WO1995020052A1 - Procede de quantification d'ions potassium - Google Patents

Procede de quantification d'ions potassium Download PDF

Info

Publication number
WO1995020052A1
WO1995020052A1 PCT/JP1995/000052 JP9500052W WO9520052A1 WO 1995020052 A1 WO1995020052 A1 WO 1995020052A1 JP 9500052 W JP9500052 W JP 9500052W WO 9520052 A1 WO9520052 A1 WO 9520052A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
manufactured
ion
ions
potassium
Prior art date
Application number
PCT/JP1995/000052
Other languages
English (en)
French (fr)
Inventor
Toshio Tadano
Norihiko Kayahara
Masao Umemoto
Original Assignee
Kyowa Medex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Medex Co., Ltd. filed Critical Kyowa Medex Co., Ltd.
Priority to EP95906491A priority Critical patent/EP0744468A4/en
Priority to US08/666,521 priority patent/US5719036A/en
Publication of WO1995020052A1 publication Critical patent/WO1995020052A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/962Prevention or removal of interfering materials or reactants or other treatment to enhance results, e.g. determining or preventing nonspecific binding

Definitions

  • the present invention relates to a method for quantifying lithium ions useful for clinical examination.
  • glycerol monohydrogenase in the determination of potassium ion is disclosed in Japanese Patent Laid-Open Publication No. Hei 5-150396, and glycerol dehydrogenase is present in the presence of ammonia in a sample. Precise quantification is not possible because it interferes with the reaction.
  • a glutamine synthetase that produces glutamine using glutamic acid and ammonium ion as substrates in the presence of adenosine triphosphate (ATP) is known (Enzyme Handbook, edited by Bunji Maruo et al., 1982, Asakura Shoten) However, there is no example used for erasing ammonium ions in a sample.
  • ATP adenosine triphosphate
  • the method of pretreatment of the sample with glutamate dehydrogenase to eliminate the ammonium ions in the sample requires NADH or NADPH, and these substances may affect the glycerol dehydrogenase reaction, If the ground is too high, it will interfere with the determination of potassium ion. Therefore, the invention is not applicable to a method for quantifying carivum ions in a sample by glycemic dehydrogenase.
  • An object of the present invention is to provide a method for quantifying lithium ion using glycerol dehydrogenase, which is capable of quantifying a trace concentration of lithium ion even in a sample containing ammonium ion or hydroxylamine.
  • the method for quantifying potassium ions in a sample according to the present invention is a method for quantifying potassium ions in a sample using glyceryl dehydrogenase, wherein the sample is made of glutamic acid and
  • trace amounts of rhodium ions can be quantified even in a sample containing ammonium ions or hydroxylamine.
  • any sample may be used, but body fluids such as blood and urine can be used.
  • LOOKU / i preferably 1 to 50 KUZ 1, 1 to 10 mM ATP, 1 to 10 mM glutamic acid, 2 to 50 mM magnesium, 1 to 10 mM after adding an aqueous medium to the sample as needed. After adding glutamine synthase, the mixture is reacted at 20 to 40 ° C. for 3 to 5 minutes to perform a pretreatment.
  • reaction solution preferably in the presence of a chelating agent, 0.2 to 50 mM coenzyme, 0.05 to 2 KU / 1 glycerol dehydrogenase, 2 to 50 OmM Add glycerol dehydrogenase substrate and react at 8-50 ° C for 1-5 minutes. By measuring the glycerol dehydrogenase activity, the corresponding potassium ion can be quantified. If at least one of the coenzyme, glycerol dehydrogenase, and glycerol dehydrogenase substrate used in the reaction is added after the pretreatment reaction, the rest is added before the pretreatment reaction. You may leave.
  • the aqueous medium may be any buffer that does not contain ammonium ion or potassium ion, such as glycine buffer, tris buffer, good buffer, veronal buffer, barbital buffer, 2 O
  • glycine buffer tris buffer
  • good buffer veronal buffer
  • barbital buffer 2 O
  • a borate buffer of mM or less can be used.
  • these buffers have a pH of 20-1000 mM and a pH of 7-9.5.
  • the glutamine synthetase used in the present invention may be any glutamine synthetase belonging to enzyme number 6.3.1.2, and may be collected from animal organs, plant seeds, microorganisms, etc. Natural enzymes or those modified by genetic manipulation or the like. Any chelating agent may be used as long as it can bind to heavy metals such as copper, silver, zinc, mercury, and iron.
  • Ethylenediaminetetraacetic acid (EDTA)., 2-hydroxyhexylethylenedia Min triacetic acid (HEDTA), 1,2-diaminocyclohexantetraacetic acid, tritriacetic acid (NTA), diethylenetriaminepentaacetic acid (DT PA), glycol ether diamine N, N, N *, N'-tetraacetic acid (GEDTA), ethylenediamine diacetate (EDDA), dihydroxyethylglycine (DHEG), ethylenediamine nibrobion hydrochloride (EDDP), 1,2-bis (0-aminophenoxy) ethane I N, N, ', N'-Tetracalidium tetraacetic acid salt (BAPTA), hydroxyxethyliminodiacetic acid (HI DA) and the like.
  • HEDTA 2-hydroxyhexylethylenedia Min triacetic acid
  • NDA 1,2-diaminocyclohexantetraacetic acid
  • a chelating agent When a chelating agent is allowed to coexist during the glutamine synthetase reaction, it is particularly effective to use GEDTA, EDDA, DHEG, EDDP, HIDA, and BAPTA, which have particularly low binding strength to magnesium.
  • the addition of these chelating agents can improve the linearity of the calibration curve of the quantification method and extend the upper limit of the quantification concentration range.
  • the coenzyme includes nicotinamide adenine dinucleotide (NAD).
  • NAD nicotinamide adenine dinucleotide
  • NADH reduced NAD
  • glycerol dehydrogenase may be any enzyme as long as it is glycerol dehydrogenase belonging to enzyme number 1.1.1.6, but is preferably a bacterial enzyme, and these enzymes were modified by genetic manipulation, protein modification, or the like. An enzyme may be used.
  • the commercially available glycerol dehydrogenase used in the examples is suitable for the quantification method of the present invention.
  • glycerol dehydrogenase As a substrate for glycerol dehydrogenase, usually use glycerol, 1,2-propanediol, or 2,3-butanediol. When using the reverse reaction of glycerol dehydrogenase, use dihydroxyacetone (dimer) as the substrate. .
  • the glycerol dehydrogenase activity can be measured by any method (Enzyme Handbook, edited by Bunji Maruo et al., 1982, Asakura Shoten), but in the case of a positive reaction, the amount of NADH or NADPH produced is changed In the case of reverse reaction, decrease in NADH level
  • the enzyme activity is measured by quantifying When the reverse reaction is used, it is necessary to add an excess of a substrate for pretreatment for eliminating endogenous glycerol.
  • a surfactant such as polyethylene glycol alkyl phenyl ether, polyoxetylenepolyoxypropylene condensate, or the like is added to an aqueous medium, and a solubilizing agent such as albumin, magnesium chloride, and calcium chloride is added. Is also good.
  • FIG. 1 is a diagram showing a calibration curve of force-stream ions obtained by the method of the present invention.
  • Sodium chloride manufactured by Wako Pure Chemical Industries
  • potassium chloride manufactured by Wako Pure Chemical Industries
  • the potassium and sodium concentrations of 2, 4, and 6 mM, and the sodium concentration of 14 OmM are used as the power-ream ion calibration curve of the sodium matrix.
  • a standard solution was prepared.
  • a test tube was charged with 0.440 ml of a standard solution for a calibration curve and ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in a concentration of 0.40 ml of a 2 mM aqueous solution (the control test contained no ammonium chloride in the control test).
  • the glutamine synthetase Couse (manufactured Ninichika) in the sample solution 16 Ji Zm l, L one glutamic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 1. 2 mg / m 1, chloride Magne, shea ⁇ arm (manufactured by Wako Pure Chemical Industries, Ltd.) 0.
  • the calibration curve shown in Fig. 1 matched the calibration curve obtained in the control test, even in the presence of contaminants such as ammonia, accurate quantification of force reduction can be achieved by using an appropriate contaminant elimination method. Indicates that it can be done. Further, the detection limit by the obtained calibration curve was not different from the detection limit of the measurement method shown in Reference Example 1 without pretreatment with glutamine synthetase in the absence of ammonium chloride.
  • Serum sample in a test tube [It has been confirmed by flame photometry that it contains 4.4 mM potassium ion.] Take 0.04 Oml, add 10 UZml of glutamine synthetase (manufactured by Unitichi Power), L-glutamic acid ( 5mMZl, Magnesium sulfate (Wako Pure Chemical Industries) 5mMZl, ATP (Oriental Yeast Co., Ltd.) 5mM / l, NAD (Oriental Yeast Co., Ltd.) 2.5mM / l, glycerol
  • a method for quantifying a potentioma ion using glycerol monodehydrogenase capable of quantifying a trace concentration of a potentioma ion even in a sample containing ammonium ion or hydroxylamine.
  • the method for quantifying a force region according to the present invention is useful for clinical examination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明 細 書
カリウムイオンの定量方法 技術分野
本発明は、 臨床検査に有用な力リゥムイオンの定量方法に関する。 背景技術
力リゥムイオンの定量方法にグリセ口一ルデヒドロゲナーゼが用いられること が特表平 1一 5 0 3 5 9 6号公報に開示されている力 、 試料中にアンモニゥムィ ォンが存在するとグリセロールデヒドロゲナ一ゼ反応を妨害するので正確な定量 ができない。
試料中のアンモニゥムイオンを消去する方法として、 グル夕ミン酸デヒドロゲ ナ一ゼを用いて試料を前処理する方法が知られている 〔臨床化学分析 II (含窒素 成分) 、 第 2版、 東京化学同人 1 9 7 9年刊] 。
アデノシン三リン酸 (A T P ) の存在下、 グルタミン酸とアンモニゥムイオン を基質としてグルタミンを生産するグル夕ミンシンセターゼが知られている (酵 素ハンドブック、 丸尾文治ら編、 1982年、 朝倉書店刊) が、 試料中のアンモニゥ ムイオンの消去に用いられた例はない。
グルタミン酸デヒドロゲナーゼを用いて試料の前処理を行い試料中のアンモニ ゥムイオンを消去する方法は、 N A D H又は N A D P Hを必要とするので、 これ らの物質がグリセロールデヒド口ゲナーゼ反応に影響を及ぼすことや N A D Hの バックグランドが高くなりすぎることがカリウムィォンの定量に支障となる。 そ のため、 試料中のカリヴムイオンをグリセ口一 デヒドロゲナ一ゼで定量する方 法には適用できない 発明の開示
本発明は、 アンモニゥムイオン又はヒドロキシルァミンを含む試料においても 微量濃度の力リウムイオンを定量すること力 '可能な、 グリセロールデヒドロゲナ —ゼを用いた力リゥムイオンの定量方法を提供することを目的とする。 本発明の力リゥムイオンの定量方法は、 試料中の力リウムイオンをグリセ口一 ルデヒドロゲナ一ゼを用いて定量する方法において、 試料を、 グルタミン酸及び
A T Pの存在下、 グル夕ミンシンセクーゼで前処理することを特徴とするもので ある。
本発明によれば、 アンモニゥムイオン又はヒドロキシルァミンを含む試料にお いても微量濃度の力リゥムイオンを定量することができる。
本発明において、 試料はどのようなものでもよいが、 血液、 尿等の体液を用い ることができる。
以下に本発明の力リゥムイオンの定量方法の好ましい態様について説明する。 試料に必要により水性媒体を加えた後、 1 ~ 1 0 mMの A T P、 1〜 1 0 mM のグルタミン酸、 2〜5 O mMのマグネシウム、 1〜; L O O K U/ i、 好ましく は 1〜5 0 K U Z 1のグルタミンシンセ夕一ゼを添加した後、 2 0〜4 0 °Cで 3〜5分間反応させ前処理を行う。 該反応液に、 好ましくはキレ一卜剤の存在 下、 0 . 2〜5 0 mMの補酵素、 0 . 0 5〜 2 K U/ 1のグリセロールデヒドロ ゲナ一ゼ、 2〜5 0 O m Mのグリセロールデヒドロゲナーゼの基質を添加し、 8〜 5 0 °Cで 1〜 5分間反応させる。 該グリセロールデヒドロゲナ一ゼ活性を測 定することにより、 対応するカリウムイオンを定量することができる。 なお、 該 反応に用いる補酵素、 グリセ口一ルデヒドロゲナーゼ、 グリセロールデヒドロゲ ナーゼの基質のうち、 少なくとも一つを前処理反応の後に添加するのであれば、 残りは前処理反応の前に添加しておいてもよい。
水性媒体としては、 アンモニゥムイオン、 カリウムイオンを含まない緩衝液で あればどのようなものでもよく、 グリシン緩衝液、 卜リス緩衝液、 グッ ド緩衝 液、 ベロナール緩衝液、 バルビタール緩衝液、 2 O mM以下のホウ酸緩衝液等が あげられる。 これらの緩衝液は、 2 0〜1 0 0 0 mMで、 p Hは7〜9 . 5であ ることが好ましい。
本発明に用いるグルタミンシンセタ一ゼは、 酵素番号 6. 3. 1. 2 に属するグル夕 ミンシンセタ一ゼであればどのようなものでもよく、 動物の臓器、 植物の種子、 微生物等から採取される天然の酵素又はそれらを遺伝子操作等で改変したものが あげられる。 キレ一卜剤としては、 銅、 銀、 亜鉛、 水銀、 鉄等の重金属と結合できるもので あればどのようなものでもよく、 エチレンジァミン四酢酸 (EDTA) .、 2—ヒ ドロキシェチルエチレンジァミン三酢酸 (HEDTA) 、 1 , 2—ジアミノシク 口へキサン四酢酸、 二トリ口三酢酸 (NTA) 、 ジエチレン卜リアミン五酢酸 (DT PA) 、 グリコールエーテルジァミン一 N, N, N* , N' —四酢酸 (GEDTA) 、 エチレンジァミン二酢酸 (EDDA) 、 ジヒドロキシェチルグ リシン (DHEG) 、 エチレンジァミンニブロビオン酸塩酸塩 (EDDP) 、 1 , 2—ビス ( 0—アミノフエノキシ) ェタン一 N, N, ' , N' —テ卜 ラ酢酸テトラカリ ウム塩 (BAP TA) 、 ヒ ドロキシェチルイミノ二酢酸 (H I DA) 等があげられる。 グルタミンシンセタ一ゼ反応時にキレート剤を共 存させる場合は、 特にマグネシウムとの結合力が弱い G EDTA、 EDDA, DHEG, EDDP, H I DA, B A P T Aを用いること力 子ましい。 これらの キレー卜剤の添加により、 該定量方法の検量線の直線性を改善するとともに定量 濃度範囲の上限を広げることができる。
補酵素としては、 ニコチンアミドアデニンジヌクレオチド (NAD) があげら れる。 またグリセロールデヒドロゲナーゼの逆反応を用いるときには、 還元型 NAD (NADH) を補酵素として用いる。
本発明において、 グリセロールデヒドロゲナーゼは、 酵素番号 1.1.1.6 に属す るグリセロールデヒドロゲナーゼであればどのような酵素でもよいが、 細菌由来 の酵素が好ましく、 これらの酵素を遺伝子操作、 タンパク質修飾等により改変し た酵素でもよい。 実施例に用いられた市販のグリセロールデヒドロゲナーゼは本 発明の定量方法に好適である。
グリセロールデヒドロゲナーゼの基質としては、 通常グリセロール、 1 , 2— プロパンジオール、 2, 3—ブタンジオールを用いる力 グリセロールデヒド α ゲナーゼの逆反応を用いるときは、 基質にジヒドロキシアセトン (2量体) 等を 用いる。
グリセロールデヒドロゲ一ゼ活性の測定法はどのよ όなものでもよいが (酵素 ハンドブック、 丸尾文治ら編、 1982年、 朝倉書店刊) 、 正反応の場合は生成する NAD H量又は N A D P H量の変化、 逆反応の場合は減少する NAD H量の変化 を定量することにより、 該酵素活性を測定する。 なお、 逆反応を用いる場合は、 内因性のグリセロールを消去する前処理を行う力 基質を過剰に加える必要があ る。
なお、 本発明においては水性媒体中に、 ポリエチレングリコールアルキルフエ ニルエーテル、 ポリォキシェチレンポリォキシプロピレン縮合物等の界面活性 斉 i アルブミン、 塩化マグネシウム、 塩ィヒカルシウム等の可溶化剤等を加えても よい。 図面の簡単な説明
図 1は、 本発明方法により得られた力リゥムイオンの検量線を示す図である。 発明を実施するための最良の形態
以下、 実施例により本発明を更に具体的に説明する力 本発明の範囲はこれら の実施例に限定されるものではない。
(実施例 1 ) 夾雑物存在下での定量
( 1 ) カリウムィォン検量線用標準液の調製
塩化ナトリウム (和光純薬工業製) 及び塩化カリウム (和光純薬工業製) を蒸 留水で希釈し、 カリウム濃度 2、 4、 6mM、 ナトリウム濃度 14 OmMのナ卜 リゥムマ卜リックスの力リゥムイオン検量線用標準液を調製した。
(2) 力リウムイオンの定量
試験管に力リウムィォン検量線用標準液 0. 040m l及び塩化ァンモニゥム (和光純薬工業製) 2 mM水溶液 0. 040m lを入れた ('対照試験は塩化ァン モニゥム非添加) 。 この試料液にグルタミンシンセクーゼ (ニニチカ製) 16じ Zm l、 L一グルタミン酸 (和光純薬工業製) 1. 2mg/m 1、 塩化マグネ、シ ゥム (和光純薬工業製) 0. 5mg/m l、 ATP (オリエンタル酵母工業製) 2mg/m l、 NAD (オリエンタル酵母工業製) 2m g/mし グリセロー ル (ベーリ ンガーマンハイム製) 1 SmgZm 1含有 30 OmM卜リス緩衝液 (pH8. 5、 25°C) 2. 0 m 1を加え 37 °Cで 5分間インキュベーションし アンモニゥムィォンを消去した。 次に、 グリセロールデヒドロゲナーゼ (オリエンタル酵母工業製) を 1 U/ m 1、 37°Cで予めィンキュベ一卜しておいた 30111¾/1£0丁八を含む50111¾/1 卜リス緩衝液 (pH 9. 0、 25°C) 1m lを前記溶液に添加し、 攪拌した後、 . 340 nmにおける吸光度変化量を分光光度計 (日立製作所製 ·· U V 3400 ) で測定した。 得られた検量線を図 1に示した。
図 1に示された検量線は、 対照試験で得られた検量線と一致したため、 アンモ ニァ等夾雑物存在下においても、 適切な夾雑物の消去法を用いれば力リゥムィォ ンを正確に定量することができることを示している。 また、 得られた検量線によ る検出限界は、 参考例 1に示した塩化アンモニゥム不存在下でグルタミンシンセ ターゼによる前処理を行わない測定法の検出限界と差がなかった。
(実施例 2) 血清中のカリウムイオンの定量
試験管に血清試料 〔炎光光度法で 4. 4mMのカリウムイオンを含むことが確 認されている] 0. 04 Omlをとり、 これにグルタミンシンセターゼ (ュニチ 力製) 10UZml、 L—グルタミン酸 (和光純薬工業製) 5mMZl、 硫酸マ グネシゥム (和光純薬工業製) 5mMZl、 ATP (オリエンタル酵母工業製) 5mM/l、 NAD (オリエンタル酵母工業製) 2. 5mM/l、 グリセロール
(ベーリ ンガ一マンハイム製) 10 g/1含有 25 OmMト リス緩衝液 (pH 9. 0、 25°C) 2. Om 1を加え 37°Cで 5分間インキュベーションしアンモ ニゥムイオンを消去した。
次に、 予め 37°Cにプレインキュベーションしたグリセロールデヒドロゲナ一 ゼ'(オリエンタル酵母工業製) 1. 2UZm丄、 25mMEDTAを含む 100 mM卜リス緩衝液 (pH9. 0、 25°C) 1 m 1を前記溶液に添加し、 攪拌した 後、 340 nmにおける吸光度変化量 (反応開始 4〜5分) を分光光度計 (日立 製作所製: UV3400) で測定し、 検量線からカリウムイオン量を測定 た 血清中には 4. 6mMの力リゥムイオンが存在することが確認された。
(参考例 ) 夾雑物不存在下で前処理を行わない定量
( 1 ) カリウムィォン検量線闬標準液の調製
塩化カリウム (和光純薬工業製) を蒸留水で希釈し 2、 4、 6mMのカリウム 検量線用標準液を調製した。 (2) カリゥムイオンの定量
試験管にカリウムイオン検量線用標準液 0. 040mlをとり、 これに NAD (オリエンタル酵母工業製) 1. 6mgZm l、 グリセロール (ベ一リンガーマ ンハイム製) 1 OmgZm 1及び 2 OmMEDTAを含む 30 OmM卜リス緩衝 液 (pH8. 5、 25°C) を加えた。 次に、 グリセ口一ルデヒドロゲナ一ゼ (ォ リエンタル酵母工業製) 1 UZm 1を含む水溶液 1 m 1を前記溶液に添加し、 攪 拌した後、 34 Onmにおける吸光度の変化量を分光光度計 (日立製作所製 '· UV3400) で測定した。 産業上の利用可能性
本発明により、 アンモニゥムイオン又はヒドロキシルァミンを含む試料におい ても微量濃度の力リゥムイオンを定量すること力 '可能な、 グリセ口一ルデヒドロ ゲナーゼを用いた力リゥムイオンの定量方法が提供される。 本発明の力リゥムィ オンの定量方法は、 臨床検査に有用である。

Claims

請 求 の 範 囲
1 . 試料中の力リゥムイオンをグリセ口一ルデヒドロゲナーゼを用いて定量する. 方法において、 試料を、 グルタミン酸及びアデノシン三リン酸の存在下、 グル夕 ミンシンセターゼで前処理することを特徴とするカリウムィォンの定量方法。
2 . 試料がアンモニゥムイオンを含むものである請求の範囲第 1項記載の定量方 法。
3 . 試料が体液である請求の範囲第 1項記載の定量方法。
PCT/JP1995/000052 1994-01-24 1995-01-20 Procede de quantification d'ions potassium WO1995020052A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95906491A EP0744468A4 (en) 1994-01-24 1995-01-20 METHOD FOR DETERMINING POTASSIUM IONS
US08/666,521 US5719036A (en) 1994-01-24 1995-01-20 Quantitative determination method for potassium ions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6005955A JPH07203991A (ja) 1994-01-24 1994-01-24 カリウムイオンの定量方法
JP6/5955 1994-01-24

Publications (1)

Publication Number Publication Date
WO1995020052A1 true WO1995020052A1 (fr) 1995-07-27

Family

ID=11625324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000052 WO1995020052A1 (fr) 1994-01-24 1995-01-20 Procede de quantification d'ions potassium

Country Status (4)

Country Link
US (1) US5719036A (ja)
EP (1) EP0744468A4 (ja)
JP (1) JPH07203991A (ja)
WO (1) WO1995020052A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739397A (ja) * 1993-08-04 1995-02-10 Kyowa Medex Co Ltd 塩素イオンの定量方法
US7008901B2 (en) * 2000-01-19 2006-03-07 Mitsui Chemicals, Inc. Emulsion for thermal recording material and thermal recording materials made by using the same
US8187831B2 (en) * 2003-09-19 2012-05-29 General Atomics Determination of ions using ion-sensitive enzymes
US7022494B2 (en) * 2003-09-19 2006-04-04 General Atomics Detection of potassium ions using ion-sensitive enzymes
EP2108954A1 (en) 2008-04-10 2009-10-14 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A test system for detecting intracellular cyclic nucleotide level and methods and uses thereof
AR073675A1 (es) 2008-09-26 2010-11-24 Sanofi Aventis Metodos para determinar la eficacia de los ligandos de los intercambiadores de sodio-proton
EP2175274A1 (en) 2008-09-26 2010-04-14 Sanofi-Aventis Methods for determining sodium-proton-exchanger ligand efficiency
EP2209004A1 (en) 2009-01-12 2010-07-21 Sanofi-Aventis Methods for determining sodium-proton-exchanger ligand efficiency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503596A (ja) * 1987-04-10 1989-12-07 ザ フリンダーズ ユニヴアーシテイ オブ サウス オーストラリア 体液中のカリウムイオンを測定する方法及びそのための組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142272A (ja) * 1985-12-17 1987-06-25 Takara Shuzo Co Ltd アンモニアまたはatpの定量法
US5380649A (en) * 1987-04-10 1995-01-10 Boehringer Mannheim Gmbh Enzymatic determination of analyte ions in fluids by optimizing measurement levels
US5334507A (en) * 1991-09-20 1994-08-02 Toyo Boseki Kabushiki Kaisha Composition for measurement of potassium ion concentration and composition for elimination of ammonium ions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503596A (ja) * 1987-04-10 1989-12-07 ザ フリンダーズ ユニヴアーシテイ オブ サウス オーストラリア 体液中のカリウムイオンを測定する方法及びそのための組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUMIHARU MARUO AND ANOTHER, "Oxigen Handbook", Asakura Shoten, 1 March 1983, p. 775. *
MASAYUKI SAITO AND TWO OTHERS, "Clinical Chemical Analysis (2nd edit.) -Nitric Components-", Tokyo Kagaku Dojin, 16 April 1979, p. 45-48. *
See also references of EP0744468A4 *

Also Published As

Publication number Publication date
EP0744468A4 (en) 1997-12-03
US5719036A (en) 1998-02-17
JPH07203991A (ja) 1995-08-08
EP0744468A1 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
WO1995020052A1 (fr) Procede de quantification d'ions potassium
JP3034969B2 (ja) アンモニア、α−アミノ酸類またはα−ケト酸の高感度定量法および高感度定量用組成物
Nakamura et al. Quantitation ofL-amino acids by substrate recycling between an aminotransferase and a dehydrogenase: application to the determination ofL-phenylalanine in human blood
US5420008A (en) Assay method and assay reagent for serum iron or unsaturated iron binding capacity
RU2184778C2 (ru) Система восстановления конфермента, набор для ферментативного определения концентрации анализируемого вещества и ферментативный способ определения концентрации анализируемого вещества
JP4257568B2 (ja) 生体成分の測定方法およびそれに用いる試薬組成物
JP2000232898A (ja) 物質の定量方法および定量試薬
JP2980811B2 (ja) アンモニウムイオンの定量方法
US7198890B2 (en) Method for quantitatively determining homocysteine and a reagent for quantitative determination of homocysteine
JP4016296B2 (ja) 生体成分測定方法およびそのための試薬組成物
JP4731733B2 (ja) システイン共存試料中のホモシステインの測定法
JP2005245466A (ja) 生体成分測定方法およびそのための試薬組成物
JP2002355095A (ja) 生体成分の測定方法およびそれに用いる試薬キット
JPH05103697A (ja) アンモニウムイオン消去用組成物
EP0392021B1 (en) Method for analyzing components
JPH07265097A (ja) 鉄の定量方法
JP3894236B2 (ja) 銅イオン測定方法およびその試薬組成物
JPH02255098A (ja) グアニジノ酢酸の定量法
JP2983765B2 (ja) 血清鉄の測定法および測定用組成物
JP3614962B2 (ja) アンモニウムイオンを消去する方法及び試料中の特定成分を測定する方法
JP3113025B2 (ja) 鉄の定量方法
JP2004113138A (ja) ホモシステインの測定方法及び測定用試薬
Williamson L-Alanine Determination with Alanine Dehydrogenase Dermot H. Williamson L-Alanine dehydrogenase (L-Alanine: NAD oxidoreductase, deaminating, EC 1.4. 1.1) was first described and partially purified from B. subtilis by Wiame and Piérard¹². A similar enzyme has been isolated from
JPH11165A (ja) ウレアーゼ阻害剤
JP2004049008A (ja) ホモシステインの定量方法及び定量用試薬

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08666521

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995906491

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995906491

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995906491

Country of ref document: EP