WO1994022206A1 - Ultra-high speed brushless dc motor - Google Patents

Ultra-high speed brushless dc motor Download PDF

Info

Publication number
WO1994022206A1
WO1994022206A1 PCT/JP1994/000440 JP9400440W WO9422206A1 WO 1994022206 A1 WO1994022206 A1 WO 1994022206A1 JP 9400440 W JP9400440 W JP 9400440W WO 9422206 A1 WO9422206 A1 WO 9422206A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
brushless
speed
stator
Prior art date
Application number
PCT/JP1994/000440
Other languages
English (en)
French (fr)
Inventor
Isao Takahashi
Kazunobu Ooyama
Akio Yamagiwa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CA002136216A priority Critical patent/CA2136216C/en
Priority to EP94910041A priority patent/EP0642210B1/en
Priority to DE69406075T priority patent/DE69406075T2/de
Priority to JP06520877A priority patent/JP3137650B2/ja
Publication of WO1994022206A1 publication Critical patent/WO1994022206A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/12Machines characterised by means for reducing windage losses or windage noise

Definitions

  • the present invention relates to an ultra-high-speed brushless DC motor. More specifically, the present invention relates to an ultra-high-speed brushless DC motor.
  • the present invention relates to a brushless DC motor that is rotated at a rotational speed exceeding 10,000 r.p.m.
  • BACKGROUND ART Conventionally, motors have been employed as drive sources for compressors and the like, focusing on advantages such as easy electrical control.
  • motors there are various types of motors, but at present, a rotating magnetic field can be easily obtained using a three-phase AC power supply, and a commutator can be eliminated.
  • Three-phase induction motors are most commonly used because of their advantages such as simplicity.
  • the induction motor not only has the armature winding wound on the armature core, but also has the rotor winding wound on the rotor core, and current flows through the rotor winding during operation.
  • the output is smaller than the input by the secondary copper loss caused by the current flowing through the rotor winding, and the efficiency cannot be increased much.
  • a brushless DC motor has been proposed that can achieve high operating efficiency by reducing the secondary loss by attaching a permanent magnet to the trochanter core.
  • high operating efficiency can be achieved, application of brushless DC motors as high-speed rotating motors in precision machines, compressors, etc. is being studied.
  • the most important point of the brushless DC motor is to increase the operating efficiency.
  • a metal tube is attached to prevent the permanent magnet from being damaged due to high-speed rotation (see Japanese Patent Application Laid-Open No. 3-110950).
  • the magnetic flux density changes due to the stator slot. Since the gap length is extremely small as described above, the rotor is greatly affected by the change in the magnetic flux density, and an eddy current is generated, and the operating efficiency is reduced due to the eddy current loss. Conventionally, even if an eddy current is generated due to a change in magnetic flux density, the brushless DC is increased by minimizing the gap length between the stator and the rotor to increase the magnetic flux coupling efficiency as described above. It was thought that the operating efficiency of the motor could be improved sufficiently. Of the brushless DC motors that are actually provided, those that aim for high efficiency all have the gap length set as short as possible as described above.
  • the inventors of the present invention have conducted intensive studies to obtain a brushless DC motor capable of ultra-high-speed rotation, and analyzed the high-speed rotation motor actually provided. As shown by the solid line in FIG. It was found that there was a limit to the high power and / or high speed rotation of the brushless DC motor. The black dots in the figure indicate the output and the rotation speed of the high-speed motor (or ultra-high-speed motor) conventionally realized. The authors found that this limit was caused by the remarkable generation of eddy current as the rotation speed increased, a decrease in efficiency due to eddy current loss, and an abnormal rise in temperature of the rotor.
  • the present invention has been made in view of the above problems, and does not require any special work such as reducing the slot opening width and installing a cooling device, and is capable of easily increasing the rotation speed. It aims to provide an ultra-high speed brushless DC motor that can be used.
  • an ultra-high-speed brushless DC motor is configured to reduce a gap length between a stator and a portion having metallic properties of a rotor.
  • K g is a constant determined by the motor stator.
  • D # K g ⁇ 7 is slot opening length the ratio of the slot Topitchi the stator, d is the inner diameter of the stator, N represents a rated rotational speed (Thousand pm), P is the rated output (KW) and K g are constants that are determined by the shape and material of the motor.
  • the ultrahigh-speed brushless DC motor according to claim 3 has a fin for natural air cooling, and a gap length between the stator and a portion having metallic properties of the rotor is 1ZK s of the gap length. It is set to 1x times.
  • the gap length g is set to be less than 7 ⁇ D "(2p) (D is the diameter defining the magnet surface of the rotor, and p is the number of poles of the brushless DC motor).
  • the ultrahigh-speed brushless DC motor according to claim 5 uses a rotor equipped with a rare-earth permanent magnet as a rotor.
  • the ultrahigh-speed brushless DC motor according to claim 6 employs permanent magnets mounted on the rotor that are magnetized in a direction parallel to the magnetic pole axis in all regions.
  • An ultrahigh-speed brushless DC motor employs a rotor having a protective tube made of metal mounted on the outermost periphery.
  • An ultrahigh-speed brushless DC motor employs a rotor having a protective tube made of an insulator mounted on the outermost periphery.
  • the ultrahigh-speed brushless DC motor according to claim 10 employs a hot working rare earth permanent magnet as a rare earth permanent magnet.
  • the ⁇ hot-worked rare earth permanent magnet is composed of at least one rare earth element including yttrium, at least one transition metal element and at least one IIIb group element as a raw material basic component. It is preferable that the magnetic phase is concentrated by performing hot working at a temperature of 500 ° C. or more after melting and forming, and magnetic anisotropy is imparted by mechanical orientation. .
  • At least one or more rare earth elements selected from Pr, Nd, Dy, Ce, La, Y, Th, Fe, Co, Cu, Ag, Au, At least one or more transition metal elements selected from Ni and Zr, and at least one Group IIIb element selected from B, Ga and A1 can be exemplified. Is preferably 12 to 25%, 65 to 85%, and 3 to 0%.
  • the gap length between the stator and the portion having metallic properties of the rotor is set to N / ⁇ ⁇ ⁇ 1 / 8 ⁇ d.
  • the gap length between the stator and the portion having metallic properties of the rotor is 3) 9 5
  • N5 / o * Pl / 8 * d * Kg or more is set, for example, if the brushless DC motor has a significantly larger diameter than the stator winding wire diameter
  • a gap length that is significantly larger than the gap length of the conventional brushless DC motor is set.
  • the ultra-high-speed brushless DC motor according to claim 3 has a fin for natural air cooling, and the gap length between the stator and the portion having metallic properties of the rotor is defined by the gap length. 1 / K s ⁇ times, for example, if the brushless DC motor has a significantly larger diameter than the stator winding wire diameter, the gap of the conventional brushless DC motor A significantly larger gap length is set as compared to the length. As a result, even if the change in magnetic flux density due to the stator slot is quite large, the change in magnetic flux density is greatly reduced in the rotor due to the large gear length, and The generation of eddy current in the element can be significantly reduced.
  • the operating efficiency can be further increased, and the heat generation of the rotor can be significantly suppressed due to the large gap length, and, as a result, stable ultra-high-speed rotation can be performed.
  • the gap length is simply increased, so that there is no need to redesign the stator.
  • the gap length is set to be large, it is easy to assemble an ultra-high-speed brushless DC motor.
  • the permanent magnet mounted on the rotor is a rare-earth permanent magnet
  • the magnetic force is strong (the ⁇ ⁇ area is large) and sufficient despite the large gap length. Flux coupling efficiency can be achieved.
  • the permanent magnets mounted on the rotor are magnetized in a direction parallel to the magnetic pole axis in all regions, the stator and the rotor are The magnetic flux density in the gap can be changed sinusoidally, and there can be almost no harmonic components.Therefore, there is almost no iron loss due to harmonics in the stator, and the operating efficiency can be further improved. it can.
  • the rotor is provided with a protective tube made of metal on the outermost periphery, it is compared with a conventional brushless DC motor.
  • the thickness of the protection tube can be significantly increased, and the permanent magnet can be reliably protected even at ultra-high speed rotation. As a result, stable ultra-high speed rotation can be achieved.
  • a protective tube made of metal or insulator on the outermost periphery and applying a compressive force to the permanent magnet in a direction toward the center of the rotor shaft is used. Since the one mounted is adopted, a higher permanent magnet protection effect can be achieved than in the case of claim 7 or claim 8, and higher ultra-high speed operation can be achieved. Of course, as in the case of claim 7 or claim 8, since the thickness of the protective tube can be significantly increased, a high compression effect on the permanent magnet can be achieved.
  • the rare-earth permanent magnet employs a manufactured hot-worked rare-earth permanent magnet
  • the strength of the permanent magnet itself is significantly higher than that of a sintered rare-earth permanent magnet. Can be enlarged It can be omitted.
  • the protection tube can also be provided. In this case, the upper limit rotational speed can be significantly increased.
  • ⁇ hot-worked rare-earth permanent magnets have properties similar to metal, and can be processed with high precision and have a uniform density, so that the balance of the rotor on which the permanent magnets are mounted can be balanced.
  • the stress in the permanent magnet can be easily reduced.As a result, the accuracy of each part of the ultra-high-speed brushless DC motor can be increased, and a good balance can be maintained as a whole. Can be manufactured, and production and assembly can be simplified. In particular, as compared with the case where a rotor equipped with a protective tube made of metal is employed, the rare-earth permanent magnet is located at the outermost periphery, so that the magnetic flux coupling efficiency can be further improved.
  • the inventor of the present invention has conducted intensive research to obtain an ultra-high-speed brushless DC motor having an output and rotation speed exceeding the limits of the conventional brushless DC motor. It was found that making the gap length between them as small as possible rather hindered ultra-high-speed rotation. In other words, at ultra-high speed rotation, the frequency of the magnetic flux density caused by the slots in the stator increases, and due to this magnetic flux density, an eddy current flows remarkably in the rotor, and the operating efficiency is greatly reduced. I will. In addition, the heat generated by the rotor increases due to the large eddy current loss, and the heat dissipation efficiency cannot be improved due to the short gap length, so the temperature of the rotor gradually increases. However, loss of magnetic force of the permanent magnet and melting of the rotor itself are caused.
  • the gap length determined based on the rated speed and the rated output, for example, ⁇ 5 / ⁇
  • the gap length between the stator and the rotor so that P 1 / 8d Kg or more, eddy current can be significantly reduced and heat generated by the reduced eddy current can be reduced. They found that even if they existed, they could achieve a heat dissipation efficiency that exceeded heat generation, and completed the present invention.
  • the amplitude of the spatial harmonic in the gap due to the stator slots can be expressed as the difference between the average value of the gap magnetic flux density when there is no slot and the average value of the gap magnetic flux density when there is a slot.
  • P m is the permeance of the magnet
  • P o is the permeance of the gap
  • C 0 is the magnet-gap surface area ratio
  • Br is the residual magnetic flux density of the magnet.
  • the motor output is P (kw)
  • the rotational speed is N (10,000 pm)
  • the rotor diameter is D (m)
  • the axial length of the rotor is L (m)
  • the output coefficient is K, K 1
  • K 2 the output equation of Mo is given by the following equation.
  • the volume of the rotor heating part due to the eddy current becomes ⁇ 3 as with the motor volume, but the frequency of the eddy current becomes k ⁇ times, so the eddy current loss per unit volume is k N 2 times become. Therefore, the increase in the calorific value of the rotor is ⁇
  • Heat value Heat dissipation area ktkNkN2 / J- ktkNkN 2/4
  • the present inventor has found that it is necessary to widen the gap in order to reduce the amount of heat generated by eddy current.
  • K g is a constant determined based on the shape and material of the motor.
  • Figure 1 of the can ⁇ drawings be obtained relationship is a main part schematic diagram showing an embodiment of a super high speed brushless DC motor of the present invention.
  • FIG. 2 is a diagram showing a magnetic flux density between a stator and a rotor.
  • FIG. 3 is a diagram showing that the amplitude of the spatial harmonic rapidly decreases with increasing distance.
  • FIG. 4 is a diagram showing that the amplitude of the spatial harmonic increases as the slot opening length with respect to the slot pitch increases.
  • FIG. 5 is a schematic view of a main part showing another embodiment of the ultra-high speed brushless DC motor of the present invention.
  • FIG. 6 is a schematic view showing the magnetization direction of a rare earth permanent magnet mounted on the rotor of the ultra high speed brushless DC motor of the present invention.
  • FIG. 7 is a diagram showing a change in magnetic flux density.
  • FIG. 8 is a schematic view of a main part showing still another embodiment of the ultrahigh-speed brushless DC motor of the present invention.
  • FIG. 9 is a diagram showing the limit of speeding up of the conventional brushless DC motor.
  • FIG. 1 is a schematic view showing a main part of an embodiment of the ultra-high-speed brushless DC motor according to the present invention, in which the gap g between the stator 1 and the rotor 2 is N / 6.p 1 o, d , ⁇ g or more.
  • d is the inner diameter of the stator
  • N is the rated speed (10,000 rpm)
  • P is the rated output (kW)
  • K g is a constant determined by the motor stator.
  • la is a slot
  • lb is a tooth portion
  • lc is a stator winding
  • 2a is a shaft
  • 2b is a rare earth permanent magnet
  • 2c is a protective tube made of metal.
  • at least one pair of the rare-earth permanent magnets 2b is provided with a minute gap therebetween.
  • the above constant K g is, for example, when the inner diameter of the stator 1 is ⁇ 31, the slot pitch is 5.4mra, the slot opening width is 1.8, and a stainless steel tube is used as the protection tube 2c. Will be 1 Z200.
  • resistivity 72 x 1 0 10 - as the outermost peripheral portion of the portion having metallic properties: 144 x 1 0- 8 ⁇ when adopting also constant K ones m g becomes 1Z200.
  • the constant K g is 1,200 if the specific resistance of the rare earth permanent magnet 2b is the above value.
  • the gap length g is set to 2.01 or more based on the above equation. Brushless with actual gap length set to 2. O lmra or more. And kept spinning.
  • the gap length of this embodiment is smaller than that of the case where the gap length is set to 0.16 to 0.31. It is clear that the gap length has increased by an order of magnitude.
  • Fig. 2 is a diagram showing the magnetic flux density between the stator 1 and the rotor 2.
  • the magnetic flux density on the rotor surface of the conventional brushless DC motor (see the broken line in the figure) is positive on the tooth 1b.
  • the difference between the two magnetic flux densities is remarkably large, as well as the largest at the position facing slot 1a and the smallest at the position facing slot 1a.
  • the magnetic flux density on the rotor surface (see the solid line in the figure) of the rotor of the ultrahigh-speed brushless DC motor of this embodiment is the largest at the position directly facing the tooth lb, and is the position facing the slot 1a.
  • the difference between the two magnetic flux densities is extremely small.
  • the difference between the two magnetic flux densities is the amplitude of the spatial harmonic of the magnetic flux, which is also consistent with the graph of FIG. 3 showing that the amplitude of the spatial harmonic rapidly decreases with increasing distance.
  • the gap length g is set so that the generation of the eddy current can be largely suppressed and the heat generated due to the eddy current can be sufficiently radiated.
  • a coefficient for N 5/6 is to sufficiently reduce the accompanying eddy current loss to increase in the rotational speed, turn the difficulty of accompanying heat dissipation P 1/8 is in capacity It is a coefficient to avoid.
  • the rotor 2 uses a rare-earth permanent magnet 2 b having a large magnetic force (BH product). Therefore, sufficient flux coupling efficiency can be achieved.
  • a 10- s DC motor can be realized.
  • the dimensional accuracy and assembly accuracy of each component need not be increased so much because the gap length can be significantly increased. As a result, the cost of brushless DC motors can be reduced.
  • an inward compressive force is applied to the rare earth permanent magnet 2b.
  • a protective tube 2 c which can, in this case, a rare earth permanent magnet 2 b to ultra high-speed rotation speed centrifugal stress caused by the rotation of the rotor 2 is considerably larger Therefore, it is suitable for increasing the speed of a brushless DC motor since the thickness of the protective tube 2c can be increased and the inward compressive force can be increased.
  • the brushless DC motor should be manufactured so as to achieve the combination of 7 and g "d located in the range below the dashed line shown). That is, the force to reduce 7 or increase g Z d Can be dealt with.
  • FIG. 5 is a schematic view of a main part of another embodiment of the ultra-high-speed brushless DC motor of the present invention.
  • the difference from the embodiment of FIG. 1 is that the metal protective tube 2c is used instead of the protective tube 2c.
  • a protective tube made of a body is used.
  • the gap length is defined as the distance between the tooth portion 1b of the stator 1 and the surface of the portion having the above metallic properties.
  • a protective tube 2d made of an insulator such as carbon fiber, ceramic, or glass fiber may be installed within the range of the gear length sufficiently larger than that of the conventional brushless DC motor.
  • a sufficient permanent magnet protection effect can be achieved.
  • the gap length is about 1100 to 1Z20 ° of the inner diameter of the stator, and a sufficient gap length is within this gap length. It has never been possible to provide a protective tube made of insulator that can achieve a permanent magnet protection effect.
  • FIG. 6 is a schematic diagram showing the magnetization direction of a rare-earth permanent magnet mounted on the rotor of the ultrahigh-speed brushless DC motor of the present invention. Magnetized to occur.
  • the magnetic flux density caused by the rare-earth permanent magnet becomes the largest, and the slot of the stator 1 is increased.
  • the magnetic flux density becomes the smallest when facing 1a.
  • the magnetic flux of the rare-earth permanent magnet magnetized in the direction parallel to the magnetic pole axis changes gradually according to the deviation angle because the amount of magnetic flux coupled to the teeth 1 b of the stator 1 changes. Therefore, the magnetic flux density changes gently according to the deviation angle.
  • the magnetic flux density changes in a sinusoidal manner, and contains almost no harmonic components (see Fig. 7).
  • Example 1 If the magnetic flux density changes in a sinusoidal manner, the occurrence of iron loss in the stator can be greatly suppressed, and the efficiency can be improved in Example 1 or Example 2. Together with this, it is possible to achieve a remarkably high efficiency. Therefore, an ultra-high-speed brushless DC motor can be easily realized.
  • the rectangular wave indicated by a broken line in FIG. 7 indicates a change in magnetic flux density when the permanent magnet of the rotor 2 employs a permanent magnet magnetized so as to generate a magnetic flux radially over the entire range. It is a figure, and since it has a rectangular wave shape, it contains various harmonic components, and the iron loss in the stator 1 increases due to the harmonic components, and the operating efficiency increases as the iron loss increases. Will decrease.
  • the waveform shown by the one-dot chain line in FIG. 7 is a diagram showing the change in magnetic flux density when the permanent magnet is magnetized in the same manner as in this embodiment and the gap length is the same as that of the conventional brushless DC motor. Since the waveform is closer to a square wave than a sine wave, there is an iron loss similar to that of a square wave.
  • FIG. 8 is a schematic diagram showing a main part of still another embodiment of the ultra-high-speed brushless DC motor of the present invention.
  • the difference from the above embodiment is that the rare-earth permanent magnet 2 b is used.
  • the only difference is that permanent magnets are used and the protection tubes 2 c and 2 d are omitted.
  • the permanent magnets can be prevented from being damaged during ultra-high-speed rotation without using a protective tube. As a result, the configuration and manufacturing operation of the rotor 2 can be simplified.
  • a rare-earth permanent magnet manufactured by hot-working Pr 17 ⁇ Fe 76.5 ⁇ B 5 ⁇ Cu 1.5 was used as the basic composition, and melting, forming and hot working heat treatment were performed.
  • the representative value is 2 7 MG O e of BH product, flexural strength of 36 kgf / mm 2 or more and a tensile strength of 24 kgf wicked person 2 or more, the compressive strength a there 9 5 kgf Z Jour 2, 1 00,000 even when applying rotary ultrafast brushless DC motor that exceed, it can be seen that can be configured rotor 2 without there use the protection tube.
  • Embodiment 5 In considering the maximum value of the gap length g in the brushless DC motor of the present invention, torque cannot be generated as a motor unless magnetic flux from a magnet flows to a stator.
  • the distance g from the magnet to the stator is smaller than the distance between the magnetic poles (the distance between the N and S poles of the magnet), not a small amount of magnetic flux flows through the stator, and torque can be generated as a motor.
  • gmax is the upper limit of the gap length g
  • D is the diameter defining the rotor magnet surface
  • p is the number of poles of the brushless DC motor.
  • the limit value at which the brushless DC motor can be operated is the upper limit value of the gap length g.
  • the gap length g is set to be less than 15.7 based on the above equation.
  • the brushless DC motor with the gap length set to less than 15.7 mm was actually operated, it continued to rotate stably at the above speed and output.
  • Ultrafast brushless DC motor of Example 6 This example is provided Ficoll emissions for natural air cooling, and to set the gap length g in N 5/6 'P 1 / o * d * K gZK s 1 / more I have.
  • K s is a constant determined by the increase in surface area due to the provision of natural air cooling fins
  • d is the inner diameter of the stator
  • N is the rated speed (10,000 pm)
  • P is the rated output (kW)
  • the heat dissipation effect K s during natural air cooling will be almost 2, so the gap when there is no cooling effect at room temperature
  • the gap length should be set so that it becomes 0,707 times or more the length g-.
  • the present invention is not limited to the above embodiments.
  • the specific resistance of 144 ⁇ 10 it is possible to employ an 8 Omegapaiiota following items (may be of a 3X 10 one 0 ⁇ 14 4 X 10 one 0 ⁇ ), the constant K g also in this case is 1 Bruno 200.
  • Other changes to the gist of the present invention Various design changes can be made within a range not to be performed.
  • INDUSTRIAL APPLICABILITY The present invention can obtain a brushless DC motor capable of ultra-high speed rotation by increasing a gap length between a stator and a portion having metallic properties of a rotor. It is useful as a drive source for various devices that require ultra-high speed rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

明細書 発明の名称 超高速ブラシレス D Cモータ 技術分野 この発明は超高速ブラシレス D Cモータに関し、 さらに詳細にいえば、 電機子鉄心に電機子巻線を巻回してなる電機子と永久磁石内周に回転子 鉄心が嵌合されてなる回転子とを含み、 1万 r . p . m . を越える回転 速度で回転されるブラシレス D Cモータに関する。 背景技術 従来から圧縮機等の駆動源として、 電気的制御が容易であること等の 利点に着目してモータが採用されている。 また、 モータには種々の種類 のものがあるが、 現状では、 三相交流電源を用いて回転磁界を簡単に得 ることができ、 整流子を不要にできること、 および堅牢、 低価格、 取扱 いの簡便さ等の利点に着目して三相誘導電動機が最も一般的に用いられ ている。 しかし、 誘導電動機は、 電機子鉄心に電機子巻線を巻回してい るだけでなく、 回転子鉄心にも回転子巻線を巻回しており、 運転時には 回転子巻線にも電流が流れるので、 機械損が存在しないと仮定した場合 であっても、 回転子巻線に電流が流れることに起因する二次銅損分だけ 出力が入力よりも減少し、 余り効率を高めることができない。
この点に着目して、 回転子鉄心に回転子巻線を巻回する代わりに、 回 転子鉄心に永久磁石を装着して二次 ¾損を◦にし、 高い運転効率を達成 できるブラシレス D Cモータが提案されている。 また、 高い運転効率を 達成できることに起因して、 精密機械、 圧縮機等における高速回転モー 夕としてブラシレス D Cモータを適用することが検討されている。 この 場合において、 ブラシレス D Cモータは、 運転効率を高めることが最も 重視されるのであるから、 固定子と回転子との間における磁束結合効率 を可能な限り高めるべく、 固定子と回転子との間のギヤップ長が固定子 内径の 1 Z 1 0 0〜 1 Z 2 0 0程度に設定されている。 また、 高速回転 に伴なう永久磁石の破損を防止するために金属管が装着されている (特 開平 3 - 1 1 9 5 0号公報参照) 。
しかし、 ブラシレス D Cモ一夕を高速回転させる場合には、 固定子の スロッ 卜に起因する磁束密度変化が生じる。 そして、 ギャップ長が上述 のように著しく小さいのであるから、 回転子が磁束密度変化の影響を大 きく受けて渦電流が発生し、 渦電流損に起因して運転効率が低下してし まう。 従来は、 磁束密度変化に起因する渦電流が発生しても、 上述のよ うに固定子と回転子との間のギヤップ長を可能な限り小さく して磁束結 合効率を高めることにより、 ブラシレス D Cモータの運転効率を十分に 高めることができると思われていた。 そして、 実際に提供されているブ ラシレス D Cモータのうち、 高効率化を目的とするものは全て上述のよ うにギヤップ長を可能な限り小さく設定してある。
さらに詳細に説明すると、 従来のブラシレス D Cモータの殆どは比較 的低出力の領域で回転させるものであったため、 渦電流損に起因する発 熱は殆ど問題にならず、 可能な限り磁束結合効率を高めることが主眼と なっており、 上述のようにギヤップ長を可能な限り小さく設定している。 また、 ブラシレス D Cモータを高出力化および/または高速回転化する 場合には、 渦電流損に起因する発熱が問題になるので、 固定子のスロッ 卜開口幅を小さく し、 および Zまたはファンの装着、 冷媒の供給等によ る強制冷却を行なうことにより、 渦電流損に起因する発熱を上回る放熱 効果を達成するという対処がとられている。 ここで、 スロッ ト開口幅を 小さくすれば、 固定子の歯部同士の間隔が小さくなるため、 歯部とスロ ッ ト開口部との間での磁束密度変化がなだらかになり、 空間高調波成分 を大幅に低減できるので、 渦電流損を大幅に低減できると思われる。 し かし、 スロッ ト開口幅は、 固定子巻線をスロッ 卜内に収容する必要があ る関係上、 小さくすることには限界があり、 この限界が渦電流損に起因 する発熱を抑制するための限界になってしまう。 もちろん、 強制的に冷 却する場合にも、 ファンの性能、 冷媒の種類、 流速の限界等により放熱 量の增加に限界が存在する。 したがって、 これらの対処を施しても、 ブ ラシレス D Cモータの高出力化および /"または高速回転化には限界が存 在することになる。
本件発明者は超高速回転可能なブラシレス D Cモータを得るべく鋭意 研究を重ね、 かつ実際に提供されている高速回転モータを分析した結果、 第 9図に実線で示すように、 高速化に限界があることを見出し、 ブラシ レス D Cモータの高出力化および/または高速回転化に限界が存在する ことを確認した。 尚、 図中黒点が従来実現されている高速モータ (また は超高速モータ) の出力と回転数とを示している。 そして、 この限界は、 回転速度の増加に伴なつて渦電流の発生が顕著になり、 渦電流損に起因 する効率の低下および回転子の異常昇温が原因であることを見出した。
したがって、 従来は、 第 9図に示す実線を越えるような超高速モータ を実現することは不可能であった。
また、 従来のブラシレス D Cモータは上述のようにギヤップ長を小さ く設定しなければならないので、 各構成部分の加工精度、 組立て精度を 著しく高めなければならず、 ひいては製造作業が著しく繁雑化するとと もに、 困難化するという不都合がある。 発明の開示
この発明は上記の問題点に鑑みてなされたものであり、 スロッ ト開口 幅を小さく し、 冷却装置を装着するというような特別の作業が全く不要 であり、 しかも簡単に回転速度を高めることができる超高速ブラシレス D Cモータを提供することを目的としている。
上記の目的を達成するための、 請求項 1の超高速ブラシレス D Cモー タは、 固定子と回転子の金属的性質を有する部分との間のギャップ長を
N 5 6 ♦ P 1 o · d · K g {dは固定子の内径、 Nは定格回転数
(万 p. m. ) , Pは定格出力 (kW) 、 K gはモータの固定子に より定まる定数) 以上に設定してある。
請求項 2の超高速ブラシレス D Cモータは、 固定子と回転子の金属的 性質を有する部分との間のギャップ長を (yZO. 3) · 9 3
N j/6 . p l 8 . d # K g { 7は固定子のスロッ トピッチに対する スロッ ト開口長の比、 dは固定子の内径、 Nは定格回転数 (万 p. m. ) 、 Pは定格出力 (kW) 、 K gはモータの形状および材質により 定まる定数 } 以上に設定してある。
請求項 3の超高速ブラシレス D Cモータは、 自然空冷用のフィ ンを有 しているとともに、 固定子と回転子の金属的性質を有する部分との間の ギヤップ長が、 上記ギヤップ長の 1ZK s 1 x 倍に設定されてある。 請求項 4の超高速ブラシレス D Cモータは、 ギャップ長 gを 7Γ D " (2 p) {Dは回転子の磁石表面を規定する直径、 pはブラシレス D C モータの極数) 未満に設定してある。 請求項 5の超高速ブラシレス D Cモータは、 回転子として希土類永久 磁石が装着されたものを用いている。
請求項 6の超高速ブラシレス D Cモータは、 回転子に装着される永久 磁石として、 全ての領域について磁極軸に平行方向に磁化されたものを 採用したものである。
請求項 7の超高速ブラシレス D Cモータは、 回転子として、 最外周に 金属からなる保護管を装着してなるものを採用したものである。
請求項 8の超高速ブラシレス D Cモータは、 回転子として、 最外周に 絶縁体からなる保護管を装着してなるものを採用したものである。
請求項 9の超高速ブラシレス D Cモータは、 回転子として、 最外周に 金属または絶縁体からなり、 かつ希土類永久磁石に対して回転子の蚰中 心に向かう方向の圧縮力を与える保護管を装着してなるものを採用した ものである。
請求項 1 0の超高速ブラシレス D Cモータは、 希土類永久磁石として、 祷造熱間加工希土類永久磁石を採用したものである。 ここで、 铸造熱間 加工希土類永久磁石としては、 イツ トリウムを含む希土類元素のうち少 なくとも 1種、 遷移金属元素のうち少なくとも 1種および I I I b族元 素のうち少なくとも 1種を原料基本成分として溶解 ·铸造した後、 5〇 0°C以上の温度で熱間加工することにより、 磁性相を濃縮し、 かつ機械 的配向により磁気的異方性を付与してなるものであることが好ましい。 より好ましくは、 P r, N d, D y, C e, L a , Y, T hから選ばれ た少なくとも 1種以上の希土類元素、 F e, C o, C u, A g, A u, N i , Z rのうちから選ばれた少なくとも 1種以上の遷移金属元素、 B, G a, A 1のうちから選ばれた少なく とも 1種の I I I b族元素が例示 でき、 それぞれの原子百分比が 12~25%、 65〜85%、 3〜: L 0 %であることが好ましい。 請求項 1の超高速ブラシレス D Cモー夕であれば、 固定子と回転子の 金属的性質を有する部分との間のギャップ長を N / σ ♦ Ρ 1 / 8 ♦ d
• K g以上に設定しているのであるから、 従来のブラシレス D Cモータ のギャップ長と比較して著しく大きいギャップ長が設定される。 この結 果、 固定子のスロッ トに起因する磁束密度変化がかなり大きくても、 ギ ャップ長が大きいことに起因して、 回転子においては磁束密度変化が大 幅に低減された状態になり、 回転子における渦電流の発生を著しく低減 できる。 したがって、 運転効率を高くできるとともに、 ギャップ長が大 きいことに伴なつて回転子の発熱を大幅に抑制することができ、 ひいて は、 安定した超高速回転を行なわせることができる。 また、 この超高速 ブラシレス D Cモータは、 単にギヤップ長を大きく しているだけである から、 固定子を設計し直す作業等が不要になる。 また、 ギャップ長が大 きく設定されるのであるから、 超高速ブラシレス D Cモータの組み立て も容易になる。
請求項 2の超高速ブラシレス D Cモータであれば、 固定子と回転子の 金属的性質を有する部分との間のギャップ長を 3 ) 9 5
• N 5 / o * P l / 8 * d * K g以上に設定しているのであるから、 例 えば、 固定子巻線の線径に対してブラシレス D Cモータが著しく大径で あるような場合に、 従来のブラシレス D Cモ一夕のギャップ長と比較し て著しく大きいギャップ長が設定される。 この結果、 固定子のスロッ ト に起因する磁束密度変化がかなり大きくても、 ギヤップ長が大きいこと に起因して、 回転子においては磁束密度変化が大幅に低減された状態に なり、 回転子における渦電流の発生を著しく低減できる。 したがって、 運転効率を高くできるとともに、 ギャップ長が大きいことに伴なつて回 転子の発熱を大幅に抑制することができ、 ひいては、 安定した超高速回 転を行なわせることができる。 また、 この超高速ブラシレス D Cモータ は、 単にギャップ長を大きく しているだけであるから、 固定子を設計し 直す作業等が不要になる。 また、 ギャップ長が大きく設定されるのであ るから、 超高速ブラシレス D Cモータの組み立ても容易になる。
請求項 3の超高速ブラシレス D Cモータであれば、 自然空冷用のフィ ンを有しているとともに、 固定子と回転子の金属的性質を有する部分と の間のギヤップ長を、 上記ギヤップ長の 1 / K s 丄 倍に設定してい るのであるから、 例えば、 固定子巻線の線径に対してブラシレス D Cモ 一夕が著しく大径であるような場合に、 従来のブラシレス D Cモータの ギャップ長と比較して著しく大きいギャップ長が設定される。 この結果、 固定子のスロッ 卜に起因する磁束密度変化がかなり大きくても、 ギヤ ッ プ長が大きいことに起因して、 回転子においては磁束密度変化が大幅に 低減された状態になり、 回転子における渦電流の発生を著しく低減でき る。 したがって、 運転効率を一層高くできるとともに、 ギャ ップ長が大 きいことに伴なつて回転子の発熱を大幅に抑制することができ、 ひいて は、 安定した超高速回転を行なわせることができる。 また、 この超高速 ブラシレス D Cモー夕は、 単にギヤップ長を大きく しているだけである から、 固定子を設計し直す作業等が不要になる。 また、 ギャ ップ長が大 きく設定されるのであるから、 超高速ブラシレス D Cモータの組み立て も容易になる。
請求項 4の超高速ブラシレス D Cモータであれば、 ギヤップ長 gを π Ό / ( 2 ρ ) 未满に設定しているのであるから、 超高速回転を行なわせ ることができる。
請求項 5の超高速ブラシレス D Cモータであれば、 回転子に装着され る永久磁石が希土類永久磁石であるから、 磁力が強く (Β Η積が大きく) 、 ギヤップ長が大きいにも拘らず十分な磁束結合効率を達成できる。 請求項 6の超高速ブラシレス D Cモータであれば、 回転子に装着され る永久磁石として、 全ての領域について磁極軸に平行方向に磁化された ものを採用しているので、 固定子と回転子との間隙における磁束密度を 正弦波状に変化させることができ、 高調波成分が殆どない状態にできる ので、 固定子における高調波に起因する鉄損を殆ど皆無にでき、 運転効 率を一層高めることができる。
請求項 7の超高速ブラシレス D Cモ一夕であれば、 回転子として、 最 外周に金属からなる保護管を装着してなるものを採用しているので、 従 来のブラシレス D Cモータと比較して保護管の厚みを著しく大きくでき、 超高速回転を行なわせた場合にも永久磁石を確実に保護できる。 この結 果、 安定した超高速回転を達成できる。
請求項 8の超高速ブラシレス D Cモータであれば、 回転子として、 最 外周に絶縁体からなる保護管を装着してなるものを採用しているので、 保護管における渦電流が全く発生しない。 したがって、 保護管部分にお ける渦電流が皆無になることに伴なつて運転効率を一層高めることがで さ
請求項 9の超高速ブラシレス D Cモータであれば、 回転子として、 最 外周に金属または絶縁体からなり、 かつ永久磁石に対して回転子の軸中 心に向かう方向の圧縮力を与える保護管を装着してなるものを採用して いるので、 請求項 7または請求項 8の場合よりも高い永久磁石保護効果 を達成でき、 より高い超高速運転を達成できる。 もちろん、 請求項 7ま たは請求項 8の場合と同様に保護管の厚みを著しく大きくできるので、 永久磁石に対する高い圧縮効果を達成できる。
請求項 1 0の超高速ブラシレス D Cモータであれば、 希土類永久磁石 として、 铸造熱間加工希土類永久磁石を採用しているので、 永久磁石自 体の強度を焼結型の希土類永久磁石よりも著しく大きくでき、 保護管を 省略することが可能になる。 もちろん保護管を設けることもできる力^ この場合には上限回転速度を著しく高めることができる。 また、 铸造熱 間加工希土類永久磁石は金属に類似する性質を有しており、 高精度の加 ェが可能であるとともに、 密度が均一であるから、 永久磁石が装着され た回転子のバランスをとりやすく、 しかも、 保護管を用いる場合には永 久磁石における応力を簡単に低減でき、 この結果、 超高速ブラシレス D Cモータの各部の精度を高くでき、 全体として良好なバランスを保持さ せることができ、 しかも製造、 組立てを簡単化できる。 特に、 金属から なる保護管を装着してなる回転子を採用する場合と比較すれば、 希土類 永久磁石が最も外周に位置することになるので、 磁束結合効率を一層高 めることができる。
さらに詳細に説明する。
本件発明者は、 従来のブラシレス D Cモータの限界を越える出力およ び回転数の超高速ブラシレス D Cモータを得るために鋭意研究を重ねた 結果、 磁束結合効率を高めるために固定子と回転子との間のギャップ長 を可能な限り小さくすることがかえって超高速回転を阻害することを見 出した。 即ち、 超高速回転時には、 固定子にスロッ 卜に起因する磁束密 度の周波数が高くなり、 この磁束密度に起因して回転子に著しく渦電流 が流れてしまい、 運転効率が大幅に低下してしまう。 また、 渦電流損が 大きくなることに起因して回転子の発熱が大きくなり、 しかもギャップ 長が短いことに起因して放熱効率を良好にできないので、 回転子の温度 が徐々に上昇してしまい、 永久磁石の磁力喪失、 回転子自体の溶解等を ひきおこしてしまう。
これらの知見に基づいて超高速ブラシレス D Cモータのギヤップ長を どの程度大きくすればよいかについて鋭意研究を重ねた結果、 定格回転 数および定格出力に基づいて定まるギャップ長、 例えば、 Ν 5 / Ό · P 1 / 8 · d · K g以上になるように、 固定子と回転子とのギヤップ長 を設定すれば、 渦電流の大幅な低減を達成できるとともに、 低減された 渦電流に起因する発熱が存在していても発熱を上回る放熱効率を達成で きることを見出し、 本件発明を完成したのである。
上記ギヤップ長を規定する式 N 5 / σ · Ρ 1 / 8 ♦ d · K gについて さらに詳細に説明する。
固定子のスロッ トによるギャップ中の空間高調波の振幅は、 スロッ ト がない場合のギヤップ磁束密度の平均値とスロッ 卜がある場合のギヤッ プの磁束密度の平均値との差で表せる。
先ず、 スロッ トがない場合のギャップ磁束密度の平均値 B gは、
B g = B r . C φ / ( 1 + P m/P ο)
で表せる。 但し、 P mは磁石のパーミアンス、 P oはギャップのパーミ アンス、 C 0は磁石—ギヤップ表面積比、 B rは磁石の残留磁束密度で ある。
また、 スロッ トがある場合のギャップ磁束密度の平均値 B g sは、 B g s = B r » C φ / ( 1 + P m/P s )
で表せる。 但し、 P sはスロッ トがある場合のパーミアンスであり、 こ のパーミアンス P sは、
P s = ^ 0 {w/ g - (4 / π) l o g ( 1 + s /A g ) }
で表せる。 但し、 wは固定子の歯の幅、 gは固定子と回転子との間のギ ャップ長である。 このパ一ミアンス P sを表す式にカー夕一係数の近似 式を導入すれば、
P s = ^ 0 - A g/k - g
k = t / [ t - { ( s /g) / (5 + s / g) ) · g]
で表せる。 但し、 A gはギャップ表面積、 tはスロッ トピッチ、 sはス ロッ ト開口長である。 したがって、 空間高調波の振幅 B mは、 B m = | B g— B g s l とな り {第 3図 (A) 参照 } 、 B mを gZ d (但し、 dは固定子の内径) で 無次元化すると第 3図 (B) に示すとおりになる。
また、 B mを gZ dの関数で表現すると、
B m= a / (g/ d )
となる。 但し、 αはスロッ ト開口長により定まる定数である。 したがつ て、 αと s Z tとの関係は第 3図 (C) に示すとおりになり、 α = β ( s / t ) 1 - 9 つ (但し、 = 0. 〇 0 6 9〜 0. 0 0 7 1 ) で近似 できる。 この結果、 上記振幅 B mは、 B m= 3 ( s / t ) 1 ' 9 ンノ (g/ d)
となる。
次に、 金属管損失 W 1は、
W 1 oc B m 2
で表せるため、 gZ dにおいては、
W 1 c 1 / (g/ d) 2
となり、 固定子の内径に対するギヤップ長の比率の 2乗に反比例するこ とが分る。
しかし、 実際のブラシレス D Cモータでは、 回転数の変化、 出力の変 化に伴なうモータ形状の変化に起因して損失の発生度合も変化するので あるから、 これらの変化をも考慮しなければならない。 この点について 以下に詳述する。
モータの出力を P (k w) 、 回転速度を N (万 p. m. ) , 回転 子の直径を D (m) 、 回転子の軸方向の長さを L (m) 、 出力係数を K, K 1 , K 2とすれば、 モ一夕の出力方程式は次式で与えられる。
p = K · D 2 · L · N
P =K 1 * D 3 * い N P =K 2 - D8 / 3 - L / 3 » N
ここで、 D, Lが同一比率 αで変化するものと仮定すれば、 上の 3つ の式は次のように簡素化できる。
P = 3 · N
Ρ = α 4 · Ν
したがって、 同一出力のモータにおいて回転速度を k Ν倍にした場合 には、 各部の寸法が
a = k N一し 〜 k N一 1 z 4倍
の範囲に、 一般的に変化することが分る。
また、 同一回転速度のモータにおいて出力を k P倍にした場合には、 同様に、
α = k P 1 x 3〜k P l 4倍
になることが分る。
<回転速度が k N倍になった場合のギヤップ〉
上述のように、 同一出力のモータにおいて回転速度が k N倍になると、 = k N~ 1 ^ 」〜k N— 1 κ 4
になる。 このとき、 渦電流に起因する回転子発熱部の体積はモータ体積 と同様に α 3になるが、 渦電流の周波数が k Ν倍になるので、 単位体積 当りの渦電流損は k N 2倍になる。 したがって、 回転子の発熱量の増加 は、 ヽ
3 ♦ k N = k N_ 1 ♦ k N 〜 k N一 j /4 · k N 2
= k N〜k N 5, 4
となる。
他方、 回転子の放熱面積は α 2倍になるので、 回転子の温度上昇を防 止するためには、
発熱量 放熱面積 = k t · k N · k N 2 / J〜k t · k N · k N 2/4
= k t . k N 5ノ 3〜k t . k N 7 /4 =一定
となるように、 渦電流に起因する発熱量を低減すべくギヤップを広げる 必要があることを本件発明者は見出した。
5
尚、 一般的に温度上昇が問題になる場合には寸法を大きくするのであ り、 このことを考慮して、 ギャップにより損失を低減する割合として k N 5 / 」を採用する。 また、 ギヤップ長 gと損失 W 1 との関係は、
Figure imgf000015_0001
で表されるので、 回転速度を k N倍にしたときの損失 W 1 'を、 10 W 1 ' =W 1 /k N 5 / J
とする必要がある。 したがって、 ギャップ長 gを、
g/d = ( 1 /k N ^/ 3) ~ 1 / 2 = k N
の割合で増加する必要がある。
く出力が k Ρ倍になった場合のギャップ >
ュ っ 上述の式から明らかなように、 同一回転速度のモータにおいて出力が k P倍になると、
cr = k p l Z 〜 k p l / 4倍 になる。 このとき、 渦電流に起因する回転子発熱部の体積はモータ体積 と同様にひ jになる。 したがって、 回転子の発熱量の增加は、 a 3.= k P〜k p 3 4倍 となる。
他方、 回転子の放熱面積は α 倍になるので、 回転子の温度上昇を防 止するためには、
発熱量/放熱面積- k t ' k P ' k P— / 3〜k t * k P 3 / 4 . k 」 p - 2/4 = k t . k p i Z S k t ' k P 1 ,4 -—定
となるように、. 渦電流に起因する発熱量を低減すべくギヤップを広げる 必要があることを本件発明者は見出した。
尚、 回転速度が k N倍になった場合と同様に、 ギャップにより損失を 低減する割合として k P 1 /4を採用する。 また、 ギャップ長 gと損失 W 1 との関係は、
Figure imgf000016_0001
で表されるので、 出力を k P倍にしたときの損失 W 1 'を
W 1 ' =W 1 /k p 1 x 4
とする必要がある。 したがって、 ギャップ長 gを、
g/ d oc ( 1 /k P 1 x 4) " 1 / ώ = k Ρ 1 ο
1 0 の割合で增加する必要がある。
以上の回転速度を k N倍にした場合の結果と、 出力を k P倍にした場 合の結果とを総合すれば、 ギヤップ長 gと固定子内径 dとの関係式が次 のとおり得られる。
g/ d≥ K g · k N -"'' 6 * k p丄 /
1 5 但し、 K gはモータの形状および材質に基づいて定まる定数である。
ここで、 対象となるモータの回転速度を N、 出力を Pとし、 基準にな る回転速度を N 0、 出力を P 0とすれば、
g/ d≥ K g - (N/N 0) 5 / 6 - (P/P 0) 1 /
= K g · Ν 0 ~ 5 / σ ♦ Ρ 0 ~ ΐ / Ω · Ν 5 / σ · Ρ 1 8
0 となる。 そして、 基準になる回転速度、 出力を共に 1にすれば、
N O / 6 * Ρ 0一 1 / c は 1になるので、 上記式は、
g/ d≥ K g · Ν / 6 · Ρ 1 x と表せる。
以上には、 固定子巻線の線径に対してブラシレス D Cモータのサイズ が通常の割合である場合について説明した。 しかし、 固定子巻線の線径 つ に対してブラシレス D Cモ一夕のサイズが著しく大きいような場合には、 上記振幅 Bmを表す式 B m = β ( s / t ) 1 - 9 5 / (g/ d)
に含まれる (s Z t ) を無視し得なくなるので、 金属管損失 W 1は、 W 1 oc ( 7 /0. 3) 5/ (g/ d)
となる。 但し、 7 = s Z t、 0. 3は一般的な s tの値である。 そして、 金属管損失 W 1を示す上式および上記知見に基づいて、 上記 と同様の式の変形を行ない、 かつ基準になる回転速度 N、 出力 Pを共に 1にすることにより、
g/ d≥ K g - ( 7 /0. 3) 1 · 9 5 . Ν 5/ο . ρ 1 /
の関係を得ることができる η 図面の簡単な説明 第 1図はこの発明の超高速ブラシレス D Cモータの一実施例を示す要 部概略図である。
第 2図は固定子と回転子との間における磁束密度を示す図である。 第 3図は空間高調波の振幅が距離の増加に伴なつて急激に減少するこ とを示す図である。
第 4図は空間高調波の振幅が、 スロッ トピッチに対するスロッ 卜開口 長の増加に伴なつて増加することを示す図である。
第 5図はこの発明の超高速ブラシレス D Cモータの他の実施例を示す 要部概略図である。
第 6図はこの発明の超高速ブラシレス D Cモータの回転子に装着され る希土類永久磁石の磁化方向を示す概略図である。
第 7図は磁束密度の変化を示す図である。
第 8図はこの発明の超高速ブラシレス D Cモータのさらに他の実施例 を示す要部概略図である。 第 9図は従来のブラシレス D Cモータの高速化の限界を示す図である。 発明を実施するための最良の形態
以下、 実施例を示す添付図面によって詳細に説明する。
第 1図はこの発明の超高速ブラシレス DCモータの一実施例を示す要 部概略図であり、 固定子 1と回転子 2との間のギヤップ長 gが Nつ / 6 . p 1 o , d , κ g以上に設定されてある。 但し、 dは固定子の内径、 Nは定格回転数 (万 r. p. m. ) Pは定格出力 (kW) 、 K gはモ —夕の固定子により定まる定数である。 尚、 l aはスロッ ト、 l bは歯 部、 l cは固定子巻線、 2 aは軸、 2 bは希土類永久磁石、 2 cは金属 からなる保護管である。 もちろん、 上記希土類永久磁石 2 bは互に微小 間隙を介在させた状態で少なくとも 1対設けられている。 但し、 微小間 隙を設けることなく、 全体が一体化された円筒状の希土類永久磁石を用 いることも可能である。
上記定数 K gは、 例えば、 固定子 1の内径が ø 31、 スロッ トピッチ が 5. 4mra、 スロッ トの開口幅が 1. 8 であり、 保護管 2 cとしてス テンレス製の管を用いた場合には 1 Z200になる。 また、 ステンレス 製の管に代えて、 金属的性質を有する部分の最外周部として固有抵抗が 72 x 1 0一 0〜: 144 x 1 0— 8 Ω mのものを採用した場合にも定数 K gが 1Z200になる。 もちろん、 保護管 2 cを省略した場合であつ ても、 希土類永久磁石 2 bの固有抵抗が上述の値であれば、 定数 K gが 1 200になる。 そして、 定格回転数を 17万 r, p. m. 、 定格出 力を 5 kWに設定する場合には、 上記式に基づいてギャップ長 gが 2. 01關以上に設定される。 実際にギャップ長を 2. O lmra以上に設定し たブラシレス. D Cモータを運転したところ、上記回転数、 出力で安定し て回転し続けた。 上記構成の固定子を用いた従来のブラシレス D Cモ一 夕の場合には、 ギャ ップ長が 0 . 1 6〜 0 . 3 1關に設定されていたの と比較して、 この実施例のギャップ長は、 1桁大きくなつていること力く 分る。
第 2図は固定子 1と回転子 2との間における磁束密度を示す図であり、 従来のブラシレス D Cモータの回転子の表面 (図中破線参照) における 磁束密度は、 歯部 1 bに正対する位置において最も大きく、 スロッ ト 1 aと正対する位置において最も小さいとともに、 両磁束密度の差が著し く大きい。 これに対して、 この実施例の超高速ブラシレス D Cモータの 回転子の表面 (図中実線参照) における磁束密度は、 歯部 l bに正対す る位置において最も大きく、 スロッ ト 1 aと正対する位置において最も 小さいとともに、 両磁束密度の差が著しく小さい。 尚、 上記両磁束密度 の差は磁束の空間高調波の振幅であり、 空間高調波の振幅が距離の増加 に伴なつて急激に減少することを示す第 3図のグラフとも一致する。 そ して、 回転子 2の表面における磁束密度の変化が大きいほど渦電流が顕 著に発生するのであるから、 この実施例の回転子 2の表面にお L、て発生 する渦電流は従来のブラシレス D Cモータと比較して著しく低減されて おり、 ひいては渦電流損に起因する発熱も大幅に低減されている。 した がって、 定格回転数を著しく大きく設定した超高速ブラシレス D Cモ一 夕であっても、 回転数の増加に伴なつて増加する渦電流の増加の程度を 大幅に抑制できる。
また、 渦電流の発生が大幅に抑制されても、 抑制された渦電流に起因 して回転子 2に発熱が生じ、 しかもこの発熱は渦電流の周波数が高くな ることに起因して、 到底無視し得ない量になる。 しかし、 この実施例に おいては、 渦電流の発生を大幅に抑制でき、 かつ渦電流に起因する発熱 を十分に放熱し得るようにギヤップ長 gを設定している。 具体的には、 N 5/ 6が回転数の増加に伴なう渦電流損を十分に低減 するための係数であり、 P 1 /8が大容量化に伴なう放熱の困難さを回 避するための係数である。
また、 上述のようにギヤップ長を大きくすると、 固定子 1と回転子 2
5 との間の磁束結合効率が著しく低下し、 かえって運転効率を低下させる ことになると思われるが、 この実施例においては、 回転子 2に磁力 (B H積) が大きい希土類永久磁石 2 bを採用しているのであるから、 十分 な磁束結合効率を達成できる。
したがって、 従来は実現不可能であると思われていた超高速ブラシレ
1 0 ス D Cモータを実現できる。 また、 従来実現されているのと同じ回転速 度のブラシレス D Cモータを得る場合には、 ギヤップ長を著しく大きく できる関係上、 構成各部の寸法精度、 組立て精度を余り高めなくてもよ くなり、 ひいてはブラシレス D Cモータの低価格化を達成できる。
尚、 この実施例において、 内向きの圧縮力を希土類永久磁石 2 bに作
1 5 用させることができる保護管 2 cを採用することが可能であり、 この場 合には、 回転子 2の回転に起因する遠心応力がかなり大きくなる超高速 回転速度まで希土類永久磁石 2 bを確実に保護でき、 しかも保護管 2 c の厚みを大きくでき、 ひいては内向きの圧縮力を大きくできるのである から、 ブラシレス D Cモータの高速化に好適である。
^ 0 以上には、 固定子のスロッ トピッチに対するスロッ ト開口長の比 7
{= (s / t ) } がほぼ〇. 3であるブラシレス D Cモータについて説 明した。 しかし、 7力く◦. 3からかなりかけ離れた値である場合には、 第 4図に示すように、 空間高調波の振幅 Bmが g/dのみならず 7にも 依存して変化することになる。 尚、 第 4図中、 白丸が gZd = 0. 01
Δ 5 の場合を、 黒丸が g/" d = 0. ◦ 2の場合を、 白四角が g/ d = 0. 0
5の場合を、'黒四角が d = 0. 1の場合をそれぞれ示している。 したがって、 定格回転数および定格出力が設定されれば、 これらに基 づいて定まる、 空間高調波の最大振幅を得、 空間高調波の振幅が最大振 幅よりも小さくなる範囲 (第 4図中に示す破線よりも下の範囲) に位置 する 7と g " dとの組合せを達成できるようにブラシレス D Cモータを 製造すればよい。 即ち、 7を小さくする力、、 または g Z dを大きくする ことにより対処することができる。
但し、 7を小さくする場合には、 ァの値に合せて固定子を製造し、 し かも全てのスロッ 卜に固定子巻線をセッ 卜する必要があるのに対して、 g Z dを大きくする場合には、 巻線が不要な回転子を g Z dの値に合せ て製造するだけでよいから、 7の値を変化させることなく g / dのみを 変化させること (即ち、 回転子のみを交換すること) が好ましい。 実施例 2 第 5図はこの発明の超高速ブラシレス D Cモータの他の実施例の要部 概略図であり、 第 1図の実施例と異なる点は、 金属製の保護管 2 cに代 えて絶縁体からなる保護管 2 dを採用した点のみである。
この実施例においては、 第 1図の実施例と異なり保護管 2 dには渦電 流が発生しないが、 保護管 2 dの内部に位置する金属的性質を有する部 分 (回転子鉄心、 希土類永久磁石) に渦電流が発生することになるので、 固定子 1の歯部 1 bと上記金属的性質を有する部分の表面との間の距離 をギャップ長とすることになる。
したがって、 従来のブラシレス D Cモータよりも十分に大きいギヤッ プ長の範囲内において、 カーボンファイバ、 セラミ ック、 ガラス纖維等 の絶縁体からなる保護管 2 dを装着すればよいことになり、 保護管 2 d の厚みを大きく して十分な永久磁石保護効果を達成できる。 これに対して、 従来のブラシレス D Cモータでは、 上述のように、 ギ ャップ長が固定子の内径の 1 1 0 0〜 1 Z 2 0◦程度であり、 このギ ャップ長の範囲内において十分な永久磁石保護効果を達成できる絶縁体 製の保護管を設けることは到底不可能であつた。
尚、 この実施例において、 内向きの圧縮力を希土類永久磁石 2 bに作 用させることができる保護管 2 cを採用することが可能であり、 この場 合には、 回転子 2の回転に起因する遠心応力がかなり大きくなる超高速 回転速度まで希土類永久磁石 2 bを確実に保護でき、 しかも保護管 2 c の厚みを大きくでき、 ひいては内向きの圧縮力を大きくできるのである から、 ブラシレス D Cモータの高速化に好適である。 実施例 3 第 6図はこの発明の超高速ブラシレス D Cモータの回転子に装着され る希土類永久磁石の磁化方向を示す概略図であり、 希土類永久磁石 2 b の全範囲にわたって互に平行な磁束を発生するように磁化されている。
したがって、 この実施例の場合には、 希土類永久磁石 2 bが固定子 1 の歯部 1 bと正対する状態において、 希土類永久磁石に起因する磁束密 度が最も大きくなり、 固定子 1のスロッ ト 1 aと正対する状態において 磁束密度が最も小さくなる。 そして、 何れとも正対しない状態において は、 磁極軸と平行方向に磁化された希土類永久磁石の磁束が固定子 1の 歯部 1 bと結合する磁束量がずれ角度に応じて徐々に変化するのである から、 ずれ角度に対応してなだらかに磁束密度が変化する。 この結果、 磁束密度は正弦波状に変化し、 高調波成分を殆ど含まないことになる (第 7図参照) 。 磁束密度が正弦波状に変化すれば、 固定子における鉄 損の発生を大幅に抑制でき、 実施例 1または実施例 2における高効率化 と相俟って著しい高効率化を達成できる。 したがって、 超高速ブラシレ ス D Cモータを簡単に実現できることになる。
第 7図中に破線で示す矩形波は、 回転子 2の永久磁石を、 全範囲にわ たって放射状に磁束を発生するように磁化された永久磁石を採用して場 合における磁束密度変化を示す図であり、 矩形波状になるのであるから 種々の高調波成分を含んでおり、 高調波成分に起因して固定子 1におけ る鉄損が増加し、 鉄損の増加に伴なつて運転効率が低下してしまう。 第 7図中に一点鎖線で示す波形は、 永久磁石をこの実施例と同様に磁 化し、 しかも従来のブラシレス D Cモータと同様のギヤップ長を採用し た場合における磁束密度変化を示す図であり、 正弦波よりも矩形波に近 い波形であるから、 矩形波の場合に近い鉄損の発生がある。
以上の比較例との比較から明らかなように、 ギャップ長を長く し、 し かも平行方向に磁化された希土類永久磁石 2 bを採用することにより、 固定子 1における鉄損をも大幅に低減でき、 ひいては著しく高効率の超 高速ブラシレス D Cモータを実現することができる。 実施例 4 第 8図はこの発明の超高速ブラシレス D Cモータのさらに他の実施例 を示す要部概略図であり、 上記実施例と異なる点は、 希土類永久磁石 2 bとして、 铸造熱間加工希土類永久磁石を採用し、 保護管 2 c , 2 dを 省略した点のみである。
上記铸造熱間加工希土類永久磁石は、 磁力が強いだけでなく、 機械的 強度も強いのであるから、 保護管を用いなくても、 超高速回転時におけ る永久磁石の破損を未然に防止できる。 この結果、 回転子 2の構成およ び製造作業を簡素化できる。 一 - 铸造熱間加工希土類永久磁石の一例として、 P r 1 7 · F e 7 6. 5 • B 5 · C u 1. 5を基本組成とし、 溶解 ·铸造、 熱間加工熱処理を行 なつた後に着磁を行なつたものを採用した場合には、 B H積の代表値が 2 7 MG O e、 曲げ強さが 36 k g f /mm2以上、 引張強さが 24 k g f 匪 2以上、 圧縮強度が 9 5 k g f Z關 2であり、 1 0万回転を越え る超高速ブラシレス D Cモータに適用する場合であっても、 保護管を用 いることなく回転子 2を構成できることが分る。 実施例 5 この発明のブラシレス D Cモータにおいてギヤップ長 gの最大値を考 える場合、 磁石からの磁束が固定子に流れなければモータとしてトルク を発生されることができない。 要するに、 磁石から固定子までの距離 g が磁極間 (磁石の N極と S極との距離) よりも小さければ、 少なからず 固定子に磁束が流れ、 モータとしてトルクを発生させることができる。
したがって、 次式で示す関係が成立する。
g m a x < O/ (2 p)
但し、 gm a Xはギャップ長 gの上限値、 Dは回転子の磁石表面を規定 する直径、 pはブラシレス D Cモータの極数である。
即ち、 ブラシレス D Cモータとして動作させ得る限界値がギヤ ップ長 gの上限値になる。
そして、 ブラシレス D Cモータの定格回転数を 1 7万 r . p. m. 、 定格出力を 5 kWに設定する場合には、 上記式に基づいてギヤップ長 g 力《1 5. 7關未満に設定される。 実際にギャップ長を 1 5. 7 mm未満に 設定したブラシレス D Cモータを運転したところ、 上記回転数、 出力で 安定して回転し続けた。 実施例 6 この実施例の超高速ブラシレス D Cモータは、 自然空冷用のフィ ンを 設け、 かつギャップ長 gを N 5/ 6 ' P 1 /o * d * K gZK s 1 / 以上に設定している。 但し、 K sは自然空冷用のフィ ンを設けることに よる表面積の増加により定まる定数、 dは固定子の内径、 Nは定格回転 数 (万 p. m. ) . Pは定格出力 (kW) 、 K gはモータの固定子 により定まる定数である。 さらに詳細に説明する。
さらに、 上述のギヤップ長 gの下限値の算出において、 面積当りの放 熱量が一定であると仮定している力《、 実際には、 ブラシレス D Cモー夕 にごく簡易な構成の自然空冷用のフィ ン 2 dを設けた場合には、 表面積 が增加し、 放熱量が増加する。 したがって、 この場台には、 発熱量 放 熱面積の関係として (a 3 * k N 2) α 2に代えて (a 3 * k N ) / (K s · a ) を採用すればよい。 但し、 K sは 1以上の値である。
この場合には、 冷却効果時のギャップ長を g、 常温時冷却効果なしの 場合のギヤップ長を g ' とすれば、 g = g ' /K s ノ となる。 具体 的には、 自然空冷用のフィ ンを設けることにより表面積が 2倍になった 場合には、 自然空冷時の放熱効果 K sがほぼ 2になるので、 常温時冷却 効果なしの場合のギャップ長 g -の 0, 707倍以上になるようにギヤ ップ長を設定すればよいことになる。
尚、 この発明は上記の実施例に限定されるものではなく、 例えば、 以 上の各実施例において、 回転子 2の金属的性質を有する部分の最外周と して固有抵抗が 144 X 1 0一 8 Ωπι以下のもの (3X 10一 0〜 14 4 X 10一 0 Ωπιのものでもよい) を採用することが可能であり、 この 場合にも定数 K gが 1ノ 200になる。 その他、 この発明の要旨を変更 しない範囲内において種々の設計変更を施すことが可能である。 産業上の利用可能性 この発明は、 固定子と回転子の金属的性質を有する部分との間のギヤ ップ長を大きくすることにより、 超高速回転可能なブラシレス D Cモー 夕を得ることができ、 超高速回転が要求される各種装置の駆動源として 有用である。

Claims

請求の範囲
1. 固定子 (1) と回転子 (2) の金属的性質を有する部分との間 のギャップ長 gを N 5 / 6 ♦ P 1 /o · d · K g {dは固定子の内径、 Nは定格回転数 (万 p. m. ) 、 Pは定格出力 (kW) 、 K gはモ —夕の形状および材質により定まる定数) 以上に設定してあることを特 徴とする超高速ブラシレス D Cモータ。
2. 固定子 (1) と回転子 (2) の金属的性質を有する部分との間 のギヤップ長 gを (ァ /0. 3) 1 - 9 5 , N j / 6 , P l /8 , d * K g {ァは固定子のスロッ トピッチに対するスロッ ト開口長の比、 dは 固定子の内径、 Nは定格回転数 (万 p. m. ) 、 Pは定格出力 (k W) 、 K gはモータの形状および材質により定まる定数) 以上に設定し てあることを特徴とする超高速ブラシレス D Cモータ。
3. 自然空冷用のフィ ンを有しているとともに、 固定子と回転子の 金属的性質を有する部分との間のギヤップ長 gが、 上記ギヤップ長 gの 1ZK s 1 κ '倍 (K sは自然空冷用のフィ ンを設けることによる表面 積の増加により定まる定数) に設定されてある請求項 1または請求項 2 に記載の超高速ブラシレス DCモータ。
4. ギャップ長 gを D/ (2 p) {Dは回転子の磁石表面を規定 する直径、 pはブラシレス D Cモータの極数 } 未満に設定してある請求 項 1から請求項 3の何れかに記載の超高速ブラシレス D Cモータ。
5. 回転子 (2) として希土類永久磁石 (2 b) が装着されたもの を用いている請求項 1から請求項 4の何れかに記載の超高速ブラシレス D Cモータ。
6. 回転子 (2) に装着される永久磁石 (2 b) として、 全ての領 域について磁極軸に平行方向に磁化されたものを採用している請求項 1 から請求項 5の何れかに記載の超高速ブラシレス D Cモータ。
7. 回転子 (2) として、 最外周に金属からなる保護管 (2 c) を 装着してなるものを採用している請求項 1から請求項 6の何れかに記載 の超高速ブラシレス D Cモータ。
」 8. 回転子 (2) として、 最外周に絶縁体からなる保護管 (2 d) を装着してなるものを採用している請求項 1から請求項 6の何れかに記 載の超高速ブラシレス D Cモータ。
9. 回転子 (2) として、 最外周に金属または絶縁体からなり、 力、 つ希土類永久磁石 (2 b) に対して回転子の軸中心に向かう方向の圧縮 0 力を与える保護管 (2 c) (2 d) を装着してなるものを採用している 請求項 1から請求項 6の何れかに記載の超高速ブラシレス D Cモー夕。
1 0. 希土類永久磁石 (2 b) として、 铸造熱間加工希土類永久磁 石を採用している請求項 5から請求項 9の何れかに記載の超高速ブラシ レス D Cモ一夕。
0
5
PCT/JP1994/000440 1993-03-19 1994-03-18 Ultra-high speed brushless dc motor WO1994022206A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002136216A CA2136216C (en) 1993-03-19 1994-03-18 Super high speed brushless dc motor
EP94910041A EP0642210B1 (en) 1993-03-19 1994-03-18 Ultra-high speed brushless dc motor
DE69406075T DE69406075T2 (de) 1993-03-19 1994-03-18 Bürstenloser motor ultrahoher geschwindigkeit
JP06520877A JP3137650B2 (ja) 1993-03-19 1994-03-18 超高速ブラシレスdcモータ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6072693 1993-03-19
JP5/60726 1993-03-19
JP24497593 1993-09-30
JP5/244975 1993-09-30

Publications (1)

Publication Number Publication Date
WO1994022206A1 true WO1994022206A1 (en) 1994-09-29

Family

ID=26401776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000440 WO1994022206A1 (en) 1993-03-19 1994-03-18 Ultra-high speed brushless dc motor

Country Status (8)

Country Link
EP (1) EP0642210B1 (ja)
JP (1) JP3137650B2 (ja)
AT (1) ATE159132T1 (ja)
CA (1) CA2136216C (ja)
DE (1) DE69406075T2 (ja)
ES (1) ES2111917T3 (ja)
SG (1) SG47895A1 (ja)
WO (1) WO1994022206A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013556A1 (fr) * 1997-09-08 1999-03-18 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
WO2004010562A1 (ja) * 2002-07-22 2004-01-29 Nsk Ltd. モータ、モータの製造方法及びモータの駆動制御装置
US6940205B1 (en) 1997-09-08 2005-09-06 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235792B2 (ja) * 2002-07-18 2009-03-11 株式会社安川電機 ギャップワインディングモータ
PL2158387T3 (pl) 2007-05-24 2013-12-31 Lindenmaier Gmbh Układ sprężarki
ATE498060T1 (de) * 2007-05-24 2011-02-15 Lindenmaier Gmbh Turbolader
JP5516068B2 (ja) * 2010-05-24 2014-06-11 株式会社デンソー 回転電機
US10267315B2 (en) * 2013-11-28 2019-04-23 Acd, Llc Cryogenic submerged pump for LNG, light hydrocarbon and other electrically non-conducting and non-corrosive fluids
FR3041185B1 (fr) * 2015-09-11 2017-09-01 Valeo Equip Electr Moteur Stator de machine electrique tournante a taux de remplissage optimise
EP3822467B1 (de) * 2019-11-12 2024-05-22 G+L Innotec GmbH Medienspaltmotor, insbesondere für einen turbolader

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120285U (ja) * 1979-02-16 1980-08-26
JPS5846859A (ja) * 1981-09-11 1983-03-18 Fanuc Ltd 同期モ−タ
JPS63143055U (ja) * 1987-03-10 1988-09-20
JPH01209942A (ja) * 1988-02-17 1989-08-23 Shin Meiwa Ind Co Ltd 永久磁石回転子
JPH0223049A (ja) * 1988-07-07 1990-01-25 Mitsubishi Electric Corp 永久磁石式回転電機
JPH02119546A (ja) * 1989-09-21 1990-05-07 Seiko Epson Corp アウターローター型モータ用ローター
JPH02276431A (ja) * 1988-12-29 1990-11-13 Fuji Electric Co Ltd 永久磁石付回転子を持つ回転電機
JPH03159533A (ja) * 1989-08-23 1991-07-09 Isuzu Motors Ltd 超高速回転子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI92114C (fi) * 1992-07-07 1994-09-26 High Speed Tech Ltd Oy Epätahtisähkökone ja sen yhteydessä käytettävät roottori ja staattori

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120285U (ja) * 1979-02-16 1980-08-26
JPS5846859A (ja) * 1981-09-11 1983-03-18 Fanuc Ltd 同期モ−タ
JPS63143055U (ja) * 1987-03-10 1988-09-20
JPH01209942A (ja) * 1988-02-17 1989-08-23 Shin Meiwa Ind Co Ltd 永久磁石回転子
JPH0223049A (ja) * 1988-07-07 1990-01-25 Mitsubishi Electric Corp 永久磁石式回転電機
JPH02276431A (ja) * 1988-12-29 1990-11-13 Fuji Electric Co Ltd 永久磁石付回転子を持つ回転電機
JPH03159533A (ja) * 1989-08-23 1991-07-09 Isuzu Motors Ltd 超高速回転子
JPH02119546A (ja) * 1989-09-21 1990-05-07 Seiko Epson Corp アウターローター型モータ用ローター

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013556A1 (fr) * 1997-09-08 1999-03-18 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
US6940205B1 (en) 1997-09-08 2005-09-06 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US7233092B2 (en) 1997-09-08 2007-06-19 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US7408279B2 (en) 1997-09-08 2008-08-05 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor including permanent magnet with tapered outer edges
US7411329B2 (en) 1997-09-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor including permanent magnet with tapered outer edges and rotor core with opening
WO2004010562A1 (ja) * 2002-07-22 2004-01-29 Nsk Ltd. モータ、モータの製造方法及びモータの駆動制御装置
US7180217B2 (en) 2002-07-22 2007-02-20 Nsk Ltd. Motor, method for manufacturing motor, and motor drive controller

Also Published As

Publication number Publication date
EP0642210B1 (en) 1997-10-08
ES2111917T3 (es) 1998-03-16
ATE159132T1 (de) 1997-10-15
EP0642210A4 (en) 1996-08-07
CA2136216C (en) 2004-09-28
SG47895A1 (en) 1998-04-17
EP0642210A1 (en) 1995-03-08
DE69406075T2 (de) 1998-03-19
JP3137650B2 (ja) 2001-02-26
DE69406075D1 (de) 1997-11-13
CA2136216A1 (en) 1994-09-29

Similar Documents

Publication Publication Date Title
US7876012B2 (en) Dynamo electric machine with an alloy member
EP2251962B1 (en) Cooling mechanism for axial gap type rotating machines
KR101023044B1 (ko) 저손실 재료를 이용한 효율적인 고속 전기 장치
BE1019030A5 (nl) Turbocompressorsysteem.
JP5606459B2 (ja) アキシャルギャップ型永久磁石回転機
CN106877615A (zh) 电动机及搭载了该电动机的电气设备
AU2011201339A1 (en) Permanent magnet motor
WO1994022206A1 (en) Ultra-high speed brushless dc motor
US11996739B2 (en) Curved magnets for a variable-flux memory motor
JP5470851B2 (ja) 径方向空隙型磁石モータ
JP2000134839A (ja) 永久磁石式回転子とそれを備えた電気機械
JP2014087143A (ja) 永久磁石同期電動機
JP2006223033A (ja) R−Fe−B系ラジアル異方性焼結リング磁石及びボイスコイルモータ
JP3350971B2 (ja) Pm形バーニヤモータ
JP2010154744A (ja) 金型、磁場成形機及び永久磁石の製造方法
JP2011147288A (ja) 同期電動機の回転子
JP4471698B2 (ja) 金型、永久磁石磁場成形機及び永久磁石の製造方法
JP4077898B2 (ja) 永久磁石モータ
JP2000175384A (ja) 永久磁石モータ
WO2023144919A1 (ja) 回転子、電動機、送風機及び空気調和装置
JPH09131006A (ja) 回転電機子用磁石回転子
JP2015198550A (ja) 円筒状の磁石組立体、磁石組立体、電動機
JP4123040B2 (ja) 高効率回転機
CN116488419A (zh) 可变轴向磁通电机
JPH03198632A (ja) 交流サーボモータ用磁石回転子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2136216

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994910041

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1995 341589

Country of ref document: US

Date of ref document: 19950131

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1994910041

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 784312

Country of ref document: US

Date of ref document: 19970116

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1994910041

Country of ref document: EP