WO1995005038A1 - Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain - Google Patents

Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain Download PDF

Info

Publication number
WO1995005038A1
WO1995005038A1 PCT/JP1994/001310 JP9401310W WO9505038A1 WO 1995005038 A1 WO1995005038 A1 WO 1995005038A1 JP 9401310 W JP9401310 W JP 9401310W WO 9505038 A1 WO9505038 A1 WO 9505038A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
level
gain control
desired wave
Prior art date
Application number
PCT/JP1994/001310
Other languages
English (en)
French (fr)
Inventor
Mamoru Sawahashi
Fumiyuki Adachi
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to US08/411,605 priority Critical patent/US5745531A/en
Priority to DE69428883T priority patent/DE69428883T2/de
Priority to EP94923090A priority patent/EP0673125B1/en
Publication of WO1995005038A1 publication Critical patent/WO1995005038A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Definitions

  • the present invention relates to an apparatus and a method for controlling a gain of a receiver in mobile communication. More specifically, the present invention relates to an automatic gain control device and method for a mobile communication receiver using a CDMA system that performs multiple access using spectrum spreading. Background art
  • Propagation characteristics of land mobile communications include fluctuations due to changes in the distance between the base station and mobile station (distance fluctuations), slow fluctuations over a section of several tens of meters (median fluctuations), and several tens of meters It is represented by three types: rapid fluctuations (instantaneous fluctuations) in the section of the degree.
  • rapid fluctuations instantaneous fluctuations
  • the fluctuation of the received signal due to the distance fluctuation is the largest. For example, at the edge of a cell far from the base station, the received signal is attenuated by 70 dB or more. Therefore, the dynamic range of a mobile communication receiver is required to be 70 dB or more.
  • the received signal level fluctuates by 70 dB or more, and another user is talking on a channel in an adjacent frequency band, so the signal level is detected after removing unnecessary signals on the adjacent channel. It is necessary to amplify to the level that can be achieved.
  • phase shift information such as analog signal transmission and digital systems that are scheduled to be introduced in the next period, such as ⁇ ⁇ 4-shift QPS ⁇ modulation, 70 d ⁇
  • the above-described amplification keeps the fluctuation of the input signal level of the receiver constant.
  • Figure 2 shows the block configuration of the feedback automatic gain control circuit shown in Fig. 2.
  • the conventional feedback type automatic gain control circuit uses the gain according to the bias voltage.
  • Variable gain control circuit 11 and the envelope level of its output signal are detected.
  • the envelope level is supplied to the variable gain control amplifier 12 as a bias voltage.
  • the gain of the variable gain control amplifier 11 changes according to the fluctuation of the instantaneous envelope level
  • the feedback type automatic gain control circuit is the output of the variable gain control amplifier 11
  • the input of the variable gain control and the width signal is input to the instantaneous envelope level detector. Signal. Therefore, the instantaneous rise characteristics are better than the feedback type. However, since the input signal level of the instantaneous envelope level detector fluctuates by 70 dB or more, there is a problem that an instantaneous envelope level detector having a wide dynamic range is required.
  • each user is identified by a spreading code
  • multiple users communicate at the same carrier frequency.
  • the same carrier frequency can be used in an adjacent cell.
  • the frequency repetition distance can be shortened compared to the FDMA or TDMA method. Therefore, in the CDMA method, the subscriber capacity per frequency band can be increased.
  • the CDMA method it is impossible to perform orthogonalization completely so that the cross-correlation of the spreading codes assigned to each user becomes zero. For this reason, due to mutual censorship, the despread signal includes the interference signal power of another user.
  • an object of the present invention is to provide an automatic gain control device for a spread spectrum signal receiver that quickly follows not only distance fluctuations and median fluctuations but also instantaneous fluctuations caused by ray-leaf aging.
  • the invention according to claim 1 includes a variable gain control amplification unit that amplifies a received spectrum spread signal, a quadrature detection unit that performs quadrature detection of a signal amplified by the variable gain control amplification unit, A despreading means for despreading the signal quadrature detected by the quadrature detection means; and means for obtaining an in-phase component and a quadrature component of the modulated signal despread by the despreading processing means.
  • An automatic gain control device for a vector spread signal receiver comprising: an AZD conversion means for converting an output of the quadrature detection means into a digital signal and supplying the digital signal to the despreading processing unit; and an in-phase component and a quadrature component of the digital signal.
  • Digital level correction means for performing level conversion by digital processing, instantaneous envelope detection means for obtaining a square component of the amplitude of the modulated signal, and instantaneous envelope detection means.
  • a symbol timing extracting means for detecting a Shinboruti Mi ring to input power signal, the time range of propagation delays an output signal of said instantaneous envelope detecting means output symbol timing signal from the symbol tie Mi packaging extracting means as a reference
  • the first desired wave signal level detecting means for obtaining the signal level of the desired wave by integrating the values in the frame, and the desired signal signal output from the first desired wave signal level detecting means are integrated over several symbols to obtain the desired signal.
  • a second desired wave signal level detecting means for obtaining a signal level of the wave.
  • the invention according to claim 2 is the automatic gain control device according to claim 1, wherein the digital level correction unit uses an output of the first desired wave signal level detection unit, The output signal level of the first desired wave signal level detecting means is corrected so as to be constant, and the variable gain control amplification means uses the output of the second desired wave signal level detecting means, (2) Amplification is performed so that the output signal level of the desired wave signal level detecting means is constant.
  • the invention according to claim 3 is the automatic gain control device according to claim 2, wherein the envelope detector detects an envelope level of an output signal of the variable gain control amplifying means, Means for correcting the operating point of the variable gain amplifying means using the output of the envelope detector so that when the output signal of the line detector exceeds a predetermined level, the output signal of the envelope detector is reduced. It is further characterized by the following.
  • the invention described in claim 4 is a receiving means for receiving the spread spectrum signal, a variable gain control amplification means for amplifying the spread spectrum signal received by the receiving means, and the variable gain Orthogonal detection means for orthogonally detecting the signal amplified by the control amplification means, despreading processing means for despreading the signal orthogonally detected by the orthogonal detection means, and despreading by the despreading processing means
  • a spread spectrum communication apparatus having means for obtaining an in-phase component and a quadrature component of a modulated signal, wherein the AZD conversion means converts the output of the quadrature detection means into a digital signal and supplies the digital signal to the despreading processing unit And digitally converting the in-phase and quadrature components of the digital signal by digital processing.
  • Digital level correction means instantaneous envelope detection means for obtaining a square component of the amplitude of the modulation signal, symbol timing extraction means for receiving an output signal of the instantaneous envelope detection means and detecting symbol timing, First desired wave signal level detection means for obtaining a signal level of a desired wave by integrating an output signal of the instantaneous envelope detection means within a time range of propagation propagation based on an output symbol timing signal from a symbol timing extraction means; A second desired wave signal level detecting means for obtaining a desired wave signal level by integrating the output desired signal level of the first desired wave signal level detecting means over several symbols.
  • the invention according to claim 5 is the communication device according to claim 4, wherein the digital level correction unit uses the output of the ⁇ 1 desired wave signal level detection unit to generate the first desired wave.
  • the output signal level of the signal level detection means is corrected so as to be constant, and the variable gain control amplification means uses the output of the second desired wave signal level detection means to generate the second desired wave signal level.
  • the variable gain control An envelope detector for detecting an envelope level of an output signal of the amplifying means, and an output signal of the envelope detector being reduced when an output signal of the envelope detector exceeds a predetermined level. Use the output of the envelope detector Means for correcting the excitation point of the variable gain amplifying means.
  • the invention according to claim 7 includes a variable gain control amplification means for amplifying the received spectrum spread signal, a quadrature detection means for performing quadrature detection on the signal amplified by the variable gain control amplification means, Despreading processing means for despreading a signal orthogonally detected by the quadrature detection means; Means for obtaining an in-phase component and a quadrature component of a despread modulated signal.
  • a variable gain control amplification means for amplifying the received spectrum spread signal
  • a quadrature detection means for performing quadrature detection on the signal amplified by the variable gain control amplification means
  • Despreading processing means for despreading a signal orthogonally detected by the quadrature detection means
  • Means for obtaining an in-phase component and a quadrature component of a despread modulated signal In an automatic gain control method applied to an automatic gain control device of a spectrum spread signal receiver, an output of the quadrature detection means is output.
  • the signal output in the instantaneous envelope detection step is integrated over the propagation delay time range based on the The first desired wave signal level detection step and the second desired wave signal level for obtaining the desired wave signal level by integrating the desired wave signal level output in the first desired wave signal level detection step over several symbols And a detection step.
  • the invention according to claim 8 is the automatic gain control method according to claim 7, wherein the digital level correction step uses an output of the first desired wave signal level detection step, Correction is performed so that the output signal level of the first desired wave signal level detection step becomes constant, and the variable gain control amplification step uses the output of the second desired wave signal level detection step to calculate the second desired wave signal level. (2) Amplification is performed so that the output signal level of the desired wave signal level detection step becomes constant.
  • the invention according to claim 9 is the automatic gain control method according to claim 8, wherein the envelope detection step detects an envelope level of the signal output in the variable gain control amplification step. When the detection signal output in the envelope detection step exceeds a predetermined level, a step of correcting the operating point of the variable gain amplifying means using the detection signal so that the detection signal becomes small. Is further provided.
  • the gain of the variable gain control amplifier 22 is controlled by the output of the second desired signal level detector 44.
  • Line 51 in Fig. 3 shows the distance fluctuation and median fluctuation of the desired signal level. According to the present invention, this variation is compensated.
  • the line 52 in FIG. 3 shows the instantaneous fluctuation of the rare-wave signal level due to ray-leaning.
  • the digital level correction unit 33 is controlled by the detection output of the second desired wave signal level detection unit 43 so that its output becomes constant. Since this control is performed digitally, the level can be corrected following the instantaneous fluctuation.
  • the gain of the variable gain control amplifier 22 is controlled using the output of the envelope detector 46. Therefore, the ⁇ ⁇ ⁇ converters 31 and 32 do not saturate. Therefore, the gain can be controlled by following the instantaneous fluctuations of a wide dynamic range. Therefore, it is possible to sufficiently obtain the quantization accuracy of the signal after A / D conversion even under ray-leaf aging. Also, the input level of the A / D converter can be kept constant on the receiving side for transmission power control that follows instantaneous fluctuations.
  • FIG. 1 is a hard disk block diagram of the automatic gain control device of the present invention
  • FIG. 2 is a block diagram showing a conventional feedback type automatic gain control circuit
  • FIG. 3 is an explanatory diagram showing distance variation, median value variation, and instantaneous variation of a desired signal level.
  • BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows a hard-air block diagram of the automatic gain control device of the present invention.
  • the received spectrum spread signal in the intermediate frequency band from the input terminal 21 is amplified by the variable gain control amplifier 22, and the amplified output is subjected to quadrature detection by the quadrature detector 23. That is, for example, the output of the local oscillator 24 and this
  • Multipliers 26 and 27 respectively multiply the _ output of the amplifier 22 by the phase shifter by 0 degrees and perform quadrature detection on the I and Q two-channel baseband signals.
  • the quadrature-detected baseband spread signal is filtered by low-pass filters 28 and 20 to remove the high-long-wave signal and supplied to AZD converters 31 and 32, respectively.
  • the I and Q digital signals from the AZD converters 31 and 32 are level-converted by the digital level correction unit 33.
  • the digital signal corrector 33 corrects the digital signal so that the signal level becomes constant with respect to instantaneous fluctuations of about several symbol periods.
  • a method of performing such correction there is a method in which an output signal level corresponding to a gain control signal is previously written in a memory with respect to an input signal level, and the level is corrected with reference to a ROM table. .
  • Another method is to correct the level by multiplying the input signal level by gain control signal information.
  • a method using bit shift is also conceivable, but in this case, it is not appropriate because fine level correction cannot be performed.
  • the level-converted signal is then despread by a matching filter (or sliding correlator) 35, 36 of the despreading processor 34 using a spread code replica synchronized with the received spread code. Is done.
  • the despread signal is supplied to the instantaneous envelope detector 37.
  • the instantaneous envelope detector 37 calculates a temporal envelope level signal of the IF modulation signal from the despread signal at the chip period, and furthermore, a power of I ⁇ 2 + Q 2 is obtained.
  • the symbol timing extraction unit 38 extracts a data symbol timing component from the envelope component using the peak signal of the envelope component as a trigger.
  • the timing extracting section 38 has a peak position detecting section 39, a DPLL 41, and a timing generating section 42.
  • the peak position of the envelope component detected by the instantaneous envelope detector 37 is detected by the peak position detector 39.
  • the peak position detector 39 When the peak position is detected, the signal power appears in the range of several chips according to the delay profile when the signal is despread by the matched filter.
  • RAKE synthesizes the signal power of several chips before and after the peak position. Since the time of the peak position at the receiver changes as the mobile station moves, tracking must be performed. Therefore, when the current peak position changes to, for example, the position of the next chip after observing several symbol sections, the signal power of the front and rear chips is combined with RAKE based on the maximum peak position.
  • the digital movement lock loop (D PLL) 41 is driven by using the detected peak signal as a trigger. Then, the data symbol timing is obtained from the timing generation section 42.
  • the timing generator 42 calculates the time window width at which the desired wave arrives from the symbol timing.
  • the first desired wave signal level detector 43 integrates the instantaneous envelope output from the instantaneous envelope detector 37 over the time window width, that is, over the propagation delay time. The time integration is performed by the accumulator. After the time window has elapsed, the accumulator is reset. The second desired signal level detector 44 averages the detected desired signal level over a period of several symbols.
  • the digital level correction unit 33 is controlled by the detection level of the first desired wave signal level detection unit 43. That is, since the input digital signal is level-converted at the detection level of the first desired wave signal, the level caused by the instantaneous fluctuation is absorbed and the level of the output digital signal becomes constant.
  • the detection level of the second desired wave signal level detection section 44 is supplied to the control voltage setting section 45.
  • Variable gain control amplifier 2 2 by output of control voltage setting section 4 5 Is controlled, and the output level of the variable gain control amplifier 22 becomes constant.
  • the output of the variable gain control amplifier 22 is subjected to envelope detection by an envelope detector 46.
  • the control voltage setting unit 45 is controlled to correct the operating point of the variable gain control amplifier 22. Therefore, the gain of the variable gain control amplifier 22 is controlled by the detection output of the second desired wave signal level detection section 44 when the output of the envelope detector 46 is below a predetermined level.
  • the correction of the operating point of the variable gain control amplifier 22 based on the output from the envelope detector 46 prevents the input signal levels of the AZD converters 31 and 32 from being saturated.
  • Fountain 51 in Fig. 3 shows the distance fluctuation and the median fluctuation of the desired signal level. According to the present invention, this variation is compensated.
  • Line 52 in FIG. 3 shows the instantaneous fluctuation of the desired signal level due to Rayleigh fading.
  • the digital level correction section 33 is controlled by the output of the second desired wave signal level detection section 43, and the output level of the digital level correction section 33 is kept constant. Since the control of the digital level correction unit 33 is performed digitally, the level can be corrected following the instantaneous fluctuation.
  • the output of the envelope detector 46 is used to control the gain of the variable gain control amplifier 22 when there is a pair with an excessive input. Therefore, the AZD converters 31 and 32 do not saturate. For this reason, the gain can be controlled following instantaneous fluctuations in a wide dynamic range, and the quantization accuracy of the signal after A / D conversion can be kept sufficiently high even under Rayleigh fusing.
  • the input level of the AZD converter can be kept constant on the receiving side even for transmission power control that follows instantaneous fluctuations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

明 発明の名称
自動利得制御装置、 通信装置および自動利得制御方法
技術分野
本発明は、 移動通信における受信機の利得制御装置および方法に関する。 より具体的には、 本発明はスぺク トル拡散を用いてマルチプルアクセスを 行う C DMA方式を用いた、 移動通信の受信機の自動利得制御装置および 方法に関する。 背景技術
陸上移動通信の伝搬特性は、 基地局と移動局間の距離の変化に伴う変動 (距離変動) 、 数 1 O m程度の区間に渡る緩慢な変動 (中央値変動) 、 お よび数 1 O m程度の区間での急激な変動 (瞬時変動) の 3つで表わされる。 これらの変動の中で、 距離変動に伴う受信信号の変動が最も大きい。 例え ば基地局から離れたセルの端では 7 0 d B以上受信信号が減衰する。 従つ て移動通信の受信機のダイナミックレンジとしては、 7 0 d B以上が要求 される。
このように、 移動通信では受信信号レベルが 7 0 d B以上変動し、 隣り 合う周波数帯域のチャネルにおいて別のユーザが通話を行つているので、 隣接チャネルの不要信号を除去した後に信号レベルを検波出来るレベルま で増幅する必要がある。 アナ口グ信号伝送や次期に導入が予定されている ディジタルシステムである ττ Ζ 4シフト Q P S Κ変調のように、 移相情報 のみを用いるシステムにおいては、 w域制限後にリ ミタ増幅器で 7 0 d Β 以上増幅することにより受信機入力信号レベルの変動を一定にする。
しかし、 線形変調を行う場合または情報を振幅成分に乗せて伝送を行う
場合は、 線形受信を行う必要がある。 この場合に従来のリ ミタ増幅器を用
0 いると振幅情報が失われるので、 線形増幅を行う自動利得制御増幅器が必
要である。 ディ ジタル信号処理の進歩により、 受信信号を予め A/D変換
してディジタル信号処理を行う場合が主流となっている。 しかし、 移動通
信においてはフヱ一ジングによる受信レベル変動が 6 0 d B程度と非常に
大きいので、 レべルが低下したときに Aノ D変換における量子化誤差が増
加する。 この問題に対処するためには、 受信レベル変動を補償する自動利
得制御回路を用いることが不可欠である。
図 2に ¾έ¾のフィ一ドバック型自動利得制御回路のプロック構成を示す。
従来のフィ一ドバック型自動利得制御回路は、 バイァス電圧に応じて利得
が可変な可変利得制御回路 1 1 と、 その出力信号の包絡線レベルを検出す
る瞬時包絡線レベル検出器 1 2 とから構成される。 検出器 1 2からの瞬時
包絡線レベルをバイアス電圧として、 可変利得制御増幅器 1 2へ与える。
瞬時包絡線レベルの変動に応じて可変利得制御増幅器 1 1の利得が変化し、
クローズドループで可変利得制御増幅器 1 1の出力信号レベルが一定にな
る。
フィードバック型自動利得制御回路は、 可変利得制御増幅器 1 1の出力
信号を瞬時包絡線レベル検出器 1 2の入力と しているので、 瞬時包絡線レ
ベル検出器 1 2の入力ダイナミックレンジが数 1 0 d B程度で足りる。 し
かし、 クローズ ドループで補正するのでレベルの収束に時間がかかり、 信
号レベルの瞬時変化に追従しにく く、 バース ト信号の立ち上がりのような
瞬時変化には追従しにくいという技術的課題を有する.。
一方、 フィー ドフォワー ド型自動利得制御回路は、 オープンループになつ
ており、 可変利得制御增幅器の入力佶号を瞬時包絡線レベル検出器の入力 信号としている。 このため瞬時立ち上がり特性はフィ一ドバック型より良 好である。 しかし、 瞬時包絡線レベル検出器の入力信号レベルは 7 0 d B 以上変動するので、 広いダイナミックレンジの瞬時包絡線レベル検出器が 必要であるという問題を有する。
各チャネル毎に 1つの搬送波を用いる F D MAでは各ユーザが異なる周 波数で通信を行う必要がある。 同一搬送波を用いるユーザが隣接したセル にいると同一チヤネル干渉を生じる。 各ユーザの情報が時間軸上で多重化 された T DM Aシステムを用いたディジタル移動通信システムにおいては 同一の搬送波を複数のユーザが使用することが出来る力 異なるセルに同 一の搬送波を使用するユーザが存在するとチヤネル干渉を生じる。 チヤネ ル干渉を生じると通信品質が劣化するので、 同一の周波数の搬送波は、 あ る程度離れたセルで用いることが出来ない。
各ユーザの識別を拡散符号で行う C DMA方式では複数のユーザが同一 の搬送波周波数で通信を行う。 また同一の搬送波周波数を隣のセルで使用 することが出来る。 このため周波数の繰り返し距離が F D MA、 または T DMA方式より短縮できる。 従って C DMA方式では、 周波数帯域あたり の加入者容量の増大を図ることが出来る。 しかし C DMA方式では各ユー ザに割り当てられた拡散符号の相互相関が 0になるように完全に直交化す ることは不可能である。 このため、 相互相閲に起因して、 逆拡散の信号に 他ユーザの干渉信号力?含まれる。
発明の開示
他ユーザの干渉信号成分を除去するために、 A D変換にディジタル信 号処理により、 逆拡散処理および干渉キャンセル処理を行う。 この際 A Z D変換後のディジタル信号処理の量子化精度が十分に保証されないと、 逆 拡散処理および干渉キヤンセル処! 1の精度が劣化する。 従って、 受信部に おいてはレイリーフ ージングに起因する瞬時変動をも吸収する必要があ る。
C DMA方式を移動通信に適用するためにはセル内の他ユーザからの干 涉を最小にするために送信!:力制御を行う必要がある。 レイリーフェージ ングに起因する瞬時変動に追従する高精度の送信電力制御を行うために、 基地局は上りの希望波信号レベルを測定し、 下りのフレーム内に一定時間 間隔で送信電力制御ビッ トを挿入し、 移動局の送信電力を制御する。 この 場合、 1 フレームの時間内で希望波の受信レベルが数ビッ ト変動する。 従つ て、 基地局は受信信号レベルの数ビッ トの変化に追従する必要がある。 そこで本発明は、 距離変動および中央値変動のみならず、 レイリーフエ 一ジングに伴う瞬時変動に対しても高速に追従するスぺク トル拡散信号受 信機の自動利得制御装置を提供することを目的とする。
このよゔな目的を達成するために、
請求の範囲 1 に記載の発明は、 受信されたスぺク トル拡散信号を増幅す る可変利得制御増幅手段と、 当該可変利得制御増幅手段により増幅された 信号を直交検波する直交検波手段と、 当該直交検波手段により直交検波さ れた信号を逆拡散処理する逆拡散処理手段と、 当該逆拡散処理手段によ り 逆拡散された変調信号の同相成分および直交成分を得る手段とを有するス ぺク トル拡散信号受信機の自動利得制御装置において、 前記直交検波手段 の出力をディジタル信号に変換して前記逆拡散処理部へ供給する A Z D変 換手段と、 前記ディジタル信号の同相成分と直交成分に対してディジタル 処理でレベル変換するディジタルレベル補正手段と、 上記変調信号の振幅 の 2乗成分を求める瞬時包絡線検出手段と、 当該瞬時包絡線検出手段の出 力信号を入力してシンボルタィ ミ ングを検出するシンボルタイミング抽出 手段と、 当該シンボルタイミ ング抽出手段からの出力シンボルタイミング 信号を基準として前記瞬時包絡線検出手段の出力信号を伝搬遅延の時間範 囲で積算して希望波の信号レベルを求める第 1希望波信号レベル検出手段 と、 当該第 1希望波信号レべル検出手段の出力希望波信号レベルを数シン ボルに渡って積算して希望波の信号レベルを求める第 2希望波信号レベル 検出手段とを備えたことを特徴とする。
請求の範囲 2に記載の発明は、 請求の範囲 1に記載の自動利得制御装置 であって、 前記ディジタルレべル補正手段は、 前記第 1希望波信号レベル 検出手段の出力を用いて、 前記第 1希望波信号レベル検出手段の出力信号 レベルが一定になるように補正を行い、 前記可変利得制御増幅手段は、 前 記第 2希望波信号レべル検出手段の出力を用いて、 前記第 2希望波信号レ ベル検出手段の出力信号レベルが一定になるように増幅を行うことを特徴 とする。
請求の範囲 3に記載の発明は、 請求の範囲 2に記載の自動利得制御装置 であって、 前記可変利得制御増幅手段の出力信号の包絡線レベルを検出す る包絡線検出器と、 当該包絡線検出器の出力信号が所定のレベルを越える と、 当該包絡線検出器の出力信号が小さくなるように、 当該包絡線検出器 の出力を用いて前記可変利得増幅手段の動作点を補正する手段とを更に備 えたことを特徴とする。
請求の範囲 4に記載の発明は、 スぺク トル拡散信号を受信する受信手段 と、 当該受信手段により受信されたスぺク トル拡散信号を増幅する可変利 得制御増幅手段と、 当該可変利得制御増幅手段により増幅された信号を直 交検波する直交検波手段と、 当該直交検波手段により直交検波された信号 を逆拡散処理する逆拡散処理手段と、 当該逆拡散処理手段により逆拡散さ れた変調信号の同相成分および直交成分を得る手段とを有するスぺク トル 拡散方式の通信装置において、 前記直交検波手段の出力をディジタル信号 に変換して前記逆拡散処理部へ供給する AZ D変換手段と、 前記ディジタ ル信号の同相成分と直交成分に対してディジタル処理でレベル変換するディ ジタルレベル補正手段と、 上記変調信号の振幅の 2乗成分を求める瞬時包 絡線検出手段と、 当該瞬時包絡線検出手段の出力信号を入力してシンボル タイミングを検出するシンボルタイミング抽出手段と、 当該シンボルタィ ミング抽出手段からの出力シンボルタイミング信号を基準として前記瞬時 包絡線検出手段の出力信号を伝搬運延の時間範囲で積算して希望波の信号 レベルを求める第 1希望波信号レベル検出手段と、 当該第 1希望波信号レ ベル検出手段の出力希望波信号レベルを数シンボルに渡って積算して希望 波の信号レベルを求める第 2希望波信号レベル検出手段とを備えたことを 特徴とする。
請求の範囲 5に記載の発明は、 請求の範囲 4に記載の通信装置であって、 前記ディジタルレベル補正手段は、 前記^ 1希望波信号レベル検出手段の 出力を用いて、 前記第 1希望波信号レベル検出手段の出力信号レベルが一 定になるように補正を行い、 前記可変利得制御増幅手段は、 前記第 2希望 波信号レベル検出手段の出力を用いて、 前記第 2希望波信号レべル検出手 段の出力信号レベルが一定になるように増幅を行うことを特徴とする通信 請求の範囲 6に記載の発明は、 請求の範囲 5に記載の通信装置であって、 前記可変利得制御増幅手段の出力信号の包絡線レベルを検出する包絡線検 出器と、 当該包絡線検出器の出力信号が所定のレベルを越えると、 当該包 絡線検出器の出力信号が小さ くなるように、 当該包絡線検出器の出力を用 いて前記可変利得増幅手段の励作点を補正する手段とを更に備えたことを 特徴とする。
請求の範囲 7に記載の発明は、 受信されたスぺク トル拡散信号を増幅す る可変利得制御増幅手段と、 当該可変利得制御増幅手段により増幅された 信号を直交検波する直交検波手段と、 当該直交検波手段により直交検波さ れた信号を逆拡散処理する逆拡散処现-手段と、 当該逆拡散処理手段によ り 逆拡散された変調信号の同相成分および直交成分を得る手段とを有するス ぺク トル拡散信号受信機の自動利得制御装置に適用される自動利得制御方 法おいて、 前記直交検波手段の出力をディジタル信号に変換して前記逆拡 散処理部へ供給する AZD変換ステツプと、 前記ディジタル信号の同相成 分と直交成分に対してディジタル処理でレベル変換するディジタルレベル 補正ステップと、 上記変調信号の振幅の 2乗成分を求める瞬時包絡線検出 ステップと、 当該瞬時包絡線検出ステップで出力された出力信号を入力し てシンボルタイ ミ ングを検出するシンボルタイ ミ ング抽出ステップと、 前 記シンボルタイ ミ ングを基 として前記瞬時包絡線検出ステップで出力さ れた信号を伝搬遅延の時間範囲で積算して希望波の信号レベルを求める第 1希望波信号レベル検出ステップと、 当該第 1希望波信号レベル検出ステッ プで出力された希望波信号レベルを数シンボルに渡つて積算して希望波の 信号レベルを求める第 2希望波信号レベル検出ステツプとを備えたことを 特徴とする。
請求の範囲 8に記載の発明は、 請求の範囲 7に記載の自動利得制御方法 であって、 前記ディジタルレべル補正ステップは、 前記第 1希望波信号レ ベル検出ステツプの出力を用いて、 前記第 1希望波信号レベル検出ステツ プの出力信号レベルが一定になるように補正を行い、 前記可変利得制御増 幅ステップは、 前記第 2希望波信号レベル検出ステップの出力を用いて、 前記第 2希望波信号レベル検出ステツプの出力信号レベルが一定になるよ うに増幅を行うことを特徴とする。
請求の範囲 9 に記載の発明は、 請求の範囲 8に記載の自動利得制御方法 であって、 前記可変利得制御増幅ステップで出力された信号の包絡線レベ ルを検出する包絡線検出ステップと、 当該包絡線検出ステップで出力され た検出信号が所定のレベルを越えると、 当該検出信号が小さくなるように、 当該検出信号を用いて前記可変利得増幅手段の動作点を補正するステツプ とを更に備えたことを特徴とする。
本発明によれば、 第 2希望波信号レベル検出部 4 4の出力によ り可変利 得制御増幅器 2 2の利得が制御される。 図 3 の線 5 1 に、 希望波信号レべ ルの距離変動および中央値変動を示す。 本発明によれば、 この変動の補償 がなされる。 図 3の線 5 2に、 希犟波信号レベルのレイリーフヱ一ジング に伴う瞬時変動を示す。 第 2希望波信号レベル検出部 4 3の検出出力によ りディジタルレベル補正部 3 3をその出力が一定になるように制御する。 この制御はディジタル的に行われるので、 瞬時変動に追従してレベル補正 をすることが出来る。
また本発明によれば、 過大な入力が有つた場合に、 包'絡線検出器 4 6の 出力を用いて可変利得制御増幅器 2 2の利得を制御する。 従って、 ΑΖ Ό 変換器 3 1、 3 2が飽和しない。 このため、 広いダイナミ ックレンジの瞬 時変動に追従して利得を制御することが出来る。 従って、 レイリーフエ一 ジング下でも A / D変換後の信号の量子化精度を十分得ることが出来る。 また瞬時変動に追従する送信電力制御に対しても受信側で Aノ D変換器入 カレベルを一定にすることが出来る。 図面の簡単な説明
第 1図は、 本発明自動利得制御装置のハ—ドゥエアブ口ック図; 第 2図は、 従来のフィ一 ドバック型自動利得制御回路を示すプロック 図;
第 3図は、 希望波信号レベルの距離変動、 中央値変動、 および瞬時変 動を示す説明図である。 発明を実施するための最良の形態 以下、 図面を参照して本発明の実施例を詳細に説明する。 図 1に本発明自動利得制御装置のハードゥエアブロック図を示す。 入力 端子 2 1からの中間周波数帯とされた受信スぺク トル拡散信号は可変利得 制御増幅器 2 2で増幅され、 その増幅出力は直交検出器 2 3で直交検波さ れる。 つまり、 例えば、 局部発信器 2 4の出力と、 これを移動機 2 5で 4
0度移相したものとが増幅器 2 2の _出力に乗算機 2 6、 2 7でそれぞれ乗 算され、 I, Q 2チャンネルのベースバンド信号に直交検波される。 その 直交検波されたベースバン ド拡散信号は低域通過フィルタ 2 8、 2 0によ り高長波信号が除まされて、 AZD変換器 3 1、 3 2へそれぞれ供給され
Ό o
AZD変換器 3 1、 3 2からの I、 Qディ ジタル信号はディジタルレべ ル補正部 3 3でレベル変換される。 ディジタル信号はディジタルレベル補 正部 3 3は、 数シンボル周期程度の瞬時変動に対して信号レベルが一定に なるように補正を行う。 このような補正を行う方法としては、 予め入力信 号レベルに対して、 利得制御信号に応じた出力信号レベルをメモリに書き 込んでおき、 R OMテーブルを参照してレベルを補正する方法がある。 他 の方法としては、 入力信号レベルに利得制御信号情報を乗算してレベルを 補正する方法がある。 ビッ トシフ トによる方法も考えられるが、 この場合 は細かい精度でのレベル補正を行うことが出来ないので妥当でない。
レベル変換された信号は、 次に受信拡散符号に同期した拡散符号のレブ リカを用いて、 逆拡散処理部 3 4の整合フィ ルタ (あるいはスライディ ン グ相関機) 3 5、 3 6で逆拡散される。 逆拡散された信号は瞬時包絡線検 出部 3 7へ供給される。 瞬時包絡線検出部 3 7は、 チップ周期で、 逆拡散 された信号から I F変調信号の瞵時包絡線レベル信号を計算し、 これによ り更に、 I Λ 2 + Q 2 にはべき乘を示す) の 铬線成分を計算する。 シンボルタイ ミ ング抽出部 3 8は、 包絡線成分のピーク信号を トリガと して包絡線成分からデ一タシンボルタイミング成分を抽出する。 シンボル タイミング抽出部 3 8は、 ピーク位置検出部 3 9、 D P L L 4 1、 および タイミング生成部 4 2を有する。 瞬時包絡線検出部 3 7が検出した包絡線 成分のピーク位置を、 ピーク位置検出部 3 9力検出する。 ピーク位置を検 出すると、 マッチドフィルタで逆拡散した場合に、 遅延プロファイルに応 じて数チップの範囲に信号電力が現れる。
一般的には、 プロファイルは最も大きなチップに対して対象になる。 ピ 一ク位置に対して前後数位チップの信号電力を R A K E合成する。 受信機 におけるピーク位置の時問は、 移動局が移動すれば変化するので、 トラッ キングを行う必要がある。 そこで数シンボル区間観測して現在のピーク位 置が例えば隣のチップ位置に変化した場合に、 最大ピーク位置を基準に前 後数チップの信号電力を R A K E合成する。 検出ピーク信号をトリガと し てディジタル移動同期ループ (D P L L ) 4 1が駆動される。 すると、 タ ィミング生成部 4 2からデータシンボルタイ ミングが得られる。 タイミ ン グ生成部 4 2は、 シンポルタイミングから希望波が到来する時間窓幅を計 算する。
第 1希望波信号レベル検出部 4 3は、 瞬時包絡線検出部 3 7の出力瞬時 包絡線を時間窓幅の問、 即ちつまり伝搬遅延の時間に渡って積分する。 時 間積分はアキュムレ一タが行う。 時問窓時間が経過した後アキュムレ一タ がリセッ トされる。 第 2希望波信号レベル検出部 4 4は、 検出された希望 波信号レベルを数シンボルの時間に渡って平均化する。
ディジタルレベル補正部 3 3は、 第 1希望波信号レベル検出部 4 3の検 出レベルで制御される。 即ち、 入力ディジタル信号が第 1希望波信号の検 出レベルでレベル変換されるので、 瞬時変動に起因するレベルが吸収され て出力ディジタル信号のレベルが一定になる。
第 2希望波信号レベル検出部 4 4の検出レベルは制御電圧設定部 4 5へ 供給される。 制御電圧設定部 4 5の出力によ り、 可変利得制御増幅器 2 2 の利得が制御され、 可変利得制御増幅器 2 2の出力レベルが一定になる。 可変利得制御増幅器 2 2の出力は包絡線検出器 4 6で包絡線検波される。 包絡線検出器 4 6の出力が所定レベルを超えると、 制御電圧設定部 4 5 制御されて可変利得制御増幅器 2 2の動作点が補正される。 従って、 可変 利得制御増幅器 2 2の利得は、 包絡線検出器 4 6の出力が所定レベル以下 の場合に、 第 2希望波信号レベル検出部 4 4の検出出力で制御される。 包 絡線検出器 4 6からの出力に基づく可変利得制御増幅器 2 2の動作点の補 正により、 AZ D変換器 3 1、 3 2の入力信号レベルが飽和することが防 がれる。
図 3の泉 5 1 に、 希望波信号レベルの距離変動、 および中央値変動を示 す。 本発明によれば、 この変動の補惯がなされる。 図 3の線 5 2に、 希望 波信号レベルのレイリーフェージングに伴う瞬時変動を示す。 本発明によ れば、 第 2希望波信号レベル検出部 4 3の出力によりディジタルレベル補 正部 3 3を制御し、 ディジタルレベル補正部 3 3の出力レベルを一定に保つ ている。 ディジタルレベル補正部 3 3の制御はディジタル的に行われるの で、 瞬時変動に追従してレベル補正をすることが出来る。
更に本発明によれば、 包絡線検出器 4 6の出力を用いて、 過大入力に対 が有つた場合に可変利得制御増幅器 2 2の利得を制御している。 このため AZD変換器 3 1、 3 2が飽和しない。 このため広いダイナミックレンジ の瞬時変動に追従して利得を制御することが出来、 レイリ一フ ージング 下でも A/D変換後の信号の量子化精度を十分に高く保つことが出来る。 瞬時変動に追従する送信電力制御に対しても受信側で A Z D変換器入力レ ベルを一定にすることが出来る。

Claims

請 求 の 範 囲
1 . 受信されたスぺク トル拡散信号を増幅する可変利得制御増幅手段と、 当該可変利得制御増幅手段により増幅された信号を直交検波する直交検波 手段と、 当該直交検波手段により直交検波された信号を逆拡散処理する逆 拡散処理手段と、 当該逆拡散処理手段により逆拡散された変調信号の同相 成分および直交成分を得る手段とを有するスぺク トル拡散信号受信機の自 動利得制御装置において、
前記直交検波手段の出力をディジタル信号に変換して前記逆拡散処理部 へ供給する A Z D変換手段と、
前記ディジタル信号の同相成分と直交成分に対してディジタル処理でレ ベル変換するディジタルレべル補正手段と、
上記変調信号の振幅の 2乗成分を求める瞬時包絡線検出手段と、 当該瞬時包絡線検出手段の出力信号を入力してシンボルタイミングを検 出するシンポルタイミング抽出手段と、
当該シンボルタイ ミ ング抽出手段からの出力シンボルタイ ミング信号を 基準として前記瞬時包絡線検出手段の出力信号を伝搬遅延の時間範囲で積 算して希望波の信号レベルを求める第 1希望波信号レベル検出手段と、 当該第 1希望波信号レベル検出手段の出力希望波信号レベルを数シンボ ルに渡って積算して希望波の信号レベルを求める第 2希望波信号レベル検 出手段と、
を備えたことを特徴とする自動利得制御装置。
2 . 請求の範囲 1に記載の自動利得制御装置であ'つて、
前記ディジタルレベル補正手段は、 前記第 1希望波信号レベル検出手段 の出力を用いて、 前記第 1希望波信号レベル検出手段の出力信号レベルが 一定になるように補正を行い、
前記可変利得制御増幅手段は、 前記第 2希望波信号レべル検出手段の出 力を用いて、 前記第 2希望波信号レベル検出手段の出力信号レベルが一定 になるように増幅を行う
ことを特徴とする自動利得制御装 _置。
3 . 請求の範囲 2に記載の自動利得制御装置であって、
前記可変利得制御増幅手段の出力信号の包絡線レベルを検出する包絡線 検出器と、
当該包絡線検出器の出力信号が所定のレベルを越えると、 当該包絡線検 出器の出力信号が小さくなるように、 当該包絡線検出器の出力を用いて前 記可変利得増幅手段の動作点を補正する手段と
を更に備えたことを特徴とする自動利得制御装置。
4 . スペク トル拡散信号を受信する受信手段と、 当該受信手段により受 信されたスぺク トル拡散信号を増幅する可変利得制御増幅手段と、 当該可 変利得制御増幅手段により増幅された信号を直交検波する直交 手段と、 当該直交検波手段により直交検波された信号を逆拡散処理する逆拡散処理 手段と、 当該逆拡散処理手段により逆拡散された変調信号の同相成分およ ひ直交成分を得る手段とを有するスぺク トル拡散方式の通信装置において、 前記直交検波手段の出力をディジタル信号に変換して前記逆拡散処理部 へ供給する A / D変換手段と、
前記ディジタル信号の同相成分と直交成分に対してディジタル処理でレ ベル変換するディジタルレべル補正手段と、
上記変調信号の振幅の 2乗成分を求める瞬時包絡線検出手段と、 当該瞬時包絡線検出手段の出力信号を入力してシンボルタイミングを検 出するシンボルタイ ミング抽出手段と、
当該シンボルタイミング抽出手段からの出力シンボル夕イミング信号を 基準として前記瞬時包絡線検出手段の出力信号を伝搬遅延の時間範囲で積 算して希望波の信号レベルを求める第 1希望波信号レベル検出手段と、 当該第 1希望波信号レベル検出手段の出力希望波信号レベルを数シンボ ルに渡つて積算して希望波の信号レベルを求める第 2希望波信号レベル検 出手段と、
を備えたことを特徴とする通信装置。
5 . 請求の範囲 4に記載の通信装置であつて、
前記ディジタルレベル補正手段は、 前記第 1希望波信号レベル検出手段 の出力を用いて、 前記第 1希望波信号レベル検出手段の出力信号レべルが 一定になるように補正を行い、
前記可変利得制御増幅手段は、 前記第 2希望波信号レベル検出手段の出 力を用いて、 前記第 2希望波信号レベル検出手段の出力信号レベルが一定 になるように増幅を行う
ことを特徴とする通信装置。
6 . 請求の範囲 5に記載の通信装置であって、
前記可変利得制御増幅手段の出力信号の包絡線レベルを検出する包絡線 検出器と、
当該包絡線検出器の出力信号が所定のレベルを越えると、 当該包絡線検 出器の出力信号が小さくなるように、 当該包絡線検出器の出力を用いて前 記可変利得増幅手段の動作点を補正する手段と
を更に備えたことを特徴とする通信装置。
7. 受信されたスぺク トル拡散信号を増幅する可変利得制御増幅手段と、 当該可変利得制御増幅手段により増幅された信号を直交検波する直交検波 手段と、 当該直交検波手段により直交検波された信号を逆拡散処理する逆 拡散処理手段と、 当該逆拡散処理手段により逆拡散された変調信号の同相 成分および直交成分を得る手段とを有するスぺク トル拡散信号受信機の自 動利得制御装置に適用される自動利得制御方法おいて、
前記直交検波手段の出力をディジタル信号に変換して前記逆拡散処理部 へ供給する AZD変換ステツプと、
前記ディジタル信号の同相成分と直交成分に対してディジタル処理でレ ベル変換するディジタルレベル補正ステップと、
上記変調信号の振幅の 2乘成分を求める瞬:時包絡線検出ステップと、 当該瞬時包絡線検出ステップで出力された出力信号を入力してシンボル タイミングを検出するシンボルタイ ミ ング抽出ステップと、
前記シンボルタイ ミングを基'準として前記瞬時包絡線検出ステップで出 力された信号を伝搬遅延の時間範囲で積算して希望波の信号レベルを求め る第 1希望波信号レベル検出ステップと、
当該第 1希望波信号レベル検出ステップで出力された希望波信号レベル を数シンボルに渡って積算して希望波の信号レベルを求める第 2希望波信 号レベル検出ステツプと、
を備えたことを特徴とする自動利得制御方法。
8 . 請求の範囲 7に記載の自動利得制御方法であって、
前記ディジタルレベル補正ステツプは、 前記第 1希望波信号レベル検出 ステップの出力を用いて、 前記第 1希望波信号レベル検出ステツプの出力 信号レベルが一定になるように補正を行い、
前記可変利得制御増幅ステツプは、 前記第 2希望波信号レベル検出ステッ プの出力を用いて、 前記第 2希望波信号レベル検出ステツプの出力信号レ ベルが一定になるように増幅を行う
ことを特徴とする自動利得制御方法。
9 . 請求の範囲 8に記載の自動利得制御方法であつて、
前記可変利得制御増幅ステツプで出力された信号の包絡線レベルを検出 する包絡線検出ステップと、
当該包絡線検出ステツプで出力された検出信号が所定のレベルを越える と、 当該検出信号が小さくなるように、 当該検出信号を用いて前記可変利 得増幅手段の動作点を補正するステップと
を更に備えたことを特徴とする自動利得制御方法。
PCT/JP1994/001310 1993-08-11 1994-08-09 Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain WO1995005038A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/411,605 US5745531A (en) 1993-08-11 1994-08-09 Automatic gain control apparatus, communication system, and automatic gain control method
DE69428883T DE69428883T2 (de) 1993-08-11 1994-08-09 Gerät und verfahren zur automatischen verstärkungsregelung für einen spreizspektrum empfänger
EP94923090A EP0673125B1 (en) 1993-08-11 1994-08-09 Automatic gain control apparatus and method for a spread spectrum signal receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/199448 1993-08-11
JP19944893 1993-08-11

Publications (1)

Publication Number Publication Date
WO1995005038A1 true WO1995005038A1 (fr) 1995-02-16

Family

ID=16407989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001310 WO1995005038A1 (fr) 1993-08-11 1994-08-09 Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain

Country Status (5)

Country Link
US (1) US5745531A (ja)
EP (1) EP0673125B1 (ja)
CN (1) CN1042585C (ja)
DE (1) DE69428883T2 (ja)
WO (1) WO1995005038A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008848A1 (en) * 1995-08-23 1997-03-06 Qualcomm Incorporated Method and system for non-orthogonal noise energy based gain control
JP2002261732A (ja) * 2001-02-27 2002-09-13 Sharp Corp Cdma方式の受信装置
JP2007208689A (ja) * 2006-02-02 2007-08-16 Fujitsu Ltd 干渉低減受信装置及びその方法
CN101330296A (zh) * 2000-10-31 2008-12-24 日本电气株式会社 在扩频通信系统中所用的接收机

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728034B2 (ja) * 1995-06-15 1998-03-18 日本電気株式会社 スペクトラム拡散信号受信装置
ZA965340B (en) 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
JP3273539B2 (ja) * 1996-01-19 2002-04-08 シャープ株式会社 スペクトル拡散信号受信機
KR0170345B1 (ko) * 1996-06-11 1999-03-20 김광호 고해상도 텔레비젼 수신기의 자동 이득 조절회로 및 방법
US6259724B1 (en) * 1996-10-18 2001-07-10 Telefonaktiebolaget L M Ericsson (Publ) Random access in a mobile telecommunications system
FR2757330B1 (fr) * 1996-12-18 1999-01-15 Commissariat Energie Atomique Procede de transmission d'informations par reponse impulsionnelle et recepteur correspondant
US6356736B2 (en) 1997-02-28 2002-03-12 Maxim Integrated Products, Inc. Direct-conversion tuner integrated circuit for direct broadcast satellite television
US6031878A (en) * 1997-02-28 2000-02-29 Maxim Integrated Products, Inc. Direct-conversion tuner integrated circuit for direct broadcast satellite television
GB2326546B (en) * 1997-06-20 2001-01-03 Nokia Mobile Phones Ltd Gain control
US5982315A (en) * 1997-09-12 1999-11-09 Qualcomm Incorporated Multi-loop Σ Δ analog to digital converter
US6005506A (en) * 1997-12-09 1999-12-21 Qualcomm, Incorporated Receiver with sigma-delta analog-to-digital converter for sampling a received signal
US6498926B1 (en) 1997-12-09 2002-12-24 Qualcomm Incorporated Programmable linear receiver having a variable IIP3 point
US6134430A (en) * 1997-12-09 2000-10-17 Younis; Saed G. Programmable dynamic range receiver with adjustable dynamic range analog to digital converter
US6038435A (en) * 1997-12-24 2000-03-14 Nortel Networks Corporation Variable step-size AGC
JP3411208B2 (ja) * 1998-03-13 2003-05-26 富士通株式会社 デジタル無線受信装置
US6324229B1 (en) * 1998-05-11 2001-11-27 Motorola, Inc. Self-clocking automatic digital level control method and apparatus
US6289044B1 (en) * 1998-05-12 2001-09-11 Nortel Networks Limited Automatic gain control circuit for a modem receiver
JPH11331291A (ja) * 1998-05-20 1999-11-30 Nec Corp 自動利得制御方法および自動利得制御を備えた復調装置
US6480589B1 (en) * 1998-07-14 2002-11-12 Samsung Electronics Co., Ltd. CPE alert signal detector and caller identification detector using peak detection
US6442398B1 (en) 1998-12-03 2002-08-27 Qualcomm Incorporated Method and apparatus for reverse link loading estimation
US6192249B1 (en) 1998-12-03 2001-02-20 Qualcomm Inc. Method and apparatus for reverse link loading estimation
JP3121319B2 (ja) * 1998-12-17 2000-12-25 日本電気株式会社 Ds−cdmaマルチユーザ干渉キャンセラとそのシステム
US6700921B1 (en) * 1999-01-07 2004-03-02 Matsushita Electric Industrial Co., Ltd. Spread-spectrum communication apparatus
US6717980B1 (en) * 1999-05-24 2004-04-06 Koninklijke Philips Electronics N.V. Reduction of transmitter induced cross modulation in a receiver
FR2795259B1 (fr) * 1999-06-15 2007-05-11 Sagem Telephone mobile ayant une chaine de numerisation a gain variable rapidement et procede de numerisation par un tel telephone
US6397070B1 (en) 1999-07-21 2002-05-28 Qualcomm Incorporated Method and apparatus for estimating reverse link loading in a wireless communication system
JP3576913B2 (ja) * 2000-02-10 2004-10-13 三菱電機株式会社 スペクトル拡散復調器
US7085255B2 (en) * 2000-10-19 2006-08-01 Interdigital Technology Corporation Selectively activated AGC signal measurement unit
US6510339B2 (en) 2000-12-06 2003-01-21 Cardiac Pacemakers, Inc. ECG auto-gain control
US7263143B1 (en) * 2001-05-07 2007-08-28 Adaptix, Inc. System and method for statistically directing automatic gain control
DE10208415B4 (de) * 2002-02-27 2006-03-16 Advanced Micro Devices, Inc., Sunnyvale Verstärkungsregelung in WLAN-Geräten
US7294567B2 (en) * 2002-03-11 2007-11-13 Micron Technology, Inc. Semiconductor contact device and method
US20040031499A1 (en) * 2002-08-19 2004-02-19 Gus Stankovic Fluid dispensing brush
US20040097209A1 (en) * 2002-11-14 2004-05-20 Haub David R. Automatic gain control apparatus and methods
CN100424520C (zh) * 2002-12-02 2008-10-08 诺基亚公司 脉冲峰值位置的确定
US20040176035A1 (en) * 2003-02-14 2004-09-09 Breunig Brian C. Envelope cancellation in an RF circuit
KR20050090283A (ko) * 2004-03-08 2005-09-13 엘지전자 주식회사 다운로드 받은 음악파일의 이득조정방법
US7197692B2 (en) 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US8452316B2 (en) 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US8942639B2 (en) 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US7929650B2 (en) * 2005-10-18 2011-04-19 Freescale Semiconductor, Inc. AGC for narrowband receivers
CN101331698B (zh) 2005-10-27 2012-07-18 高通股份有限公司 用于估计无线通信系统中的反向链路负载的方法和设备
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
TWI327864B (en) * 2006-11-28 2010-07-21 Mstar Semiconductor Inc Video automatic gain controlling circuit and related method of which
US7746050B2 (en) * 2007-04-06 2010-06-29 Power Integrations, Inc. Method and apparatus for controlling the maximum output power of a power converter
US8588348B2 (en) * 2009-07-10 2013-11-19 Freescale Semiconductor, Inc. Receiver with automatic gain control
US9647623B2 (en) * 2009-09-30 2017-05-09 Silicon Laboratories Inc. Signal processor suitable for low intermediate frequency (LIF) or zero intermediate frequency (ZIF) operation
US8695299B2 (en) 2010-01-20 2014-04-15 Propst Family Limited Partnership Building panel system
US20140150362A1 (en) 2010-01-20 2014-06-05 Propst Family Limited Partnership Building panels and method of forming building panels
US9203676B1 (en) * 2014-06-11 2015-12-01 Wipro Limited Apparatus and method for estimating symbol timing offset
CN105290271B (zh) * 2015-11-12 2017-05-17 西安航空动力股份有限公司 一种用于切断收集复杂盲腔机匣钢丝螺套尾柄的装置及方法
JP7004503B2 (ja) * 2017-01-27 2022-01-21 ラピスセミコンダクタ株式会社 自動利得制御回路(agc)、逆拡散回路及び受信データの再生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133025A (ja) * 1984-07-25 1986-02-15 Nec Corp スペクトラム拡散信号自動利得制御方式及び装置
JPS6410746A (en) * 1987-07-02 1989-01-13 Mitsubishi Electric Corp Spread spectrum communication type agc circuit
JPH04132328A (ja) * 1990-09-21 1992-05-06 Clarion Co Ltd スペクトラム拡散通信機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605018A (en) * 1968-09-13 1971-09-14 Sylvania Electric Prod Interference suppression in a receiver by envelope variation modulation
JPS6433025A (en) * 1987-07-29 1989-02-02 Ishizuka Glass Treatment of mesh belt
US5065410A (en) * 1987-12-15 1991-11-12 Nec Corporation Method and arrangement for setting an amplitude equalization characteristic on an equalizer for use in a modem
US4989074A (en) * 1988-09-27 1991-01-29 Matsushita Electric Industrial Co., Ltd. Digital automatic gain control apparatus
CH676179A5 (ja) * 1988-09-29 1990-12-14 Ascom Zelcom Ag
US4984287A (en) * 1988-11-15 1991-01-08 Msc Technologies, Inc. Method for orienting a dual mouse optical scanner
JP2507162B2 (ja) * 1990-09-13 1996-06-12 松下電器産業株式会社 レ―ザ光量制御装置
FI88981C (fi) * 1991-09-09 1993-07-26 Elektrobit Oy Foerfarande foer automatisk reglering av saendningseffekten i en saendar-mottagarenhet laempad foer en koduppdelad multipelaotkomstomgivning som utnyttjar direktsekvensspridning
AU673390B2 (en) * 1993-01-20 1996-11-07 Nec Corporation An AGC circuit for burst signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133025A (ja) * 1984-07-25 1986-02-15 Nec Corp スペクトラム拡散信号自動利得制御方式及び装置
JPS6410746A (en) * 1987-07-02 1989-01-13 Mitsubishi Electric Corp Spread spectrum communication type agc circuit
JPH04132328A (ja) * 1990-09-21 1992-05-06 Clarion Co Ltd スペクトラム拡散通信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0673125A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008848A1 (en) * 1995-08-23 1997-03-06 Qualcomm Incorporated Method and system for non-orthogonal noise energy based gain control
CN101330296A (zh) * 2000-10-31 2008-12-24 日本电气株式会社 在扩频通信系统中所用的接收机
JP2002261732A (ja) * 2001-02-27 2002-09-13 Sharp Corp Cdma方式の受信装置
JP2007208689A (ja) * 2006-02-02 2007-08-16 Fujitsu Ltd 干渉低減受信装置及びその方法

Also Published As

Publication number Publication date
EP0673125B1 (en) 2001-10-31
CN1042585C (zh) 1999-03-17
EP0673125A4 (en) 1996-12-11
DE69428883T2 (de) 2002-04-11
DE69428883D1 (de) 2001-12-06
EP0673125A1 (en) 1995-09-20
CN1114520A (zh) 1996-01-03
US5745531A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
WO1995005038A1 (fr) Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain
US7103029B1 (en) Transmitter gain stabilizing apparatus
JP3961828B2 (ja) 送信電力制御装置
US7313167B2 (en) Signal-to-noise ratio estimation of CDMA signals
US8040935B2 (en) Methods and apparatus for spread spectrum modulation and demodulation
EP1062742B1 (en) Correction of signal-interference ratio measures
US7715463B2 (en) Simple and robust digital code tracking loop for wireless communication systems
US6266365B1 (en) CDMA receiver
EP1160981A2 (en) Method and arrangement for reducing frequency offset in a radio receiver
US6628929B1 (en) Transmission power control for use in a transmitting apparatus in a CDMA communication system
US6532252B1 (en) Device and method for measuring non-orthogonal noise power for CDMA communication system
US7239856B2 (en) Apparatus and method for compensating gain of an automatic gain controller
EP0674398B1 (en) Delay spread sensor and detection switching circuit using it
JP2002064455A (ja) 多重キャリア送信機用のアナログ・パワー制御システム
JP2764151B2 (ja) 自動利得制御装置,通信装置および自動利得制御方法
JP3102460B2 (ja) 送信電力制御を行う移動局送信装置
KR100363907B1 (ko) 주파수 자동 추적 제어장치 및 그 제어방법
JP3912896B2 (ja) 受信装置、及び受信方法
JP5593144B2 (ja) 受信装置及び自動利得制御方法
KR100327415B1 (ko) 씨디엠에이(cdma) 수신장치 및 그에 따른 다이나믹레인지 조절방법
JPH10173626A (ja) 直接拡散cdma伝送方式の受信装置
JP2012199893A (ja) 受信機
JPH09247046A (ja) スペクトラム拡散通信用受信装置
JPH06244662A (ja) 自動利得制御増幅装置
JPH06232841A (ja) スペクトル拡散通信方式における同期保持装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94190678.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB IT SE

WWE Wipo information: entry into national phase

Ref document number: 1994923090

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08411605

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994923090

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994923090

Country of ref document: EP