WO1995027215A1 - Capteur d'acceleration - Google Patents

Capteur d'acceleration Download PDF

Info

Publication number
WO1995027215A1
WO1995027215A1 PCT/JP1995/000547 JP9500547W WO9527215A1 WO 1995027215 A1 WO1995027215 A1 WO 1995027215A1 JP 9500547 W JP9500547 W JP 9500547W WO 9527215 A1 WO9527215 A1 WO 9527215A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration sensor
detection unit
movable electrode
sensor according
detector
Prior art date
Application number
PCT/JP1995/000547
Other languages
English (en)
French (fr)
Inventor
Seiko Suzuki
Masayuki Miki
Masahiro Matsumoto
Masayoshi Suzuki
Norio Ichikawa
Original Assignee
Hitachi, Ltd.
Hitachi Automotive Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Automotive Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to JP52555395A priority Critical patent/JP3161736B2/ja
Publication of WO1995027215A1 publication Critical patent/WO1995027215A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Definitions

  • the present invention relates to an acceleration sensor for a vehicle safety system, and more particularly to an acceleration sensor that detects acceleration when a vehicle collides.
  • an acceleration sensor of this type is manufactured by etching a semiconductor substrate and has a structure shown in FIG. Fig. 2 shows the Technical Digest of MI CROSYSTEM Technol- gies 92 held in October 1992, page 383—page 392 (Technical Digest pp. 383—3992). 3) shows a schematic structure of a semiconductor capacitive acceleration sensor detecting section described in (2).
  • the detection unit has a structure in which an insulating glass substrate 1, a conductive semiconductor substrate 2, and an insulating glass substrate 3 are stacked.
  • the semiconductor substrate 2 is etched to form a movable electrode 5 supported by a beam 4 at the center of the detection unit structure.
  • the upper and lower glass substrates 1 and 3 are provided with thin-film fixed electrodes 8 and 9 which are formed by vapor deposition and sputtering, respectively, and are opposed to both surfaces of the movable electrode 5 via gaps 6 and 7. ing.
  • This detector shows the structure of a semiconductor capacitive acceleration sensor for an airbag system of an automobile. The movement of the movable electrode 5 supported by the beam 4 is controlled by the electrical movement between the movable electrode 5, the fixed electrode 8, and the fixed electrode 9. The acceleration is detected from the change in capacitance.
  • the thicknesses of the glass substrate 1, the semiconductor substrate 2 and the glass substrate 3 are about several hundred microns, the thickness of the beam 4 is about several tens of microns, the thickness of the fixed electrodes 8 and 9 is about 1 micron, and the air gap.
  • the dimensions of 6 and void 7 are on the order of a few microns.
  • the above-mentioned prior art uses the center in the thickness direction of the semiconductor substrate in order to reduce the sensitivity to other axes.
  • Forming a beam in the section or arranging fixed electrodes above and below the movable electrode has the problem that the structure and manufacturing process of the detector are complicated.
  • the lead-out structure of the fixed electrode and the lead portion of the fixed electrode is complicated, and it is difficult to reduce the chip size of the detection unit.
  • the acceleration to be detected in the airbag system is the acceleration component in the traveling direction of the vehicle, not the acceleration component in the gravitational direction.
  • a pad for electrically connecting the detection unit and the signal processing circuit cannot be formed in a wafer state in advance on the dicing surface of the detection unit.
  • the power supply voltage of the signal processing system between the air inlet system and the luminaire is 5 volts.
  • a diagnostic signal When a diagnostic signal is supplied from the microcomputer of the control unit, it must be boosted to a voltage of several tens of volts by a dedicated IC and applied between the electrodes of the detection unit. This was a factor that increased the number of birds.
  • the semiconductor capacitive acceleration sensor is a ⁇ C detector that detects a change in capacitance between the movable electrode and the fixed electrode, an amplifier that amplifies the output signal of the ⁇ C detector, and an adjustment unit that adjusts the sensitivity of the detection unit and variations in the zero point.
  • a dedicated IC consisting of a self-diagnosis function unit that processes a self-diagnosis command from a microcomputer and supplies a diagnostic signal to the detection unit, and the detection unit shown in this figure.
  • Acceleration of the sensitivity of an acceleration sensor for an airbag system that detects car collisions is an indispensable requirement. Even if the zero point of the force ⁇ DC component fluctuates slightly, this effect can be measured with a microphone mouth computer. Because it can be removed, the accuracy of zero adjustment is acceptable even if it is relatively rough. However, even if the adjustment accuracy was rough, there was also a problem that the dedicated IC was enlarged and the adjustment time was prolonged due to the existence of the zero point adjustment work.
  • An object of the present invention is to provide a high-performance and low-cost acceleration sensor.
  • the features of the present invention are as follows.
  • the movable electrode and the beam are etched to the same thickness, and both are arranged only on one side of the semiconductor substrate, and the thickness is reduced to about several tens of microns or less.
  • the fixed electrode facing the movable electrode is arranged only on the substrate on one side of the movable electrode. Close to dicing surface in wafer state Form a pad beside. A change in the output signal level of the acceleration sensor amplifier is detected, and a correction value corresponding to the detection result is supplied to the capacitance detector.
  • the mounting structure is such that the periphery of a dedicated IC consisting of a detection unit and a signal processing circuit including a capacitance detector is completely sealed with a material such as resin.
  • the movable electrode and the beam have the same thickness and are arranged only on one side of the semiconductor substrate, the number of etching steps is reduced. Since the fixed electrode is provided only on one side of the movable electrode. A method for extracting the lead of the fixed electrode is simplified, and the chip size of the detection unit can be reduced.
  • the zero point variation of the detection unit can be automatically adjusted to a predetermined value.
  • the output drift of the DC component caused by the thermal stress of the detector can be removed.
  • the periphery of the detection unit and the dedicated IC can be completely sealed with a material such as resin, so that an acceleration sensor with a small number of work steps during mounting can be obtained. As a result, a high-performance and low-cost semiconductor capacitive acceleration sensor can be provided.
  • FIG. 1 is a structural diagram of an acceleration sensor detector according to the present invention.
  • FIG. 2 is a structural diagram of a conventional acceleration sensor detection unit.
  • FIG. 3 is a view showing another embodiment of the structure of the acceleration sensor detecting section according to the present invention.
  • FIG. 4 is a top plan view of the semiconductor substrate after etching in the detection unit shown in FIG.
  • FIG. 5 is a view showing another embodiment of the semiconductor substrate after the etching.
  • C FIG. 6 is a cross-sectional structural view of the acceleration sensor detecting section at the position AA in FIG.
  • FIG. 7 is a cross-sectional structural view of the acceleration sensor detector at the position C-C in FIG.
  • FIG. 8 is an external view of an acceleration sensor detection unit according to the present invention.
  • FIG. 9 is a diagram showing an example of a conventional mounting method of an acceleration sensor.
  • FIG. 10 is a diagram showing another example of the conventional mounting method of the acceleration sensor.
  • FIG. 11 is a diagram illustrating an example of a detection unit structure that can be vertically mounted.
  • FIG. 12 is a diagram showing another example of a detection unit structure that can be mounted vertically.
  • FIG. 13 is a diagram showing a method of forming a pad on a detection unit structure that can be vertically mounted.
  • FIG. 14 is a diagram showing a mounting method in which the detection unit of the acceleration sensor is set up in the direction of gravity.
  • FIG. 15 is a diagram showing another embodiment of the structure of the acceleration sensor detecting section according to the present invention.
  • FIG. 16 is a diagram showing another embodiment of the structure of the acceleration sensor detecting section according to the present invention.
  • FIG. 17 is a diagram showing an example of a signal processing circuit system of a conventional acceleration sensor.
  • FIG. 18 is a diagram showing another example of the signal processing circuit system of the conventional acceleration sensor.
  • FIG. 19 is a diagram showing a signal processing circuit system of the acceleration sensor according to the present invention.
  • FIG. 20 is a diagram showing another embodiment of the signal processing circuit system of the acceleration sensor according to the present invention.
  • FIG. 21 is a diagram showing another embodiment of the signal processing circuit system of the acceleration sensor according to the present invention.
  • FIG. 22 is a diagram showing a mounting method of the acceleration sensor according to the present invention.
  • FIG. 23 is a diagram showing another embodiment of a mounting method of the acceleration sensor according to the present invention.
  • FIG. 24 is a diagram showing a method of adjusting the sensitivity of the detection unit after resin sealing of the plastic package type acceleration sensor according to the present invention.
  • FIG. 25 is a diagram showing another embodiment of the mounting method of the acceleration sensor according to the present invention.
  • FIG. 1 shows an embodiment of a semiconductor capacitive acceleration sensor according to the present invention.
  • the detection unit has a structure in which a conductive semiconductor substrate 10, an insulating glass substrate 1, a conductive semiconductor substrate 2 and an insulating glass substrate 3 are laminated. These laminates are assembled by bonding each substrate by anodic bonding.
  • the same numbers have the same functions.
  • the beam 4 manufactured by etching the semiconductor substrate 2 and the movable electrode 5 have the same thickness and are arranged on the upper side of the semiconductor substrate 2. As a result, the total number of steps of etching the semiconductor substrate 2 is reduced as compared with the conventional semiconductor capacitive acceleration sensor.
  • a fixed electrode 8 made of a conductive material having a thickness of about 1 ⁇ m is formed on the surface of the glass substrate 1 by vapor deposition, sputtering, or the like so as to face the movable electrode 5 via a gap 6 of about several microns. Is deposited.
  • the lead mounting method of the fixed electrode is simplified, and a detection unit with a small chip size can be obtained.
  • the gap 11 between the movable electrode 5 and the glass substrate 3 has a depth of about several hundred microns, and the gap 6 and the gap 11 are spatially connected through the gap 12.
  • FIG. 3 shows another embodiment of the detector according to the present invention.
  • a reference fixed electrode 14 is deposited on a glass substrate 1 and a reference capacitance is formed between the glass substrate 1 and a non-movable portion 13 of the semiconductor substrate 2. Acceleration can be measured by detecting the movement of the movable electrode 5 supported by the beam 4 by detecting the difference between the capacitance between the movable electrode 5 and the fixed electrode 8 and the reference capacitance with a ⁇ ⁇ detector.
  • the reference capacitance is formed in the ⁇ ⁇ detector unit in the dedicated IC. Since the detector in FIG. 3 has two fixed electrodes, the structure is slightly more complicated than in the detector shown in FIG.
  • FIG. 4 shows an upper plan view of the shape of the semiconductor substrate 2 after the etching in the semiconductor capacitive acceleration sensor detecting section shown in FIG. Note that the structure of the detection unit in FIG. 1 shows a cross-sectional structure at a position ⁇ in FIG. 4.
  • a region 15 is an anode junction between the glass substrate 1 and the semiconductor substrate 2.
  • Anodic bonding is well known as a technique for applying a high voltage at a high temperature to electrochemically bond a glass substrate and a semiconductor substrate.
  • the region 13 is a non-movable portion of the semiconductor substrate 2, and is processed so that the etching depth of the portion is in a range from about several micron to about several ten micron.
  • the inner region surrounded by the broken line 16 is a portion where the fixed electrode 8 is deposited on the surface of the glass substrate 1.
  • the region 18 is a portion obtained by processing a hole in the glass substrate 1 bonded to the semiconductor substrate 2 by a method such as sand blast.
  • the movable electrode 5 is electrically connected to the ⁇ C detector in the dedicated IC via the pad 19.
  • the movable electrode 5 supported by the beam 4 has an elongated through hole 1 7 o is processed by etching.
  • These through holes 17 set the desired value of the air damping effect generated by the squeeze film effect due to the flow of gas between the movable electrode 5 and the fixed electrode 8 which face each other via the narrow gap 6. It is.
  • the frequency response of the semiconductor capacitive acceleration sensor is set to a desired value. It should be noted that the number of beams in this drawing is two, and in principle, it is sufficient that at least one beam is provided.
  • FIG. Movable electrode 5 This shows a structure in which one hole is not formed, and is applied to an acceleration sensor in which a frequency response of about several hundred Hz or less is sufficient.
  • FIG. 6 shows the cross-sectional structure of the semiconductor capacitive acceleration sensor shown in FIG. 1 at the position AA in FIG. As shown in the figure, through holes 17 in the movable electrode 5 penetrate.
  • the semiconductor substrate 10 and the glass substrate 1 are formed with holes, and only the upper part of the pad 19 is vacant.
  • FIG. 7 shows the cross-sectional structure of the semiconductor capacitive acceleration sensor shown in FIG. 1 at the position C—C in FIG.
  • Through holes 20 are formed in the glass substrate 1 by a technique such as sand blasting.
  • the conductive metal layer 21 is formed on the inner surface of the through hole 20 by vapor deposition or sputtering.
  • the fixed electrode 8 is electrically connected to the semiconductor substrate 10 via the metal layer 21, and is connected from the pad 22 to the ⁇ C detector in the dedicated IC.
  • FIG. 8 shows a three-dimensional external view of the semiconductor capacitive acceleration sensor according to the present invention.
  • a semiconductor substrate 10, a glass substrate 1, a semiconductor substrate 2, and a glass substrate 3 are laminated, and a pad 19 is formed below the hole 23 formed in the semiconductor substrate 10 and the glass substrate 1.
  • Pad 2 2 on semiconductor substrate 10 Is formed.
  • a dedicated IC 24 composed of a ⁇ C detector that detects the difference in electric capacitance between the movable electrode and the fixed electrode that changes according to the acceleration, and the detection unit 25 are connected to the detection unit 25 with adhesives 27 and 28. It is fixed to a metal stem 26. A conductive lead pin 30 is fixed to the stem 26 via an insulating material 29 such as glass.
  • the detection unit 25 is connected to the dedicated IC 24 via the pad 40 and the lead 32, and the dedicated IC 24 is connected to the airbag system via the pad 41, the lead 31 and the lead bin 30. It is electrically connected to the control unit.
  • the direction of detecting the acceleration (that is, the direction perpendicular to the beam) is the direction perpendicular to the stem 26.
  • the stem 26 is set in the direction of gravity, or The control unit on which the acceleration sensor is mounted must be set up in the direction of gravity.
  • FIG. Another mounting method of the acceleration sensor using the detecting unit according to the present invention is shown in FIG.
  • the dedicated IC 24 and the detection unit 25 are adhered on a ceramic substrate 34 and mounted in a cap 36 fixed with an adhesive 35.
  • the acceleration sensor is electrically connected to the control unit 39 via the solder 37 and the solder 38.
  • This figure like the previous figure, shows an example when the mounting method of the acceleration sensor is not desirable.
  • FIG. 11 shows the structure of the detector applicable to this.
  • the left end face 4 2 of the semiconductor substrate 10 and the left end face 44 of the semiconductor substrate 2 are etched obliquely as shown in the figure, and the end face 4 2 is used to electrically connect the detection part of the acceleration sensor and the dedicated IC.
  • a pad 43 made of a conductive metal material and the like and a pad 45 deposited on the end face 44 by vapor deposition and sputtering.
  • lines 46 and 47 indicated by broken lines divide each detector from the wafer state. It is a dicing line when it is.
  • the end faces 4 2 and 4 4 are not on the dicing line 46, but are in a wafer state in which the semiconductor substrate 10, the glass substrate 1, the semiconductor substrate 2, and the glass substrate 3 are bonded by anodic bonding. Pads can be formed in the vicinity of the dicing line of each detector by the operation.
  • FIG. 12 shows another embodiment of the detection unit which enables a preferable mounting method.
  • the end surface 42 of the semiconductor substrate 10 and the end surface 44 of the semiconductor substrate 2 are etched perpendicularly to each substrate. This was processed to form pads 43 and 45. These pads are also not located on the dicing line 46 but near the dicing line.
  • a method of forming a pad on an end surface near a dicing line in a wafer state will be described with reference to FIG.
  • a metal mask 48 with a hole 49 is placed on the detection unit 100 in the wafer state where the four substrates are joined, and the metal mask 48 is used to attach a conductive metal to the end face near the dicing line.
  • a pad made of a material can be easily formed by sputtering or vapor deposition. By cutting the wafer in the stacked state along the dicing line 50, the wafer can be divided into each of the detection units. In this way, a pad can be formed on the end face near the dicing line of the detection unit by a simple method before being divided into each detection unit.
  • FIG. 14 shows a method of mounting the detecting unit shown in FIG. 12 according to the present invention.
  • the detection unit 25 and the dedicated IC 24 electrically connected by the conductive wire 32 are mounted on the ceramic substrate 34.
  • the acceleration sensor detection unit according to the present invention has a bead. Since the vehicle is mounted in the direction of gravity, it is possible to detect the acceleration component in the direction of travel of the vehicle without setting the control unit 39 of the airbag system in the direction of gravity. A similar effect can be obtained for the detection unit having the structure shown in FIG.
  • FIGS. 15 and 16 show another embodiment of the detection unit structure in which the mass of the movable electrode is small and has the same thickness as the beam. These are different from the structure shown in Fig. 1 in that they are detectors composed entirely of semiconductor substrates.
  • the detection unit shown in Fig. 15 is a well-known three semiconductor substrate with conductive semiconductor substrate 51, semiconductor substrate 2 and semiconductor substrate 52 through thermal oxide film 53 and thermal oxide film 54. They are bonded by a direct bonding method.
  • An air gap 6 is formed between the movable electrode 5 supported by the beam 4 and the semiconductor substrate 51.
  • the semiconductor substrate 51 is a conductive material, the semiconductor substrate 51 can also serve as a fixed electrode facing the movable electrode 5.
  • FIG. 16 shows a detector using a S0I (SiI icon On Insulator) substrate composed of a semiconductor substrate 57, a thermal oxide film 56, and a semiconductor substrate 55.
  • a thermal oxide film is formed on the S0I substrate.
  • the semiconductor substrate 51 is adhered by direct bonding via 53. In this case, a gap 6 and a gap 58 on the order of several microns can be easily formed on both surfaces of the movable electrode 5 supported by the beam 4.
  • Fig. 17 shows the signal processing circuit system of a semiconductor capacitive acceleration sensor in a conventional airbag system.
  • the acceleration sensor 65 is a signal V proportional to the acceleration by amplifying the output signal of the ⁇ detector 6 1 ⁇ C detector 61.
  • the amplifier 6 2 to be output to the microcomputer 6 6 of the air bag system, the adjustment unit 8 0 for adjusting the variation of the zero point and sensitivity of the detection unit 6 0, processing a self-diagnosis command V d from the micro computer 6 6
  • It is composed of a dedicated IC 64 composed of a self-diagnosis function unit 63 that supplies a diagnostic signal to the detection unit 60 via the tumor detector 61, and a detection unit 60.
  • FIG. 18 and FIGS. 19 to 21 showing the signal processing circuit system according to the present invention it is not necessary to store the adjustment unit 80 connected to the amplifier 62 in the figure. did.
  • the adjustment function in these figures is only the variation in the sensitivity of the detection unit 60.
  • Fig. 18 shows a high-pass filter consisting of a capacitor 67 and a resistor 68 provided in the control unit 69 of the airbag system, which cuts the DC component of the acceleration sensor and generates a signal at the detection unit 60 of the acceleration sensor. It is well known as a method for removing drift.
  • this signal processing circuit system to the mounting method of the detection unit according to the present invention, there is an effect of realizing a low-cost acceleration sensor having a simple mounting structure.
  • the dedicated IC 64 consists of a C detector 61, amplifier 62, self-diagnosis function 63, computing unit 70, and integration circuit 71. Output signal V of amplifier 62.
  • the reference voltage signal V r (where V r is a voltage equal to the output signal V when the acceleration is zero.) are detected by the computing unit 70, and the detection signal of the computing unit 70 is integrated by the integrator 71- After that, the integration result is fed-pack controlled by the ⁇ C detector 61.
  • the integration time constant of the integrator 71 is as long as 1 second or more, and is set to a value that does not hinder an airbag system that detects acceleration of a frequency component faster than 1 Hz. In this way, the operating point of the ⁇ C detector is always set to the reference operating point in terms of DC. Now, assuming that the signal supplied from the detector 60 to the ⁇ detector 61 is S 1, S 1 is defined as the sum of the acceleration signal and the drift signal.
  • the signal that is feedback-controlled from the integrator 71 to the detector 61 The signal S 2 is a DC drift signal, and the output signal S 3 of the ⁇ C detector 61 is configured to be the difference between S 1 and S 2. No drift components are included at all. As a result, the output signal V of the acceleration sensor 65. , The DC drift component is completely removed.
  • the zero point variation of the detection unit looks like a DC drift, so the zero point variation is automatically adjusted, and the output signal V when the acceleration is zero. Automatically becomes V r .
  • FIG. shows a method in which the arithmetic unit 70 and the integrator 71 are digitally performed using the microcomputer 66 to perform the processing of the previous figure.
  • the correction signal S 2 is digitally supplied to the AC detector 61
  • the output signal V of the acceleration sensor is obtained at the moment when the digital signal is supplied when the interval of supplying the digital signal becomes long.
  • the measures in this case are shown in Figure 21.
  • This figure predicts or learns the ripple-like fluctuations in advance, and outputs the output signal V of the acceleration sensor.
  • Digital correction means 72 that can supply the signal S 2 to the ⁇ C detector 61 is provided in the software of the microcomputer 66 so that no ripple component is generated in the microcomputer 66.
  • FIG. 22 shows an embodiment of the mounting method according to the present invention.
  • the mounting method according to the present invention When the mounting method according to the present invention is used, a mounting method of a structure in which the detection unit receives a large thermal strain becomes possible. Even if the zero point fluctuates greatly due to the thermal strain of the detector, the zero point can be automatically compensated.Therefore, the periphery of the detector 25 can be completely sealed with a material such as resin as shown in the figure. it can. That is, the acceleration sensor can be made into a plastic package, and the number of working steps is small, so that a low-cost acceleration sensor can be provided.
  • Detector 25 and dedicated IC 24 read frame After connecting the detecting part 25 to the dedicated IC 24 with the conducting wire 32 and the dedicated IC 24 to the lead terminal 73 with the conducting wire 31, the detecting part 25 and the dedicated IC are connected.
  • 24 is simultaneously sealed in resin 75 by transfer molding or the like.
  • the holes 76 are used when fixing the acceleration sensor to the side wall of the control unit with screws.
  • Fig. 23 shows an example of the countermeasures for sensitivity change. That is, a method is used in which the surrounding area of the detection unit 25 and the dedicated IC 24 is surrounded by a relatively soft material 77 (for example, silicone rubber) and then packaged with a material 75 such as a resin.
  • a relatively soft material 77 for example, silicone rubber
  • FIG. 24 shows another embodiment of a method of counteracting a change in sensitivity.
  • This diagram shows a method of digitally adjusting the sensitivity of the acceleration sensor after admitting the change in sensitivity before and after the package, completely sealing the area around the detector 25 and the dedicated IC 24 with resin 75.
  • several bits of the terminal 78 are pulled out from the resin 75 for sensitivity adjustment, and the memory contents of the adjustment unit connected to the amplifier in the dedicated IC 24 are digitalized through this terminal. And adjust the sensitivity of the amplifier.
  • the memory of the adjustment unit is a Zener ROM
  • a voltage of several tens of volts can be applied to the dedicated IC from the terminal 78 to easily adjust the memory contents.
  • an acceleration sensor with excellent environmental resistance at the adjustment portion and high reliability can be provided.
  • the surface of the resin material must be made of an appropriate material. ⁇ b It is good to do coating. That is, as shown in Fig. 25, when the coating material 100 is a semiconductive material, the acceleration sensor is particularly strong against EMI, and when the coating material 100 is a non-hygroscopic material, it is particularly high temperature and high humidity. However, a usable acceleration sensor can be obtained.
  • the present invention provides a low-cost and high-performance acceleration sensor. Industrial applicability
  • the acceleration sensor of the present invention is particularly applicable to an automobile airbag system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Description

明 細 書
加速度センサ 技術分野
本発明は、 自動車の安全システム用加速度センサ、 特に自動車が衝突 したときの加速度を検出する加速度センサに関する。 背景技術
従来、 この種の加速度センサは半導体基板をエッチング加工して製作 させ、 第 2図に示す構造のものなどが知られている。 第 2図は 1 9 9 2 年 1 0月に開催された M I CROSYSTEM Technol ogies 9 2のテクニカル ダ イジエス 卜第 3 8 3頁—第 3 9 2頁 (Technical Digest pp . 3 8 3— 3 9 2 ) に記載された半導体容量式加速度センサ検出部の概略構造を示 している。 検出部は絶縁性のガラス基板 1 , 導電性の半導体基板 2, 絶 縁性のガラス基板 3 を積層した構造よりなる。 半導体基板 2をエツチン グ加工して、 ビ一ム 4で支持された可動電極 5 を検出部構造体の中央に 形成している。 可動電極 5の両面に対向し空隙 6及び 7 を介して、 上下 のガラス基板 1 とガラス基板 3には蒸着ゃスパッタなどで着膜された薄 膜状の固定電極 8 と固定電極 9が設けられている。 本検出部は自動車の エアバッグシステム用半導体容量式加速度センサの構造部を示したもの で、 ビーム 4で支持された可動電極 5の動きを可動電極 5 と固定電極 8 , 固定電極 9間の電気容量変化から加速度を検出するものである。 ガラス 基板 1 , 半導体基板 2及びガラス基板 3の厚さは約数百ミクロン, ビー ム 4の厚さは約数十ミクロン、 固定電極 8 と固定電極 9の厚さは約 1 ミ クロン前後、 空隙 6 と空隙 7の寸法は約数ミクロンである。
上記従来技術は他軸感度を減らす目的で半導体基板の厚さ方向の中央 部にビームを形成したり、 可動電極の上下に固定電極と固定電極を配置 することは検出部の構造と製作プロセスが複雑となるという問題があつ た。 また、 固定電極と固定電極のリー ド部の引出し構造が複雑で検出部 のチップサイズを小さくすることは困難であるという問題があった。 また、 エアバッグシステムにおいて検出すべき加速度は、 自動車の進 行方向の加速度成分であり、 重力方向の加速度成分ではない。 しかし、 検出部のダイシング面に検出部と信号処理回路を電気的に結線するパッ ドをあらかじめウェハ状態で形成することはできなかった。 それ故、 各 検出部をダイシングした後に、 ダイシング面にパッ ドを形成する必要が あった。 ウェハ状態ではなく、 ダイシング後に各検出部毎にパッ ドを形 成するのはその作業が複雑で面倒であった。 かといつて、 この作業の複 雑さをのがれるために半導体基板の表面にパッ ドを形成した場合、 加速 度センサそれ自身あるいは加速度センサを実装したエアバッグシステム のコントロールュニッ 卜を重力方向に垂直に立てざるを得なかった。 結 果的に、 これは加速度センサあるいはコントロールュニッ 卜のコス 卜を 増加させる要因になっていた。
さらに、 自動車のエアバッグなどの人命を守る安全システムでは、 加 速度センサの信頼性確保は極めて重要な課題であり、 正常に動作しうる 状態になっているかどうかを必要に応じて時々自己診断できることが必 須の条件になっている。 半導体容量式加速度センサにおいて、 可動電極 と固定電極間に電圧を印加し、 電極間に発生した静電気力で可動電極を 強制的に変位させ、 これを信号処理回路で検出することによリ自己診断 を行っていた。 可動電極の厚さは約数百ミクロンと厚いため、 静電気力 で比較的大きな擬似加速度を得るには約数十ボルトの電圧を可動電極と 固定電極間に印加する必要があった。 しかし、 エアバッグシステムのコ ン 卜口—ルュニッ 卜の信号処理系の電源電圧は 5ボルトであることが多 く、 コントロールュニッ 卜のマイクロコンピュータより診断信号が供給 されたとき、 これを専用 I Cなどで数十ボル卜の電圧に昇圧して検出部 の電極間に印加する必要があり、 加速度センサのコス卜を増加させる要 因になつていた。 半導体容量式加速度センサは可動電極と固定電極間の 容量変化を検出する Δ C検出器、 Δ C検出器の出力信号を増幅する増幅 器、 検出部の感度やゼロ点のバラツキを調整する調整部、 マイクロコン ピュータよりの自己診断'指令を処理して検出部に診断信号を供給する自 己診断機能部よりなる専用 I Cと本図に示した検出部から構成される。 自動車の衝突を検出するエアバッグシステム用の加速度センサにおいて は、 感度を正確に調整することは必須要件になっている力 \ 直流成分の ゼロ点は多少変動してもこの影響をマイク口コンピュータで除去できる ため、 ゼロ点の調整精度は比較的にラフでも許容されている。 しかし、 調整精度がラフでもゼロ点の調整作業が存在することだけで、 専用 I C を大きく し、 調整時間が長くなるなどの問題点もあった。 仮に調整精度 がラフでも、 検出部の熱応力などによって発生する直流成分のドリフ 卜 をあるレベル以下にしなければならない。 結果として、 検出部の構造や 実装技術には種々の制約が加えられ、 加速度センサ全体としての実装構 造が複雑で大きくなり、 しかもコス トを増加させる要因になっていた。 発明の開示
本発明の目的は、 高性能で低コス 卜な加速度センサを提供することに ある。
本発明の特徴は次に示す点にある。 可動電極とビームを同じ厚さにェ ツチング加工して、 両者を半導体基板の片面側にのみ配置し、 その厚さ を約数十ミクロン以下と薄くする。 可動電極に対向した固定電極を可動 電極の片面側の基板上のみに配置する。 ウェハ状態でダイシング面の近 傍にパッ ドを形成する。 加速度センサ増幅器の出力信号レベルの変化を 検出し、 この検出結果に対応した補正値を静電容量検出器に供給する。 検出部と、 静電容量検出器を含む信号処理回路からなる専用 I Cの周囲 を樹脂などの材料で完全に封止した実装構造とする。
本発明によれば、 次に示す作用効果がある。 可動電極とビームを同じ 厚さにして半導体基板の片面側にのみ配置するので、 エッチングの工程 数が少なくなる。 可動電極の片面側にのみしか固定電極を設けないので. 固定電極のリ一ド引出し方法が簡単になり検出部のチップサイズを小さ くすることができる。
また、 あらかじめウェハ状態でタイシング面近傍にパッ ドを形成する ことにより、 検出部の垂直実装が可能になり、 簡単な実装方法で自動車 の進行方向の加速度を容易に検出することができる。
さらに、 出力信号レベルの変化を検出し、 この検出結果に対応した補 正値を静電容量検出器に供給することにより、 検出部のゼロ点パラツキ を自動的に所定の値に調整できるとともに、 検出部の熱応力などに起因 した直流成分の出力 ドリフ トを除去できる。 また、 この自動的なゼロ点 の調整方法により、 検出部と専用 I Cの周囲を樹脂などの材料で完全に 封止できるので、 実装時の作業工程数の少ない加速度センサを得ること ができる。 この結果、 高性能で低コストな半導体容量式加速度センサを 提供することができる。 図面の簡単な説明
第 1 図は、 本発明による加速度センサ検出部の構造図である。
第 2図は、 従来型加速度センサ検出部の構造図である。
第 3図は、 本発明による加速度センサ検出部構造の他の実施例を示し た図である。 0 第 4図は、 第 1 図に示した検出部におけるエッチング後の半導体基板 の上部平面図である。
第 5図は、 エッチング後の半導体基板の他の実施例を示した図である c 第 6図は、 第 4図の A— A位置における加速度センサ検出部の横断面 構造図である。
第 7図は、 第 4図の C一 C位置における加速度センサ検出部の横断面 構造図である。
第 8図は、 本発明による加速度センサ検出部の外観図である。
第 9図は、 加速度センサの従来型実装方法の一例を示した図である。 第 1 0図は、 加速度センサの従来型実装方法の他の一例を示した図で ある。
第 1 1 図は、 垂直実装が可能な検出部構造の一例を示した図である。 第 1 2図は、 垂直実装が可能な検出部構造の他の一例を示した図であ る。
第 1 3図は、 垂直実装が可能な検出部構造へパッ ドを形成する方法を 示した図である。
第 1 4図は、 加速度センサの検出部を重力方向に立てた実装方法を示 した図である。
第 1 5図は、 本発明による加速度センサ検出部構造の他の実施例を示 した図である。
第 1 6図は、 本発明による加速度センサ検出部構造の他の実施例を示 した図である。
第 1 7図は、 従来型加速度センサの信号処理回路系の一例を示した図 である。
第 1 8図は、 従来型加速度センサの信号処理回路系の他の一例を示し た図である。 第 1 9図は、 本発明による加速度センサの信号処理回路系を示した図 である。
第 2 0図は、 本発明による加速度センサの信号処理回路系の他の実施 例を示した図である。
第 2 1 図は、 本発明による加速度センサの信号処理回路系の他の実施 例を示した図である。
第 2 2図は、 本発明による加速度センサの実装方法を示した図である 第 2 3図は、 本発明による加速度センサの実装方法の他の実施例を示 した図である。
第 2 4図は、 本発明によるプラスチックパッケージ型加速度センサの 樹脂封止後の検出部感度の調整方法を示した図である。
第 2 5図は、 本発明による加速度センサの実装方法の他の実施例を示 した図である。 発明を実施するための最良の形態
本発明による半導体容量式加速度センサの一実施例を第 1図に示す。 図に示すように、 検出部は導電性の半導体基板 1 0, 絶縁性のガラス基 板 1 , 導電性の半導体基板 2及び絶縁性のガラス基板 3を積層した構造 よりなる。 これらの積層体は各基板を陽極接合によって接着して組み立 てられる。 なお、 以下に述べる全ての図において、 同じ番号は同一の機 能を有するものである。 半導体基板 2 をエッチング加工して製作された ビーム 4 と可動電極 5は同じ厚さであり、 半導体基板 2の上部側に配置 される。 この結果、 半導体基板 2のエッチングの全工程数が従来型半導 体容量式加速度センサに比べて少なくなる。 約数ミクロンの空隙 6 を介 して可動電極 5に対向するように、 厚さが約 1 ミクロンで導電性の材料 よりなる固定電極 8がガラス基板 1 の表面へ蒸着やスパッタなどの手法 で着膜されている。 後述するように、 固定電極は 1個で可動電極 5の片 面側にのみ配置されているので、 固定電極のリ一ド実装方法が簡単にな りチップサイズの小さな検出部を得ることができる。 可動電極 5 とガラ ス基板 3の間の空隙 1 1 の深さは約数百ミクロンで、 空隙 6 と空隙 1 1 は隙間 1 2 を介して空間的につながつている。
本発明による検出部の他の実施例を第 3図に示す。 本図はガラス基板 1 に基準用の固定電極 1 4 を着膜し、 半導体基板 2の非可動部 1 3 との 間に基準用の電気容量を形成している。 ビーム 4で支持された可動電極 5の動きを、 可動電極 5 と固定電極 8 との間の電気容量と前記基準用の 電気容量の差を Δ〇検出器で検出することにより、 加速度を計測できる < なお、 第 1 図に示した構造の検出部の場合は、 基準用の電気容量は専用 I C内の△〇検出器部に形成されることになる。 第 3図の検出部は固定 電極が二つ故、 第 1 図に示した検出部より構造がやや複雑になる。
第 1 図に示した半導体容量式加速度センサ検出部における半導体基板 2のエッチング後の形状の上部平面図を第 4図に示した。 なお、 第 1 図 の検出部構造は、 第 4図の Β— Βの位置における断面構造を示している < 第 4図において、 領域 1 5はガラス基板 1 と半導体基板 2の陽極接合部 である。 陽極接合は高温下で高電圧を印加し、 ガラス基板と半導体基板 を電気化学的に接合する技術として良く知られている。 領域 1 3は半導 体基板 2の非可動部分であり、 その部分のエッチング深さは約数ミク口 ンから約数十ミクロンの範囲になるように加工される。 破線 1 6で囲ま れた内部の領域は、 ガラス基板 1 の表面に固定電極 8 を着膜する部分で ある。 領域 1 8は後述するように、 半導体基板 2に接合されるガラス基 板 1 にサン ドブラス 卜などの手法で孔を加工した部分である。 パッ ド 1 9 を介して、 可動電極 5 と専用 I C内の Δ C検出器は電気的に結線さ れる。 ビーム 4に支持された可動電極 5へは、 細長いスルーホール 1 7 o がエッチングによって加工されている。 このスルーホール 1 7は狭い空 隙 6 を介して対向している可動電極 5 と固定電極 8間の気体の流動によ るスクイズフィルム効果で発生するエアダンピング効果を所望の値に設 定するものである。 加速度によって可動電極 5が上下方向に変位すると き、 空隙 6部の気体は隙間 1 2 とスルーホール 1 7 を介して可動電極 5 の下部の深い空隙 1 1部へ流動する構造になっている。 このスルーホー ルの寸法によって、 半導体容量式加速度センサの周波数応答性は所望の 値に設定される。 なお、 本図におけるビームは 2本である力 \ 原理的に は少なく とも 1本以上あればよい。
エッチング後の半導体基板 2の他の実施例を第 5図に示す。 可動電極 5ヘスル一ホールが形成されていない構造を示したもので、 約数百 H z 以下の周波数応答で良い場合の加速度センサに適用される。
第 1 図に示した半導体容量式加速度センサの第 4図の A— A位置にお ける横断面構造を第 6図に示した。 図に示すように、 可動電極 5中ヘス ルーホール 1 7が貫通している。 半導体基板 1 0及びガラス基板 1 は孔 加工され、 パッ ド 1 9の上部のみ空所になっている。
第 1 図に示した半導体容量式加速度センサの第 4図の C— C位置にお ける横断面構造を第 7図に示した。 ガラス基板 1へはサンドプラス卜な どの手法によって、 スルーホール 2 0が加工されている。 スルーホール 2 0の内面に蒸着やスパッタなどによって導電金属層 2 1 が形成されて いる。 この金属層 2 1 を介して、 固定電極 8は半導体基板 1 0と電気的 に結線され、 パッ ド 2 2より専用 I C内の△ C検出器へと接続される。 本発明による半導体容量式加速度センサの立体的外観図を第 8図に示 す。 前述したように、 半導体基板 1 0, ガラス基板 1 , 半導体基板 2, ガラス基板 3 を積層した構造よリなり、 半導体基板 1 0とガラス基板 1 にあけた孔 2 3の下部にパッ ド 1 9, 半導体基板 1 0の上にパッ ド 2 2 が形成されている。
次に、 本発明による検出部を用いた加速度センサの実装方法を第 9図 によリ説明する。 加速度に応じて変化する可動電極と固定電極間の電気 容量の差を検出する Δ C検出器などから構成される専用 I C 2 4 と検出 部 2 5 を接着剤 2 7, 2 8 を介して、 金属製のステム 2 6に固定してい る。 導電性のリー ドピン 3 0がガラスなどの絶縁材料 2 9 を介してステ ム 2 6に固定されている。 検出部 2 5はパッ ド 4 0, 導線 3 2を介して 専用 I C 2 4 と接続され、 専用 I C 2 4はパッ ド 4 1 , 導線 3 1, リー ドビン 3 0を介して、 エアバッグシステムのコントロールュニッ 卜と電 気的に結線される。 この場合、 加速度の検出方向 (即ち、 ビームと垂直 な方向) はステム 2 6 と垂直な方向であり、 自動車の進行方向の加速度 を検出するためにはステム 2 6 を重力方向に立てるか、 あるいは加速度 センサを装着するコントロールュニッ 卜を重力方向に立てざるを得ない。 本発明による検出部を用いた加速度センサの他の実装方法を第 1 0図 に示す。 専用 I C 2 4 と検出部 2 5はセラミック基板 3 4の上に接着さ れ、 接着剤 3 5で固定されたキャップ 3 6内に装着された例である。 加 速度センサは半田 3 7 , 半田 3 8を介してコントロールュニッ ト 3 9 と 電気的に結線される。 本図は前図と同様、 加速度センサの実装方法が好 ましくないときの例を示している。
次に、 本発明による好ましい検出部の実装方法について述べる。 これ に適用可能な検出部の構造を第 1 1 図に示す。 半導体基板 1 0の左側端 面 4 2 と半導体基板 2の左側端面 4 4 を図のように斜めにエッチング加 ェし、 加速度センサの検出部と専用 I Cを電気的に結線するため、 端面 4 2の上へ導電性の金属材料などからなるパッ ド 4 3, 端面 4 4の上へ パッ ド 4 5を蒸着ゃスパッタなどにより着膜している。 図において、 破 線で示したライン 4 6 とライン 4 7はウェハ状態から各検出部を分割す るときのダイシングラインである。 端面 4 2 と端面 4 4はダイシングラ イン 4 6上にはなく、 半導体基板 1 0, ガラス基板 1 , 半導体基板 2, ガラス基板 3 を陽極接合で接合したウェハ状態で、 後述するように簡単 な作業で各検出部のダイシングライン近傍にパッ ドを形成することがで きる。
好ましい実装方法を可能にする検出部の他の実施例を第 1 2図に示す, 本図は半導体基板 1 0の端面 4 2 と半導体基板 2の端面 4 4 を各基板に 対して垂直にエッチング加工し、 パッ ド 4 3 とパッ ド 4 5 を形成したも のである。 これらのパッ ドもダイシングライン 4 6の上にはなく、 ダイ シングラインの近傍に配置されている。
ウェハ状態でダイシングライン近傍の端面にパッ ドを形成する手法を 第 1 3図により説明する。 4枚の基板を接合したウェハ状態の検出部 1 0 0の上に孔 4 9 をあけたメタルマスク 4 8 を置き、 このメタルマス ク 4 8 を利用してダイシングライン近傍の端面に導電性の金属材料より なるパッ ドをスパッタや蒸着により容易に形成することができる。 積層 状態のウェハをダイシングライン 5 0で切断することによリ、 各検出部 に分割することができる。 このように、 各検出部に分割する前に、 検出 部のダイシングライン近傍の端面に簡単な方法でパッ ドを形成できる。 なお、 本図は第 1 1 図に示した端面の傾斜した検出部よりなる積層体の ウェハ 1 0 0で説明した。 第 1 2図に示した端面が垂直な検出部よりな る積層体のウェハについても、 同様な手法でダイシングライン近傍の垂 直な端面にパッ ドを形成することができる。
第 1 2図に示した検出部の本発明による実装方法を第 1 4図に示す。 セラミック基板 3 4の上に、 導線 3 2で電気的に結線された検出部 2 5 と専用 I C 2 4 を装着している。 図に示すように、 検出部 2 5 をセラミ ック基板 3 4へ垂直に実装すると本発明による加速度センサ検出部のビ —ムは重力方向に実装されている故、 エアバックシステムのコン トロー ルュニッ ト 3 9 を重力方向に立てることなく、 自動車の進行方向の加速 度成分を検出することができる。 第 1 1 図に示した構造の検出部につい ても同様な効果が得られる。
次に、 可動電極のマスが小さく ビームと同じ厚さを有する検出部構造 の他の実施例を第 1 5図, 第 1 6図に示す。 これらは第 1 図に示した構 造とは異なり、 全て半導体基板より構成される検出部である。 第 1 5図 の検出部は導電性の半導体基板 5 1, 半導体基板 2及び半導体基板 5 2 を熱酸化膜 5 3 と熱酸化膜 5 4 を介して、 3枚の半導体基板を良く知ら れた直接接合方法で接着したものである。 ビーム 4で支持された可動電 極 5 と半導体基板 5 1 の間に空隙 6 を形成している。 ここで、 半導体基 板 5 1 は導電性の材料である故、 半導体基板 5 1 は可動電極 5に対向し た固定電極を兼用することができる。 第 1 6図は半導体基板 5 7, 熱酸 化膜 5 6及び半導体基板 5 5よりなる S 0 I (Si l icon On Insulator) 基板を利用した検出部で、 S 0 I基板上に熱酸化膜 5 3 を介して半導体 基板 5 1 を直接接合で接着したものである。 この場合、 ビーム 4で支持 された可動電極 5の両面に数ミクロンオーダーの空隙 6 と空隙 5 8 を容 易に形成することができる。
従来型エアバッグシステムにおける半導体容量式加速度センサの信号 処理回路系を第 1 7図に示す。 加速度センサ 6 5は△〇検出器 6 1 △ C検出器 6 1 の出力信号を増幅して加速度に比例した信号 V。 をエア バッグシステムのマイクロコンピュータ 6 6へ出力する増幅器 6 2 , 検 出部 6 0のゼロ点や感度のバラツキを調整する調整部 8 0, マイクロコ ンピュータ 6 6からの自己診断指令 V d を処理し△〇検出器 6 1 を介し て検出部 6 0に診断信号を供給する自己診断機能部 6 3からなる専用 I C 6 4 と検出部 6 0よリ構成される。 このような従来の信号処理回路 系では検出部 6 0に発生したゼロ点のパラツキを調整する必要があリ、 また直流成分のドリフ トを除去することはできず、 このドリフ トは加速 度センサの検出精度を低下させていた。 なお、 第 1 8図及び本発明によ る信号処理回路系を示した第 1 9図〜第 2 1 図において、 増幅器 6 2と 接続された調整部 8 0を図中へ記憶することは省略した。 これらの図に おける調整機能は検出部 6 0の感度のバラツキのみである。 第 1 8図は エアバッグシステムのコントロールュニッ ト 6 9に設けたコンデンサ 6 7 と抵抗 6 8よりなるハイパスフィルタで加速度センサの直流成分を カツ 卜し、 加速度センサの検出部 6 0に発生したドリフ トを除去する方 法として良く知られている。 しかし、 本信号処理回路系も後述するよう に、 本発明による検出部の実装方法へ適用することにより、 実装構造が 簡単で低コストな加速度センサを実現する効果がある。
次に、 本発明による信号処理回路系を第 1 9図に示す。 本図により、 検出部 6 0のゼロ点パラツキの調整と、 熱歪みなどによって検出部 6 0 に発生した直流成分のドリフ 卜の除去方法を説明する。 専用 I C 6 4は △ C検出部 6 1, 増幅器 6 2, 自己診断機能 6 3, 演算器 7 0および積 分回路 7 1 よリ構成される。 増幅器 6 2の出力信号 V。 と基準電圧信号 V r ( V r は加速度がゼロのときの出力信号 V。 に等しい電圧) の差を 演算器 7 0で検出し、 演算器 7 0の検出信号を積分器 7 1で積分-した後. その積分結果を△ C検出器 6 1 のフィー ドパック制御する。 積分器 7 1 の積分時定数は 1秒以上と長く、 1 H zより早い周波数成分の加速度を 検出するエアバッグシステムにおいて支障のない値に設定されている。 このようにすると、 △ C検出器の動作点は直流的には常に基準動作点に 設定される。 今、 検出部 6 0より Δ〇検出器 6 1へ供給される信号を S 1 とすると、 S 1 は加速度信号と ドリフ ト信号の和と定義される。 こ の場合、 積分器 7 1 より△〇検出器 6 1へフィードバック制御される信 号 S 2は直流的なドリフ 卜信号になり、 Δ C検出器 6 1 の出力信号 S 3 は S 1 と S 2の差分になるように構成されているので、 信号 S 3には直 流的な ドリフ 卜成分は全く含まれなくなる。 結果として、 加速度センサ 6 5の出力信号 V。 からは直流的なドリフ ト成分は完全に除去される。 また、 このような信号処理回路構成にすると検出部のゼロ点パラツキは 直流的なドリフ トのように見える故、 ゼロ点バラツキは自動的に調整さ れ、 加速度がゼロのときの出力信号 V。 は自動的に V r になる。
本発明による信号処理回路系の他の実施例を第 2 0図に示す。 本図は 演算器 7 0と積分器 7 1 をマイクロコンピュータ 6 6 を用いて、 前図の 処理をディ ジタル的に行う方法である。 この場合、 補正信号 S 2 をディ ジタル的に A C検出器 6 1 に供給する故、 ディジタル信号を供給する間 隔が長くなるとディ ジタル信号を供給した瞬間、 加速度センサの出力信 号 V。 にリップル的な変動が発生する。 この場合の対策を第 2 1 図に示 した。 本図は事前にリップル的な変動を予測あるいは学習し、 加速度セ ンサの出力信号 V。 にリ ップル成分が発生しないように、 信号 S 2 を △ C検出器 6 1 に供給できるディジタル的な補正手段 7 2をマイクロコ ンピュ一タ 6 6のソフ 卜ウェア内に設けている。
次に、 本発明によるゼロ点の自動調整や直流成分のドリフ トを除去す る信号処理回路系を用いた検出部の実装方法について述べる。 第 2 2図 に本発明による実装方法の一実施例を示した。 本発明による実装方法を 用いると、 検出部が大きな熱歪を受ける構造の実装方法が可能になる。 検出部の熱歪によってゼロ点が大きく変動してもそのゼロ点を自動的に 補償できる故、 図に示すように検出部 2 5の周囲を樹脂などの材料で完 全に封止することができる。 即ち、 加速度センサのプラスチックパッケ ージ化が可能になり、 作業工程数が少ないため低コス卜な加速度センサ を提供することができる。 検出部 2 5 と専用 I C 2 4 をリー ドフレーム 7 に接着し、 導線 3 2で検出部 2 5 を専用 I C 2 4へ、 導線 3 1で専 用 I C 2 4 をリー ド端子 7 3へ電気的に結線した後、 検出部 2 5 と専用 I C 2 4 を トランスファーモールドなどで樹脂 7 5中へ同時に封止する 方法である。 なお、 孔 7 6は加速度センサをコントロールユニッ トの側 壁などにネジで固定するときに用いられる。
検出部の周囲を完全に樹脂などの硬い材料で封止すると、 検出部の可 動電極と固定電極間の空隙寸法がわずかに変化する。 結果として、 加速 度センサのゼロ点と感度が変化する。 ゼロ点の変化は前述の信号処理回 路系で自動的に対策できるが、 感度変化については別の対策がさらに必 要になる。 感度変化の対策方法の一例を第 2 3図に示した。 即ち、 検出 部 2 5 と専用 I C 2 4の周圃を比較的やわらかい材料 7 7 (例えば、 シ リコーンゴムなど) で囲んだ後、 樹脂などの材料 7 5でパッケージ化す る方法である。 このようにすると、 電極間の空隙寸法は極めて少なくな り、 実装前後の感度変化は無視できる値になる。 感度変化の対策方法の 他の実施例を第 2 4図に示す。 本図はパッケージ前後の感度変化を是認 し、 検出部 2 5 と専用 I C 2 4の周囲を樹脂 7 5で完全に封止した後、 加速度センサの感度をディジタル的に調整する方法である。 即ち、 樹脂 7 5より感度調整用として数ビッ トの端子 7 8 を外部に引き出しておき、 この端子を介して専用 I C 2 4内の増幅器に接続されている調整部のメ モリ内容をディジタル的に変更して、 増幅器の感度を調整する方法であ る。 調整部のメモリがツエナ一 R O Mの場合、 端子 7 8より数十ボルト の電圧を専用 I Cへ印加して、 メモリ内容を容易に調整することができ る。 樹脂 7 5の外部にレーザトリ ミング用の抵抗体を設けるアナログ的 な調整方法とは異なり、 調整部分の耐環境性が優れており、 信頼度の高 い加速度センサを提供できる。 樹脂などの材料でパッケージ化した加速 度センサの使い勝手の向上を図るには、 樹脂材料の表面を適当な材料で 丄 b コーティ ングするのがこのましい。 即ち、 第 2 5図に示すようにコ一テ ィ ング材料 1 0 0が半導電性の材料の場合は E M I に特に強い加速度セ ンサ、 非吸湿性の材料の場合は特に高温, 高湿下でも使用可能な加速度 センサが得られる。
前述したように、 本発明により低コス 卜で高性能な加速度センサが得 られる。 産業上の利用可能性
本発明の加速度センサは、 特に自動車のエアバッグシステムに適用可 能である。

Claims

1 D ¾¾ ίく、 ciK
1 . 可動電極と、 前記可動電極を支持するビームと、 前記可動電極に対 向して配置された固定電極とを備えた加速度センサにおいて、 前記可動 電極及び前記ビームは半導体基板からできていて、 前記可動電極と前記 ビームの厚さは同じであることを特徴とする加速度センサ。
2 . 請求項 1 において、 前記可動電極と前記ビームの厚さは数十ミクロ ン以下であることを特徴とする加速度センサ。
3 . 請求項 1 において、 前記固定電極は絶縁性基板状に形成されている ことを特徴とする加速度センサ。
4 . 請求項 1 において、 前記固定電極は半導体基板よりなることを特徴 とする加速度センサ。
5 . 請求項 4において、 前記可動電極及び前記ビームは半導体基板をェ ツチング加工して作られていることを特徴とする加速度センサ。
6 . 請求項 3において、 前記固定電極は前記絶縁性基板にあけたスルー ホールを介して前記絶縁性基板上に接合した半導体基板と電気的に接続 されていることを特徴とする加速度センサ。
7 . 加速度変化に対応して変位する可動電極の動きを検出する静電容量 検出器と、 前記検出器の出力信号を増幅する増幅器と、 前記増幅器の出 力信号レベルの変化を検出し、 この検出結果に対応した補正値を検出部 の直流ドリフ トを除去するように前記静電容量検出器に供給する補正手 段とを有することを特徴とする加速度センサ。
8 . 請求項 7において、 前記補正手段は検出部のゼロ点バラツキを自動 的に補償する手段であることを特徴とする加速度センサ。
9 . 請求項 7において、 前記補正手段は前記検出器の出力信号とゼロ加 速度に対応した基準信号との差を検出する演算器及び積分器から構成さ れていることを特徴とする加速度センサ。
1 0 . 請求項 7において、 前記補正手段は演算処理手段からなることを 特徴とする加速度センサ。
1 1 . 請求項 7において、 前記補正手段は補正値を前記静電容量検出器 を供給した直後に加速度センサに発生する出力変動をあらかじめ予測し たり、 適応修正したりする機能を有することを特徴とする加速度センサ
1 2 . 請求項 7ないし 1 1 のいずれかにおいて、 前記検出器の周囲が樹 脂などの材料で完全に封止された実装構造になっていることを特徴とす る加速度センサ。
1 3 . 加速度変化に対応して変位する可動電極の動きを検出する静電容 量検出器と、 前記静電容量検出器の出力信号を増幅する増幅器と、 検出 部の直流ドリフ 卜やゼロ点バラツキを除去するように前記増幅器の後段 に設けたハイパスフィルタ一とからなる信号処理回路とを有し、 検出部 と信号処理回路の周囲を樹脂などの材料で完全に封止した実装構造にし たことを特徴とする加速度センサ。
1 4 . 可動電極とビームを有する半導体基板のダイシング部の近傍をあ らかじめウェハ状態でエツチングし、 このエツチング部にウェハ状態で ワイヤボンディ ング可能なパッ ドを形成し、 各検出部をダイシングによ つてウェハより分離したことを特徴とする加速度センサ。
1 5 . 請求項 1 4において、 ダイシング部近傍のエッチング面が半導体 基板の表面に対して傾斜していることを特徴とする加速度センサ。
1 6 . 請求項 1 4 または 1 5において、 製作した検出部のビームを重力 方向に実装することによリ、 自動車の進行方向の加速度成分を検出する ことを特徴とする加速度センサ。
1 7 . 請求項 1 において、 検出部の周囲を樹脂などの材料で完全に封止 した後、 検出部の感度をディジタル的に調整することを特徴とする加速 度センサ。
1 8 . 請求項 1 2において、 前記検出器の周囲を半導電性の材料あるい は非吸湿性の材料でコーティ ングしたことを特徴とする加速度センサ。
PCT/JP1995/000547 1994-04-05 1995-03-24 Capteur d'acceleration WO1995027215A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52555395A JP3161736B2 (ja) 1994-04-05 1995-03-24 加速度センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/66880 1994-04-05
JP6688094 1994-04-05

Publications (1)

Publication Number Publication Date
WO1995027215A1 true WO1995027215A1 (fr) 1995-10-12

Family

ID=13328650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000547 WO1995027215A1 (fr) 1994-04-05 1995-03-24 Capteur d'acceleration

Country Status (2)

Country Link
JP (1) JP3161736B2 (ja)
WO (1) WO1995027215A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012326A (ja) * 2002-06-07 2004-01-15 Hiroaki Niitsuma 物理量検出器及び物理量検出器の製造方法
WO2007020701A1 (ja) * 2005-08-18 2007-02-22 C & N Inc 加速度センサ装置
TWI737239B (zh) * 2019-04-04 2021-08-21 大陸商武漢杰開科技有限公司 複合傳感器及其製作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128140A (ja) 2009-11-19 2011-06-30 Dainippon Printing Co Ltd センサデバイス及びその製造方法
JP5943107B2 (ja) * 2009-11-19 2016-06-29 大日本印刷株式会社 センサデバイス及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116465A (ja) * 1990-09-07 1992-04-16 Hitachi Ltd 半導体容量式加速度センサ及びその製造方法
JPH04301575A (ja) * 1990-12-17 1992-10-26 Texas Instr Inc <Ti> 加速度計デバイス
JPH05281254A (ja) * 1992-03-31 1993-10-29 Fujikura Ltd 半導体加速度センサ
JPH06249875A (ja) * 1993-03-01 1994-09-09 Hitachi Ltd 加速度センサ
JPH06289049A (ja) * 1993-04-02 1994-10-18 Hitachi Ltd 加速度センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116465A (ja) * 1990-09-07 1992-04-16 Hitachi Ltd 半導体容量式加速度センサ及びその製造方法
JPH04301575A (ja) * 1990-12-17 1992-10-26 Texas Instr Inc <Ti> 加速度計デバイス
JPH05281254A (ja) * 1992-03-31 1993-10-29 Fujikura Ltd 半導体加速度センサ
JPH06249875A (ja) * 1993-03-01 1994-09-09 Hitachi Ltd 加速度センサ
JPH06289049A (ja) * 1993-04-02 1994-10-18 Hitachi Ltd 加速度センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012326A (ja) * 2002-06-07 2004-01-15 Hiroaki Niitsuma 物理量検出器及び物理量検出器の製造方法
WO2007020701A1 (ja) * 2005-08-18 2007-02-22 C & N Inc 加速度センサ装置
TWI737239B (zh) * 2019-04-04 2021-08-21 大陸商武漢杰開科技有限公司 複合傳感器及其製作方法
US11243226B2 (en) 2019-04-04 2022-02-08 Autochips Wuhan Co., Ltd. Composite sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3161736B2 (ja) 2001-04-25

Similar Documents

Publication Publication Date Title
US5095752A (en) Capacitance type accelerometer
EP1096259B1 (en) High-vacuum packaged microgyroscope and method for manufacturing the same
US5676851A (en) Method of making a capacitance type acceleration sensor
US6158283A (en) Semiconductor acceleration sensor
JP3063209B2 (ja) 容量型加速度センサ
JPH1194506A (ja) センサ
JPH0894663A (ja) トランスデューサアセンブリ及び回路基板にトランスデューサを取り付ける方法
WO2013080238A1 (ja) 複合センサおよびその製造方法
US5535626A (en) Sensor having direct-mounted sensing element
US9927459B2 (en) Accelerometer with offset compensation
US20060174704A1 (en) Acceleration sensor
JPH08122359A (ja) 半導体加速度センサとその製造方法および試験方法
WO1995027215A1 (fr) Capteur d&#39;acceleration
JP2728237B2 (ja) 静電容量式加速度センサ
JP3223849B2 (ja) 半導体加速度センサ
JP3355916B2 (ja) マイクロgスイッチ
JPH05333056A (ja) 加速度センサ
JP2016072316A (ja) 半導体装置の製造方法
US20210348976A1 (en) Micromechanical sensor device and corresponding manufacturing method
JP2001311675A (ja) 圧力センサモジュール
JPH07234244A (ja) 加速度センサ
JPH0989925A (ja) 半導体加速度センサ
JPH07128365A (ja) 半導体加速度センサとその製造方法
JPH0447271A (ja) 加速度センサ及びその出力電圧調整方法
JPH06160423A (ja) 容量式加速度検出器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642