download PDF

Info

Publication number
EP1737989B1
EP1737989B1 EP05757129.1A EP05757129A EP1737989B1 EP 1737989 B1 EP1737989 B1 EP 1737989B1 EP 05757129 A EP05757129 A EP 05757129A EP 1737989 B1 EP1737989 B1 EP 1737989B1
Authority
EP
European Patent Office
Prior art keywords
gas
quenching
enclosure
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05757129.1A
Other languages
German (de)
English (en)
Other versions
EP1737989A1 (fr
Inventor
Francis Pelissier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1737989A1 publication Critical patent/EP1737989A1/fr
Application granted granted Critical
Publication of EP1737989B1 publication Critical patent/EP1737989B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents

Definitions

  • the invention relates to a method of gas quenching of thermochemically treated steel parts by means of a flow of cooling gas obtained by introducing its liquid phase into a quench enclosure under gas.
  • Tempering treatment has been used for many years to process alloy steel or high carbon steel parts. Such treatment usually follows a thermochemical treatment of enriching the surface of the low alloy steel parts.
  • the thermochemical treatment for example a carburization or carbonitriding treatment, can be done at low pressure, of the order of a few millibars, or at atmospheric pressure.
  • the quenching operation is generally carried out directly after the thermochemical treatment in a suitable quenching cell. There are different types of quenching, the most well known being gas quenching, oil quenching or salt bath quenching.
  • a main purpose of quenching is to obtain rapid cooling of previously heated and treated parts, without altering their surface. Quenching under gas, especially under neutral gas, is often preferred over other types of quenching, because it allows to obtain an excellent surface quality of the parts. In addition, in the case of a low pressure carburization treatment preceding the quenching treatment, an absence of oxidation and intercrystalline corrosion is observed.
  • the gas quenching treatment is carried out in a quenching cell 1 conventionally comprising an enclosure 2 capable of withstanding a vacuum and a pressurization of up to 50 bar, supported by a frame 3, a treatment chamber 4, into which the charge to be treated (at a temperature of about 820 ° C. to 1000 ° C.) is introduced, a stirring element 6 of the quenching gas at inside the enclosure 2 and a heat exchanger 7.
  • the load 5 may consist of a tool comprising one or more cemented parts.
  • the stirring element 6 may consist of, for example, a propeller or a centrifugal turbine driven in rotation by an electric motor.
  • the gas circulates in a closed loop 8, that is to say that it starts its path in the upper part of the chamber 2, passes on the load 5 to be treated, is heated to contact charge 5, then loses its calories through the heat exchanger 7, when it goes up in the upper part of the enclosure 2.
  • the gas flows along this loop 8 throughout the duration of quenching treatment.
  • Such cells 1 are generally used when the quenching gas is not air but nitrogen, or a neutral gas, it is desirable to save the quantities used.
  • Some cells may also include an additional exchanger located outside the chamber 2, which operates according to the same principle as before.
  • a first solution consists in increasing the mass flow rate of the gas of tempering.
  • two solutions are used, namely the increase in the quenching gas flow rate and the increase in the quenching gas pressure.
  • quenching processes with a nitrogen pressure of the order of 20 bars and quenching processes with a helium or hydrogen pressure of the order of 50 to 60 bars have been proposed.
  • quenching in the heart of the cemented parts proves to be insufficient with conventional carburizing steels.
  • the document EP-A-1101826 discloses a gas quenching process, after low-pressure cementation, using air injected at a high pressure.
  • air is a free gas source, available everywhere without any particular and inexhaustible packaging.
  • the air used is generally depleted of oxygen to reduce the oxidation of the parts and the pressures used are of the same order as for pure nitrogen.
  • the cost of quenching steps is greatly reduced compared to conventional methods.
  • the quenching efficiency is poor and oxidation of the parts is still observed.
  • Nitrogen is an acceptable compromise in terms of cost and efficiency. Nitrogen is indeed often preferred to hydrogen or neutral gases such as helium which, although lighter, therefore easier to transport under relatively high pressure, are very expensive (helium), or too dangerous (hydrogen). As for example, hydrogen is considered the best cooling gas known to date, but it remains difficult to implement industrially (cost, storage, dangerousness).
  • EP-A-1367139 proposes the use of nitrogen or neutral gas in liquid form to improve the efficiency of the quenching process.
  • This document describes a heat treatment device comprising a useful chamber inside which a liquefied gas is introduced. The liquefied gas arrives in liquid form and is converted into vapors inside the useful chamber.
  • the document DE19743575 describes the use of a shower of fine drops of water to drown underwater the items to be cooled.
  • the invention aims to overcome the aforementioned drawbacks and is intended to achieve a gas quenching effective and low cost, with simple equipment, lightweight and safe.
  • cooling gas is water vapor, obtained by evaporation of water introduced into the chamber in liquid form.
  • the gas quenching cell 1 used for the quenching treatment according to the invention differs from the cells of the prior art by additional means associated with the implementation of quenching treatment.
  • a reservoir 9 of a first gas for example nitrogen, is connected to the chamber 2 via at least one duct 10, which introduces and projects nitrogen inside the chamber. enclosure 2 at a predetermined pressure, of the order of 2 bars.
  • a reservoir 11 of water is also connected to the enclosure 2 via at least one conduit 12, which introduces and projects the water in liquid form inside the enclosure 2 at a predetermined pressure. Water vaporizes in the enclosure 2 and the water vapor then constitutes the cooling gas.
  • the cell 1 also comprises a discharge conduit 13 located in the lower part of the chamber 2 and intended, for example by means of a valve (not shown), to remove the remaining condensates at the bottom of the enclosure 2, after the end of the quenching treatment and the cooling of the cell 1.
  • the main advantage of such a quenching cell 1 lies in its ability to adapt to all existing installations, because the means necessary for the implementation of quenching treatment, namely the reservoir 9 of the first gas, the water tank 11 and the introduction pipes 10, 12 and discharge 13 are simple, inexpensive and easy to install.
  • the gas quenching treatment according to the invention consists in introducing, via the pipe 12, the water in the liquid phase, after having installed the charge 5 in the treatment chamber 4 of the cell 1.
  • the water is introduced in liquid phase until reaching the required quenching pressure, of the order of 20 to 30 bars.
  • the water is introduced in the liquid phase, to take advantage of both its cooling capacity once evaporated and the specific heat of evaporation of the liquid at the time of contact with the hot parts.
  • a first gas inside the chamber 2 preferably nitrogen. Nitrogen gas is then introduced, simultaneously with the start of the stirring element 6, at a pressure of the order of 2 bars for a duration of the order of a few seconds.
  • the quenching treatment comprises the introduction of nitrogen gas for a few seconds in the chamber 2, followed by the introduction of water in the liquid phase.
  • the gases circulate in the chamber 2 according to the loop 8, which allows to use only the amount of nitrogen and water previously introduced during a quenching cycle and to avoid excessive consumption and too expensive.
  • the water thus turns into water vapor when it is introduced into the enclosure 2 and the pressure increases as more water is introduced.
  • the pressure drops until the complete condensation of the water vapor. Below 100 ° C., the chamber 2 then returns to its initial pressure, namely that of the nitrogen gas introduced beforehand.
  • the condensates are discharged through the conduit 13 located in the lower part of the cell 1, pushed by the residual pressure of the nitrogen introduced beforehand.
  • the quenching cycle described above thus preferably has a duration of the order of 15 to 20 minutes.
  • the nitrogen consumption is thus reduced, of the order of 70% to 80%, which results in a significant reduction in the cost of treatment.
  • the quenching process according to the invention notably provides the following advantages.
  • the parts are subjected to efficient cooling due to the specific heat of evaporation of the water.
  • the effectiveness of the quenching is optimal since it makes it possible to treat the heart of the pieces. Quenching does not cause corrosion and does not cause cracks in the grain boundary. No correction of the surface condition of the parts is necessary. Significant gains in terms of cost and simplicity are therefore observed.
  • the first gas of the reservoir 9 may be nitrogen or a neutral gas.
  • the thermochemical treatment preceding the quenching treatment under gas may be a low pressure carburizing treatment or a carburizing or carbonitriding treatment at atmospheric pressure.

Description

    Domaine technique de l'invention
  • L'invention concerne un procédé de trempe sous gaz de pièces d'acier, ayant subi un traitement thermochimique, au moyen d'un flux de gaz de refroidissement obtenu par introduction de sa phase liquide dans une enceinte de trempe sous gaz.
  • État de la technique
  • Le traitement de trempe est utilisé depuis de nombreuses années pour traiter des pièces d'acier allié ou à forte teneur en carbone. Un tel traitement fait généralement suite à un traitement thermochimique consistant à enrichir la surface des pièces en acier faiblement allié. Le traitement thermochimique, par exemple un traitement de cémentation ou de carbonitruration, peut se faire à basse pression, de l'ordre de quelques millibars, ou à pression atmosphérique. L'opération de trempe est généralement effectuée directement après le traitement thermochimique dans une cellule de trempe appropriée. Il existe différents types de trempe, les plus connues étant la trempe sous gaz, la trempe à huile ou la trempe en bain de sel.
  • Un but principal de la trempe est d'obtenir un refroidissement rapide des pièces préalablement chauffées et traitées, sans altérer leur surface. La trempe sous gaz, particulièrement sous gaz neutre, est souvent préférée aux autres types de trempe, car elle permet d'obtenir une excellente qualité de surface des pièces. De plus, dans le cas d'un traitement de cémentation à basse pression précédant le traitement de trempe, une absence d'oxydation et de corrosion intercristalline est observée.
  • Comme représenté sur la figure unique, le traitement de trempe sous gaz s'effectue dans une cellule 1 de trempe comportant classiquement, une enceinte 2, pouvant supporter une mise sous vide et une mise sous pression pouvant aller jusqu'à 50 bars, supportée par un bâti 3, une chambre de traitement 4, dans laquelle est introduite la charge à traiter 5 (d'une température de l'ordre de 820°C à 1000°C), un élément de brassage 6 du gaz de trempe à l'intérieur de l'enceinte 2 et un échangeur calorifique 7. La charge 5 peut être constituée d'un outillage comportant une ou plusieurs pièces cémentées. L'élément de brassage 6 peut être constitué, par exemple, d'une hélice ou d'une turbine centrifuge entraînée en rotation par un moteur électrique.
  • Dans une telle cellule de trempe 1, le gaz circule selon une boucle fermée 8, c'est-à-dire qu'il démarre son parcours en partie haute de l'enceinte 2, passe sur la charge 5 à traiter, se réchauffe au contact de la charge 5, puis perd ses calories à travers l'échangeur calorifique 7, quand il remonte en partie haute de l'enceinte 2. Le gaz circule selon cette boucle 8 pendant toute la durée du traitement de trempe. De telles cellules 1 sont généralement utilisées quand le gaz de trempe n'est pas de l'air mais de l'azote, ou un gaz neutre, dont il est souhaitable d'économiser les quantités utilisées. Certaines cellules peuvent comporter également un échangeur supplémentaire situé à l'extérieur de l'enceinte 2, qui fonctionne suivant le même principe que précédemment.
  • Pour obtenir la dureté souhaitée à la surface et au coeur des pièces cémentées, une première solution consiste à augmenter le débit massique du gaz de trempe. Pour augmenter le débit massique, deux solutions sont utilisées, à savoir l'augmentation de la vitesse de circulation du gaz de trempe et l'augmentation de la pression de gaz de trempe.
  • Ainsi, des procédés de trempe avec une pression d'azote de l'ordre de 20 bars et des procédés de trempe avec une pression d'hélium ou d'hydrogène de l'ordre de 50 à 60 bars ont été proposés. Cependant, la trempe au coeur des pièces cémentées s'avère être insuffisante avec les aciers classiques de cémentation.
  • Il est également souhaitable de réduire le coût du traitement de trempe qui, en raison de l'atmosphère gazeuse à maintenir et du débit massique requis, n'est pas négligeable dans le coût global du traitement des pièces.
  • À cet effet, le document EP-A-1101826 décrit un procédé de trempe sous gaz, après cémentation à basse pression, utilisant de l'air injecté à une pression élevée. Un avantage de l'utilisation de l'air est qu'il s'agit d'une source de gaz gratuite, disponible partout sans conditionnement particulier et inépuisable. L'air utilisé est généralement appauvri en oxygène pour diminuer l'oxydation des pièces et les pressions utilisées sont du même ordre que pour de l'azote pur. Ainsi, le coût des étapes de trempe est considérablement réduit par rapport aux procédés classiques. Cependant, l'efficacité de la trempe est médiocre et une oxydation des pièces est encore observée.
  • Parmi tous les gaz de trempe généralement utilisés, l'azote constitue un compromis acceptable en termes de coût et de rendement. L'azote est en effet souvent préféré à l'hydrogène ou à des gaz neutres tel que l'hélium qui, bien que plus légers, donc plus faciles à véhiculer sous une pression relativement élevée, sont très coûteux (hélium), ou trop dangereux (hydrogène). À titre d'exemple, l'hydrogène est considéré comme le meilleur gaz de refroidissement connu à ce jour, mais il reste difficile à mettre en oeuvre industriellement (coût, stockage, dangerosité).
  • Cependant, les inconvénients du recours à l'azote comme gaz de refroidissement sont, d'une part le coût, et, d'autre part, la nécessité d'acheminement et de stockage de volumes importants de gaz par des équipements lourds, compliqués, onéreux et consommateurs d'énergie.
  • Par ailleurs, quel que soit le gaz de refroidissement employé, le procédé de trempe s'avère le plus souvent inefficace.
  • Le document EP-A-1367139 propose l'utilisation d'azote ou de gaz neutre sous forme liquide pour améliorer l'efficacité du procédé de trempe. Ce document décrit un dispositif de traitement thermique comportant une chambre utile à l'intérieur de laquelle est introduit un gaz liquéfié. Le gaz liquéfié arrive sous forme liquide et est transformé en vapeurs à l'intérieur de la chambre utile.
  • Cependant, l'efficacité d'un tel procédé de trempe, avec l'introduction d'azote ou de gaz neutre liquéfié, reste insuffisante. Le stockage et l'acheminement des gaz de refroidissement sous forme liquide restent également problématiques.
  • Le document DE19743575 décrit l'utilisation d'une douche de fines gouttes d'eau pour noyer sous l'eau les articles à refroidir.
  • Objet de l'Invention
  • L'invention a pour but de remédier aux inconvénients précités et a pour objet la réalisation d'une trempe sous gaz efficace et à faible coût, avec des équipements simples, légers et sans risque.
  • Selon l'invention, ce but est atteint par les revendications annexées et, plus particulièrement, par le fait que le gaz de refroidissement est de la vapeur d'eau, obtenue par évaporation d'eau introduite dans l'enceinte sous forme liquide.
  • Description sommaire des dessins
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre d'un mode particulier de réalisation de l'invention donné à titre d'exemple non limitatif et représenté au dessin annexé, dans lequel :
    • La figure unique représente schématiquement une cellule de trempe sous gaz permettant la mise en oeuvre d'un procédé de trempe sous gaz selon l'invention.
    Description de modes particuliers de réalisation
  • Sur la figure unique, la cellule 1 de trempe sous gaz utilisée pour le traitement de trempe selon l'invention se différencie des cellules de l'art antérieur par des moyens supplémentaires associés à la mise en oeuvre du traitement de trempe. Ainsi, un réservoir 9 d'un premier gaz, par exemple de l'azote, est relié à l'enceinte 2 par l'intermédiaire d'au moins un conduit 10, qui introduit et projette l'azote à l'intérieur de l'enceinte 2 à une pression prédéterminée, de l'ordre de 2 bars.
  • Un réservoir 11 d'eau est également relié à l'enceinte 2 par l'intermédiaire d'au moins un conduit 12, qui introduit et projette l'eau sous forme liquide à l'intérieur de l'enceinte 2 à une pression prédéterminée. L'eau se vaporise dans l'enceinte 2 et la vapeur d'eau constitue alors le gaz de refroidissement. La cellule 1 comporte aussi un conduit 13 d'évacuation, situé en partie basse de l'enceinte 2 et destiné, par exemple par l'intermédiaire d'une vanne (non représentée), à éliminer les condensats restants au fond de l'enceinte 2, après la fin du traitement de trempe et le refroidissement de la cellule 1.
  • L'avantage principal d'une telle cellule de trempe 1 réside dans sa capacité à s'adapter à toutes les installations existantes, car les moyens nécessaires à la mise en oeuvre du traitement de trempe, à savoir le réservoir 9 de premier gaz, le réservoir 11 d'eau et les conduits d'introduction 10, 12 et d'évacuation 13, sont simples, peu coûteux et faciles d'installation.
  • Le traitement de trempe sous gaz selon l'invention consiste, à introduire, par le conduit 12, l'eau en phase liquide, après avoir installé la charge 5 dans la chambre de traitement 4 de la cellule 1. L'eau est introduite en phase liquide jusqu'à atteindre la pression de trempe requise, de l'ordre de 20 à 30 bars.
  • L'eau est introduite en phase liquide, pour profiter à la fois de sa capacité de refroidissement une fois évaporé et de la chaleur spécifique d'évaporation du liquide au moment du contact avec les pièces chaudes.
  • Il est possible, avant l'introduction de l'eau en phase liquide, d'introduire un premier gaz à l'intérieur de l'enceinte 2, de préférence, de l'azote. L'azote gazeux est alors introduit, simultanément avec la mise en route de l'élément de brassage 6, à une pression de l'ordre de 2 bars pendant une durée de l'ordre de quelques secondes.
  • Selon un mode particulier de réalisation, le traitement de trempe comporte l'introduction d'azote gazeux pendant quelques secondes dans l'enceinte 2, suivi de l'introduction d'eau en phase liquide. L'eau se vaporise rapidement au contact de la charge 5 et le brassage selon la boucle 8 s'effectue donc avec l'azote gazeux et la vapeur d'eau pendant la durée nécessaire à la baisse de température de l'enceinte 2.
  • Les gaz circulent ainsi dans l'enceinte 2 selon la boucle 8, ce qui permet d'utiliser uniquement la quantité d'azote et d'eau préalablement introduite pendant un cycle de trempe et d'éviter une consommation trop importante et trop coûteuse.
  • L'eau se transforme donc en vapeur d'eau lors de son introduction dans l'enceinte 2 et la pression augmente au fur et à mesure de l'introduction d'une quantité d'eau plus importante. Lorsque les pièces à traiter se refroidissent, la pression baisse jusqu'à la condensation complète de la vapeur d'eau. En dessous de 100°C, l'enceinte 2 retrouve alors sa pression initiale, à savoir celle de l'azote gazeux introduit préalablement.
  • Après l'arrêt de l'élément de brassage 6, les condensats sont évacués par le conduit 13 situé en partie basse de la cellule 1, poussés par la pression résiduelle de l'azote introduit au préalable.
  • Le cycle de trempe décrit ci-dessus présente ainsi, de préférence, une durée de l'ordre de 15 à 20 minutes.
  • Grâce à l'utilisation de la vapeur d'eau comme gaz de refroidissement, la consommation d'azote est ainsi réduite, de l'ordre de 70% à 80%, ce qui entraîne une réduction notable du coût de traitement.
  • Le procédé de trempe selon l'invention procure notamment les avantages suivants. Les pièces sont soumises à un refroidissement efficace du fait de la chaleur spécifique d'évaporation de l'eau. L'efficacité de la trempe est optimale puisqu'elle permet de traiter le coeur des pièces. La trempe ne crée pas de corrosion et ne provoque pas de fissures au joint de grains. Aucune rectification de l'état de surface des pièces n'est nécessaire. Des gains sensibles en termes de coût et de simplicité sont donc observés.
  • L'utilisation de la vapeur d'eau pour tremper sous gaz des pièces mécaniques, notamment dans le cas de pièces cémentées, engendre des gains importants en termes de coût et de durée, compte tenu de la disponibilité de l'eau et de son efficacité de refroidissement.
  • L'invention n'est pas limitée au mode de réalisation décrit ci-dessus. Notamment, le premier gaz du réservoir 9 peut être de l'azote ou un gaz neutre. Le traitement thermochimique précédant le traitement de trempe sous gaz peut être un traitement de cémentation basse pression ou un traitement de cémentation ou carbonitruration à pression atmosphérique.

Claims (6)

  1. Procédé de trempe sous gaz de pièces d'acier, préalablement chauffées ou traitées, au moyen d'un flux de gaz de refroidissement circulant selon une boucle fermée dans une enceinte (2) de trempe sous gaz et sous pression, procédé caractérisé en ce que la pression de gaz de refroidissement est obtenue par évaporation d'eau introduite sous forme liquide dans l'enceinte (2).
  2. Procédé selon la revendication 1, caractérisé en ce que l'eau est injectée dans l'enceinte (2) à une pression permettant à l'enceinte (2) d'atteindre une pression de l'ordre de 20 bars.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce qu'il comporte une introduction préalable d'un premier gaz dans l'enceinte (2), avant l'introduction de l'eau.
  4. Procédé selon la revendication 3, caractérisé en ce que le premier gaz est injecté à une pression de l'ordre de 2 bars pendant quelques secondes.
  5. Procédé selon l'une des revendications 3 et 4, caractérisé en ce que le premier gaz est de l'azote.
  6. Procédé selon l'une des revendications 3 et 4, caractérisé en ce que le premier gaz est un gaz neutre.
EP05757129.1A 2004-04-19 2005-04-15 Procede de trempe sous gaz Active EP1737989B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404113A FR2869046B1 (fr) 2004-04-19 2004-04-19 Procede de trempe sous gaz
PCT/FR2005/000914 WO2005108629A1 (fr) 2004-04-19 2005-04-15 Procede de trempe sous gaz

Publications (2)

Publication Number Publication Date
EP1737989A1 EP1737989A1 (fr) 2007-01-03
EP1737989B1 true EP1737989B1 (fr) 2014-11-05

Family

ID=34944810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05757129.1A Active EP1737989B1 (fr) 2004-04-19 2005-04-15 Procede de trempe sous gaz

Country Status (3)

Country Link
EP (1) EP1737989B1 (fr)
FR (1) FR2869046B1 (fr)
WO (1) WO2005108629A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505676B1 (fr) 2011-03-28 2017-03-01 Ipsen International GmbH Procédé de trempe et appareil de mise en oeuvre dudit procédé

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015450B3 (de) * 2005-04-04 2006-08-17 Ipsen International Gmbh Verfahren sowie Vorrichtung zur Gasabschreckung
DE102007029038A1 (de) * 2007-06-21 2009-01-02 Eliog-Kelvitherm Industrieofenbau Gmbh Vakuumofen zur Wärmebehandlung von metallischen Werkstücken und Verfahren zu dessen Betrieb
US8820098B2 (en) * 2011-05-17 2014-09-02 Air Products And Chemicals, Inc. Method and apparatus for quenching of materials in vacuum furnace
CN103627854B (zh) * 2013-12-12 2015-10-14 无锡透平叶片有限公司 用于汽轮机叶片热处理的风冷系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7514387A (nl) * 1974-12-30 1976-07-02 Krupp Ag Huettenwerke Werkwijze voor het versneld koelen van gloeigoed na het gloeien in een gloeioven.
DE19500019A1 (de) * 1995-01-03 1996-07-04 Hans Ruediger Dr Ing Hoffmann Evakuierbare und mit Sprühwasserduschen versehene Kühlkammer zum Abkühlen von metallischem Wärmebehandlungsgut
DE19743575A1 (de) 1997-10-02 1999-04-08 Ingbuero Dr Ing R Hoffmann Einrichtung zum Abkühlen in einem Zweiphasengemisch
DE19920297A1 (de) * 1999-05-03 2000-11-09 Linde Tech Gase Gmbh Verfahren zur Wärmebehandlung metallischer Werkstücke
FR2810340B1 (fr) * 2000-06-20 2003-03-14 Etudes Const Mecaniques Cellule de trempe au gaz
DE10224129B8 (de) * 2002-05-29 2007-02-15 Schmetz Gmbh Wärmebehandlungsanlage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505676B1 (fr) 2011-03-28 2017-03-01 Ipsen International GmbH Procédé de trempe et appareil de mise en oeuvre dudit procédé

Also Published As

Publication number Publication date
WO2005108629A1 (fr) 2005-11-17
FR2869046B1 (fr) 2007-08-31
EP1737989A1 (fr) 2007-01-03
FR2869046A1 (fr) 2005-10-21

Similar Documents

Publication Publication Date Title
EP1737989B1 (fr) Procede de trempe sous gaz
FR2543938A1 (fr) Procede de production d'acide sulfurique par la methode de contact
WO2016075377A1 (fr) Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
EP0096602B1 (fr) Procédé de traitement thermique de pièces métalliques par carburation
FR2731693A1 (fr) Procede et installation de generation d'azote pour le traitement thermique
CA2766788C (fr) Traitement cryogenique d'un acier martensitique a durcissement mixte
WO2010012869A1 (fr) Procede et dispositif de regulation de refroidissement et de recuperation d' energie d' une bande d' acier en phase de recuit ou de galvanisation
EP0968387B1 (fr) Procede et installation de remplissage d'un reservoir sous pression
EP0707661B1 (fr) Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede
EP1476585B1 (fr) Installation de trempe par gaz et procede de trempe correspondant
WO2011045514A1 (fr) Degazage d'aciers martensitiques inoxydables avant refusion sous laitier
EP0375491A1 (fr) Procédé et installation de traitement thermique de cémentation, carbonitruration ou chauffage avant trempe de pièces métalliques
WO2011045515A1 (fr) Traitements thermiques d'aciers martensitiques inoxydables apres refusion sous laitier
BE1006163A4 (fr) Procede de traitement thermique d'objets metalliques sous atmosphere de protection.
EP1404882B1 (fr) Procede de trempe des aciers a l'air pression
FR2719057A1 (fr) Procédé pour la nitruration à bsase pression d'une pièce métallique et four pour la mise en Óoeuvre dudit procédé.
FR2939448A1 (fr) Procede de production d'une atmosphere gazeuse pour le traitement des metaux.
FR2863628A1 (fr) Dispositif de trempe de pieces en acier
WO2023198895A1 (fr) Procédé de mise en œuvre d'une installation pour la séquestration géologique de dioxyde de carbone dans un réservoir aquifère
WO2007031667A1 (fr) Methode pour se premunir de la formation de monoxyde de carbone lors d'une operation de trempe gazeuse
EP0125161A1 (fr) Procédé de fabrication de poudres métalliques à partir d'un matériau métallique en fusion
FR2852608A1 (fr) Procede et installation de recuperation du zinc contenu dans un bain de fonte liquide
WO2019122544A1 (fr) Dispositif de cryotherapie
BE581892A (fr)
WO2016124849A1 (fr) Installation de carbonitruration en série de pièce(s) en acier sous basse pression et haute température

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20090505

R17C First examination report despatched (corrected)

Effective date: 20090511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140522

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005045086

Country of ref document: DE

Effective date: 20141224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005045086

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230426

Year of fee payment: 19

Ref country code: DE

Payment date: 20230427

Year of fee payment: 19