WO1994012428A1 - Process for producing hydrogen peroxide - Google Patents

Process for producing hydrogen peroxide Download PDF

Info

Publication number
WO1994012428A1
WO1994012428A1 PCT/JP1993/001678 JP9301678W WO9412428A1 WO 1994012428 A1 WO1994012428 A1 WO 1994012428A1 JP 9301678 W JP9301678 W JP 9301678W WO 9412428 A1 WO9412428 A1 WO 9412428A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
niobium
hydrogen
platinum group
hydrogen peroxide
Prior art date
Application number
PCT/JP1993/001678
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Monzen
Kazuhiko Hiromoto
Shuji Hirayama
Nobuyuki Kondo
Haruki Ishigami
Yoshimasa Ishimura
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to AU54342/94A priority Critical patent/AU5434294A/en
Priority to BR9305759A priority patent/BR9305759A/pt
Priority to DE69309448T priority patent/DE69309448T2/de
Priority to JP51296494A priority patent/JP3394043B2/ja
Priority to US08/256,603 priority patent/US5496532A/en
Priority to EP93924831A priority patent/EP0627381B1/en
Priority to KR1019940702481A priority patent/KR100284671B1/ko
Publication of WO1994012428A1 publication Critical patent/WO1994012428A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen

Definitions

  • the present invention relates to a method for catalytically producing hydrogen peroxide from hydrogen and oxygen in a reaction medium.
  • anthraquinone method As a method for producing hydrogen peroxide, an anthraquinone method, an electrolytic method, a method by oxidizing isopropyl alcohol, and the like have been known, and the anthraquinone method has been mainly employed industrially.
  • hydrogen peroxide produced by reducing and oxidizing anthraquinone derivative in a non-aqueous solvent system is extracted with water and distilled to obtain a product.
  • this method is not always the ideal method for producing hydrogen peroxide because of the complexity of the process or the deterioration of the anthraquinone solution.
  • Japanese Patent Publication No. 56-47121 uses a catalyst containing 5% palladium on a hydrous silicate carrier to produce hydrogen peroxide in an acidic aqueous solution.
  • a catalyst containing 5% palladium on a hydrous silicate carrier to produce hydrogen peroxide in an acidic aqueous solution.
  • elution of the catalyst, palladium, from the carrier is unavoidable, and there is a problem in terms of catalyst life.
  • palladium-containing metal catalysts are prepared using activated carbon as a support to produce hydrogen peroxide. Activated carbon has a strong adsorptive power with palladium and elution is relatively suppressed, but it is not satisfactory.
  • Japanese Patent Application Laid-Open No. H3-10303310 discloses that an amino acid is present in a reaction medium to remove iron from a reactor. It reduces the elution of ions and improves the selectivity of hydrogen to hydrogen peroxide, but it is not sufficient.
  • JP-A-4-1238802 discloses cerium oxide
  • JP-A-4-285003 discloses lanthanum oxide
  • JP-A-5-17106 describes crystalline silica or high-silica zeolite as a carrier for the catalyst.
  • the selectivity of hydrogen to hydrogen peroxide is improved by using composite oxides of zirconium oxide and vanadium oxide respectively. However, none of them has reached the level of a practical catalyst.
  • the present invention solves the above-mentioned problems such as the elution of platinum group metals or the activity of the catalyst.
  • the decrease in selectivity and the like. Disclosure of the invention aimed at providing a method for manufacturing
  • a method for producing hydrogen peroxide in a reaction medium from hydrogen and oxygen in a contact medium comprising: niobium oxide, niobium composite oxide, tantalum oxide, tantalum composite oxide, molybdenum oxide And a platinum group metal catalyst supported on a carrier comprising at least one oxide selected from the group consisting of oxides and tungsten oxides.
  • the niobium oxide used as a catalyst carrier in the present invention NbO, Nb 2 0 3, Nb0 2, Nb 2 0 5 is niobium valence such as are known those 2-5 valence, of stable oxide object is Nb 2 0 5, the method of the present invention, it can be preferably used Nb 2 0 5.
  • molybdenum oxide or tungsten oxide as a carrier.
  • the niobium oxide is generally produced by using a solution of a soluble niobium compound such as a chloride, an alkoxy compound, an oxalate or a tartrate as a raw material, and adding or hydrolyzing the alkali.
  • a soluble niobium compound such as a chloride, an alkoxy compound, an oxalate or a tartrate
  • Nb 2 0 5 hydrated composition (Nb 2 0 5 ⁇ nH 2 0) is referred to as niobate, but have combined both blanking Les Nsutetsu de acid sites and Lewis acid on the surface, these Is known to increase or decrease by the heat treatment.
  • niobium oxide can be formed by heating diobic acid, but the dioboxide used in the present invention is preferably one obtained by heat-treating niobic acid at 300 to 700.
  • the heat treatment eliminates the strong acid sites and reduces the amount of acid, thereby achieving highly selective production of hydrogen peroxide. It is not preferable that the temperature is lower than 300 ° C because dehydration is insufficient and an acid point remains (the acid point should be small, but need not be zero). Above 700 ° C, the specific surface area decreases, and in either case, it becomes unsuitable as a carrier.
  • the heat treatment may be performed in an air presence atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
  • the specific surface area of the niobium oxide used in the present invention is not particularly limited, but those having a specific surface area of 100 m 2 // g or more are preferably used. Since such a niobium oxide can highly disperse the catalyst component, it can be suitably used in the method of the present invention.
  • Niobium oxide used in the invention method is can use as a carrier even alone, other carriers, preferably Si0 2, A1 2 0 3, Ti0 also suitably 2 which was once disperse Nio Bed oxides etc. Can be used.
  • one obtained by dispersing another carrier in niobium oxide can be suitably used.
  • it can be obtained by impregnating a carrier with a solution of a niobium soluble compound, or by hydrolyzing a mixed solution of a niobium soluble compound and a silicon, alumina or titanium soluble compound, for example, a mixed solution of an alkoxy or chlorine compound.
  • the resulting precipitate can be prepared by heat treatment.
  • Niobium oxide and Si0 2 obtained in this case AI2O3 or Ti0 composite oxide of 2 such or mixed oxide is a mixture of these oxides (mixed Oxide) and possibly form a compound called the is there.
  • a composite oxide is referred to in a sense including all of these possibilities.
  • Ophthalmic oxide is similar in properties to niobium oxide. Tantalum oxide, similar to the niobium oxide is susceptible solution or al preparation of soluble tantalum compound, the preferred tantalum oxides Ta 2 0 5 hydrated composition (Ta 2 0 5 ⁇ nH 2 0) It can be obtained by heating certain tantalic acid.
  • the conditions for the heat treatment can be the same as those for the heat treatment for niobate.
  • the heating temperature of the intartaric acid is preferably 300 to 700.
  • tantalum oxides alone as a carrier, as Si0 2.
  • AI2O3, Ti0 2 once be suitably used those obtained by dispersing, etc., further.
  • Molybdenum oxide and tungstic acid are known and commercially available Can be used. Even when molybdic acid or tungstic acid is used as a carrier, the same effect as that of niobium oxide can be obtained.
  • a platinum group metal is required as a catalyst component.
  • Palladium, platinum, and rhodium are preferred as the platinum group elements, and palladium can be particularly preferably used.
  • the platinum group metal is used in an amount of 0.1 to 10% by weight, preferably
  • the range of 0.5 to 8% by weight is preferred.
  • the platinum group metal may be supported on the carrier by a known method.However, in order to produce hydrogen peroxide with high activity and high selectivity, the platinum group metal is deposited on the surface of a carrier such as niobium oxide. It is advantageous that the particles are highly dispersed and the particle diameter of the platinum group metal is fine.
  • a carrier in general, can be impregnated with a solution of a soluble palladium compound and then reduced with hydrogen, hydrazine, alcohol, or the like to use as a catalyst.
  • the niobium oxide obtained by hydrolyzing the pentaethoxyniobium (Nb (0Et) 5 ) solution is dried, impregnated with a palladium chloride hydrochloric acid solution, and reduced with hydrogen.
  • the reduction temperature is preferably from room temperature to 300 degrees.
  • the platinum group metal is highly dispersed on the niobium oxide surface, and the particle diameter of the platinum group metal is fine.
  • the catalyst since the catalyst exhibits acid resistance and oxidation resistance, it does not show performance deterioration due to elution or oxidation of platinum group metals. Therefore, a suitable palladium catalyst can be obtained.
  • a catalyst is supported by ion-exchanging the surface hydroxyl groups of an acid such as tantalic acid with niobate and a platinum group metal complex salt.
  • the platinum group metal complex salt as a platinum group metal precursor must contain a platinum group metal in the cation.
  • [Pd (NH 3 ) 4 ] Cl 2 tetraamminepalladium (II) chloride
  • [Pd (C 2 H 8 N 2 ) 2 ] Cl 2 bis (ethylenediamine) palladium (II) chloride )
  • Acids such as niobate and tantalum which are effective in the ion exchange method have many Br ⁇ nsted acid sites, and therefore, those with heat treatment in the range of 100 to 400 or those without heat treatment are preferred. Used well. Further, those having an acid amount of 0.01 olZg or more, preferably 0.5 ol / g or more can be suitably used.
  • a platinum group metal catalyst can be obtained. That is, an acid such as niobic acid is immersed in an aqueous solution of [Pd (NH 3 ) 4 ] Cl 2 for several hours, followed by filtration. After washing with water until C ions are no longer detected, the solid is dried and reduced with hydrogen.
  • the reduction temperature is preferably in the range of room temperature to 300 ° C. Further, the reduction can be carried out by a wet method using a reducing agent such as hydrazine or alcohol.
  • the platinum group metal particle diameter of the catalyst thus prepared is in the range of 1 to 2 nm, which is sufficiently smaller than the catalyst prepared by the impregnation method using chloride. Also, the dispersibility is good.
  • the ion exchange method utilizes the ion exchange reaction of the platinum group metal complex ion with the hydroxyl group of an acid such as diobic acid or penthalic acid, so that aggregation of the platinum group metal is unlikely to occur. .
  • the adsorptivity between acids such as niobate and tantalum and fine platinum group metals is strong, the catalyst life is improved. Thus, a suitable palladium catalyst is obtained.
  • the platinum group catalyst prepared by the ion exchange method as described above can be used after further heating at 300 to 700 ° C.
  • Heat treatment eliminates strong acid sites and reduces the amount of acid, resulting in highly selective production of hydrogen peroxide Is achieved.
  • acid sites still remain in the catalyst, and at 700 ° C or higher, the specific surface area of the catalyst decreases, and in any case, performance is disadvantageous.
  • Heat treatment is performed in an inert gas atmosphere or a reducing gas atmosphere It is preferable to do it below.
  • niobium oxide or niobium composite oxide is effective as a carrier for platinum group elements.
  • niobium oxide having a Isobori acid structure are known to have a layered structure with unit cell of Nb0 6, the high surface area
  • the Pd salt incorporated between the layers of niobate is reduced to form highly dispersed metallic Pd, or by further high-temperature heat treatment, the phase transition of niobate to niobium oxide and the crystal structure is stable And the amount of acid decreases drastically.
  • the highly dispersed Pd is also subject to thermal changes and the particle size range is narrowed.
  • the present invention relates to a method for producing hydrogen peroxide from hydrogen and oxygen in a catalytic manner using a white metal catalyst using an oxide or a composite oxide of niobium, tantalum, molybdenum, and tungsten as prepared as described above. is there.
  • a reaction medium water is usually suitable, and a system to which various stabilizers are added is applied.
  • aqueous hydrochloric acid, aqueous hydrobromic acid, aqueous phosphoric acid, aqueous sulfuric acid, and the like can be given.
  • aqueous hydrochloric acid and aqueous hydrogen bromide can be used preferably.
  • aqueous hydrochloric acid sodium chloride, potassium chloride, etc. are used as chloride ion components.
  • a combination of an aqueous solution of sodium bromide, potassium bromide, etc. as the bromide ion component and sulfuric acid, phosphoric acid, etc., which are the hydrogen ion components should also be suitably used. Can be.
  • an organic compound such as an alcohol, a carboxylic acid, an amine or an acid amide may be added as a stabilizer.
  • concentration of the stabilizer is selected in the range of 0.001 to 5 mol 1, preferably 0.01 to 1 mol Z 1.
  • the method of supplying hydrogen and oxygen is also not particularly limited, and it can be applied either by blowing directly into the solvent through a pipe or by absorbing from the gas phase.
  • the mixing ratio of hydrogen and oxygen can be selected at any ratio, but an oxygen-hydrogen ratio (volume ratio) of 2 or more is advantageous in terms of reaction selectivity.
  • the mixed gas of hydrogen and oxygen has a wide explosion range (4.7% to 93.9% hydrogen concentration), and it is desirable to perform it outside the explosion range for safety reasons. It is.
  • the reaction may be carried out by diluting a mixed gas of hydrogen and oxygen with an inert gas such as nitrogen.
  • the catalytic amount of the white metal catalyst used in the method of the present invention is selected in the range of 1 ppm to 10 ppm, preferably 5 ppm to 600 ppm by weight as platinum group metal in the reaction medium.
  • the catalyst particle size of the platinum group catalyst to be used is not particularly limited. However, when a catalyst suspension method flow type is employed as the reaction form, a catalyst having a range of 1 to 1000 zm is preferably used.
  • the pressure is not particularly limited, and the reaction can be carried out within a range from atmospheric pressure to under pressure. It is generally known that the reaction rate of this reaction is proportional to the hydrogen partial pressure to some extent, and it is more advantageous to carry out the reaction under pressure.
  • the temperature is usually 0 ° (: ⁇ 30 The range of ° C is selected, but when the freezing point of the solvent is 0 ° C or less, the reaction can be carried out at a temperature of 0 ° C or less.
  • the reaction can be carried out in a catalyst fixed bed flow system, a catalyst suspension method flow system, a batch system, or the like. In some cases, a reaction mode such as a trickle phase may be employed.
  • the material of the reactor As the material of the reactor, a material having acid resistance is adopted.
  • the generated hydrogen peroxide is easily decomposed by trace amounts of heavy metals such as iron and manganese. Therefore, a material that does not elute heavy metals is desired.
  • a reactor in which at least the inner surface of the reactor is covered with titanium, Teflon or the like can be suitably used.
  • the palladium was carried by the following method. 0.5 g of palladium chloride was dissolved in 1 N hydrochloric acid, and 10.0 g of niobium oxide obtained by the above method was added. While heating, the mixture was sufficiently stirred to evaporate water. Then, hydrogen reduction was performed at 200 ° C for 3 hours, and calcined at 500 ° C for 2 hours under nitrogen to obtain a 3% niobium palladium oxide (weight ratio of palladium to carrier) catalyst. The BET specific surface area after firing was 10 m 2 Z g. (Reaction method)
  • the accumulated concentration of hydrogen peroxide continued to increase linearly.
  • a catalyst was prepared and reacted in the same manner as in Example 1 except that calcination after carrying palladium was carried out at 500 under hydrogen.
  • the results of titration with 140 N potassium permanganate every hour after the start of the reaction are shown below. You. (Hydrogen peroxide: The accumulated concentration is indicated in ppm.)
  • the accumulated concentration of hydrogen peroxide continued to increase linearly.
  • Example 3 The reaction was carried out in the same manner as in Example 3 except that the 3% palladium Z niobium oxide catalyst prepared in Example 2 was used.
  • the hydrogen peroxide concentration was 4.37% and the selectivity based on hydrogen was 82.3%.
  • the reaction was carried out in the same manner as in Example 4, except that the reaction pressure was changed to 100 kg / cm 2 .
  • the hydrogen peroxide concentration was 7,90%, and the selectivity based on hydrogen was 75.1%.
  • the reaction was carried out in the same manner as in Example 5, except that the flow rate of the mixed gas was set to 2000 cni 3 Zmin. Hydrogen peroxide concentration is 9.75%, selectivity based on hydrogen is 76.2%.
  • the hydrogen peroxide concentration was 18.0% and the selectivity based on hydrogen was 56.3%.
  • the hydrogen concentration in the autoclave gas phase was maintained at 3.2%, avoiding the explosion range, and it was possible to carry out the reaction safely.
  • B company niobic acid (BET specific surface area: 180 mVg) was calcined in air at 400 ° C for 5 hours.
  • the BET specific surface area after firing was 90ra 2 Zg.
  • the amount of acid determined by suspending niobium oxide calcined by the above-mentioned method in water and determining the amount by acid was 0.23 olZg.
  • Palladium was loaded by the following method. 0.5 g of palladium chloride was dissolved in 1 N hydrochloric acid, and lO.Og of niobate obtained by the above method was added. While heating, the mixture was sufficiently stirred to evaporate water. Subsequently, hydrogen reduction was performed at 200 ° C. for 3 hours to obtain a 3% palladium niobium oxide (weight ratio of palladium to carrier) catalyst.
  • a catalyst was prepared in the same manner as in Example 8 except that the reduction treatment was carried out using palladium as it was without baking the niobic acid manufactured by Company B in the air.
  • the reaction was carried out in the same manner as in Example 8.
  • the results of titration with 1Z40N potassium permanganate every hour after the start of the reaction are shown below. (Hydrogen peroxide: The accumulated concentration is shown in PPm).
  • a catalyst was prepared and reacted in the same manner as in Example 8, except that the reduction treatment of palladium was performed at 80 ° C.
  • the results of titration with 1Z40N potassium permanganate every hour after the start of the reaction are shown below. (Hydrogen peroxide: The accumulated concentration is shown in PPm).
  • Platinum was supported on niobium oxide prepared in the same manner as in Example 8. 0.5 g of chloroplatinic acid hexahydrate was dissolved in 1 N hydrochloric acid, and 6.0 g of niobic acid was added. While heating, the mixture was sufficiently stirred to evaporate water. Then Hydrogen reduction was performed at 200 ° C for 3 hours to obtain a 3% platinum niobium oxide (weight ratio of platinum to carrier) catalyst.
  • niobium pentachloride and 21.0 mg of silicon tetrachloride were dissolved in methanol, and 73.5 g of 28% aqueous ammonia was added for neutralization.
  • the precipitated oxide was filtered ( with methanolic water until no chloride ion was detected in the filtrate). Then, it was subjected to air calcination under nitrogen at 400 C for 2 hours and then at 500 ° C for 2 hours to obtain a niobium-silicon composite oxide, which had a BET specific surface area of 425. m 2 Zg.
  • Palladium was loaded by the following method. 1.0 g of palladium chloride was dissolved in 1N hydrochloric acid, and the composite oxide lO.Og obtained by the above method was added. While heating, the mixture was sufficiently stirred to evaporate water. Next, hydrogen reduction was performed at 200 ° C. for 3 hours to obtain a 6% palladium-niobium silica composite oxide (palladium weight ratio to carrier) catalyst.
  • the catalyst was prepared by an ion exchange method. 30 g of niobic acid manufactured by Company B was immersed in a solution of 2.15 g of [Pd (NH 3 ) 4 ] Cl 2 dissolved in 30 ml of water. After 3 hours, the solid was filtered and washed thoroughly with water until no Cl_ ion was detected. After drying at 110 ° C for 20 hours to remove water, hydrogen reduction is performed at 200 ° C for 3 hours, and then calcined at 500 ° C for 2 hours under nitrogen to obtain 3% palladium Z niobium oxide (based on the carrier). (Palladium weight ratio) A catalyst was obtained.
  • the reaction was carried out in the same manner as in Example 5.
  • the accumulated concentration of hydrogen peroxide was 7.47%.
  • the selectivity based on hydrogen was 99.3%.
  • Example 6 The reaction was carried out in the same manner as in Example 6, except that 500 mg of the 3% palladium niobium oxide catalyst prepared in Example 2 and 50 ml of 0.1 N sulfuric acid in which 0.3 g of sodium chloride was dissolved were used. The accumulated concentration of hydrogen peroxide was 5.20%. The selectivity based on hydrogen was 84.1%.
  • Example 6 The reaction was carried out in the same manner as in Example 6, except that 500 mg of the 3% palladium niobate catalyst prepared in Example 2 and 50 ml of 0.1 N sulfuric acid in which 0.57 g of sodium bromide were dissolved were used. The accumulated concentration of hydrogen peroxide was 6.69%. The selectivity based on hydrogen was 99.9%.
  • the palladium was carried by the following method. 0.1 g of palladium chloride was dissolved in 1 N hydrochloric acid, and 2.0 g of tantalum oxide obtained by the above method was added. While heating, the mixture was sufficiently stirred to evaporate water. The catalyst was dried at 150 ° C. for 2 hours under nitrogen, and then subjected to hydrogen reduction at 80 ° C. for 3 hours to obtain a 3% palladium Z oxide catalyst (weight ratio of palladium to carrier).
  • the reaction was carried out in the same manner as in Example 3, except that the 3% palladium tantalum oxide catalyst prepared by the above method was used.
  • the concentration of hydrogen peroxide was 3.90%, and the selectivity based on hydrogen was 75.4%.
  • the reaction was carried out in the same manner as in Example 3, except that the 3% palladium non-molybdenum oxide catalyst prepared by the above method was used.
  • the hydrogen peroxide concentration was 4.10%.
  • the selectivity based on hydrogen was 83.0%.
  • the reaction was carried out in the same manner as in Example 3, except that the 3% palladium Z tungsten oxide catalyst prepared by the above method was used.
  • the hydrogen peroxide concentration was 3.50% and the selectivity based on hydrogen was 88.0%.
  • Tantalum pentachloride (6.6 g) and silicon tetrachloride (21.0 g) were dissolved in methanol. 73.5 g of 28% aqueous ammonia was added to neutralize the mixture, and the precipitated oxide was filtered. The filtrate was washed with methanol water until chloride ions were no longer detected. Next, the tantalum Z-silicon composite oxide was obtained by baking in air at 400 ° C for 2 hours and then at 500 ° C for 2 hours under nitrogen. The BET specific surface area was 230 m 2 Zg.
  • Palladium was loaded by the following method. 1.0 g of palladium chloride was dissolved in 1N hydrochloric acid, and the composite oxide lO.Og obtained by the above method was added. While heating, the mixture was sufficiently stirred to evaporate water. Then, hydrogen reduction was performed at 200 for 3 hours, and 6% palladium tantalum silica composite oxide (weight ratio of palladium to carrier) catalyst was used. Obtained.
  • the present invention is useful for producing hydrogen peroxide, has higher selectivity and can produce a higher concentration of hydrogen peroxide than a catalyst of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

明 細 書 過酸化水素の製造方法 技術分野
本発明は、 反応媒体中で水素と酸素から接触的に過酸化水素を製 造する方法に関する。 背景技術
従来、 過酸化水素の製造法としてはアン トラキノ ン法、 電解法、 イソプロピルアルコールの酸化による方法などが知られており、 ェ 業的には主にアン トラキノ ン法が採用されている。 すなわち、 この 方法はアン トラキノ ン誘導体を非水溶媒系で還元と酸化を行なう こ とによって生成する過酸化水素を水で抽出、 蒸留して製品を得るも のである。 しかしながら、 この製法はプロセスが複雑であること、 あるいはアン トラキノ ン溶液の劣化等の理由から必ずしも理想的な 過酸化水素の製造法とはいえない。
上記の問題点を解決する方法として水素と酸素から直接的に過酸 化水素を製造する方法が多数提案されている。 例えば特公昭 56— 47121 号では、 含水珪酸担体にパラジウム 5 %を含有する触媒を用 い、 酸性水溶液中で過酸化水素を製造している。 しかしながら、 こ のような反応系では触媒であるパラジゥムの担体からの溶出が避け がたく、 触媒寿命の点で問題がある。 米国特許第 4, 681 , 751 号では- 担体に活性炭を用いて、 パラジウム含有金属触媒を調製し、 過酸化 水素を製造している。 活性炭は、 パラジウムとの吸着力が強く、 相 対的に溶出が抑制されるが、 満足するものではない。 特開平 3 — 1 03310号では、 反応媒体中にァミ ノ酸を存在させ反応装置からの鉄 ィオンの溶出を減少させ、 水素の過酸化水素への選択性改善をはか つているが、 充分とは言えない。 触媒の担体として特開平 4一 238802号では酸化セリウムを、 特開平 4 — 285003号では酸化ラ ン夕 ンを、 特開平 5 - 17106 号では結晶性シリカ若しく は高シリカゼォ ライ トを、 また特開平 5 - 70107 号では酸化ジルコニウムと酸化バ ナジゥムの複合酸化物をそれぞれに用いて水素の過酸化水素への選 択性改善をはかっている。 しかしながら、 いずれも実用的な触媒の レベルには至っていない。 また、 一般的に、 触媒量を増大させた場 合、 水素の過酸化水素への選択性が著しく低下することが知られて いる。 あるいは、 水素ガスの爆発を回避する必要から、 反応は水素 濃度 4 %以下で実施することが要求される。 このような条件下では 触媒は酸化を受けやすく、 活性、 選択性の低下をもたらすことが知 られている。
本発明は上記のような、 白金族金属の溶出、 あるいは触媒の活性. 選択性の低下等の問題点を解決し、 反応媒体中で接触的に高活性且 つ高選択的に過酸化水素を製造する方法を提供することを目的とす る 発明の開示
上記目的は、 本発明に従う と、 反応媒体中で水素と酸素から接触 的に過酸化水素を製造する方法において、 ニオブ酸化物、 ニオブ複 合酸化物、 タンタル酸化物、 タンタル複合酸化物、 モリブデン酸化 物および夕ングステン酸化物の群から選ばれる少なく とも 1種の酸 化物からなる担体に支持された白金族金属触媒を用いることを特徴 とする過酸化水素の製造方法によって達成される。 発明を実施するための最良の形態
本発明において触媒担体として用いるニオブ酸化物としては NbO 、 Nb 203 、 Nb02、 Nb 205 などのニオブ原子価が 2〜 5価のものが知ら れているが、 このうち安定な酸化物は Nb 205 であり、 本発明の方法 では、 Nb 20 5 を好ましく使用することができる。
また、 タンタル酸化物も TaO 、 Ta 203 、 Ta02、 Ta 205 などのタン 夕ル原子価が 2〜 5のものが知られているが、 このうち安定な酸化 物は Ta 20 5 であり、 本発明の方法では Ta 205 を好ましく使用できる。
さらに、 本発明においてはモリブデン酸化物または夕ングステン 酸化物を担体として使用することも有効である。 モリブデン酸化物 としては Mo03を、 タングステン酸化物としては W03 を好ま しく使用 することができる。
ニオブ酸化物は、 通常、 塩化物、 アルコキシ化合物、 シユウ酸塩、 酒石酸塩等の可溶性ニオブ化合物の溶液を原料とし、 アルカ リの添 加または加水分解により製造する方法が一般的である。 また、 Nb 205 の水和組成物 (Nb 205 · nH20) はニオブ酸と称され、 その表面にブ レ ンステツ ド酸点とルイス酸点の両方を併せもっているが、 これら の酸点は加熱処理により増減することが知られている。 従って、 二 ォブ酸を加熱してニオブ酸化物を生成できるが、 本発明に用いる二 ォブ酸化物はニオブ酸を 300 〜700 でで熱処理したものが好ましい。 加熱処理により強酸点が消滅し、 酸量が低減して、 高選択的な過酸 化水素の製造が達成される。 300 °C以下では脱水不十分で酸点が残 るので好ま しくない (なお、 酸点は少ない方がよいが、 ゼロでなく てもよい) 。 700 °C以上では比表面積が減少し、 いずれの場合も担 体としては不適当なものとなる。 加熱処理は空気存在雰囲気下、 不 活性ガス雰囲気下又は還元性ガス雰囲気下のいずれでもあってもよ い。 本発明に使用されるニオブ酸化物の比表面積は特に制限されるも のではないが、 好ましく は 100 m2//g以上であるものが好適に使用 される。 そのようなニオブ酸化物は触媒成分を高分散することが可 能であるため、 本発明方法に好適に使用することができる。
本発明方法に使用するニオブ酸化物は単独でも担体として使用で きるが、 他の担体、 好ましく は Si02、 A1203 、 Ti02などに一旦ニォ ブ酸化物を分散させたものも好適に使用することができる。 あるい はニオブ酸化物に他の担体を分散したものも好適に使用できる。 例 えば、 ニオブの可溶性化合物の溶液に担体を含浸したり、 ニオブの 可溶性化合物と珪素、 アルミナ又はチタンの可溶性化合物の混合溶 液、 例えば、 アルコキシ又は塩素化合物の混合溶液の加水分解によ り得られる沈澱物を加熱処理することにより調製できる。 この場合 得られるニオブ酸化物と Si02、 AI2O3 又は Ti02等との複合酸化物は これらの酸化物の混合物であるか又は複合酸化物(mixed oxide) と 呼ばれる化合物を形成している可能性がある。 本発明ではこれらの 可能性をすベて含めた意味で複合酸化物と措称している。
夕ンタル酸化物はニオブ酸化物と性質が類似している。 タンタル 酸化物も、 ニオブ酸化物と同様に、 可溶性タンタル化合物の溶液か ら製造可能であるが、 好ましいタンタル酸化物を Ta205 の水和組成 物 (Ta205 · nH20 ) であるタンタル酸を加熱して得ることができ る。 加熱処理の条件もニオブ酸の加熱処理と同様であることができ る。 因みに、 夕ンタル酸の加熱温度も 300 〜700 が好ましい。
また、 タンタル酸化物も単独で担体として使用がきるほか、 Si02. AI2O3 、 Ti02などに一旦分散させたものを好適に使用でき、 さらに. ニオブ複合酸化物と同様な夕ンタル複合酸化物として調製すること も可能である。
モリブデン酸化物およびタングステン酸は公知のもの、 市販のも のを使用することができる。 モリブデン酸またはタングステン酸を 担体として用いる場合にも、 ニオブ酸化物などと同様な効果が得ら れる
本発明の方法にしたがって水素と酸素から接触的に過酸化水素を 製造するには触媒成分として白金族金属が必要である。 白金族元素 として好ましいはパラジウム、 白金、 ロジウムであり、 特にパラジ ゥムを好適に使用することができる。
白金族金属の使用量は担体に対して 0. 1 〜10重量 、 好ましく は
0. 5 〜 8重量%の範囲が好ましい。
白金族金属を担体に担持するのは公知の方法で行ってもよいが、 過酸化水素を高活性かつ高選択的に製造するためには、 白金族金属 がニオブ酸化物等の担体表面上に高分散し、 白金族金属の粒子径が 微細であることが有利である。
例えば、 一般的には、 可溶性パラジウム化合物の溶液を担体に含 浸させた後、 水素、 ヒ ドラジン、 アルコール等で還元して触媒とす ることができる。 好適には、 ペンタエトキシニオブ (Nb (0Et ) 5 ) 溶 液の加水分解で得たニオブ酸化物を乾燥後、 塩化パラジウムの塩酸 溶液に含浸し、 水素で還元する。 このとき、 還元温度は常温〜 300 てが好ましい。 この方法で調製した触媒は白金族金属がニオブ酸化 物表面上に高分散し、 白金族金属の粒子径が微細である。 また触媒 は耐酸性、 耐酸化性を発揮するため、 白金族金属の溶出、 酸化等に よる性能の劣化を示さない。 従って、 好適なパラジウム触媒が得ら れる
また、 本発明ではイオン交換法により白金族金属を担持すること が有効である。 イオン交換法はニオブ酸の、 タンタル酸などの酸の 表面水酸基と白金族金属錯塩をイオン交換して触媒の担持を行なう ものである。 白金族金属前駆体としての白金族金属錯塩は陽イオンに白金族金 属が含有されるものでなくてならない。 例えば、 〔Pd(NH3)4]Cl2 (テ トラアンミ ンパラジウム (II) 塩化物) 、 〔Pd(C2H8N2)2]Cl2 (ビス (エチレンジァミ ン) パラジウム (Π) 塩化物) などが好適 に使用することができる。
ィオン交換法に有効なニオブ酸、 タンタル酸などの酸はブレンス テツ ド酸点の多いものであり、 したがって、 100 〜400 での範囲で 熱処理を加えたもの、 あるいは加熱処理を行なわないものが好まし く使用される。 また酸量が 0.01議 olZg以上、 好ましく は 0.5 匪 ol /g以上であるものが好適に使用できる。
具体的には次のような調製法をとることが好適で白金族金属触媒 が得られる。 すなわち、 〔Pd(NH3)4]Cl2水溶液にニオブ酸などの酸 を数時間浸潰し、 濾過を行なう。 C イオンが検出されなくなるま で水洗した後、 固体を乾燥、 水素により還元する。 還元温度は常温 〜300 °Cの範囲とするのが好ましい。 さらに還元はヒ ドラジン、 ァ ルコール等の還元剤を用いて湿式で行なうことも可能である。
このように調製した触媒の白金族金属粒子径は 1〜 2 nmの範囲に あり、 塩化物を用いた含浸法によって調製した触媒に較べて、 充分 に小さい。 また分散性も良好である。 おそらく、 イオン交換法は二 ォブ酸や夕ンタル酸などの酸の水酸基と白金族金属錯ィオンのィォ ン交換反応を利用するため、 白金族金属の凝集が起こりにく いもの と考えられる。 また、 ニオブ酸、 タンタル酸などの酸と微細な白金 族金属との吸着力は強固であるため、 触媒寿命が改善される。 こう して、 好適なパラジウム触媒が得られる。
このようにイオン交換法で調製した白金族触媒はさらに 300 〜 700 °Cで加熱処理して用いることも可能である。 加熱処理により強 酸点が消滅し、 酸量が低減するため、 高選択的な過酸化水素の製造 が達成される。 300 °C以下では触媒中になお酸点が残り、 700 で以 上では触媒比表面積が減少し、 いずれの場合も性能的に不利となる, 加熱処理は不活性ガス雰囲気下又は還元性ガス雰囲気下で行う こと が好ま しい。
ニオブ酸化物又はニオブ複合酸化物などが白金族元素の担体とし て有効である理由は定かではない。
しかし、 ニオブ酸を加熱してニオブ酸化物とする場合について述 ベると、 ィソボリ酸構造をもつニオブ酸化物は Nb0 6を単位胞とする 層状構造を有することが知られており、 高表面積をもつニオブ酸の 層間にとり込まれた Pd塩が還元されて、 高分散した金属 Pdが生成す るか、 その後さらに高温熱処理することで、 ニオブ酸はニオブ酸化 物に相転移し、 結晶構造も安定化し、 酸量も激減する。 その際、 高 分散した Pdも熱的変化をうけて、 粒径範囲が狭くなるものと推定さ れる。 このニオブ酸化物構造の安定化、 酸量の減少、 Pd粒径分布の 変化等が起るため、 Pdの耐酸化性も向上し、 触媒性能をよくなるも のと考えられる。 又、 担体の表面附近に存在する微粒 Pdは酸化をう けやすいが、 ニオブ酸化物中の Pdは主として層間に存在して安定化 されるため、 反応雰囲気下では酸化をうけにくいことが予測される, 夕ンタル酸化物の場合も同様に考えられる。
本発明は、 以上の如く調製したニオブ、 タンタル、 モリブデン、 夕ングステンの酸化物又は複合酸化物を担体とした白金属触媒を用 いて、 水素と酸素から接触的に過酸化水素を製造する方法である。 反応媒体については通常水が好適であり、 種々の安定剤を添加し た系が適用される。 例えば、 塩酸水溶液、 臭化水素酸水溶液、 りん 酸水溶液、 硫酸水溶液などがあげられる。 とりわけ、 塩酸水溶液、 臭化水素水溶液を好適に用いることができる。 また塩酸水溶液のか わりに塩化物イオン成分として塩化ナト リウム、 塩化力 リウム等と 水素ィォン成分である硫酸、 りん酸等の混合水溶液の組み合わせも 好適に採用することができる。 さらには、 臭化水素水溶液のかわり に臭化物イオン成分として臭化ナ ト リ ウム、 臭化カ リウム等と水素 ィオン成分である硫酸、 りん酸等との混合水溶液の組み合わせも好 適に採用することができる。 生成した過酸化水素と反応しないもの であれば、 有機化合物、 例えば、 アルコール、 カルボン酸、 ァミ ン、 酸アミ ド等を安定剤として添加したものであってもよい。 安定剤の 濃度は 0. 001 〜 5 mo l 1、 好ましく は 0. 01〜 1 mo l Z 1 の範囲で 選ばれる。
水素と酸素の供給方法についても、 特に制限はなく、 溶媒中に直 接配管を通じて吹き込むか、 気相から吸収させるかどちらの方法で も適用できる。 水素と酸素の混合比は、 任意の割合で選べるが、 酸 素 水素比 (容量比) が 2以上が反応の選択性において有利である。 また、 水素と酸素の混合ガスは爆発範囲 (水素濃度 4. 7 %〜93. 9 % ) が広く、 爆発範囲外で行なうのが安全上望ましいが、 爆発範囲内で あっても、 もちろん実施可能である。 例えば、 水素と酸素の混合ガ スを窒素等の不活性ガスで稀釈して反応を実施してもよい。
本発明の方法において用いる白金属触媒の触媒量は、 白金族金属 として反応媒体中の重量比で 1 ppm から l OOOppm 、 好ましく は 5 ppm から 600 ppm の範囲で選ばれる。 使用される白金族触媒の触媒 粒径は特に制限されるものではないが、 反応形態として触媒懸濁法 流通式を採用する場合は、 好ましく は l 〜1000 z mの範囲のものが 使用される。
反応を実施するにあたって、 圧力に関しては、 特に制限はない力 、 大気圧から加圧下までの範囲で実施可能である。 通常、 本反応の反 応速度は水素分圧にある程度まで比例することが知られており、 加 圧下で実施するほうが有利である。 また、 温度は、 通常、 0 ° (:〜 30 °Cの範囲が選ばれるが、 溶媒の凝固点が 0 °c以下である場合におい ては、 0 °c以下の温度で反応を行なうことも可能である。
反応形態としては、 触媒固定床流通式、 触媒懸濁法流通式、 また は回分式などで反応を実施することができる。 また場合によっては ト リ クル相のような反応形式を採用してもよい。
反応器の材質としては、 耐酸性をもつものが採用される。 また、 生成する過酸化水素は鉄、 マンガン等の微量の重金属によって容易 に分解するため、 重金属の溶出がない材質が望まれる。 具体的には 少なく とも反応器内面がチタン、 テフロン等で覆われたものが好適 に使用できる。
本発明の方法により、 水素と酸素から接触的に、 選択率良く、 高 濃度の過酸化水素を製造することができ、 産業上極めて有効なもの である。 実施例 1
(触媒調製)
ペンタエトキシニオブ(Nb (0C 2H 5 ) 5 ) 50 gをメ夕ノ一ル 50mlに溶解 し、 攪拌下、 水 260 mlに滴下した。 2時間放置後、 析出した沈殿を 濾過し、 1 10 てで 5時間乾燥し、 23 gの酸化ニオブを得た。 このも のの、 BET 比表面積は 300 m2Z gであった。
パラジゥムの担持は次のような方法で行なった。 塩化パラジゥム 0. 5 gを 1 N塩酸に溶解し、 上記方法で得た酸化ニオブ 10. 0 gを加 えた。 加熱しながら、 充分攪拌を行ない水分を蒸発させた。 次いで. 200 °Cにて 3時間水素還元を行ない、 窒素下、 500 でで 2時間焼成 することにより 3 %パラジゥムノ酸化ニオブ (担体に対するパラジ ゥムの重量比) 触媒を得た。 焼成後の BET 比表面積は 10m2Z gであ つた。 (反応方法)
温度計、 ガス注入管、 攪拌羽根を具えた 500 mlの四つ口フラスコ に、 0. 2 N塩酸 200 mlを加え、 上記の方法で調製した 3 %パラジゥ ム /酸化ニオブ触媒 700 mgを窒素下加えた。 反応液を 5 °Cに冷却し. 水素 3 %、 酸素 47 %、 窒素 50 %からなる混合ガスを流通させた。 反 応開始後、 1 時間おきに 1 Z 40 N過マンガン酸力 リウムにより滴定 した結果を次に示す (過酸化水素 : 蓄積濃度を ppm で表示) 。
Figure imgf000012_0001
過酸化水素の蓄積濃度は、 直線的に増加し続けた。
比較例 1
A社製 5 %パラジウム /活性炭を用い、 実施例 1 と同様な方法に より反応した。 反応開始後、 1 時間おきに 1 Z 40 N過マンガン酸力 リウムにより滴定した結果を次に示す (過酸化水素 : 蓄積濃度を ppm で表示) 。
Figure imgf000012_0002
過酸化水素の蓄積濃度は、 2時間目以降増加しなかった。 実施例 2
パラジウム担持後の焼成を水素下、 500 でで行なった以外は、 実 施例 1 と同様に触媒を調製し反応を行なった。 反応開始後、 1 時間 おきに 1 40 N過マンガン酸力 リウムにより滴定した結果を次に示 す。 (過酸化水素 : 蓄積濃度を ppm で表示)
Figure imgf000013_0001
過酸化水素の蓄積濃度は、 直線的に増加し続けた。
実施例 3
内容積 100 mlのチタン製ォ一 トクレーブに、 実施例 1で調製した 3 %パラジウム 酸化ニオブ触媒 500 mg、 0.1 N塩酸 50mlを加えた < 次いで、 水素 3 %、 酸素 47%、 窒素 50%からなる混合ガスを注入し、 全圧を SOkgZcm2 とした。 オー トク レープを 1CTCに冷却し、 反応中 はその温度に保ち、 混合ガスを 1000cm3 min.の流速で 3時間流通 させた。 反応液を 1 N過マンガン酸カ リウムにより滴定したところ、 過酸化水素の蓄積濃度は 4.65%であつた。 水素基準の選択率は 95.3 %であった。 なお、 水素基準の選択率とは消費された水素のうち過 酸化水素の生成に用いられた水素の割合である。
実施例 4
実施例 2で調製した 3 %パラジウム Z酸化ニオブ触媒を使用した 以外は実施例 3 と同様な方法で反応を行なった。 過酸化水素濃度は 4.37%、 水素基準の選択率は 82.3%であった。
実施例 5
反応圧力を 100 kg/cm2 とした以外は実施例 4 と同様に反応を行 なった。 過酸化水素濃度は 7, 90%、 水素基準の選択率は 75.1%であ つた。
実施例 6
混合ガスの流速を 2000cni3 Zmin.とした以外は実施例 5 と同様に 反応を行なった。 過酸化水素濃度は 9.75%、 水素基準の選択率は 76.2%であった。
実施例 7
水素ガスを 180 cm3 Zmin.の流速で反応液中に吹き込み、 酸化ガ スを 2300cm3 Zmin.の流速でォー トク レーブ気相部に供給した以外 は実施例 6 と同様に反応を行なった。
過酸化水素濃度は 18.0%、 水素基準の選択率は 56.3%であった。 またオー トク レーブ気相部の水素濃度は 3.2 %に保たれ爆発範囲を 回避し、 安全に反応の実施を行なうことが可能であった。
実施例 8
(触媒調製)
B社製ニオブ酸 (BET 比表面積 : 180 mVg) を、 空気中 400 °C で 5時間焼成した。 焼成後の BET 比表面積は 90ra2Zgであった。 ま た、 水中に上記方法で焼成した酸化ニオブを懸濁しアル力 リ滴定に より求めた酸量は、 0.23匪 olZgであった。 パラジウムの担持は、 次のような方法で行なった。 塩化パラジウム 0.5 gを 1 N塩酸に溶 解し、 上記方法で得たニオブ酸 lO.Ogを加えた。 加熱しながら、 充 分攪拌を行ない水分を蒸発させた。 次いで、 200 °Cにて 3時間水素 還元を行ない、 3 %パラジウム 酸化ニオブ (担体に対するパラジ ゥムの重量比) 触媒を得た。
(反応方法)
温度計、 ガス注入管、 攪拌羽根を備えた 500 mlの四つ口フラスコ に、 0.2 N塩酸 200 mlを加え、 上記の方法で調整した 3 %パラジゥ ムノ酸化ニオブ触媒 700 mgを窒素下加えた。 反応液を 5 °Cに冷却し. 水素 3 %、 酸素 47%、 窒素 50%からなる混合ガスを流通させた。 反 応開始後、 1 時間おきに 1 40N過マンガン酸力 リ ウムにより滴定 した結果を次に示す (過酸化水素 : 蓄積濃度を ppm で表示) 。 時間 1 時間目 2時間目 3時間目 4時間目 5時間目 過酸化 650 1320 1880 2330 2580 水素 比較例 2
B社製ニオブ酸を空気焼成を行なわず、 そのままパラジウムを担 持して還元処理を行なった以外は実施例 8 と同様に触媒を調製して. 実施例 8 と同様に反応を実施した。 反応開始後、 1 時間おきに 1 Z 40 N過マンガン酸カ リウムにより滴定した結果を次に示す。 (過酸 化水素 : 蓄積濃度を PPm で表示) 。
Figure imgf000015_0001
実施例 9
パラジゥムの還元処理を 80°Cで行なった以外は、 実施例 8 と同様 に触媒を調製して、 反応を実施した。 反応開始後、 1 時間おきに 1 Z 40 N過マンガン酸カ リウムにより滴定した結果を次に示す。 (過 酸化水素 : 蓄積濃度を PPm で表示) 。
Figure imgf000015_0002
実施例 10
実施例 8 と同様にして調製した酸化ニオブに白金を担持した。 塩 化白金酸六水和物 0. 5 gを 1 N塩酸に溶解し、 ニオブ酸 6. 0 gを加 えた。 加熱しながら、 充分攪拌を行い水分を蒸発させた。 次いで、 200 °Cにて 3時間水素還元を行い、 3 %白金 酸化ニオブ (担体に 対する白金の重量比) 触媒を得た。
この触媒を用いて、 実施例 8 と同様にして反応を行なった。 反応 開始後、 1 時間おきに 1 /40N過マンガン酸力 リウムにより滴定し た結果を次に示す。 (過酸化水素 : 蓄積濃度を ppm で表示) 。
Figure imgf000016_0001
実施例 11
(触媒調製)
五塩化ニオブ 5.0 g、 四塩化珪素 21.0をメタノールに溶解し、 28 %アンモニア水 73.5gを加えて中和後、 析出した酸化物を濾過した ( 濾液に塩素イオンが検出されなくなるまでメタノールノ水により洗 浄した。 次に、 窒素下で 400 。C, 2時間、 続いて 500 °C, 2時間空 気焼成することによりニオブ シリ力複合酸化物を得た。 このもの の、 BET 比表面積は 425 m2Zgであった。
パラジウムの担持は、 次のような方法で行なった。 塩化パラジゥ ム 1.0 gを 1 N塩酸に溶解し、 上記方法で得た複合酸化物 lO.Ogを 加えた。 加熱しながら、 充分攪拌を行ない水分を蒸発させた。 次い で、 200 °Cにて 3時間水素還元を行ない、 6 %パラジウム ニオブ シリカ複合酸化物 (担体に対するパラジウム重量比) 触媒を得た。
(反応方法)
内容積 100 mlのチタン製オー トク レープに、 上記方法で調製した 6 %パラジゥム ニオブ/シリ力複合酸化物触媒 250 mg、 0.1 N塩 酸 50mlを加えた。 次いで、 水素 3 %、 酸素 47%、 窒素 50%からなる 混合ガスを注入し、 全圧を SOkgZcm2 した。 オー トク レープを 10°C に冷却し、 反応中はその温度に保ち、 混合ガスを 1000cm3 /min. の流速で 3時間流通させた。 反応液を 1 N過マンガン酸カ リ ウムに より滴定したところ、 過酸化水素の蓄積濃度は、 1.90%であった。 水素基準の選択率は 85.3%であつた。
実施例 12
(触媒調製)
イオン交換法によって触媒調製を行なった。 [Pd(NH3)4]Cl2 2.15 gを水 30mlに溶解した溶液に B社製ニオブ酸 30 gを浸漬した。 3時 間後、 固体を濾過した後、 Cl_ イオンが検出されなくなるまで充分 に水洗した。 110 °Cで 20時間乾燥して水分を除いた後、 200 °Cにて 3時間水素還元を行ない、 次いで窒素下、 500 °Cで 2時間焼成する ことにより 3 %パラジゥム Z酸化ニオブ (担体に対するパラジゥム 重量比) 触媒を得た。
(反応方法)
実施例 5 と同様に反応を行なった。 過酸化水素の蓄積濃度は、 7.47%であつた。 また水素基準の選択率は 99.3%であった。
実施例 13
実施例 2で調製した 3 %パラジウム 酸化ニオブ触媒 500 mg, 塩 化ナ ト リウム 0.3 gを溶解した 0.1 N硫酸 50mlを用いた以外は実施 例 6 と同様に反応を行なった。 過酸化水素の蓄積濃度は、 5.20%で あった。 また水素基準の選択率は 84.1%であった。
実施例 14
0. IN臭化水素酸 50mlを用いた以外は実施例 6 と同様に反応を行な つた。 過酸化水素の蓄積濃度は、 7.72%であった。 また水素基準の 選択率は 98.2%であった。
実施例 15
実施例 2で調製した 3 %パラジウム ニオブ酸触媒 500 mg、 臭化 ナト リゥム 0.57gを溶解した 0.1 N硫酸 50mlを用いた以外は実施例 6 と同様に反応を行なった。 過酸化水素の蓄積濃度は、 6.69%であ つた。 また水素基準の選択率は 99.9%であった。
実施例 16
ペンタエトキシタンタル (Ta(0C2H5)5)9.28 gをエタノール 100 mlと水 30mlの混合物に投入し、 室温で 1 時間攪拌した。 濃縮して溶 媒を留去した後、 110 °Cで 5時間乾燥し、 4.67gの酸化タンタルを 得た。 このものの、 BET 比表面積は 73.6m2/ gであった。
パラジゥムの担持は次のような方法で行なった。 塩化パラジゥム を 0.1 gを 1 N塩酸に溶解し、 上記方法で得た酸化タンタル 2.0 g を加えた。 加熱しながら、 充分攪拌を行ない水分を蒸発させた。 窒 素下、 150 でで 2時間乾燥し、 次いで、 80°Cにて 3時間水素還元を 行なう ことにより 3 %パラジゥム Z酸化夕ンタル (担体に対するパ ラジウムの重量比) 触媒を得た。
上記の方法で調製した 3 %パラジゥム 酸化タンタル触媒を使用 した以外は実施例 3 と同様な方法で反応を行なった。 過酸化水素濃 度は 3.90%、 水素基準の選択率は 75.4%であった。
実施例 17
塩化パラジゥム 0.5 を 1 N塩酸に溶解し、 酸化モリブデン 10.0g を加えた。 加熱しながら、 十分攪拌を行ない水分を蒸発させた。 次 いで、 200 °Cにて 3時間水素還元を行なうことにより 3 %パラジゥ ムノ酸化モリブデン (担体に対するパラジウムの重量比) 触媒を得 た。
上記の方法で調製した 3 %パラジゥムノ酸化モリブデン触媒を使 用した以外は実施例 3 と同様な方法で反応を行なった。 過酸化水素 濃度は 4.10%. 水素基準の選択率は 83.0%であつた。
実施例 18
塩化パラジウム 0.5 gを 1 N塩酸に溶解し、 酸化タ ングステン lO.Ogを加えた。 加熱しながら、 十分攪拌を行ない水分を蒸発させ た。 次いで、 200 °Cにて 3時間水素還元を行なう ことにより 3 %パ ラジゥム 酸化夕ングステン (担体に対するパラジゥムの重量比) 触媒を得た。
上記の方法で調製した 3 %パラジウム Z酸化タングステン触媒を 使用した以外は実施例 3 と同様な方法で反応を行なった。 過酸化水 素濃度は 3.50%、 水素基準の選択率は 88.0%であった。
実施例 19
(触媒調製)
五塩化タンタル 6.6 g、 四塩化珪素 21.0gをメタノールに溶解し. 28%ァンモニァ水 73.5gを加えて中和後、 析出した酸化物を濾過し た。 濾液に塩素イオンが検出されなく なるまでメタノール 水によ り洗浄した。 次に、 窒素下で 400 °C, 2時間、 続いて 500 °C, 2時 間空気焼成することによりタンタル Zシリ力複合酸化物を得た。 こ のものの、 BET 比表面積は 230 m2Zgであった。
パラジウムの担持は、 次のような方法で行なった。 塩化パラジゥ ム 1.0 gを 1 N塩酸に溶解し、 上記方法で得た複合酸化物 lO.Ogを 加えた。 加熱しながら、 充分攪拌を行ない水分を蒸発させた。 次い で、 200 でにて 3時間水素還元を行ない、 6 %パラジウム タンタ ル シリカ複合酸化物 (担体に対するパラジウムの重量比) 触媒を 得た。
(反応方法)
内容積 100 mlのチダン製ォ一 トク レーブに、 上記方法で調製した 6 %パラジウム/ タンタル/ シリカ複合酸化物触媒 250 mg、 0.1 N 塩酸 50mlを加えた。 次いで、 水素 3 %、 酸素 47%、 窒素 50%からな る混合ガスを注入し、 全圧を 50kg/cm2 とした。 ォ一 トク レーブを 10°Cに冷却し、 反応中はその温度に保ち、 混合ガスを 1000cm3 Z min.の流速で 3時間流通させた。 反応液を 1 N過マンガン酸力 リウ ムにより滴定したところ、 過酸化水素の蓄積濃度は、 1.57%であつ た。 水素基準の選択率は 83.4%であった。 産業上の利用分野
本発明は過酸化水素の製造に有用であり、 従来技術の触媒に比べ て選択率が高く、 高濃度の過酸化水素を製造できる。

Claims

請 求 の 範 囲
1 . 反応媒体中で、 水素と酸素から接触的に過酸化水素を製造す る方法において、 ニオブ酸化物、 ニオブ複合酸化物、 タンタル酸化 物、 タ ンタル複合酸化物、 モリブデン酸化物、 およびタングステン 酸化物からなる群から選択された酸化物担体に担持された白金族金 属触媒を用いることを特徵とする過酸化水素の製造方法。
2 . 前記ニオブ酸化物およびタンタル酸化物が、 それぞれニオブ 酸およびタンタル酸を 300 〜700 での温度で加熱処理して調製した ものである請求項 1記載の方法。
3 . 前記白金族金属触媒が、 ニオブ酸又は夕ンタル酸にイオン交 換法で白金族金属を担持させた後、 加熱処理して調製したものであ る請求の範囲第 1項記載の方法。
4 . 前記ニオブ酸化物、 タンタル酸化物、 モリブデン酸化物、 夕 ングステン酸化物が他の酸化物に分散されている請求の範囲第 1項 記載の方法。
5 . 前記白金族金属触媒を 300 〜700 °Cで加熱処理して用いる請 求の範囲第 1項記載の方法。
6 . 前記反応媒体が臭化物ィォン又は塩化物ィォンと水素ィォン を含有する水性媒体である請求の範囲第 1項記載の方法。
7 . 前記酸化物担体がニオブ酸化物又はニオブ複合酸化物である 請求の範囲第 1項記載の方法。 補正された請求の範囲
【1994年 3月 28日 8.03.94)国際事務局受理;岀願当初の請求の範囲 1および 4は補正された;他の請求の 範囲は変更なし。 (1頁)】
1. 反応媒体中で、 水素と酸素から接触的に過酸化水素を製造す る方法において、 ニオブ酸化物、 ニオブ複合酸化物、 タンタル酸化 物および夕ンタル複合酸化物からなる群から選択された酸化物担体 に担持された白金族金属触媒を用いることを特徵とする過酸化水素 の製造方法。
2. 前記ニオブ酸化物およびタンタル酸化物が、 それぞれニオブ 酸およびタンタル酸を 300〜 700eCの温度で加熱処理して調製した ものである請求項 1記載の方法。
3. 前記白金族金属触媒が、 ニオブ酸又はタンタル酸にイオン交 換法で白金族金属を担持させた後、 加熱処理して調製したものであ る請求の範囲第 1項記載の方法。
4. 前記ニオブ酸化物、 タンタル酸化物が他の酸化物に分散され ている請求の範囲第 1項記載の方法。
5. 前記白金族金属触媒を 300〜 700°Cで加熱処理して用いる請 求の範囲第 1項記載の方法。
6. 前記反応媒体が臭化物ィォン又は塩化物ィォンと水素ィォン を含有する水性媒体である請求の範囲第 1項記載の方法。
7. 前記酸化物担体がニオブ酸化物又はニオブ複合酸化物である 請求の範囲第 1項記載の方法。
20
捕正された兩紙 (条約第 19条) 条約第 19条に基づく説明書 差替え用紙に記載した請求の範囲は最初に提出した請求の範囲と 以下のように関連する。
( 1 ) 請求の範囲第 1項と第 4項を補正した。
( 2 ) 他の請求の範囲は補正しない。
PCT/JP1993/001678 1992-11-20 1993-11-16 Process for producing hydrogen peroxide WO1994012428A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU54342/94A AU5434294A (en) 1992-11-20 1993-11-16 Process for producing hydrogen peroxide
BR9305759A BR9305759A (pt) 1992-11-20 1993-11-16 Processo para a produçao de peróxido de hidrogenio
DE69309448T DE69309448T2 (de) 1992-11-20 1993-11-16 Verfahren zur herstellung von wasserstoffperoxid
JP51296494A JP3394043B2 (ja) 1992-11-20 1993-11-16 過酸化水素の製造方法
US08/256,603 US5496532A (en) 1992-11-20 1993-11-16 Process for producing hydrogen peroxide
EP93924831A EP0627381B1 (en) 1992-11-20 1993-11-16 Process for producing hydrogen peroxide
KR1019940702481A KR100284671B1 (ko) 1992-11-20 1993-11-16 과산화수소의제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP31216892 1992-11-20
JP4/312168 1992-11-20
JP5/38588 1993-02-26
JP3858893 1993-02-26

Publications (1)

Publication Number Publication Date
WO1994012428A1 true WO1994012428A1 (en) 1994-06-09

Family

ID=26377853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001678 WO1994012428A1 (en) 1992-11-20 1993-11-16 Process for producing hydrogen peroxide

Country Status (11)

Country Link
US (1) US5496532A (ja)
EP (1) EP0627381B1 (ja)
JP (1) JP3394043B2 (ja)
KR (1) KR100284671B1 (ja)
CN (1) CN1035320C (ja)
AU (1) AU5434294A (ja)
BR (1) BR9305759A (ja)
CA (1) CA2128319A1 (ja)
DE (1) DE69309448T2 (ja)
TW (1) TW256823B (ja)
WO (1) WO1994012428A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432376B1 (en) 2000-09-05 2002-08-13 Council Of Scientific & Industrial Research Membrane process for the production of hydrogen peroxide by non-hazardous direct oxidation of hydrogen by oxygen using a novel hydrophobic composite Pd-membrane catalyst
JP2010143810A (ja) * 2008-12-22 2010-07-01 Kyushu Univ イオン性液体を用いた過酸化水素の直接製造法
JP2014532558A (ja) * 2011-11-07 2014-12-08 ソルヴェイ(ソシエテ アノニム) 過酸化水素の直接合成のための触媒

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642770A1 (de) * 1996-10-16 1998-04-23 Basf Ag Verfahren zur Herstellung von Wasserstoffperoxid
CA2315719C (en) * 1997-12-22 2003-09-16 Akzo Nobel N.V. Process for production of hydrogen peroxide
DE19817794A1 (de) * 1998-04-21 1999-10-28 Basf Ag Hochreine wässrige Wasserstoffperoxid-Lösungen, Verfahren zu ihrer Herstellung und ihre Verwendung
US6441204B1 (en) * 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6441203B1 (en) * 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a palladium on niobium-containing support
US6498259B1 (en) * 2001-10-19 2002-12-24 Arco Chemical Technology L.P. Direct epoxidation process using a mixed catalyst system
US7067103B2 (en) 2003-03-28 2006-06-27 Headwaters Nanokinetix, Inc. Direct hydrogen peroxide production using staged hydrogen addition
US7280095B2 (en) * 2003-04-30 2007-10-09 Immersion Corporation Hierarchical methods for generating force feedback effects
US7569508B2 (en) * 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions
US7011807B2 (en) * 2003-07-14 2006-03-14 Headwaters Nanokinetix, Inc. Supported catalysts having a controlled coordination structure and methods for preparing such catalysts
US7045479B2 (en) * 2003-07-14 2006-05-16 Headwaters Nanokinetix, Inc. Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions
US7144565B2 (en) * 2003-07-29 2006-12-05 Headwaters Nanokinetix, Inc. Process for direct catalytic hydrogen peroxide production
JP4839311B2 (ja) * 2004-06-17 2011-12-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー 重質炭化水素油のための触媒組合せおよび二工程水素処理方法
US7632775B2 (en) * 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
US7449423B2 (en) * 2005-01-14 2008-11-11 Headwaters Technology Innovation, Llc Heat treatment of anchored nanocatalysts in a non-zero oxidation state and catalysts made by such method
US7045481B1 (en) 2005-04-12 2006-05-16 Headwaters Nanokinetix, Inc. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same
US7099143B1 (en) * 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
US7288500B2 (en) * 2005-08-31 2007-10-30 Headwaters Technology Innovation, Llc Selective hydrogenation of nitro groups of halonitro aromatic compounds
US7396795B2 (en) * 2005-08-31 2008-07-08 Headwaters Technology Innovation, Llc Low temperature preparation of supported nanoparticle catalysts having increased dispersion
US7935652B2 (en) * 2005-09-15 2011-05-03 Headwaters Technology Innovation, Llc. Supported nanoparticle catalysts manufactured using caged catalyst atoms
US7892299B2 (en) * 2005-09-15 2011-02-22 Headwaters Technology Innovation, Llc Methods of manufacturing fuel cell electrodes incorporating highly dispersed nanoparticle catalysts
US7511943B2 (en) * 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
US7480130B2 (en) * 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor
US7718710B2 (en) * 2006-03-17 2010-05-18 Headwaters Technology Innovation, Llc Stable concentrated metal colloids and methods of making same
US7632774B2 (en) * 2006-03-30 2009-12-15 Headwaters Technology Innovation, Llc Method for manufacturing supported nanocatalysts having an acid-functionalized support
US7541309B2 (en) * 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
US7563742B2 (en) 2006-09-22 2009-07-21 Headwaters Technology Innovation, Llc Supported nickel catalysts having high nickel loading and high metal dispersion and methods of making same
US7601668B2 (en) * 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
JP5314910B2 (ja) * 2008-03-26 2013-10-16 株式会社東芝 メタノール酸化触媒およびその製造方法
KR101474571B1 (ko) * 2009-05-13 2014-12-19 에스케이이노베이션 주식회사 고분자 전해질 다층박막 촉매 및 그 제조 방법
CN102477020A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种催化碳水化合物制备5-羟甲基糠醛的方法
JP6088760B2 (ja) 2012-07-10 2017-03-01 三菱瓦斯化学株式会社 過酸化水素の製造方法
EP3096877A1 (en) * 2014-01-24 2016-11-30 Solvay SA A catalyst for direct synthesis of hydrogen peroxide
CN108147371B (zh) * 2018-01-19 2021-03-05 河海大学常州校区 直流电晕放电水雾合成双氧水的装置和方法
CN109536986B (zh) * 2018-11-29 2019-09-17 浙江工业大学 一种基于氧化铂合金的钽类化合物电催化剂及其制备方法和应用
KR20210147726A (ko) 2020-05-29 2021-12-07 삼성에스디에스 주식회사 리소스 분할 번들링 기반 서비스 제공 방법 및 그 장치
CN115318286B (zh) * 2022-08-24 2024-03-15 华东理工大学 一种用于丙烷催化燃烧的铂催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011209A (ja) * 1983-06-22 1985-01-21 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− 過酸化水素の接触的製造方法
JPH0543206A (ja) * 1991-03-20 1993-02-23 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647121A (en) * 1979-09-25 1981-04-28 Matsushita Electric Ind Co Ltd Local afc circuit
US4681751A (en) * 1983-06-22 1987-07-21 E. I. Du Pont De Nemours And Company Catalytic process for making H2 O2 from hydrogen and oxygen
JPH03103310A (ja) * 1989-09-14 1991-04-30 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法
JPH04238802A (ja) * 1991-01-10 1992-08-26 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法
DE4106543A1 (de) * 1991-03-01 1992-09-03 Bayer Ag Edelmetall-traegerkatalysator, verfahren zu seiner herstellung und verfahren zur herstellung eines gemisches aus cyclohexylamin und dicyclohexylamin unter einsatz dieses katalysators
JPH04285003A (ja) * 1991-03-15 1992-10-09 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法
EP0504741B1 (en) * 1991-03-20 1994-12-28 Mitsubishi Gas Chemical Company, Inc. A method for producing hydrogen peroxide
JPH0517106A (ja) * 1991-07-11 1993-01-26 Mitsui Toatsu Chem Inc 過酸化水素の製造方法
JPH0570107A (ja) * 1991-09-18 1993-03-23 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011209A (ja) * 1983-06-22 1985-01-21 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− 過酸化水素の接触的製造方法
JPH0543206A (ja) * 1991-03-20 1993-02-23 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0627381A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432376B1 (en) 2000-09-05 2002-08-13 Council Of Scientific & Industrial Research Membrane process for the production of hydrogen peroxide by non-hazardous direct oxidation of hydrogen by oxygen using a novel hydrophobic composite Pd-membrane catalyst
JP2010143810A (ja) * 2008-12-22 2010-07-01 Kyushu Univ イオン性液体を用いた過酸化水素の直接製造法
JP2014532558A (ja) * 2011-11-07 2014-12-08 ソルヴェイ(ソシエテ アノニム) 過酸化水素の直接合成のための触媒

Also Published As

Publication number Publication date
DE69309448D1 (de) 1997-05-07
AU5434294A (en) 1994-06-22
CN1035320C (zh) 1997-07-02
EP0627381A4 (en) 1995-04-05
EP0627381B1 (en) 1997-04-02
TW256823B (ja) 1995-09-11
CN1087600A (zh) 1994-06-08
BR9305759A (pt) 1997-01-28
JP3394043B2 (ja) 2003-04-07
KR100284671B1 (ko) 2001-10-24
US5496532A (en) 1996-03-05
CA2128319A1 (en) 1994-06-09
DE69309448T2 (de) 1997-08-07
EP0627381A1 (en) 1994-12-07
KR940703779A (ko) 1994-12-12

Similar Documents

Publication Publication Date Title
WO1994012428A1 (en) Process for producing hydrogen peroxide
KR100424502B1 (ko) 염소의제조방법
EP0504741B1 (en) A method for producing hydrogen peroxide
KR101452532B1 (ko) 산화루테늄 담지 물질의 제조 방법 및 염소의 제조 방법
Kiwi-Minsker et al. Supported glass fibers catalysts for novel multi-phase reactor design
EP2776155A1 (en) A catalyst for direct synthesis of hydrogen peroxide
JP3284879B2 (ja) 塩素の製造方法
KR100589203B1 (ko) 망간산화물-티타니아 에어로젤 촉매, 그 제조 방법 및상기 촉매를 이용한 염소계 방향족 화합물의 산화분해방법
KR20070043291A (ko) 이온성 액체를 이용하는 개선된 졸-겔 공정에 의해 제조된아나타제형 결정구조를 갖는 이산화티탄과 이의 제조방법및 이를 이용한 촉매
JP3543550B2 (ja) 塩素の製造方法
JP5715450B2 (ja) 窒素酸化物選択還元触媒とその製造方法
EP3970851A1 (en) Cobalt-based single-atom dehydrogenation catalysts having high selectivity and regenerability and method for producing corresponding olefins from paraffins using the same
KR102223388B1 (ko) 사이클로헥산 디카르복실산 수소화 반응용 루테늄-백금-주석 촉매의 제조방법 및 이에 의해 제조된 촉매를 이용한 사이클로헥산 디메탄올 (chdm)의 제조방법
KR102255171B1 (ko) 과산화수소 제조용 세슘-팔라듐 촉매의 제조방법 및 이를 이용한 과산화수소의 제조방법
JPH11180701A (ja) 塩素の製造方法
JP5806100B2 (ja) 多孔質シラザン被覆粒子、担持触媒およびこれらの製造方法
CN110586144A (zh) 膜催化剂前驱体、膜催化剂、其制备方法及应用
KR102464147B1 (ko) 과산화수소 합성용 작동용액의 재생 촉매
JP6344052B2 (ja) アンモニア合成触媒およびアンモニア合成方法
JP2003024794A (ja) 過酸化水素を製造するのに用いる触媒
JPH07285892A (ja) シクロオレフィンの製造方法
JP2012161717A (ja) 担持酸化ルテニウムの製造方法及び塩素の製造方法
JP2014114167A (ja) ブルッカイト型の酸化チタンを用いた過酸化水素の直接製造法
KR100671493B1 (ko) 암옥시화 반응용 바나디아-티타니아 지로젤 촉매 및 그제조 방법
TWI400228B (zh) 對羧基苯甲醛氫化成對甲基苯甲酸之方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP KR RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2128319

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08256603

Country of ref document: US

Ref document number: 1019940702481

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1993924831

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993924831

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993924831

Country of ref document: EP