WO1994006020A1 - Leakage detection method in automatic pipetting apparatus - Google Patents

Leakage detection method in automatic pipetting apparatus Download PDF

Info

Publication number
WO1994006020A1
WO1994006020A1 PCT/JP1993/001228 JP9301228W WO9406020A1 WO 1994006020 A1 WO1994006020 A1 WO 1994006020A1 JP 9301228 W JP9301228 W JP 9301228W WO 9406020 A1 WO9406020 A1 WO 9406020A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal pressure
pump
leakage
pressure
suction
Prior art date
Application number
PCT/JP1993/001228
Other languages
English (en)
French (fr)
Inventor
Masaaki Takeda
Yuko Kato
Hitomi Katagi
Original Assignee
Aloka Co., Ltd.
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co., Ltd., Abbott Laboratories filed Critical Aloka Co., Ltd.
Priority to CA002143674A priority Critical patent/CA2143674C/en
Priority to AU49821/93A priority patent/AU4982193A/en
Priority to EP93919597A priority patent/EP0658769B1/en
Priority to DE69326773T priority patent/DE69326773T2/de
Publication of WO1994006020A1 publication Critical patent/WO1994006020A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to a method for detecting a leak in an automatic dispensing apparatus, and particularly to a method for leaking liquid due to the internal pressure of a suction 31 and a discharge river pump in an automatic dispensing apparatus.
  • a dispensing device for dispensing a material ⁇ is known, and is used, for example, as a device for dispensing blood, etc., in blood collected from a vacation, in several excretion volumes.
  • the bowing I of the tomato is performed, for example, by a disposable nozzle tip.
  • the suction amount in order to accurately perform the dispensing of the dough by the set predetermined amount, first, at the time of suction, the suction amount must be appropriate. However, from the nozzle tip to the pump via the pressure sensor .: Any joint in the suction path of the dough, mainly due to the dirt of the nozzle base. ? leakage force in engaging portion occur, it can not be performed the exact suction, then the ejection amount force ⁇ feet to a result, dispensing accuracy force; 'problem of a reduction has been made.
  • the present invention has been considered in the above conventional section, and its purpose is to automatically measure the internal pressure of a pump connected to a nozzle chip to objectively determine a leak. Leakage in the equipment;
  • a self-DJ dispensing apparatus including: a nozzle chip 1 for performing discharge and a suction / discharge pump including a cylinder and a biston connected to the nozzle chip; and a pressure sensor for outputting the pressure of the pump ⁇ .
  • the pump internal pressure is compared with the atmospheric pressure, and the leak of the liquid is detected.
  • the leaking step of 1 the internal pressure of the first pump, and after a certain period of time after the suction, f3; i
  • the method according to the present invention is characterized in that it has a step of detecting a sudden change in the internal pressure of the pump at the time of discharge when the liquid amount is further reduced, and detecting a leak of the liquid sample.
  • the first pump internal pressure detected by the pressure sensor is compared with the atmospheric pressure, and a leak of the body is exposed, and the leak of the ⁇ 1;
  • the first pump internal pressure is compared with the second pump internal pressure detected by the pressure sensor after a lapse of a fixed time after the suction, and a leakage of liquid I.2 is detected. ! By providing the discharging step, a small amount of leakage can be discharged.
  • the liquid sucked by the nosle tip is discharged from the pump, and the internal pressure of the pump is monitored with the passage of time by the front G pressure sensor.
  • the third leak that detects a sudden change in the pump internal pressure at the time of discharge when the pressure is reduced, and detects a leak in the liquid system; Can be detected.
  • FIG. 1 shows the digging power of the automatic dispensing device 30 to which the ⁇ ⁇ ⁇ extraction method is applied according to the present invention
  • FIG. 1 is a perspective view thereof.
  • This dispensing device 30 is for dispensing ⁇ l.
  • the nozzle section 32 for sucking the tongue which is shown in the approximate center of the figure, is held by the XYZ robot 34, and the nozzle section 32 is freely movable three-dimensionally. It is possible to move.
  • FIG. 2 shows the cross-sectional force f of the main part of the nozzle part 32.
  • the nozzle part 32 is composed of a nozzle base 35 and a disposable chip (hereinafter, referred to as a chip) 36 that forms a nozzle tip.
  • a disposable force is used as a nozzle tip. Note that the tip of the nozzle base 35 is inserted into the upper opening of the tip 36 by pressure; thus, the tip of the nozzle base 35 is fitted into the upper opening of the tip 36.
  • the tip 36 is securely fixed to the nozzle base 35.
  • a small hole 36a is formed at the lower end portion of the tip 36, and the gas is sucked or discharged from the small hole 36a.
  • the tip 36 is made of, for example, a hard plastic or the like, and the nozzle base 35 is made of metal or the like.
  • the XYZ robot 34 includes an X drive section 34 X, a Y drive section 34 y, and a Z drive section 34 z, and the Z drive section 34 z includes a nozzle section.
  • the elevator section 38 has a limit switch 40 that functions as a jamming sensor and the like, and the limit switch 40 has a certain upward external action force applied to the nozzle section 32. Detect o
  • the Z drive unit 34 z is completed with 42 dilution nozzles for discharging the dilution liquid.
  • One end of an air hose 44 is connected to the nozzle part 32, and the other end of the air hose 44 is connected to a cylinder 46 that functions as a suction-discharge pump. Also, dilution nozzle
  • a diluent hose 48 is connected to 42, and the other end is connected to a cylinder 52 via an electromagnetic valve 50.
  • a pressure sensor 54 for measuring the internal pressure in the air hose 44 is connected. Note that the signal from the limit switch 40 is sent to the apparatus main body via the signal cable 56.
  • the fiber tube rack 60 placed on the dispensing table 58 holds a plurality of pipes 62 each containing a dough. Further, a tray 68 and a microplate 70 are placed on a horizontal table 64 provided on the dispensing table 58.
  • the tray 68 has a plurality of containers 6 6 each containing a fi to be dispensed
  • the microplate 7 ⁇ has a plurality of perkers, each of which is a container for dispensing a dough.
  • Force: 'The container to be dispensed may be a fitl II tube 62 placed in place of tray 68 or microplate 70.
  • the nozzle tip is disposable, that is, a disposable type, a plurality of new tips 36 are prepared in the tip stand 72, and are sequentially replaced with new tips 36. Is done. Also, a chip disposal tray 74 is provided.o
  • FIG. 3 is a block diagram showing a schematic configuration of the dispensing apparatus of the present embodiment.
  • the pump 47 is composed of a piston 76 and a cylinder 46.By moving the piston 76 forward and backward, the internal volume force of the cylinder 46 can be varied, and the suction pressure or discharge pressure due to this can be changed via the air hose 44. It is transmitted to the tip 36 of the nozzle part 32, and suction and discharge of the dough are performed.
  • the internal pressure of the air hose 44 is detected by the pressure sensor 54, and the sensor signal is amplified by the DC amplifier 78 and then sent to the A / D converter 82 via the limiter circuit 80.
  • the limiter circuit 80 is a protection circuit for suppressing excessive input.
  • / 0 converter 82 converts the sensor signal to a digital signal. In other words, it is sent to the control unit 84.
  • the control section 84 is constituted by, for example, a computer or the like, and controls the internal volume of the cylinder 46, controls the XYZ robot 34, and the like.
  • the control section 84 includes a leak measurement section 86.
  • step 200 the XYZ robot 3. Positions the chip 36 above the pipe 62 containing distilled water 90 for leakage.
  • step 201 the so-called “liquid level detection” is performed when the chip 36 descends.
  • This liquid level detection is performed by monitoring the internal pressure of the air hose 44 with the pressure sensor 54, and the control unit 84 controls the internal pressure of the air hose 44 when the tip of the tip 36 changes suddenly. Detected something wrong with the surface.
  • step 202 the suction power of distilled water 90; That is, the piston 76 is pulled out, the internal volume of the cylinder 46 is increased, and the internal pressure of the pump 47 is made negative to suck distilled water 90 into the chip 36. For example, about 200 ⁇ 1 to 5001 absorbs bow! Is done. At this time, the tip 36 is lowered so that the distilled water 9 9 is sucked so that the tip of the tip 36 does not come out from the liquid surface. After the end of the suction, for example, the internal pressure of the pump 47 after 500 ms. Is measured with the pressure sensor 54. This internal pressure: P! If is not close to atmospheric pressure, it is determined that no leak has occurred at this point.
  • step 203 after measuring the internal pressure P, of the pump 47 after the end of the suction in step 202, for example, the chip 36 is stopped without raising the tip 36 for 30 seconds. Then, the pressure sensor 54 measures the internal pressure P 2 of the pump 47 again. Equal the internal pressure P 2 and the internal pressure was measured before P i and the force f, you determined that no leakage force? Occur at this time.
  • step 204 the suctioned distilled water 90 is discharged to the same tube 62.
  • the pressure sensor 54 while monitoring the internal pressure of the pump 47 with the pressure sensor 54, if there is no significant change in the internal pressure, it is determined that no leakage force has occurred at this point.
  • the leakage of steps 202, 203 and 204 will be described in detail later.
  • Fig. 5 to Fig. 7 show the relationship between the elapsed time at bow I and the internal pressure of the pump for leaks that cannot be suctioned, for small leaks, and for very small leaks. . Further, the solid line indicates the internal pressure of the pump 47 during normal suction without leakage, and the dashed line indicates the internal pressure of the pump 47 when leakage occurs.
  • the operator sets a test tube 62 containing distilled water 90, for example, in an amount of 1 to 3 ml, and turns on the switch for starting the leak check.
  • the dispenser 30 automatically starts the leak check.
  • Leakage that cannot be suctioned is a condition in which almost no distilled water 90 can be sucked in and only air can enter, for example, chip 3 6 force. It means that you can only suck. In such a case, when the distilled water 90 is sucked by the tip 36, the internal pressure of the pump 47 becomes closer to the atmospheric pressure than the normal case, consistently from the start of suction to the end of I suction.
  • the leak can be detected by measuring the internal pressure of the pump 47 after elapse of, for example, 500 ms by the pressure sensor 54 and comparing it with the atmospheric pressure. Specifically, in the leak measuring section 86 of the control section 84, the internal pressure P, after 500 ms after the end of suction, and the HE at the time and the voltage at the atmospheric pressure are compared, and the difference is 170 m If it is less than V, it is automatically determined that leakage has occurred. That is, when the internal pressure is close to the atmospheric pressure as shown in Fig. 5, it is determined that a leak force 5 'has occurred, and the measurement is terminated at this point.
  • the leak of ⁇ means, for example, a leak of 8 11 or more per 1 second, and release it after 500 51 suction! Then, it is a leak in a state where the liquid of the chip 36 drops rapidly.
  • the internal pressure of the pump 47 is normal after the suction, for example, 500 ms, and the atmospheric pressure, the tip 37 is not raised, and ⁇ The internal pressure 'P 2 of the pump 47 after stopping for 2 seconds is measured by the pressure sensor 54. Then, by comparing the internal pressure and the internal pressure P 2, to detect leaks.
  • the leakage measuring section 8 6 of the control unit 8 4 when the difference between the voltage at the voltage and the internal pressure of the at internal pressure P 2 is 1 0 O m V or higher, the leakage force f generated Judge automatically. That is, as in the internal pressure ⁇ 2 'shown in Fig. 6, t1 ⁇ 2 king? ! If the pressure is closer to the atmospheric pressure, it is determined that a leak has occurred, and the measurement is terminated at this point.
  • a negligible leak is, for example, a leak of 1 ⁇ 1 or more and less than 8/1 per second.
  • the equal pressure and mosquito Mabo pump 4 7 of the internal pressure [rho 2 and 5 0 O ms after after suction of the pump 4 7 after being stopped, The same as when aspirating from tip 36! Discharge distilled water aspirated into tube 62, eg, 9% of the aspirated volume. Then, discharge is performed while monitoring the internal pressure of the pump 47 with the pressure sensor 54, and a leak is detected based on a change in pressure at that time.
  • the pressure change that appears as a plurality of peaks on this graph is caused by a small amount of distilled water due to leakage, and also a bubble when discharging air force in the tip 36 that has entered instead. It is.
  • the leak measurement unit 86 of the control unit 84 compares the internal pressure voltage at the time of discharge from 50 Oms after discharge as needed. if it exceeds mV is automatically judged to have occurred leakage power. in other words, when a plurality of peaks, such as E Gar point ⁇ inner shown in Figure 7, the leakage power s generated Judge, this The measurement is terminated at the point of.
  • the automatic dispensing device 30 raises the tip 36, and reports the result of the leak to the operator by the screen of the device or the printer.
  • the leak detection sensitivity can be increased by setting the stop time of the chip 36 to be longer than 30 seconds. On the other hand, by shortening the stop time, the leak detection time can be shortened.
  • this leakage ti ⁇ may be performed once a day, for example, before the dispensing work or after the end of the dispensing work, in order to increase the work efficiency which may be performed for each dispensing. that force to make sure that the dispensing accuracy is held? possible.
  • the internal pressure of the pump is measured by a pressure sensor, and the internal pressure is converted into a gas signal to scatter the pressure fluctuation.
  • the leak may be detected by detecting the height of the liquid level sucked into the tip 36 optically, or the weight of the directly suctioned tip and the tip 36 may be measured to detect the leak. It may be detected.
  • the first pump internal pressure detected by the pressure sensor is compared with the atmospheric pressure after suction of the liquid 1 ⁇ , and the first pump for detecting the leak of the liquid 1 ⁇ .
  • the first pump internal pressure is compared with the second pump internal pressure detected by the pressure sensor after a lapse of a predetermined time after the suction, and a second leak ti ⁇ for detecting a leak of the liquid
  • a device equipped with a pressure sensor for detecting a liquid level or the like can easily perform the leakage method of the present invention, and is economically excellent.
  • FIG. 1 is a view showing an embodiment of a dispensing apparatus to which a leak detection method according to the present invention is applied.
  • FIG. 3 is a cross-sectional view showing a cross section of a main part of a nozzle portion 32.
  • FIG. 2 is a block diagram showing a schematic configuration of the dispensing device shown in FIG. 1. .
  • FIG. 2 is an explanatory view showing a leakage step of the dispensing device shown in FIG. 1.
  • FIG. 6 A graph showing the relationship between the elapsed time at the time of bow suction I and the pump internal pressure in the case of a leak that cannot be absorbed by bow I.
  • FIG. 7 is a diagram showing the relationship between the elapsed time at the time of bow suction I and the internal pressure of the bomb in the case of a small amount of leakage.
  • FIG. 8 is a diagram showing the relationship between the elapsed time at the time of suction S I and the pump internal pressure in the case of a very slight leak.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

明細嘗
【発明の名称】 自動分注装 {1における漏れ検出方法
【発明の詳細な説明】
[ 0 0 0 1 ]
[産業上の利用分野】
本発明は、 自動分注装 ϋにおける漏れ検出方法、 特に自動分注装^において、 吸 31及び吐出川のポンプの内圧による液体 の漏 ϋ出方法に ^する。
【0 0 0 2】
【従来の技術】
Ϊ 料の分注を行う分注装^が知られており、 例えば人休から採取された血液中 の 、 血骁等を祓数個の容 に分注する装 ί として川いられている。
[ 0〇 〇 3】
Ϊ 斗の吸弓 Iは、 例えばディスポーザブル化されたノズルチップによつて行われ る。 ここで、 , 斗の分注を設定された所定量ずつ正確に行うためには、 まず吸引 時に、 その吸引量は適正でなければならない。 しかし、 ノズルチップから圧力セ ンサを介してポンプに至る Ϊ :斗の吸引経路のいずれかの接合部分、 主にノズルべ —スの汚れ付藩ゃ庶滅によりディスボ一ザブルチップとノズルベースとの咴合部 に漏れ力 ?生じ、 正確な吸引を行えず、 その後の吐出量力^足する結果、 分注精度 力; '低下するという問題があつた。
[ 0 0 0 4 ]
そこで、 現行の分注装置においては、 例えば ¾の使用開始前及び夜の使用終了 時程度の頻度で ϊ 斗を吸 31したノズルチップを液而ょり上昇させた後に、 操作者 力 装置を一時^ r '止させ、 肉眼で IE力により 斗がノズルチップょり落下しない かどうかを ネ見し、 漏れの有無を判断していた。 【〇〇〇 5】
【発明力?解決しょうとする課題】
しかしながら、 操作者は、 3 0秒〜 2分程度の問継続してノズルチップを監視 しなければならず、 装置の前に拘来され、 他の作業を行えず、 操作者にとっては 負担であつた。 また、 操作者の経験に颗るところ力;'大きく、 ^性に乏しく、 漏 れの定 S性に欠けるという問題があった。 特に、 漏れが僅かな場合には、 吸引後 直ちに容器に吐出すれば、 分注精度には漏れの影^はほとんどない。 したがつて 、 操作者が、 どの程度の漏れを許容すべきかを判断することも難しかった。
[〇 0〇 6】
本発明は、 上記從来の課题に^みなされたものであり、 その目的は、 ノズルチ ッブに接続されているポンプの内圧を測定することにより、 客観的に漏れを判断 する自動分注装置における漏; 1 出方法を提 (^することにある。
[ 0 0 0 7 ] .
[ mmを解決するための手段】
上記目的を達成するために、 本発明は、
Figure imgf000004_0001
1及び吐出を行うノズル チッブと、 前記ノズルチッブに接続されたシリンダとビストンとから成る吸引及 び吐出用のポンプと、 前記ポンプ內の圧力を枚出する圧力センサと、 を含む自 DJ 分注装置において、 前記液体 f, :斗吸引後に、 前記圧力センサにより梭出された第
1 のポンブ内圧と、 大気圧とを比敉し、 液体 ;斗の漏れを検出する笫 1の漏 出工程と、 前記第 1のポンプ内圧と、 吸引後一定時問経過の後に f3;i記圧力センサ により検出された第 2のボンプ内圧とを比敉し、 液体 i 斗の漏れを検出する第 2 の漏 出工程と、 前記ノズルチップにより吸引した液体 ^Ι·を吐出させ、 前記 圧力センサにより時問の経過と共にポンプ内圧を監視し、 .漏れにより所定吸引量 より液量が減少する場合の吐出時のポンプ内圧の急激な変動を検出し、 液体試料 の漏れを検出する笫 3の漏; fi^出工程と、 を有することを特徴とする。
【0 0 0 8】
【作用]
上記構成によれば、 液体 吸引後に、 圧力センサにより検出された第 1のポ ンブ内圧と、 大気圧とを比蚊し、 体 斗の漏れを枚出する笫 1の漏; f ^出工程 を設けたことにより、 Ϊ '斗吸引不可能な漏れを検出することができる。
[ 0 0 0 9】
また、 前記第 1のポンプ内圧と、 吸引後一定時冏経過の後に前記圧力センサに より検出された第 2のポンプ内圧とを比較し、 液体 I.の^れを検出する^ 2の 漏ォ! ^出工程を設けたことにより、 少贵の漏れを枚出することができる。
【0 0 1 0】
さらに、 ノスルチップにより吸引した液体 :斗を吐出させ、 前 G圧力センサに より時間の経過と共にポンプ内圧を監視し、 漏れにより所定吸引:; より液-!;力;'減 少する場合の吐出時のポンプ内圧の急激な変動を検出し、 液体 科の漏れを検出 する第 3の漏;i^出工程を設けたことにより、 ごくィ泣かな漏れを検出することが できる。
[ 0 0 1 1】
【実施例]
以下、 本発明の好適な実施例を図面に基づいて説明する。
[ 0 0 1 2 ]
図 1には、 本発叨に係る ; ίτ^Τ出方法を適用した自動分注装 3 0のダ I掘力;示 されており、 図 1はその斜視図である。
【0 0 1 3】
この分注装置 3 0は、 本实施例において、 成分分析を行うための ^l.を分注す るものである。 【0 0 1 4】 · 図中ほぼ中央に図示される ¾斗の吸引を行うノズル部 3 2は、 X Y Zロボッ ト 3 4によって保持されており、 ノズル部 3 2は、 三次元的に自在に移動可能とさ れている。
【0 0 1 5】
図 2には、 ノズル部 3 2の要部断面図力 f示されており、 ノズル部 3 2は、 ノズ ルベース 3 5とノズルチップを成すディスポーザブルチップ (以下、 チップとい う) 3 6とで構成されている。 すなわち、 本実施例の分注装置においては、 ノズ ルチップとしてディスポーザブルなもの力'用いられている。 なお、 このチップ 3 6の上部開口には、 ノズルべ一ス 3 5の先端部力;'加圧挿入され、 このようにチッ プ 3 6の上部開口にノズルベース 3 5の先端部が嵌合することによって、 チップ
3 6がノズルベース 3 5に確実に固定される。 チップ 3 6の下方先端部には、 小 孔 3 6 a力 ί形成され、 この小孔 3 6 aから言 斗カ吸引され、 あるいは吐出される ことになる。 なお、 チップ 3 6は例えば硬質ブラスチック等で.構 -され、 ノズル ベース 3 5は金属等で構成される。
【0 0 1 6】
図 1において、 前記 X Y Zロボッ ト 3 4は、 X駆動部 3 4 Xと、 Y駆動部 3 4 yと、 Z駆動部 3 4 zとで構成され、 Z駆動部 3 4 zには、 ノズル部 3 2を備え たエレべ一タ部 3 8力;'昇降自在に^されている。 このエレべ一タ部 3 8はジャ ミングセンサ等の機能をなすリミッ トスィッチ 4 0を有し、 このリミッ トスィッ チ 4 0は、 ノズル部 3 2に加えられる上方への一定以上の外的作用力を検出する o
【0 0 1 7 ]
Z駆動部 3 4 zには希釈液の吐出を行う希釈ノズル 4 2カ涸定されている。 ノ ズル部 3 2には、 エアホース 4 4の一端が接続され、 エアホース 4 4の他端は吸 引 -吐出ポンプの作用を成すシリンダ 4 6に接続されている。 また、 希釈ノズル
4 2には、 希釈液ホース 4 8の一端力;接続され、 その他端は電磁バルブ 5 0を介 してシリンダ 5 2に接続されている。 【0 0 1 8】 · シリンダ 4 6とノズル部 3 2との間には、 エアホース 4 4内の内圧を測定する ための圧力センサ 5 4力; '接続されている。 なお、 リミッ トスィッチ 4 0からの信 号は信号ケーブル 5 6を介して装置本体に送られている。
【0 0 1 9】
分注台 5 8に載置された纖管ラック 6 0には、 斗を入れた複数個の碟管 6 2カ¾ ^保持されている。 また、 分注台 5 8上に設けられた水平台 6 4には、 トレイ 6 8と、 マイクロプレート 7 0と力;'載置されている。 ここで、 トレイ 6 8 は分注される fi 斗を入れる容器 6 6を複数個倔え、 マイクロプレート 7◦には、 分注される ¾斗を入れる容器であるゥェルカ'複数個形成されている。 なお、
Figure imgf000007_0001
力;'分注される容器は、 fitl¾管 6 2をトレイ 6 8又はマイクロプレート 7 0の代わ りに配置してもよレ、。
【0 0 2 0】
本実施例の分注装置は、 ノズルチップがデイスポーザブル、 すなわち使い捨て 型であるため、 チップ立て 7 2には複数個の新品のチップ 3 6力;'用意され、 順次 新しいチップ 3 6に交換される。 また、 チップ廃棄トレィ 7 4が設けられている o
【0 0 2 1】
したがって、 以上の分注装置によれば、 ノズル部 3 2のチップ 3 6によって試 料を吸引してそれらを他の容器に移すこと力 ?自在に行える。
[ 0 0 2 2】
図 3には、 本実施例の分注装置の概略的な構成がプロック図で示されている。 ポンプ 4 7は、 ピストン 7 6とシリンダ 4 6からなり、 ピストン 7 6を進退させ ることによりシリンダ 4 6の内容積力 ί可変し、 これによる吸引圧力あるいは吐出 圧力は、 エアホース 4 4を介してノズル部 3 2のチップ 3 6へ伝達され、 斗の 吸引や吐出が行われる。 エアホース 4 4の内圧は圧力センサ 5 4によって検出さ れ、 そのセンサ信号は D Cアンプ 7 8にて増幅された後、 リミッタ回路 8 0を介 して A/D変換器 8 2へ送られている。 ここで、 リミッタ回路 8 0は過大入力を 抑制する保護回路である。 /0変換器8 2は、 センサ信号をデジタル信号に変 換して、 それを制御部 8 4に送出している。
【0 0 2 3】
制御部 8 4は例えばコンピュータ等で構成されるものであって、 シリンダ 4 6 の内容積制御や X Y Zロボッ ト 3 4の制御等を行うものである。 そして、 本実施 例において 御部 8 4は漏れ測定部 8 6を含んでいる。
【0 0 2 4】
次に、 以上の分注装 {1において採用される漏: ^:出方法の具体的な奘施例につ いて説明する。
【0 0 2 5】
図 4には図 1に示した分注装置の漏 出工程力 ?示されている。
【0 0 2 6】
図 4において、 ステップ 2 0 0では、 X Y Zロボッ ト 3 .Πこよって、 漏れ 出 用の蒸留水 9 0力入った^ ¾管 6 2の上方にチップ 3 6を位置決めする。
【 0 0 ?- 7】
ステップ 2 0 1では、 チップ 3 6の下降において、 いわゆる'液面検出が行われ ている。 この液面検出は、 圧力センサ 5 4によってエアホース 4 4の内圧を監視 することにより行われており、 制御部 8 4はエアホース 4 4の内圧力 ί急変したと きにチップ 3 6の先端が液面に違したことを検出している。
【0 0 2 8】
ステップ 2 0 2では、 蒸留水 9 0の吸引力;'行われている。 すなわち、 ピストン 7 6を引き出し、 シリンダ 4 6の内容積を増大させ、 ポンプ 4 7の内圧を負圧に することによってチップ 3 6内に蒸留水 9 0を吸い込む。例えば 2 0 0〃 1〜5 0 0 1程度が吸弓!される。 このとき、 液面からチップ 3 6の先端が出ないよう 、 チップ 3 6を下降させて蒸留水 9◦を吸引する。 そして吸引終.了後、 例えば 5 0 0 m s後のポンプ 4 7の内圧 Ρ! を圧力センサ 5 4にて測定する。 この内圧: P ! が大気圧に近くなければ、 この時点では漏れが生じていないと判断する。
【0 0 2 9】
ステップ 2 0 3では、 ステップ 2 0 2における吸引終了後のポンプ 4 7の内圧 P , を測定後、 例えば 3 0秒間チップ 3 6を上昇させることなく停止させておき 、 圧力センサ 5 4にて再度ポンプ 4 7の内圧 P 2 を測定する。 この内圧 P 2 と先 に測定した内圧 P i と力 f等しければ、 この時点では漏れ力 ?生じていないと判断す る。
【0 0 3 0】
ステップ 2 0 4では、 吸引した蒸留水 9 0を同一の |«管 6 2に吐出する。 こ のとき、 圧力センサ 5 4にてポンプ 4 7の内圧を監視しながら、 内圧の大幅な変 動がなければ、 この時点では漏れ力生じていないと判断する。 ステップ 2 0 2、 2 0 3及び 2 0 4についての漏れ梭出については、 後に詳細に述べる。
【0 0 3 1】
次に、 図 5〜図 7には、 吸引不可能な漏れの場合、 少量の漏れの場合及びごく 僅かな漏れの場合の吸弓 I時の経過時間とボンプ内圧との関係が示されている。 ま た、 実線は、 漏れのない正常な吸引時のポンプ 4 7の内圧を示しており、 一点鎖 線は、 漏れを生じている時のポンプ 4 7の内圧を示している。
【0 0 3 2】
漏れを^ ¾する場合には、 操作者は、 蒸留水 9 0を例えば 1〜 3 m l入れた試 験管 6 2をセッ トし、 漏れチェック開始のスィッチを〇Nする。 これによつて、 分注装置 3 0は自動的に漏れチェックを開始する。
【0 0 3 3】
図 5を用いて、 前述のステップ 2 0 2における吸引不可能な漏^出の方法を 説明する。 吸引不可能な漏れとは、 チップ 3 6力 ほとんど蒸留水 9 0を吸引す ることができず、 空気しか入らない状態をいい、 例えば 5 0 0 1吸引しようと しても 2 0 0 1以下しか吸引できないことをいう。 このような場合、 チップ 3 6により蒸留水 9 0を吸引すると、 吸引開始から I吸引終了まで一貫して、 ポンプ 4 7の内圧は正常な場合に比べ大気圧に近くなる。
【0 0 3 4】
したがって、 圧力センサ 5 4によって、 吸引終了後例えば 5 0 0 m s経過後の ポンプ 4 7の内圧を測定し、 大気圧と比較することによって、 漏れを検出するこ とができる。 具体的には、 制御部 8 4の漏れ測定部 8 6において、 吸引終了後 5 0 0 m sの後の内圧 P , 時の HEと大気圧時の電圧を比較し、 その差が 1 7 0 m V以下の場合には、 漏れカ 生したと自動的に判断する。 すなわち、 図 5に示し た内圧: ' のように大気圧に近い場合には、 漏れ力5'発生したと判断し、 この時 点で測定を終了する。
【0 0 3 5】
次に、 ステップ 2 0 3における少量の漏^出方法について説明する。 ^の 漏れとは、 例えば 1秒問に 8〃 1以上の漏れをいい、 5 0 0〃 1吸引後そのまま 放!;すると、 チップ 3 6の液 がどんどんィ氐下してしまう状態の漏れである。 図 6に示されるように、 吸引後、 例えば 5 0 0 m s経過後のポンプ 4 7の内圧 力、 大気圧と比較して正常である場合には、 チップ 3 6を上昇させることなく、 例えば 3◦秒、停止させた後のポンプ 4 7の内圧' P 2 を圧力センサ 5 4により測定 する。 そして、 内圧 と内圧 P 2 とを比較し、 漏れを検出する。 具体的には、 制御部 8 4の漏れ測定部 8 6において、 内圧 P 2 時の電圧と内圧 時の電圧と の差が 1 0 O m V以上である場合には、 漏れ力 f発生したと自動的に判断する。 す なわち、 図 6に示した内圧 Ρ 2 ' のように t½王?! より大気圧に近い場合には、 漏れが発生したと判断し、 この時点で測定を終了する。
【0 0 3 6】
また、 ステップ 2 0 4におけるごく僅かな漏^出方法について説明する。 ご く僅かな漏れとは、 例えば 1秒間に 1 μ 1以上 8 / 1未満の漏れをいう。 図 7に 示されるように、 吸引後 3 0秒、停止させた後のポンプ 4 7の内圧 Ρ 2 と吸引後 5 0 O m s経過後のポンプ 4 7の内圧 とカ まぼ等しい場合には、 チップ 3 6か ら吸引したときと同一の! «管 6 2に吸引した蒸留水を、 吸引した量の、 例えば 9〇%の量を吐出させる。 そして、 ポンプ 4 7の内圧を圧力センサ 5 4にて監視 しながら吐出させていき、 そのときの圧力変化によって漏れを検出する。 このグ ラフ上に複数の山となって現れる圧力変化は、 漏れにより蒸留水カ减少し、 代わ りに入って来たチップ 3 6内の空気力 吐出時に気泡となって放出される際のも のである。 具 (本的には、 制御部 8 4の漏れ測定部 8 6において、 吐出後 5 0 O m sから吐出時の内圧の電圧を随時比較し、 1 0 O m s毎の圧力変ィ匕が 6 O mVを 超えた場合には、 漏れ力発生したと自動的に判断する。 すなわち、 図 7に示す内 Eがー点鍈線のような複数の山を有する場合には、 漏れ力 s発生したと判断し、 こ の時点で測定を終了する。
【0 0 3 7】
そして、 自動分注装置 3 0は、 チップ 3 6を上昇させ、 操作者に漏れについて の^ ¾結果を、 装置の画面又はプリンタによって報告する。
[ 0 0 3 8 ]
なお、 漏れの検出感度は、 チップ 3 6の停止時間を 3 0秒より長くすることに よって高めることができる。 一方、 この停止時間を短くすることによって、 漏れ 検出時間を短縮することができる。
【0 0 3 9】
また、 この漏 ti^出は、 分注毎に行ってもよい力 作業効率を上げるならば、 1日に 1回、 例えば分注作業前又は分注作業終了後等に行えばよく、 これにより 分注精度が保持されていることを確認すること力 ?できる。
【0 0 4 0】
本実施例においては、 ポンプ内圧を圧力センサで測定し、 この内圧を 気信号 に変えて圧力の変動を撒 ·πし漏れを検出した力;'、 検出の方法はこれに限定される ことはなく、 例えば光学的にチップ 3 6に吸引された液面の高さを検知して漏れ を検出してもよいし、 直接吸引した ¾^斗とチップ 3 6等の重量を測定し、 漏れを 検出してもよい。
【0 0 4 1】
【発明の効果】
以上説明したように、 本発明によれば、 液体 1¾^斗吸引後に、 圧力センサにより 検出された第 1のポンプ内圧と、 大気圧とを比較し、 液体 l^斗の漏れを検出する 第 1の漏 出工程を設けたことにより、 斗吸弓 I不可能な漏れを検出すること ができる。 .
【0 0 4 2】
また、 前記第 1のポンプ内圧と、 吸引後一定時間経過の後に前記圧力センサに より検出された第 2のポンプ内圧とを比較し、 液体 |^斗の漏れを検出する第 2の 漏 ti^:出工程を設けたことにより、 少量の漏れを枚出することができる。 【0 0 4 3】
さらに、 ノズルチップにより吸引した液体 f«を吐出させ、 前記圧力センサに より時間の経過と共にポンプ内圧を監視し、 漏れにより所定吸引量より液量力5'減 少する場合の吐出時のポンプ内圧の急激な変動を検出し、 液体 斗の漏れを検出 する第 3の漏: 出工程を設けたことにより、 ごく僅かな漏れを検出することが できる。
【0 0 4 4】
したがって、 操作者は、 漏れの有無、 多少の確認の際に監視のため分注装置の 前に拘束されることはなくなり、 操作者の負担は蛭減される。
【0 0 4 5】
また、 装置の設定条件によって、 装!:として許容できる漏れ、 すなわち吸引か ら吐出までの時間内では漏れ力 ί生じない程わずかな漏れと、 分注精度に支障を来 す禾 I ^の漏れとを容易に判別することができる。
【0 0 4 6】
また、 液面検出等を行う圧力センサを備えた装置であれば、 容易に本発明の漏 ; 出方法を ¾ΐϊ、でき、 経済性に優れている。
【図面の簡単な説明】
【図 1】
本発明に係る漏れの検出方法を適用した分注装置の実施例を示す 図である ο
【図 2】
ノズル部 3 2の要部断面を示す断面図である
【図 3】
図 1に示した分注装置の概略的構成を示すプロック図である。 .
【図 4】
図 1に示した分注装置の漏^出工程を示す説明図である。
[図 5】
吸弓 I不可能な漏れの場合に吸弓 I時の経過時間とボンプ内圧との関係を示す図で める。 【図 6】
少量の漏れの場合に、 吸弓 I時の経過時間とボンブ内圧との関係を示す図である
【図 7】
ごく僅かな漏れの場合に吸 S I時の経過時間とボンプ内圧との関係を示す図であ る。
【符号の説明】
30 分注装置
32 ノズル部
34 XYZロボッ ト
35 ノズルベース
36 ディスポ一ザブルチップ
54 圧力センサ
62 ^-
84 制御部
86 漏れ測定部
90 蒸留水

Claims

t| rく、 <o ©
【請求項 1】
Figure imgf000014_0001
吸引及び吐出を行うノズルチップと、 前記ノズルチ ッブに接続されたシリンダとピス トンとから成る吸 3 1及び吐出用のポンプと、 前 記ボンブ內の圧力を検出する圧力センサと、 を含む自動分注装置において、 前記液体 1¾斗吸引後に、 前記圧力センサにより検出された第 1のポンプ内圧と 、 大気圧とを比較し、 液体 斗の漏れを検出する笫 1の漏 ufe¾出工程と、 前記第 1のポンプ内圧と、 吸引後一定時問経過の後に前記圧力センサにより検 出された第 2のポンプ内圧とを比敉し、 液体;i 斗の漏れを検出する笫 2の漏 出工程と、
前記ノズルチップにより吸引した液.体 ^l "を吐出させ、 前記圧力センサにより 時問の経過と共にポンプ内圧を監視し、 漏れにより所定吸引量より液量が減少す る場合の吐出時のポンプ内圧の急激な変動を検出し、 液体 ^ I.の漏れを検出する 第 3の漏; ΐ¾出工程と、
を有することを特徴とする自動分注装置における漏 出方法。
PCT/JP1993/001228 1992-09-02 1993-08-31 Leakage detection method in automatic pipetting apparatus WO1994006020A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002143674A CA2143674C (en) 1992-09-02 1993-08-31 Leakage detecting method for automatic pipetting apparatus
AU49821/93A AU4982193A (en) 1992-09-02 1993-08-31 Leakage detection method in automatic pipetting apparatus
EP93919597A EP0658769B1 (en) 1992-09-02 1993-08-31 Leakage detection method in automatic pipetting apparatus
DE69326773T DE69326773T2 (de) 1992-09-02 1993-08-31 Leckprüfungsverfahren in einer automatischen pipettiervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/234603 1992-09-02
JP23460392A JP2578296B2 (ja) 1992-09-02 1992-09-02 自動分注装置における漏れ検出方法

Publications (1)

Publication Number Publication Date
WO1994006020A1 true WO1994006020A1 (en) 1994-03-17

Family

ID=16973624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001228 WO1994006020A1 (en) 1992-09-02 1993-08-31 Leakage detection method in automatic pipetting apparatus

Country Status (6)

Country Link
EP (1) EP0658769B1 (ja)
JP (1) JP2578296B2 (ja)
AU (1) AU4982193A (ja)
CA (1) CA2143674C (ja)
DE (1) DE69326773T2 (ja)
WO (1) WO1994006020A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041200A1 (en) * 1995-06-07 1996-12-19 Abbott Laboratories Automatic pipetting apparatus with leak detection and method of detecting a leak
US5750881A (en) * 1995-07-13 1998-05-12 Chiron Diagnostics Corporation Method and apparatus for aspirating and dispensing sample fluids
US6119533A (en) * 1998-07-10 2000-09-19 Bayer Corporation Sampling system with selectable pumps to communicate with reading station
US6158269A (en) * 1995-07-13 2000-12-12 Bayer Corporation Method and apparatus for aspirating and dispensing sample fluids
EP1776963A1 (en) 2005-10-19 2007-04-25 Gbf-Gesellschaft Für Biotechnologische Forschung Mbh Hexosylceramides as adjuvants and their uses in pharmaceutical compositions

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060320A (en) * 1997-12-05 2000-05-09 Bayer Corporation Method of verifying aspirated volume in automatic diagnostic system
US6121049A (en) * 1997-12-05 2000-09-19 Bayer Corporation Method of verifying aspirated volume in automatic diagnostic system
US6370942B1 (en) * 2000-05-15 2002-04-16 Dade Behring Inc. Method for verifying the integrity of a fluid transfer
US6484556B1 (en) * 2000-11-13 2002-11-26 Ortho Clinical Diagnostics, Inc. Thin film detection during fluid aspiration
JP4613283B2 (ja) * 2001-02-02 2011-01-12 アークレイ株式会社 微量液の供給装置および混合装置
JP3811652B2 (ja) * 2002-03-05 2006-08-23 株式会社日立ハイテクノロジーズ 分注装置及びそれを用いた自動分析装置
EP1785731A1 (en) * 2005-11-15 2007-05-16 Roche Diagnostics GmbH Electrical drop surveillance
JP4373427B2 (ja) 2005-11-15 2009-11-25 エフ.ホフマン−ラ ロシュ アーゲー 電気的滴下監視
DE102005060862B3 (de) 2005-12-20 2007-06-28 Stratec Biomedical Systems Ag Verfahren und Vorrichtung zur Beurteilung eines Dosiervorgangs
JP2009198308A (ja) * 2008-02-21 2009-09-03 Olympus Corp 攪拌装置および分析装置
JP5186430B2 (ja) * 2009-04-27 2013-04-17 日立アロカメディカル株式会社 分注装置
EP2317299A1 (de) 2009-10-28 2011-05-04 Brand Gmbh + Co Kg Verfahren zur Dichtigkeitsprüfung von handgehaltenen Kolbenhubpipetten sowie Dichtigkeits-Prüfeinrichtung dafür
EP3434373A1 (de) 2017-07-27 2019-01-30 Eppendorf AG Pipettiervorrichtung mit funktionsprüfung und verfahren zur funktionsprüfung einer pipettiervorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164957A (en) * 1980-05-23 1981-12-18 Aloka Co Ltd Automatic dispenser
JPS61200458A (ja) * 1985-03-01 1986-09-05 Hitachi Ltd 自動分析装置
JPS6224151A (ja) * 1985-07-24 1987-02-02 Toshiba Corp 自動化学分析装置における吸引吐出装置
JPS6220372U (ja) * 1985-07-20 1987-02-06
JPS6394149A (ja) * 1986-10-08 1988-04-25 Toshiba Corp 電解質濃度測定システム
JPH01219564A (ja) * 1988-02-26 1989-09-01 Toshiba Corp 自動化学分析装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341438A3 (en) * 1988-05-13 1990-11-28 Abbott Laboratories Pneumatic sensing system
FI90207C (fi) * 1992-05-04 1994-01-10 Wallac Oy Pipettilaitteisto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164957A (en) * 1980-05-23 1981-12-18 Aloka Co Ltd Automatic dispenser
JPS61200458A (ja) * 1985-03-01 1986-09-05 Hitachi Ltd 自動分析装置
JPS6220372U (ja) * 1985-07-20 1987-02-06
JPS6224151A (ja) * 1985-07-24 1987-02-02 Toshiba Corp 自動化学分析装置における吸引吐出装置
JPS6394149A (ja) * 1986-10-08 1988-04-25 Toshiba Corp 電解質濃度測定システム
JPH01219564A (ja) * 1988-02-26 1989-09-01 Toshiba Corp 自動化学分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0658769A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041200A1 (en) * 1995-06-07 1996-12-19 Abbott Laboratories Automatic pipetting apparatus with leak detection and method of detecting a leak
US5750881A (en) * 1995-07-13 1998-05-12 Chiron Diagnostics Corporation Method and apparatus for aspirating and dispensing sample fluids
US6158269A (en) * 1995-07-13 2000-12-12 Bayer Corporation Method and apparatus for aspirating and dispensing sample fluids
US6119533A (en) * 1998-07-10 2000-09-19 Bayer Corporation Sampling system with selectable pumps to communicate with reading station
EP1776963A1 (en) 2005-10-19 2007-04-25 Gbf-Gesellschaft Für Biotechnologische Forschung Mbh Hexosylceramides as adjuvants and their uses in pharmaceutical compositions

Also Published As

Publication number Publication date
CA2143674C (en) 2000-01-11
EP0658769A1 (en) 1995-06-21
DE69326773T2 (de) 2000-03-09
JPH0682463A (ja) 1994-03-22
AU4982193A (en) 1994-03-29
EP0658769B1 (en) 1999-10-13
EP0658769A4 (en) 1995-12-27
JP2578296B2 (ja) 1997-02-05
DE69326773D1 (de) 1999-11-18
CA2143674A1 (en) 1994-03-17

Similar Documents

Publication Publication Date Title
WO1994006020A1 (en) Leakage detection method in automatic pipetting apparatus
TWI422801B (zh) 分注量檢測方法及吸液監測器型分注裝置
JP4753770B2 (ja) 分注装置における配管内の気泡の有無判定方法および分注装置
CA2131283C (en) Pipetting apparatus
CA2221732C (en) Automatic pipetting apparatus with leak detection and method of detecting a leak
JP3700402B2 (ja) 吸引流路の詰まりまたは吸引量不足の検出方法、試料液吸引装置、及び分注装置
JP4677076B2 (ja) 液面検知装置
JP2010539510A (ja) 臨床サンプリング・ピペットにおける詰まりの検出
JPH087222B2 (ja) 自動分注希釈装置
JPH0217448A (ja) 空気式検出方式
JP2011519035A (ja) 吸引中のサンプルの異常粘性とピペット詰まりとの識別
JP2007322285A (ja) 分注装置
JPH0121467B2 (ja)
JP2711215B2 (ja) 自動分注装置
JP2721620B2 (ja) 閉塞検出機能付分注装置
JP3029388B2 (ja) 漏れ検出機能を備えた自動分注装置及び該装置における漏れ検出方法
JP3401504B2 (ja) 分注装置
JP2003194835A (ja) 分注装置
JPH0340343B2 (ja)
JP3027787B2 (ja) 液面検出方法及びその装置
JP3029387B2 (ja) 漏れ検出機能を備えた自動分注装置及び該装置における漏れ検出方法
JP2592837B2 (ja) 自動化学分析装置
JP3964946B2 (ja) 分注装置
JP4601811B2 (ja) 自動分析装置
JP2688163B2 (ja) 分注装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2143674

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993919597

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1995 392840

Country of ref document: US

Date of ref document: 19950417

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993919597

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993919597

Country of ref document: EP