WO1993023844A1 - Method and circuit for driving liquid crystal device, etc., and display device - Google Patents

Method and circuit for driving liquid crystal device, etc., and display device Download PDF

Info

Publication number
WO1993023844A1
WO1993023844A1 PCT/JP1993/000604 JP9300604W WO9323844A1 WO 1993023844 A1 WO1993023844 A1 WO 1993023844A1 JP 9300604 W JP9300604 W JP 9300604W WO 9323844 A1 WO9323844 A1 WO 9323844A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
liquid crystal
electrodes
electrode
signal
Prior art date
Application number
PCT/JP1993/000604
Other languages
English (en)
French (fr)
Inventor
Akihiko Ito
Shoichi Iino
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to EP93911979A priority Critical patent/EP0598913B1/en
Priority to DE69326740T priority patent/DE69326740T2/de
Priority to JP52004893A priority patent/JP3508115B2/ja
Publication of WO1993023844A1 publication Critical patent/WO1993023844A1/ja
Priority to US08/178,949 priority patent/US5877738A/en
Priority to US08/454,037 priority patent/US5959603A/en
Priority to US09/641,555 priority patent/US6452578B1/en
Priority to US09/641,812 priority patent/US6611246B1/en
Priority to US10/219,537 priority patent/US7138972B2/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3625Control of matrices with row and column drivers using a passive matrix using active addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3681Details of drivers for scan electrodes suitable for passive matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers

Definitions

  • the present invention relates to a method for driving a liquid crystal element such as a liquid crystal display panel, a driving circuit, and a display device.
  • a liquid crystal element such as a liquid crystal display panel, a driving circuit, and a display device.
  • multiplex driving by a voltage averaging method is known as one of the driving methods of the liquid crystal element as described above.
  • FIG. 45 is an applied voltage waveform diagram showing an example of a conventional driving method when a simple matrix type liquid crystal element or the like as shown in FIG. 46 is multiplex driven by a voltage averaging method.
  • (A) and (b) in Fig. 45 are the voltage waveforms applied to the scan electrodes X and Xz,
  • (c) is the voltage waveform applied to the signal electrode Y, and
  • (d) is the scan.
  • 3 shows a voltage waveform applied to a pixel where an electrode X, and a signal electrode Y, intersect.
  • scan electrodes X,, X 2,..., X » are sequentially selected line by line to apply a scan voltage, and whether each pixel on the selected scan electrode is on or off is selected.
  • Yotsute, each of the signal electrodes Y, a signal voltage corresponding thereto is for building frame moving by the this applied to the Y 2 ⁇ ⁇ ⁇ ⁇ .
  • Figure 47 shows the simultaneous selection of multiple scan electrodes simultaneously as described above.
  • (a) shows the scan applied to the scan electrodes X t ⁇ ⁇ 2 ⁇ ⁇ 3
  • FIG. (B) is applied to Hashi ⁇ electrode ⁇ 4 ⁇ ⁇ 5 ⁇ ⁇ 6
  • (C) shows the scan voltage waveform applied to the signal electrodes ⁇
  • 5 shows a voltage waveform applied to intersecting pixels.
  • the scanning electrodes are sequentially selected three lines at a time
  • the display as shown in 46 is performed. That is,
  • the scan voltage is applied, to apply a predetermined signal voltage to be described later to each of the signal electrodes to Y m in the ⁇ .
  • Fig. 46 the scanning electrode
  • the arrangement shown in Fig. 47 (b) is such that the arrangement is appropriately changed so that the frequency components are not shifted.
  • this waveform is used. is there.
  • the signal voltages applied to the signal electrodes to Y m is scanned
  • the number of pulse patterns is the same as the voltage, and the voltage level of each pulse is such that a voltage corresponding to the on / off state of the selected scan electrode is applied.
  • V Y1 1 when the number of mismatches is zero V Y1, 3 was to apply a pulse voltage V Y2 Things.
  • the voltage V X1 is turned on when a voltage of V 1 is applied, and the voltage V x1 is turned off when a voltage V 1 is applied.
  • the signal electrode and Hashi ⁇ electrode in FIG. 4 6 X t - turn on on the display of the pixel at the intersection of the z-X 3 * is off, the scanning electrodes contrast - first Parusubata over down of the voltage applied to Xz ⁇ X 3 are each turned off 'off' off.
  • the first pulse pattern of the signal electrode Yi has the voltage V y ! As shown in (c) of Fig. 47 . Is applied.
  • the second pulse pattern of the voltage applied to each of the scan electrodes X 1, -X 2, and X 3 is off “off” on, respectively, and is compared with the pixel display on * on and off in this order.
  • the voltage VY2 is applied to the second pulse of the signal electrode Y ,.
  • V y is applied, J3 ⁇ 4 [Down, One V Y2, V Y1, One V YI, in the order of one V Y1 Applied.
  • each scan electrode X 4 ⁇ Kai 6 is a voltage shown in FIG. 4 7 (b)
  • Ru is applied, the scanning electrodes X 4 to X 6 and intersecting with O emissions off the display of the pixel you the signal electrode, a voltage corresponding to the mismatch between the on-off of each pulse Bataan of the voltage applied to the respective scanning electrodes X 4 ⁇ X 6
  • the level f signal voltage is applied as shown in (c) of Fig. 47.
  • the positive selection pulse of the scanning voltage waveform is 1, the negative selection pulse is 11, the display of each pixel is on, 1 is 1 and the display of each pixel is 1 is off.
  • the signal voltage waveform was set based on the difference between the numbers, either one could be set to 1 or 11 and the signal voltage waveform was calculated using only the number of matches or the number of mismatches without calculating the difference between the number of matches and the number of mismatches. Can also be set.
  • the method of sequentially selecting and driving a plurality of scan electrodes simultaneously involves selecting one scan line at a time as shown in FIG.
  • the drive voltage can be kept low while achieving the same on-z-off ratio as in the method of driving with a switch.
  • the signal electrode consists of an h-bit word.
  • the scan electrode selection pattern is an h-bit word pattern with a period of 2 h as shown in the following equation.
  • One subgroup is selected at the same time.
  • One h bit word is selected as the scan electrode selection pattern.
  • V (where i is the number of mismatches, (select one of the predetermined voltages according to the number of mismatches)
  • (1 0) 1 cycle (period) is a scanning electrode selecting the Te 2 h pieces to base All butterflies appear in each subgroup and the NZh subgroup is selected to end.
  • the amplitude of the instantaneous voltage applied to the pixel, V PixeL, is the scanning voltage, V r . w, the signal voltage V c.
  • V PjlxeL + V r-V (i > or one V r — V (:
  • V row ⁇ V ⁇
  • V V V ⁇ i: V r + V (i) -one V V ⁇ i)
  • the voltage applied to the Vixel is the voltage applied to the Vixel.
  • the advantage with respect to the ON state increases the effective voltage
  • the disadvantage with respect to the ON state acts in the direction of decreasing the effective voltage
  • the total number of mismatches (total mismatch) is i ⁇ C i ⁇ .
  • the number of discrepancies gives the number of disadvantageous voltages (signal voltages), and thus the (average) disadvantage per pixel The number of voltages.
  • V OFF (r, ⁇ , s ) a ⁇ (S 5 + S b + 33) S 4 ⁇ 1/2.
  • Vr ZV. N 1 , 2 Zh... Row select voltage
  • the present invention provides a driving method, a driving circuit, and a display device for a liquid crystal element and the like which can perform satisfactory gradation display even when a plurality of scanning electrodes are simultaneously selected and driven sequentially as described above. aimed to. Disclosure of the invention
  • the method for driving a liquid crystal element or the like is a method for driving a liquid crystal element having a liquid crystal layer interposed between a substrate having a scanning electrode and a substrate having a signal electrode by sequentially selecting a plurality of scanning electrodes simultaneously.
  • the above-described selection period is divided into a plurality of periods, and gradation display is performed by applying a weighted voltage according to desired display data to the divided selection period. It is characterized by the following.
  • a driving circuit for a liquid crystal element or the like selects a plurality of scanning electrodes sequentially and simultaneously from a liquid crystal element or the like having a liquid crystal layer interposed between a substrate having a scanning electrode and a substrate having a signal electrode.
  • a driving circuit such as a liquid crystal element that performs multiplex driving
  • the selected pulse data generated from the scanning data generation circuit and the display data on multiple scanning electrodes selected at the same time are calculated by an arithmetic circuit
  • the data based on the calculation result is transferred to the signal electrode driver, and at the same time, the scan data is transferred to the scan electrodes so that the desired gradation display according to the display data is performed. It is characterized by comprising.
  • a liquid crystal element or the like having a liquid crystal layer interposed between a substrate having a scanning electrode and a substrate having a signal electrode is sequentially multiplex-driven by simultaneously selecting a plurality of scanning electrodes.
  • selection pulse data generated from a scanning data generation circuit and display data on a plurality of scanning electrodes selected at the same time are calculated in a calculation route, and the calculation result is obtained.
  • the above-described selection period is divided into a plurality of sections, and the above-described drive circuit is provided during each of the divided selection periods.
  • a signal voltage weighted according to desired display data is applied to the signal electrode to perform a gray scale display.
  • FIG. 1 is an applied voltage waveform diagram showing one embodiment of a method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of a liquid crystal element and the like and display data.
  • FIG. 3 is an explanatory diagram of a scanning voltage waveform applied to a scanning electrode.
  • FIG. 4 is a block diagram showing an embodiment of the drive circuit.
  • Figure 5 Block diagram of scanning electrode driver.
  • Figure 6 is a block diagram of the signal electrode driver.
  • FIG. 7 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • Figure 8 shows the procedure for driving using virtual electrodes and an illustration of the display data.
  • FIG. 9 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 10 is an explanatory diagram of gradation display by pulse width modulation.
  • FIG. 11 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 12 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 14 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 15 shows another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 16 is an explanatory diagram of the arrangement and display data of virtual electrodes.
  • FIG. 17 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 19 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 20 is an explanatory diagram of a waveform of a voltage applied to a signal electrode, showing another embodiment of the method of driving a liquid crystal element or the like according to the present invention.
  • FIG. 21 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 22 is an explanatory diagram of the electrode arrangement and display data.
  • FIG. 23 is a waveform diagram of the voltage applied to the signal electrode in the above embodiment.
  • FIG. 24 is an applied voltage waveform diagram of an embodiment in which the selection period in the above embodiment is divided into a plurality of planes in one frame and driven.
  • FIG. 25 is a waveform diagram of the voltage applied to the signal electrode in the above embodiment.
  • FIG. 26 is an applied voltage waveform diagram of another example in which the selection period in the above embodiment is divided into a plurality of frames in one frame and driven.
  • FIG. 27 is an applied voltage waveform diagram of another example in which the selection period in the embodiment is divided into a plurality of planes in one frame and driven.
  • FIG. 28 is an applied voltage waveform diagram showing another embodiment of the method of driving a liquid crystal element or the like according to the present investigation.
  • FIG. 5 is an applied voltage waveform diagram of an embodiment driven several times.
  • FIG. 30 is an applied voltage waveform diagram of another example in which the selection period in the embodiment is divided into a plurality of planes and driven in one frame.
  • FIG. 31 is an applied voltage waveform diagram of another example in which the selection period in the above embodiment is driven a plurality of times within one frame.
  • FIG. 32 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • Figure 33 is an explanatory diagram of the electrode arrangement and display data.
  • FIG. 34 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 35 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 36 is an applied voltage waveform diagram of the embodiment in which the selection period is divided into a plurality of planes within one frame in the above embodiment.
  • FIG. 37 is an applied voltage waveform chart of another example in which the selection period in the above embodiment is divided into a plurality of times in one frame and driven.
  • FIG. 38 is an applied voltage waveform chart of another example in which the selection period in the embodiment is divided into a plurality of planes in one frame and driven.
  • FIG. 39 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 40 is an applied voltage waveform diagram of the embodiment in which the selection period is divided into a plurality of times in one frame and the frame is activated.
  • Fig. 41 shows the selection period in the above embodiment within one frame.
  • FIG. 9 is a diagram showing an applied voltage waveform of another example driven in several times.
  • FIG. 42 is an applied voltage waveform diagram of another example in which the selection period in the above embodiment is driven a plurality of times within one frame.
  • FIG. 43 is an applied voltage waveform diagram showing another embodiment of the method for driving a liquid crystal element or the like according to the present invention.
  • FIG. 44 is an applied voltage waveform diagram of an embodiment in which the selection period in the above embodiment is driven on a plurality of planes within one frame.
  • FIG. 45 is an applied voltage waveform diagram showing an example of a conventional driving method of a liquid crystal element or the like.
  • Figure 46 is an explanatory diagram of the display pattern.
  • Fig. 47 is an applied voltage waveform diagram showing another example of a conventional driving method for a liquid crystal element or the like.
  • FIG. 48 is an explanatory diagram of the voltage waveform applied to the scanning electrode. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is the applied voltage waveform diagram showing an embodiment of a Mukurodo method such as a liquid crystal display device according to the present invention
  • FIG. (A) shows the voltage waveform applied to the scan electrode X, ⁇ ⁇ 2 ⁇ ⁇ 3 ,
  • scanning electrodes ⁇ 4 - ⁇ 5 ⁇ ⁇ waveform applied to 6 (c) the signal electrode Upsilon, the applied voltage waveform,
  • (d) is Hashi ⁇ electrode X t and the signal electrodes Y , 3 shows a voltage waveform applied to a pixel where the crossing occurs.
  • three scanning electrodes are simultaneously selected in sequence and a display as shown in FIG. 2 is performed.
  • the waveform shown in (a) or (b) of FIG. 48 can be used, but in the present embodiment, (a) of FIG. The waveform shown in) is used.
  • each pulse width becomes narrow, and in particular, scanning which is simultaneously selected is performed.
  • the number of electrodes increases exponentially, and consequently the width of each pulse decreases, and when actually applied to the pixel, Crosstalk due to so-called summaries may occur.
  • the pulse width is further reduced, which causes crosstalk.
  • the pulse width is widened by setting the voltage waveform applied to the scanning electrode in the following manner.
  • the voltage waveform applied to the scanning electrode is the voltage waveform applied to the scanning electrode.
  • Each scanning electrode can be distinguished
  • the pattern of the applied voltage is appropriately selected from the orthogonal function systems such as natural binary, Walsh, and Hadamard in consideration of the above conditions.
  • item (1) above is an absolute condition.
  • the voltage waveforms applied to the scanning electrodes are determined so as to be orthogonal to each other.
  • the applied voltage waveform shown in (b) is shown in FIG.
  • the shortest pulse width of the waveform shown in (a) and (b) of FIG. 48 is m t.
  • the narrowest pulse width ⁇ t of the waveform is 2 ⁇ t. And can be doubled. By increasing the pulse width in this way, the effect of waveform summarization can be reduced, crosstalk can be reduced, and the number of scan electrodes selected simultaneously can be increased. .
  • the waveforms shown in (a) and (b) in Fig. 3 are examples and can be changed as appropriate.
  • the order of selecting the scanning electrodes and the order of arranging the pulse patterns applied to each scanning electrode use the property of the orthogonal function. Can be changed as appropriate.
  • the scanning voltage waveforms of the present embodiment shown in (a) and (b) of FIG. 1 constitute voltage waveforms applied to three scanning electrodes which are simultaneously selected based on the waveform of (b) of FIG. It was done.
  • the selection period is divided into four times of t, t2, t3, and t4 in one frame F.
  • the period of t is divided into two periods, a and b, and the display data shown in FIG.
  • the signal m pressure which is weighted for each bit based on the bits, is applied during period a for the upper bits and period b for the lower bits.
  • the off when applying the ON voltage one V xl when applying a voltage V xl in Hashi ⁇ electrodes, display data 0 O off, turns on the 1, is selected simultaneously Hashi ⁇ The number of mismatches is calculated by comparing the on / off of the electrode and the on / off of the display data bit by bit.
  • Vy4 and 2 Is Vy 2 , 1 is 1 V 2 , 0 is — V, respectively.
  • V y3 when the number of mismatches is 3, V Y1 when the number of mismatches is 2, and V Y1 when the number of mismatches is 1 When one V YI and zero, one V Y3 is applied.
  • the pulse is turned on to be applied to scan electrodes X t, X 2, X 3, O emissions, will turn off, the scanning and signal electrodes electrodes X,
  • the display data of the pixel at each intersection with, ⁇ ⁇ , and ⁇ 3 is (0 0) (0 1) (10), and the upper bits are off, off, and on.
  • the voltage V is applied to the signal electrode Yt during the period a.
  • the lower bits are turned off, turned on, and turned off.
  • the number of mismatches is 1 when compared with the scan electrodes, and the voltage VY1 is applied in the period b.
  • Hashi ⁇ electrodes X,, X z, selected path which applies the display de one data on X 3 to the scan electrodes for each signal electrode to Y m Compared to the signals, the signal voltage corresponding to the number of mismatches is applied.
  • the scanning electrodes X 4 , ⁇ 5 , ⁇ ⁇ 6 are simultaneously selected, and the corresponding signal electrode waveform is applied to the signal electrodes.
  • a signal voltage waveform corresponding to the display data is applied to the signal electrodes while simultaneously selecting the scanning electrodes by three lines, and when all the scanning electrodes to Xn have been scanned, the first scanning is performed again.
  • predetermined voltages are sequentially applied in the same manner as described above during the periods t 2 , t 3 , and t 4 .
  • all of the scanning electrodes X are four periods of ⁇ t 4, the scanning and final Waru and one frame is completed for to X n, the next frame is returned ⁇ Ri.
  • so-called AC driving is performed by alternately changing the polarity of the applied voltage for each frame.
  • the order of the scanning voltage waveform applied to the scan electrodes in ⁇ t 4 is Wakashi for all frames, Ku is rather good be replaced as needed for respective frames, also the scanning voltage applied to scan electrodes
  • the waveform shown in (a) of FIG. 3 or another waveform that satisfies the above requirements can be used as the waveform.
  • scanning electrodes X using a waveform shown in (a) of FIG. 3, to X 3, simultaneously selected Migihitsuji have the use of the waveform shown in the in the next run ⁇ electrode X 4 ⁇ 6 3
  • (b) Alternate two types of waveforms for each scanning electrode , Or three or more types of waveforms can be replaced in order. Further, it is possible to combine the replacement of the waveform of each scan electrode is interchanged Well simultaneously select the waveform of the time period t t ⁇ t 4.
  • the period ⁇ t 4 of the drives separately for each period as in this embodiment, or 1 in the frame may be dynamic drive is provided continuously but, as in this embodiment If the selection period is divided into a plurality of driving operations in one frame F, the non-selection period can be shortened and the contrast can be increased.
  • the to be driven in four of the selection period ⁇ t 4, the number of times to divide its Ri optionally der, for example, the duration of the t t ⁇ t 4 to 2 times It can be driven separately or more.
  • three scanning electrodes are simultaneously selected according to the arrangement order.
  • the number of the selection electrodes may be appropriately selected, and may be selected without necessarily following the arrangement order.
  • Fig. 4 is a block diagram showing an example of the drive circuit.
  • 1 is a scan electrode driver
  • 2 is a signal electrode driver
  • 3 is a frame memory
  • 4 is a memory circuit
  • 5 is scan data generation.
  • Circuit, 6 is It is Latsch.
  • Fig. 5 is a block diagram of the scan electrode driver
  • Fig. 6 is a block diagram of the signal electrode driver
  • 1 1 and 2 1 are shift registers and 1 2 and 2 2 are , 13 and 23 are decoders
  • 14.24 is a level shifter.
  • each scan voltage waveform is generated by the scan data generation circuit 5 shown in FIG. 4 to generate data indicating positive selection, negative selection, or non-selection. Transfer to electrode driver 1.
  • the scan electrode driver 1 transfers the scan data signal S3 from the scan data generation circuit 5 to the shift register 11 with the scan shift clock signal S5 as shown in FIG. After transferring the data of each scan electrode, each data is latched by the latch signal S6, the data representing the state of each scan electrode is decoded, and three switches are provided by the analog switch 15 for each output. Tutsi sac Chino one of turns on, V X 1 when the positive selection, single V X 1 when the negative selection, when the non-selected output to the scanning electrode selected voltage of 0.
  • the display data signal S 1 for each of the three simultaneously selected scanning electrodes is read out from the frame memory 3 and selected from the display data signal S 1 and the scanning data signal S 3.
  • the pulse data is latched, and the display data signal S 1 and the selected pulse data signal S 4 are converted by the arithmetic circuit 4.
  • the data The conversion is performed as described above, and is transferred to the signal electrode driver 2.
  • the data signal S2 from the operation area 4 is transferred to the shift register 21 with the shift clock signal S7, and each signal electrode in the first run After the data is transferred, each data is latched by the latch signal S8, the data representing the state of each signal electrode is decoded, and eight switches are used for the output switches 25 for each output. Turn on one of the eight electrodes and apply one of the eight voltages V Y "V y3 , V YZ , V yi -V Yl , one V y2 , one V Y3 , one V Y ⁇ Output to
  • the driving method as described above can be simply and reliably executed.
  • the display device having the above-described display element or the like is provided with the above-described driving surface and the above-described driving method is executed, it is possible to reduce the occurrence of crosstalk and the like and obtain a good gradation.
  • a display device capable of performing display can be obtained.
  • FIG. 7 is a voltage waveform diagram according to the present embodiment driven by eliminating the number of voltage levels applied to the signal electrodes by providing virtual electrodes in the first embodiment
  • FIG. 8 is a diagram illustrating the provision of virtual electrodes.
  • FIG. 4 is an explanatory diagram showing a procedure for reducing the number of voltage levels applied to signal electrodes.
  • This embodiment for example, run simultaneously selected as shown in FIG. 8 ⁇ electrode then chi ⁇ +, provided the virtual electrode as ⁇ «+ ⁇ ⁇ ⁇ , eg if the scanning electrodes X,, chi 2 when the chi 3 is selected, the same assumed to be selected also chi eta + 1 at the same time, you applied on, a voltage one V X1 when applying a voltage Vxi to similarly scan electrode as in example 1
  • the displayed data is 0 off and 1 on to calculate the number of discrepancies. In this case, the number of mismatches is always 1 or 3 by appropriately changing the state of the virtual electrode.
  • the display-V gamma 2 when the number of mismatches in the upper bits of the data 1.
  • FIG. 7 shows the display shown in FIG. 2 in the same manner as above, and regarding the period of f 1, the selection pulse applied to the scan electrodes X,, X z , X 3 and the virtual electrode ⁇ ⁇ + ⁇ becomes sequentially oN, O emissions, off, on, the signal electrodes and the scanning electrodes X,, chi 2, the display data of each intersection of the pixels of the chi 3 and chi eta + 1 is (0 0) (0 1) (1 0) (1 1), the upper bits are off, off, on, and on, and when compared in order, the number of mismatches is 3, and the conversion data S is calculated according to the number of mismatches.
  • the voltage Vy2 is applied to the signal electrode Yt in the period a.
  • the lower bits are turned off, on, off, and on, and the number of mismatches is 1 when compared with the scan electrodes.
  • Conversion data S2 is created according to the mismatch, and the signal electrodes Y, In the period b, a voltage of one V YI is applied.
  • the scanning electrodes X ′, X 5 , X 6 and ⁇ ⁇ + ⁇ are simultaneously selected, and the corresponding signal electrode waveform is applied to the signal electrodes.
  • the scanning electrode and the 3 line virtual electrode 1 Rai emissions by finishes scanning the selected while the signal electrode waveform corresponding thereto to ⁇ to continue Hashi ⁇ electrode ⁇ applied to the signal electrodes at the same time, again the first scan returning to the electrode Xi, X 2, X 3, Parusubata indicated by t 2 - continue to scan in turn down.
  • t z to exit by connexion one frame period to scan four sides each BALS pattern shown in t 3 t *, the same operation in the next frame is manipulation Kaee.
  • the signal electrode is marked.
  • the number of voltage levels to be applied can be smaller than in the first embodiment.
  • the same drive circuit as in the first embodiment can be used.
  • the arithmetic circuit 4 in FIG. 4 is configured to perform data processing according to each embodiment, and the voltage levels of the scan electrode driver of FIG. 5 and the signal electrode driver of FIG. 6 are provided according to each embodiment.
  • the analog switches 15 and 25 may be configured to select any one of the voltage levels.
  • the arithmetic circuit 4 in FIG. 4 and the scan electrode driver in FIG. 5 are the same as those in the first embodiment, and the signal electrode driver in FIG. 6 is V Y4 , V y3 , V YZ , Although eight voltage levels of V yi , one V Y1 , — V Y2 , one V Y3 , and one V Y4 are provided, in this embodiment, four voltages V YZ , V Y1 , — V Y1 , and -V y2 are provided. You only need to set the level.
  • gradation display is performed by changing a voltage value according to display data.
  • gradation display can be performed by changing a pulse width.
  • Figure 9 shows the application of the embodiment in which gradation display was performed by pulse width modulation. It is a voltage waveform diagram.
  • the time width ⁇ t of the pulse is divided into unequally spaced time widths of f f.
  • each data is divided into f bits (represented by f bits).
  • d ,,,, (lower bits) are compared with the scan electrode selection pattern, and applied to the display during At ,. Then, d ,,, 2 and the scan electrode selection pattern are compared. and, applied between Day spray of a t z.
  • FIG. 9 the four gray scales as shown in FIG.
  • the same scanning voltage as in the conventional example of FIG. 47 is applied to each of the scanning electrodes X, to Xn , and the pulse width of the signal electrodes Y, to Ym corresponding thereto is set as described above.
  • the modulation is performed according to the gradation display.
  • each pulse width t is equally divided into three, and the gradation display of four stages from 0 to 3 is represented by two-bit display data (0 0), (01), Determined by (10) and (11), the voltage level of two of the three divisions is determined by the on / off of the simultaneously selected scan electrodes and the number of mismatches with the upper bits of the display data. The voltage level is determined for the remaining one division by the number of mismatches with the lower bits. By making the three divisions non-uniform, it is also possible to correct the luminance change of the gradation display.
  • the voltage pulse applied to the scan electrodes X, -Xz -X 3 is obtained. Is all Is off, FIG. 2 of the scanning electrodes X t ⁇ X z contrary - the lower bits of the display data of X 3 off 0, because it is off-on-off 1 as ON, the number of mismatches is The voltage pulse during ⁇ tt is 1 V Y1 and the upper bit is off-off-on, so the number of mismatches is 1 and the voltage pulse during ⁇ t 2 is 1 V yi Become. In this way, the voltage pulse to be applied to the Wei electrode may be determined by comparing each selection period ⁇ t.
  • the voltage for the upper bit is applied during the last two periods of the three divisions, and the voltage for the lower bit is applied during the one period before the three divisions. You. Note that the voltage for the upper bit may be applied in two periods before the three divisions, and the voltage for the lower bit may be applied in one period after the three divisions.
  • the selection period can be driven a plurality of times in one frame as in the case of the first embodiment.
  • FIG. 11 shows an example of this.
  • a voltage waveform composed of eight pulse patterns (blocks) applied to the scanning electrode and the signal electrode is equally spaced for each pulse pattern.
  • the output is divided into eight parts.
  • the contrast can be increased as in the above embodiment. Can be.
  • FIG. 13 shows an example in which a virtual electrode is provided in the third embodiment to reduce the applied voltage level to the signal electrode, and the selection period is divided into a plurality of times within one frame, similarly to the fourth embodiment.
  • e are virtual scan electrodes (virtual lines), and by controlling the match / mismatch of the data of these virtual scan electrodes, the total number of matches / mismatches can be determined. Limit-reduce the number of signal voltage drive voltage levels.
  • V c V c (2 M i-h) (V c: constant) or simply
  • V cdumn V (i) 0 ⁇ i ⁇ h
  • V C0Lumft has ⁇ ⁇ ⁇ ⁇ 11 levels.
  • the following table shows the result of such control.
  • the original voltage level can be changed from 4 levels to 3 levels. If the number of mismatches is set to an odd number, the number of mismatches after correction in the above table will be 1.1, 3, and 3 in order from the top, and the voltage level after correction, for example, Va, Va- V b ⁇ V b can be set to two levels.
  • the original voltage level can be changed from 5 levels to 3 levels. Also in the above case, the voltage level can be set such that the number of mismatches is an odd number.
  • the virtual scanning electrodes described above do not normally need to be displayed because they do not normally need to be displayed. However, when they are provided, they are preferably provided in a portion that does not affect the display, such as a liquid crystal display device.
  • a virtual scanning electrode Xn + 1 is provided outside the display area R as shown in FIG. 13, or when there is an extra scanning electrode outside the display area R, it is used as a virtual scanning electrode. Can also be used.
  • the number e of the virtual scanning electrodes is increased, the number of levels can be further reduced.
  • FIG. 12 shows that three scanning electrodes and one virtual scanning electrode are selected at the same time to increase the voltage level applied to the signal electrode, and that the selection period is plural in one frame. It is designed to be driven in different times.
  • the selection period is divided into four planes in one frame, and the display data is obtained for four scanning electrodes each having a virtual scanning electrode in each period.
  • the number of discrepancies is counted for each bit of, and the number of discrepancies is always odd, so that the number of discrepancies becomes 1 or 3, and accordingly, the voltage level of the signal voltage waveform is equal to V Y 1 are in so that a two-level V Y 1.
  • each selection period delta t respectively is 3 divided scan electrodes ⁇ chi 2 ⁇ X 3 simultaneously selected of
  • the display data is (0 0), (01), or (10) as shown in FIG. 13
  • the data of the virtual scanning electrode may be (11) as shown in FIG.
  • the voltage level of V y one V yi Neu Zureka determined by counting the number of disagreements for each bit, two period after one of the voltages is divided into three for the upper bits and the lower-bi
  • the voltage for the unit may be applied during the previous one of the three divisions. It should be noted that the voltage for the high-order bit may be applied in two periods before the three divisions, and the voltage for the low-order bit may be applied in one period after the three divisions. The same is true.
  • the pulse width of the voltage, polarity and the display data of the selection pulse to be applied to the virtual scanning electrodes is reduced by making the number of mismatches with the data always an odd number such as 1, 3,..., And in the present embodiment, it can be two levels. However, the number of mismatches may be an even number as described above.
  • the circuit configuration of the liquid crystal driver is simple, and almost the same driver as the conventional pulse width modulation driver can be used.
  • the 4-gradation display is described.
  • a multi-gradation display of more than that is also possible.
  • the display data is set to 3 bits and each selection period is set for each bit of the display data.
  • Pal By dividing the data width into three, the display data can be displayed in 8 gradations, and the display data is made up of 4 bits, and each selection period is weighted to the pulse width for each bit of the display data.
  • multi-gradation display can be performed.
  • FIG. 14 is an explanatory diagram showing an example.
  • the display data of the electrodes X 1, X ⁇ , and X 3 are (00), (01), and (10) as shown in FIG. 13, the virtual scanning electrodes are displayed as shown in FIG.
  • the data of (1) should be (11).
  • the above selection periods t 1 to t 4 may be provided continuously in one frame F, or may be provided separately in one frame F. That the same applies for the selected time period t 5 ⁇ t 8
  • FIG. 15 shows three scanning electrodes and three scanning electrodes sequentially in the same manner as in the sixth embodiment.
  • the voltage applied to the signal electrode was reduced by using one virtual scanning electrode, and the selection period was driven multiple times within one frame, and gradation display was performed by frame modulation. An example of such a case will be described.
  • the waveform of (b) in FIG. 3 is used as the voltage applied to the scanning electrodes selected at the same time, but the voltage in (a) in FIG. Waveforms such as (a) and (b) can also be used.
  • the gray scale display by frame modulation is a gray scale display based on how many frames are turned on and how many frames are turned off during a certain frame period. For example, as shown in FIG. When the on voltage is applied between F2 and off, the halftone between on and off is displayed.
  • F is selected four times in one frame. The difference between light and dark in the 1st period and the F2 period becomes smaller, and the flicker becomes less noticeable.
  • an example is shown in which the appearance display is performed by turning on one frame and out of one frame out of two frames.
  • more frames for example, seven frames, are used as one frame.
  • Eight gradations can be displayed by combining several on-frames and off-frames as blocks, and 16 gradations can be displayed with 15 frames as one block. You can also.
  • an arbitrary number of gradations can be displayed depending on how many frames are made for one block.
  • FIG. 9 is an explanatory diagram showing an example of a procedure for performing a gray scale display in combination with frame modulation.
  • the selected valves can be replaced.
  • the frame modulation as in the present embodiment can be applied to the other embodiments and the later-described embodiments. Can be performed by a combination of the above.
  • the case where the virtual scanning electrode is provided is described.
  • the gradation display by the frame modulation ⁇ ⁇ the combination of the frame modulation and the pulse width modulation.
  • a gradation display can be performed.
  • grayscale display is realized by applying weighted signal voltages corresponding to each bit with the display data as 2 bits, but the number of grayscales can be any number.
  • a gradation display can also be used.
  • the scanning electrode waveform applied to each scanning electrode in FIG. 2 is the same as that in the first embodiment, and the display of each pixel at the intersection of the scanning electrodes X 1, X z , X 3 and the signal electrode is performed. It is a signal electrode waveform when the data is (001) (010) (100) in order from the top.
  • each of the four selection periods t 1, t z , t 3 , and t 4 in the first embodiment is divided into three equal parts, and divided into three periods a, b, and c.
  • the voltage waveform corresponding to the most significant bit of the display data is shown in period a, the voltage waveform corresponding to the middle bit in period b, and the voltage waveform corresponding to the least significant bit in period c.
  • weights are applied in accordance with the display data of each bit ⁇ ).
  • V Y6 selects one from the voltage level of V Y6 , and in period b, one V ys , -Vy 2 , V Y2 , 1 from the voltage level of V Y5 according to the display data of the middle bit.
  • one of the select one V Y3 in accordance with the display data of the least significant bits in the period c, choose one of the voltage level of one V Y ,, V yi, V y3 .
  • the relationship between each voltage level is 4
  • V VI V Y3 -.
  • 8-gradation display is performed by forming signal electrode waveforms based on the number of mismatches for each bit of display data.
  • the voltage corresponding to each period obtained by dividing the selection period into two is selected and applied to the signal electrode, thereby performing the four gradation display. In this way, 8 gradations are displayed.
  • This is further divided into four equal parts to increase the number of gray levels by dividing the selection period into several parts, such as 16 gray levels, and applying the voltage corresponding to each period to the signal electrode. Can be. It is also possible to adjust the luminance at each gradation by changing the voltage ratio of each signal electrode, or by slightly changing the selection period without equally dividing it.
  • the periods a, b, and c divided according to the number of bits of the display data correspond to each bit.
  • the voltage is applied in order from the upper bits, the order can be changed as appropriate for each signal electrode.
  • the scanning electrodes X,, display of each pixel and the X 2, X 3 and the signal electrodes Y 2 to Y m intersect the scanning electrodes X i, and X 2, X 3 and the signal electrode If the display is the same as the display of the crossing pixels, the signal voltage waveforms applied to the signal electrodes YY m are all the same as the waveforms shown in FIG. But this In such a case, the summary of the waveform applied to each pixel becomes large, and the display quality deteriorates.
  • the voltage corresponding to the upper bit is the period a
  • the voltage corresponding to the middle bit is the period b
  • the voltage corresponding to the lower bit is the period.
  • the applied voltage is applied to the signal electrode in order in the period c. The same applies to the other signal electrodes to Y m.
  • the period for applying the voltage to the most significant bit is a
  • the period for applying the voltage to the middle bit is b
  • the voltage for the least significant bit is b.
  • the period during which is applied is c, for example, for the signal electrode Y, if the voltage is applied in the order of ab In the signal electrodes Y 2 a ⁇ c. b, the signal electrodes Y 3 b. a. c, the signal electrodes Y 4 b.
  • any combination of waveforms applied to each signal electrode may be used.For example, if there are 6 signal electrode drivers, each combination of waveforms may be applied to each signal electrode driver. . Thus, the display quality can be improved by making the number of combinations of waveforms applied to each signal electrode substantially the same.
  • the display of eight gradations was performed using the waveform as shown in FIG. 1A, that is, FIG. 3B as the scanning voltage waveform applied to the scanning electrode. It is also possible to use (a) or the waveform of (a) or (b) in FIG. 48 in the conventional example described above, and to use the waveform shown in (a) in FIG. This will be described in more detail with reference to an example of displaying.
  • Fig. 21 shows an example in which eight gradations are displayed based on the display data shown in Fig. 22 using the waveform shown in Fig. 3 (a) as the scanning voltage waveform applied to the simultaneously selected scanning electrodes.
  • (A) is applied to the scan electrodes X, Xz, X3.
  • Fig. (C) shows the signal electrodes Y t to applied Ru signal voltage waveform
  • FIG. (D) shows the voltage waveform where the scanning electrodes X t and the signal electrodes is applied to the pixel intersecting .
  • three scanning electrodes are sequentially selected and driven at a time, and in FIG. 21, three scanning electrodes X! Only ⁇ 2 ⁇ ⁇ 3 is shown, but as shown in Figure 23, after the scanning electrode X t ; ⁇ ⁇ ⁇ X 3 is selected, the following three scanning electrodes X 4 ⁇ X s ⁇ X 6 are selected, and the same voltage as that of scan electrodes X,- ⁇ ⁇ • ⁇ 3 is applied. Then, three frames are similarly selected in order, and one frame is formed when all the scan electrodes are selected. finish.
  • the scanning voltage waveform shown in FIG. 3A is applied to the three scanning electrodes selected at the same time as described above, and the minimum pulse width ⁇ t is It is twice as large as the minimum pulse width ⁇ t 0 in the example, and all the selection periods t in one frame of each scanning electrode are four periods ti to ⁇ to the above-mentioned pulse width ⁇ t. It is composed of t 4.
  • a ⁇ t 4 in accordance with the number of bits of the display data is divided into three periods a ⁇ b ⁇ c, respectively, correspond to bits of the display data to the respective divided periods
  • the weighted signal voltage is applied to the signal electrode.
  • the above conditions are as follows: when the scanning voltage waveform applied to the scanning electrode is on the positive side, it is turned on, when it is on the negative side, it is turned off, display data 1 is turned on, and 0 is turned off.
  • the on / off of the display data and the on / off of the same bit of the display data at the intersection with the signal electrode to be applied on the selected scan electrode are compared in order for each digit, and according to the number of mismatches To apply a predetermined voltage to the signal electrode.
  • V Y6 when the number of mismatches between the scan electrode and the upper bits is 0, one V Y6 , one, one V Y4 , two, V Y4 , and three, V Y6 each is applied, when the number of mismatches between the scanning electrode and the central bit is one V y5, 1 when the 0 - V y2, is 2 when V Y2, 3 V y5 when the were respectively applied , when one V Y3, 1 is when the number of mismatches run ⁇ pole and the lower bit is 0 23844
  • V Y1, 2 of V Y1, 3 Is time when one V Y1, 2 of V Y1, 3 is obtained so as to apply a V Y3, respectively.
  • the on-off on the scan electrodes X, X 2 -X s is sequentially off-on-off, whereas the scan electrodes X, X 2 ⁇ X
  • the upper bits of the display data of the intersection with the signal electrode on 3 above are in the same order as above, and the number of mismatches is 1 in the FON • ON—V Y4 , the center bit is
  • the voltage of the on-off-off the number of mismatches is voltage power lower bits of because it is 2 V Y2 is off-on-off one from the number of mismatches is 0 V V3 with, respectively divided period a-b ⁇
  • the signal is applied to the signal electrodes Y, in order.
  • the selection period t of each scanning electrode is set to be 1 @ 1 in one frame F, but may be provided in a plurality of times in one frame F.
  • the Re this one frame F repeated 4 Tsunofu I Lumpur de as Alternatively, it may be further divided so that the operation is repeated for all the scanning electrodes for each bit of the display data.
  • Figures 24, 26, and 27 show examples.
  • FIG. 4 is a scanning voltage waveform diagram.
  • the process is executed collectively for each bit of the display data, that is, for each of the divided periods of the four periods ti to t4 in the embodiment.
  • the first divided periods a in the four periods t, to t4 in FIG. 1 are grouped in order, and one field f, is selected until all the scan electrodes are selected.
  • Fi Ichiru until the de f 3 ends against full I Rudo f 2 and divided period c against the other divided period b, is obtained by a 1 frame.
  • the voltage applied to the scanning electrode is inverted for each field, and the voltage applied to the signal electrode is also inverted.
  • FIG. 27 is further subdivided so as to be executed for all scan electrodes for each of the divided periods a, b, and c in FIG.
  • FIG. 21 is equivalent to a frame gradation performed for each bit of the display data. If the scanning electrode selection period is divided into multiple times within one frame F as described above, the period during which no selection voltage is applied to each scanning electrode, that is, each pixel, can be shortened. As a result, it is possible to prevent a decrease in contrast.
  • the effective voltage when driving a liquid crystal element such as a liquid crystal display Bunnell can be applied a short time t generally voltage value and the determined high voltage output applied time (pulse width), by applying a low voltage long Can be driven equally.
  • FIG. 28 is an applied voltage waveform diagram showing an embodiment in which the number of signal voltage levels is reduced in the manner described above.
  • each of the four selection periods t t , t 2 , t 3 , and t 4 is divided into n according to the number of bits of the display data, that is, divided into three a, b, and c.
  • each of the above selection periods is divided into n + 1, that is, a, a, b, and c. Then, the first two divided periods a and a are applied to the voltage application time of the upper bit of the display data.
  • the driving can be performed in the same manner as in the first embodiment after reducing the voltage level applied to the signal electrode by one as compared with the case of the first embodiment.
  • the voltage level V Y5 and V YZ for intermediate bits in Example 1 1 may be used, and the application time may be set to be twice the lower bit in the same manner as described above. Further, it is possible to reduce the voltage level of 4 or more.Reducing the voltage level as described above can simplify the structure of the moving image path, especially when the number of gradations is large. It is valid.
  • Fig. 29 shows the selection period obtained by dividing one selection period into n + 1, specifically 4 in Example 13 above, as in the case of Example 12 multiple times within one male frame. In general, it is executed by dividing it into four fields f. However, it can be divided into two or three times.
  • FIG. 30 shows a case where the program is executed collectively for each of the four periods t ⁇ to t4 in the above embodiment, and the divided periods a in the four periods tt to t4 in FIG. - all the scan electrodes in the order together the divided period a of beginning to one of a is set to one field until the selected, Similarly off against subsequent divided period a Iru de f 2 And the field f 3 for the division period b and the field £ ⁇ for the division period c end up as one frame F t .
  • the voltage applied to the scanning electrode is inverted for each field, and the voltage applied to the signal electrode is also inverted.
  • FIG. 31 is further subdivided so as to be executed for all scan electrodes for each of the divided periods a, a, b, and c in FIG. -
  • the embodiments of FIGS. 30 and 31 can be regarded as equivalent to the frame gradation in which the voltage applied to the signal electrode is weighted for each field.
  • the effective voltage when driving a liquid crystal element or the like is determined by the voltage value applied in general and the application time (pulse width). Desired gradation display can be performed by appropriately combining the application time and the application time.
  • Fig. 32 shows the applied voltage waveform of the example in which 16 gradations were displayed based on the display data shown in Fig. 33 by appropriately combining the voltage value of the applied voltage to the signal electrode and the application time.
  • three scanning electrodes are sequentially selected in this embodiment, and the scanning electrodes are supplied with the scanning voltage within the selection period consisting of four periods t 1 to t 4 , similarly to the first embodiment. Apply.
  • the voltage of V ⁇ 4 or Sat V is applied, and for the lower two bits, Sat V Y 1 or The signal voltage of the earth VY3 is selectively applied to the signal electrodes according to the conditions described later.
  • Vy,: V Y3 1: 3
  • Vvi: V y4 1 ⁇ 4
  • the upper two bits and the lower two bits use the same two sets of voltages, respectively, and the most significant bit for the second most significant bit and the least significant bit for the least significant bit
  • the second lowest bit is weighted by doubling the pulse width.
  • the upper 2 bits represent 4 tones and the lower 2 bits represent 4 tones.
  • 4 X 4 16 gradations can be expressed.
  • the above conditions are as follows: when the scan electrode voltage waveform is on the positive side, it is on, when it is on the negative side, it is off, display data 1 is on, 0 is off, and the simultaneously selected scan electrodes are on.
  • the off and the on / off of the same bit of the display data at the intersection of the selected scanning electrode and the signal electrode to be applied are sequentially compared for each digit, and according to the number of mismatches.
  • a predetermined voltage is applied to the signal electrode.
  • the number of mismatches between the scan electrode and the most significant bit when it is 0, it is 1 V Y6 , when it is 1, it is 1 V Y4 , and when it is 2, V Y4, the 3 when applied to the signal electrodes in each V Y6 divided period a and b, are to the number of mismatches between the scanning electrode and the second bit split the same voltage under the same conditions as above Apply to the signal electrode in period c.
  • the scan electrodes and the third is when the number of mismatches between the bits is one V Y3, 1 If 0 one V Y 1, is 2 when V Y1, 3 Noto-out is divided period d ⁇ the V y3
  • the voltage is applied to the signal electrode in e, and the same voltage is applied to the signal electrode in the divided period f under the same conditions as above for the number of mismatches between the scanning electrode and the lowest t.
  • FIG. 3. 2 started three scanning electrodes X, - X z ⁇ X 3 are simultaneously selected, the selected Hashi ⁇ electrodes X, • scanning voltage waveform in turn-off X 2 ⁇ X 3 '
  • the most significant bit of the display data at the intersection with the signal electrode ⁇ , on the scan electrode X, X 2 ⁇ ⁇ 3 is off 'off' on, and both are sequentially turned off.
  • the number of mismatches is 0, and a voltage of —V y6 is applied to the signal electrode during the first divided period a and b of the first period t.
  • next scan frame is selected again from the first scan electrode X, X zX 3 again, and the next frame is started.At that time, the polarity of the voltage applied to the scan electrode is inverted, and accordingly, The eclipse of the voltage applied to the signal electrode is also inverted, and so-called AC driving is performed.
  • a desired gradation display can be performed by appropriately combining the voltage value of the voltage applied to the signal electrode and the time. In particular, even when the number of gradations is large, gradation can be performed with a small voltage level. Display can be performed.
  • the voltage ratio does not necessarily have to be set strictly to the above-mentioned conditions, and the periods t »to t 4 and the divided periods a to f are also strictly equally divided. It does not need to be divided into. In addition, the order of the divided periods a to f may be appropriately changed.
  • the selection period can be executed a plurality of times within one frame F, as in Embodiment 12.
  • Figure 3 4 shows one example thereof, all for FIG 3 each period is divided into four different people in each 2 periods t 1 ⁇ t 4 in the above Example 2 in the same manner as in 1 in frame F Until the scanning electrode is selected, one field f is used and the operation is repeated four times within one frame F.
  • each display data bit is further divided or further divided. You can also. (Example 17)
  • weighting is performed on the bit of the display data to the signal electrode, that is, gradation display is performed by changing the voltage level applied to the signal electrode. That is, gradation display can be performed by changing the voltage level applied to the scanning electrodes.
  • FIG. 35 shows the display of eight gradations based on the display data of FIG. 22 as in Example 11 by changing the voltage level applied to the scanning electrodes in accordance with the display data bit. It is an applied voltage waveform figure of an Example.
  • V X4 or 1 VJ is applied to each scan electrode for the upper bit of the display data, and to the center bit for each scan electrode.
  • V X 2 or a V X 2 a V X1 or single V X1 for subordinate bit, which was to be applied, respectively
  • V X1: V x 2: V X4 is 1: 2: 4
  • the signal electrodes Y, a '', the scanning electrodes X, the number of mismatches and the-X 2-chi 3 on * of O full display data O emissions off in contrast to each bit is, Hino
  • one V Y3 is applied, one is one V Y1 , two is V yi , and three is V Y3 , and V Y1 : V Y3 is 1: 3.
  • increasing the voltage level on the scanning electrode side as in this embodiment will apply the voltage to the signal electrode.
  • advantages such as the number of voltage levels can be greatly reduced and the circuit configuration of the driver on the signal electrode side can be simplified.
  • the selection period can be divided into a plurality of planes in one frame F and executed.
  • Figure 36, Figure 37, and Figure 38 show examples.
  • the first divided periods a in the four periods t, to t4 in FIG. 35 are grouped in order, and one field f, is used until all the scanning electrodes are selected. Nodea pair to the until the end of the full I Lumpur de I 3 of the full I Lumpur de f 2 and divided period c of the divided period b, was also the one frame. The voltage applied to the scanning electrodes is inverted for each field, and the voltage applied to the signal electrodes is also inverted accordingly.
  • the same effect as that of the embodiment 12 can be obtained by driving a plurality of times in one frame.
  • Embodiment 17 as in Embodiment 13, the number of divisions of the selection period can be increased and the number of applied voltage levels can be reduced.
  • Fig. 39 shows an example of this, and each period ti ⁇ in Fig. 35 is divided into four in one frame F, as in Fig. 28, and the first two divided periods are ranked higher. In the application time to the bit, the other divided periods are applied to the intermediate bit and the lower bit, respectively.
  • the selection period can be executed in a plurality of times within one frame F.
  • FIG. 40, FIG. 41, and FIG. 42 show examples.
  • FIG. 41 shows a case where the program is executed collectively for each of the four periods t, to t4 in the above embodiment, and the four periods t!
  • a ⁇ t ⁇ the divided period a ⁇ a sac Chino one field f t until all the scan electrodes in the order together the divided period a the beginning is selected, similarly to the next division period a a field f 2 of contrast, field f 3 of against the divided period b, and off I one field I 4 is one that was treated as one frame until the end of the divided period c.
  • the voltage applied to the scanning electrode is inverted for each field, and the voltage applied to the signal electrode is also inverted accordingly.
  • the selection period of FIG. 41 is further subdivided to sequentially select and drive all the scanning electrodes for each division period.
  • the voltage level on the signal electrode side is the same as in the embodiment 16.
  • the driving can be performed in the same manner as in the fifteenth embodiment.
  • Figure 43 shows an example.
  • the applied voltage level to the scanning electrode is V x ⁇ or 1 V X4 for the upper two bits of the display data in FIG. 13 and the V level is lower than the lower two bits.
  • V Xi or one V X1 is used, and V X1 : V X4 is set in a 1: 4 relationship.
  • V Y3 one V Y1 when the 1 V Y1 when the 2, a V Y3 when the 3, but was by applying respectively Unishi, V yi:.
  • V Y3 is 1: 3 relationship It is set.
  • the selection period can be executed a plurality of times within one frame F.
  • Figure 4 4 shows one example thereof, a 4 times the 4 each period of 1 t t ⁇ t 4 in FIG. 2 4 in the same manner as in 1 in frame F
  • Each field is divided into four fields in one frame F until all the scanning electrodes are selected in one period f.
  • the driving can be further subdivided similarly to the above embodiment.
  • each bit of the display data is further subdivided and driven. You can also. Although each of the above embodiments has been described as an example in which three scanning electrodes are simultaneously selected, two or four or more scanning electrodes are simultaneously selected in the same manner according to the above-described concept. Thus, a desired number of gradations can be displayed.
  • a selection period which is divided into eight ⁇ t 8 in the course of 1 frame period is provided, six Hashi ⁇ electrodes X selected simultaneously , applies a voltage such as in the following table to each selection period t t ⁇ t 8 of to X 6.
  • the waveform of the voltage applied to the scanning electrode is not limited to the above embodiments, and may be changed to any one of (a) and (b) in FIG. 48 or (a) and (b) in FIG. Or the pulse waveforms thereof may be selected as appropriate, or the arrangement order may be changed as appropriate, and the waveforms applied to the simultaneously selected scanning electrodes may be distinguished without being confused with each other. It only needs to be able to drive. Further, as described above, by simultaneously selecting a plurality of scan electrodes simultaneously and driving the selection period a plurality of times in one frame, it is necessary to use a liquid crystal element using a non-linear element such as a MIM element. It can also be applied when moving. Industrial applicability
  • the driving method and the display device of the liquid crystal element and the like sequentially select a plurality of scan electrodes simultaneously, divide one selection period into a plurality of periods, and select each of the divided selection periods.
  • a voltage weighted according to the desired display data is applied to perform gradation display, so that the contrast voltage decreases as the time during which the selection voltage is not applied to the pixels becomes longer. Or the repetition period becomes long, causing flickering or applying The occurrence of crosstalk due to the rounding of the voltage waveform and the like is prevented, and good gradation display can be performed.
  • the number of applied voltage levels can be reduced in place of the number of gradations, and the driving means such as a driver can be simply structured. This has the effect of providing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

明 細 書
液晶素子等の駆動方法と駆動回路および表示装置 技術分野
本発明は例えば液晶表示パネル等の液晶素子の駆動方法と 駆動回路および表示装置に関する。 背景技術
従来、 上記のような液晶素子の駆動方法の 1 つとして、 電 圧平均化法によるマルチプレクス駆動が知られている。
〔従来例 1 〕
図 4 5 は図 4 6に示すような単純マ ト リ ックス型の液晶素 子等を電圧平均化法によりマルチプレクス駆動する場合の従 来の駆動方法の一例を示す印加電圧波形図であり、 図 4 5 の ( a ) · ( b ) はそれぞれ走査電極 X , · X z に印加する電 圧波形、 同図 ( c ) は信号電極 Y, に印加する電圧波形、 同 図 ( d ) は走査電極 X , と信号電極 Y , とが交差する画素に 印加される電圧波形を示す。
本例は走査電極 X, 、 X 2 ·· ·· X» を 1 ライ ンずつ順次選 択して走査電圧を印加すると共に、 その選択された走査電極 上の各画素がォンかオフかによつて、 それに応じた信号電圧 を各信号電極 Y, 、 Y2 ·· ·· Υη に印加する こ とによって躯 動する ものである。 ところが、 上記のように走査電極を 1 ラィ ンずつ選択して
駆動するものは、 駆動電圧を比較的高く しないと良好な表示
が得られない等の不具合がある。
〔従来例 2 〕
そこで上記の駆動電圧を低くするために、 順次複数本の走
査電極を同時に選択して駆動する方法が提案されている (例
えば、 A.GENERALIZD ADDRESSING TECHNIQUE FOR RMS RESPON DING MATRIX LCDS, 1988 INTERNATIONAL DISPLAY RESEARCH CONFERENCE P80〜85参照) 。
図 4 7は上記のように順次複数本の走査電極を同時に選択
して駆動する従来の駆動方法の一例を示す印加電圧波形図で
あり、 同図 ( a ) は走査電極 X t · Χ2 · Χ3 に印加する走
查電圧波形、 同図 ( b ) は走查電極 Χ4 · Χ5 · Χ6 に印加
する走査電圧波形、 同図 ( c ) は信号電極 Υ, に印加する信
一号電圧波形、 同図 ( d ) は走查電極 Xt と信号電極 とが
交差する画素に印加される電圧波形を示す。
本例は走査電極を順次 3 ライ ンずつ同時に選択して前記図
4 6に示すような表示を行うようにしたものである。 即ち、
最初に 3つの走查電極 X, · Χζ · Χ3 を選択して、 それ等
、 の走査電極 Xt . Χ2 · Χ3 に図 4 7の ( a ) に示すような
走査電圧を印加し、 同^に各信号電極 〜Ym に後述する 所定の信号電圧を印加する。 次いで図 4 6において走查電極
X* · Xs · X6 を選択して、 それ等の電極に上記と同様に 図 4 7の ( b ) のような走査電圧を印加すると同時に各信号 電極 〜 Ym に信号電圧を印加する。 そして図 4 6 におけ る全ての走查電極 X , 〜Xn が選択されるまでを 1 フ レーム とし、 これを順次繰り返すものである。
上記の各走査電圧波形は、 同時に選択される走査電極の数 を、 hとしたとき、 2 h のバルスパター ン数の波^が用いら れ、 本例においては、 h = 3で、 2 h = 2 = 8 のバルスパ タ一ン数の波形が用いられている。
例えば同時に選択される 3つの走査電極 X , · X 2 - X 3 に印加する電圧のォン ' オフパターンは、 オンを 1、 オフを 0 として下記表のように現すことができる。
X 1 0 0 0 0 1 1 1 1
Xz 0 0 1 1 0 0 1 1
X 3 0 1 0 1 0 1 0 1 これを基に各走査電極に印加する電圧波形を形成すると、 図 4 8の ( a ) のようになる。 ところが、 同図 ( a ) の波形 は周波数にバラツキがあり、 実際に用いた場合には表示むら が生ずるおそれがある。
そこで、 配列を適宜入れ替えて周波数成分の片寄りをな く すようにしたのが、 同図 ( b ) の波形であり、 上記図 4 7 の 従来例では、 こ-の波形を用いたものである。
一方、 各信号電極 〜Ym に印加する信号電圧は、 走査 電圧と同じパルスパターン数で、 かつ各パルスの電圧レベル は、 選択された走査電極上のォン ' オフに応じた大きさの電 圧を印加するようにしたもので、 例えば本例においては同時 に選択される走査電極 Xt * X2 · Χ3 に印加される走查電 圧波形が正のパルスのときをオン、 負のパルスのときをオフ とし、 表示データのオン ' ォフをパルス毎に対比し、 不一致 の数に応じて信号電圧波形を設定するようにしたものである。 即ち、 図 4 7においては不一致の数が 0のときは一 Vy2、 1 のときは一 VY1、 2 のときは VY1、 3 のときは VY2のパル ス電圧を印加するようにしたものである。 なお上記の と VY2の電圧比は、 Vyi : VY2 = 1 : 3、 となるように設定さ れている。
具体的には、 図 4 7における走査電極 X , - Χ ζ · X3 へ の印加電圧波形において、 VX1の電圧を印加するときをオン、 一 VX1の電圧を印加するときをオフとし、 図 4 6の画素の表 示は黒丸印をオン、 白丸印をオフとすると、 図 4 6における 信号電極 と走查電極 X t - z · X3 との交差する画素 の表示は順にオン · オン *オフであり、 これに対して各走査 電極 - Xz · X3 に印加される電圧の最初のパルスバタ ーンは、 それぞれオフ ' オフ ' オフである。 その両者を順に 対比して不一致の数は 2であるから、 信号電極 Yi の最初の パルスパターンには、 図 4 7 の ( c ) に示すように電圧 V y! が印加されている。 また各走査電極 X , - X 2 · X 3 に印加される電圧の 2番 目のパルスバタ一ンは、 それぞれオフ ' オフ ' オ ンであり、 前記の画素表示ォン * オン , オフと順に対比すると、 すべて が不一致であり不一致数は 3であるから、 信号電極 Y , の 2 番目のパルスには電圧 V Y2が印加されている。 同様の要領で. 3番目のパルスには V y ,、 4番目のパルスには— V y ,が印加 され、 J¾ [下、 一 VY2、 VY1、 一 VYI、 一 VY1の順で印加され ている。
また次の 3つの走査電極 X4 〜 Χ 6 が選択されて、 その各 走査電極 X 4 〜Χ 6 に図 4 7 の ( b ) に示す電圧が印加され る際には、 その各走査電極 X 4 〜X 6 と信号電極との交差す る画素のォン · オフ表示と、 上記各走査電極 X 4 〜 X 6 への 印加電圧の各パルスバターンのオ ン · オフとの不一致に応じ た電圧レベルの f言号電圧が、 図 4 7 の ( c ) のよう に印加さ れる。
なお上記例では、 走査電圧波形の正の選択パルスを 1、 負 の選択パルスを一 1、 各画素の表示がォ ンのときを一 1、 ォ フのときを 1 とし、 その一致数と不一致数の差で信号電圧波 形を設定したが、 いずれを 1 または一 1 としてもよ く、 また 一致数と不一致数の差を算定することなく、 一致数もしく は 不一致数のみで信号電圧波形を設定することもできる。
上記のように、 順次複数本の走査電極を同時に選択して駆 動する手法は、 前記図 4 5に示すような 1 ライ ンずつ選択し て駆動する方法と同じオン zオフ比を実現した上で、 駆動電 圧を低く抑えることができる利点がある。
次に、 上記のように順次複数本の走查電極を同時に選択し て躯動する手法の一般的な要件や要領および手順等を、 順を 追って説明する。
A. 要件
a ) N本の走査電極を NZliのサブグループに分割する。 b ) 各々サブグループは h本のア ドレスライ ンを持つ。
c ) ある時刻において信号電極は、 hビッ トワード ( h -bit word ) から構成される。
a if*h + i d IC* + Z ·· ·· a k*h + h ; ひ + j = 0 たは 1 ここで、 0 k≤ ( Ν Ζ Ιι ) — 1 ( k : サブグループ) すなわち 1列の表示データは、
d 1 . d 2 . ·· ·· d κ 第 0サブグループ d h + 1 、 d h + 2 ·· ·· d h + h 第 1サブグループ u H- h + i ヽ dii - h + 2 · * · * a N - h + h
• · · · · 第 N Z h— 1サブグループ となる。
d ) 走査電極の選択バターンは、 次式に示す周期 2 h の hビ ッ トワードパターンである。
= 0または 1
B. 要領
( 1 ) 1つのサブグループは同時に選択される。 ( 2 ) 走査電極の選択パターンと して、 h ビッ トワー ドが 1 つ選ばれる。
( 3 ) 走査電圧は、 ロジック 0に対し一 V r、
ロジッ ク 1 に対し + V r、
非選択時は 0 ボル ト、 とする。
( 4 ) 選択されたサブグループの走査電極と信号電極は、 ビ ッ ト対ヒ:ッ トで比較される。
( 5 ) 走査電極と信号電極のパターンの不一致の数 i を決め る。 i = ∑ ㊉ d ( 0 h )
( 6 ) 信号電極への印加電圧を V ( とする。 i は不一致数, (不一致の数に応じて、 あらかじめ定められた電圧の 1 つを 選ぶ)
( 7 ) 以上のような手法に基づいて、 それぞれ信号電圧を決 める (同時、 並列的に) 。
( 8 ) 以上のようにして求められた走査電圧および信号電圧 は、 時間間隔 A t 。 の間だけ、 ディ スプレイ に印加される。 ただし、 Δ t。 は最小パルス幅である。
( 9 Ϊ新しい走査電極選択パターンが選択され、 上記 ( 4 ) 〜 ( 6 ) を再び計算し、 次の信号電圧を決める。 これも時間 間隔厶 t。 だけ印加される。
( 1 0 ) 1 サイ クル (周期) は 2 h 個すベての走査電極選択 バタ一ンが各サブグループにすべて表れ、 N Z hのサブグル —プが選択されて終了する。
1 サイ クル = A t · 2 h · ( N/ h )
C. 分圻
i個の不一致 (ミスマッチ) がある場合の走査電極選択パ ターンについて考える。
hビ '; { トヮード長の走査電極選択パターンが同じ hビッ ト ヮード長のデータパターンと i ビッ トだけ不一致となる場合 の数は、
hCi = { ! } / { i ! ( h - i ) ! } = C i
通り,在する。
例えば li = 3、 走查電極選択パターン = (ひ,0,0) の場合を 考えると、 下記の表のようになる。
Figure imgf000010_0001
これらは、 走査電極選択パターンではなく、 ワードのビッ ト数で决まる。
ピクセルに印加される瞬時電圧の振幅 VPixeL は、 走查電 圧を Vrw 、 信号電圧を VcLumftとすると、 V ( column一 r o w )
または ( Vrw - V c ,
で、
Figure imgf000011_0001
V c o l umn = V (i )
であれば、
VPjlxeL = + V r - V (i> または一 V r — V (:
である。
V row = ± V Γ
V c o L u m n ~~士 V <i)
であれば、
V = V V 《i: V r + V (i ) 一 V V <i )
または一 V r + V u>
すなわち、
V pixel I V r - V (i, I または i V r + V (i) となる。
従って、 ビクセルに印加される具体的振幅は、
選択行で 一 ( V r + V (i) ) または ( V r — V (i) ) 非選択行で V (i)
である。 ( v (i) を両極性と考えると、 前記の文献のような 記述となる。 )
一般に、 ビクセルに印加される電圧は、
オン · ビクセルではできる限り大き く オフ ' ビクセルではできる限り小さ く
することが、 高い選択比を実現する上で望ましい。
それゆえ、 オンのとき、
! V r + V (i, I はオン · ビクセルに有利に働き、
I V r - V (i, I はオン · ビクセルに不利に働く。
オフのとき、
I X r - V (i) I はオフ ' ビクセルに有利に働き、
I V r + V (i> I はオフ · ビクセルに不利に慟く。
ここで、 オンに対する有利とは、 実効電圧を上昇させ、 ォ ンに対する不利とは、 実効電圧を下降させる方向に作用する。
hビッ トの中から i個選択する組み合わせの数は、
C i = hCi = { h ! } / { i ! ( h - i ) ! }
であり、 i個と不一致とすれば、 これは hビッ ト中、 i ビッ トが不一致となる場合の数であり、
その不一致数は各レベルで i個であるので、 全体の不一致 数 (総ミスマッチ) は、 i · C i偭である。
これらは、 hビッ トにまたがって分布しているので、 ビク セル当り ( 1ビッ ト当り) の平均不一致数 B i は、
B i = i · C i / h (個ノビクセル)
である。
また、 不一致数の増加に従って信号電圧 V (i> のレベルを 増加するとすると、
^ ixel ― row 一 J col umn は、 不一致数が増加するに従って減少する。
注目のオ ン · ビク セルに対して、 不一致を不利に働く と考 えると、 不一致数は、 不利な電圧 (信号電圧) の数を与える, 従って、 1 ビク セル当たりの (平均で) 不利な電圧の数は.
B i = i · C i / h
となる。
とこ で、 C i のうち i / hが不利であるので、 残り、 す なわち
A i = { ( h - i ) / h C i
は有利に働く。 また、
{ ( h - i ) / h } - C + ( i / ) - C i
= ( h / h ) C i = C
であり、
A i = C i - B i
一 = { ( h - l ) ( h - i - 1 )
ただし、 h ≥ i + 1
である。
以上をまとめると、
V ON (r,.ra,s) { ( S , + S 2 + S 3 ) S 4 } 1 / 2
V OFF (r , ηι, s) = { ( S 5 + S b + 33 ) S 4 } 1 /2 となる。 なお、
S , ∑ A i ( V r + V (i, ) 2 (有利) S2 = ∑ B i (V r -V (i) (不利)
S3 = { ( N/ h ) - 1 } ∑ ( A i + B i ) V Ci)
S4 = 2h · (N/h )
S 5 = ∑ A i ( V r - V (i) (有利)
S 6 = ∑ B ( V r + V (不利) である。
また、
V r ZV。 =N1,2 Zh . · . · . 行選択電圧
Figure imgf000014_0001
= { 1 - ( 2 i / h ) } · · · 列電圧 であり、
Figure imgf000014_0002
= { (N1/z + 1 ) / (N,/2 - 1 ) } 1/2
となる 0
ところが、 上記従来例 2のように順次複数本の走査電極を 同時に選択して駆動する場合には、 走査電極および信号電極 に印加するパルス幅が、 同時に選択する走査電極の数が増加 するに従って狭くなり、 波形のナマリによるクロス トークが 増大し画質が悪く なる等の問題があり、 特にパルス幅の変調 等による階調表示を行う場合には、 深刻となる。 本発明は上記のように順次複数本の走査電極を同時に選択 して駆動する場合にも良好に階調表示を行う ことのできる液 晶素子等の駆動方法と駆動回路および表示装置を提供するこ とを目的とする。 発明の開示
本発明による液晶素子等の駆動方法は、 走査電極を有する 基板と、 信号電極を有する基板との間に液晶層を介在させて なる液晶素子を、 順次同時に複数本の走査電極を選択してマ ルチプレクス駆動する液晶素子等の駆動方法において、 上記 の選択期間を複数の期間に区分し、 その区分した選択期間に、 所望の表示データに応じた重み付けをした電圧を印加して階 調表示を行う ことを特徴とする。
上記のような駆動方法を採用するこ とによって、 順次複数 本の走査電極を同時に選択してマルチプレクス駆動する場合 にも、 ク ロス トーク等が発生が少な く良好な階調表示を行わ せることが可能となる。
また本発明による液晶素子等の駆動回路は、 走査電極を有 する基板と信号電極を有する基板との間に液晶層を介在させ てなる液晶素子等を、 順次同時に複数本の走査電極を選択し てマルチプレックス駆動する液晶素子等の駆動回路において、 走査データ発生回路から発生した選択バルスデータと、 同時 に選択される複数本の走査電極上の表示データとを演算回路 で演算すると共に、 その演算結果に基づくデータを信号電極 ドライバに転送し、 それと同時に走査データを走査電極に転 送して、 上記の表示データに応じた所望の階調表示を行わせ るように構成したことを特徴とする。
上記のような駆動回路を用いることによって、 前記のよう な階調表示を簡単 ·確実に実行させることが可能となる。
さら 本発明による表示装置は、 走査電極を有する基板と 信号電極を有する基板との間に液晶層を介在させてなる液晶 素子等を、 順次同時に複数本の走査電極を選択してマルチプ レックス駆動する液晶素子等の表示装置において、 走查デ一 タ発生回路から発生した選択パルスデータと、 同時に選択さ れる複数本の走査電極上の表示データとを演算酉路で演算す ると共に、 その演算結果に基づくデータを信号電極ドライバ に転送し、 それと同時に走査データを走査電極に転送する駆 動回路を備え、 上記の選択期間を複数個に区分し、 その各区 分した選択期間に、 上記の駆動回路により所望の表示データ に応じて重み付けをした信号電圧を信号電極に印加して階調 表示を行わせるようにしたことを特徴とする。
上記のように構成することによって、 クロス トーク等が発 生するおそれが少なく、 良好に階調表示を行わせることので きる表示装置を提供することが可能となる。 図面の簡単な説明 図 1 は本発明による液晶素子等の駆動方法の一実施例を示 す印加電圧波形図。
図 2 は液晶素子等の概略構成および表示データを示す説明 図。
図 3 は走査電極に印加する走査電圧波形の説明図。
図 4 は駆動回路の一実施例を示すプロ ック図。
図 5 ^走査電極ドライバのブロ ック図。
図 6 は信号電極ドライ バのブロ ッ ク図。
図 7 は本発明による液晶素子等の駆動方法の他の実施例を 示す印加電圧波形図。
図 8 は仮想電極を用いて駆動する場合の要領および表示デ 一夕の説明図。
図 9 は本発明による液晶素子等の躯動方法の他の実施例を 示す印加電圧波形図。
図 1 0 はパルス幅変調による階調表示の説明図。
図 1 1 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 1 2 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 1 3 は仮想電極の配置構成および表示データの説明図。 図 1 4 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 1 5 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 1 6は仮想電極の配置構成および表示データの説明図。 図 1 7は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 1 8は仮想電極の配置構成および表示データの説明図。 図 1 9は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 2 0 は本発明による液晶素子等の駆軌方法の他の実施例 を示す信号電極への印加電圧波形の説明図。
図 2 1 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 2 2は電極の配置構成および表示データの説明図。
図 2 3 は上記実施例における信号電極への印加電圧波形図。 図 2 4は上記実施例における選択期間を 1 フ レーム内で複 数面に分けて駆動した実施例の印加電圧波形図。
図 2 5 は上記実施例における信号電極への印加電圧波形図。 図 2 6は前記実施例における選択期間を 1 フ レーム内で複 数画に分けて駆動した他の例の印加電圧波形図。
図 2 7 は前記実施例における選択期間を 1 フ レーム内で複 数面に分けて駆動した他の例の印加電圧波形図。
図 2 8 は本究明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 2 9は上記実施例における選択斯間を 1 フ レーム内で複 数回に分けて駆動した実施例の印加電圧波形図。
図 3 0 は前記実施例における選択期間を 1 フレーム内で複 数面に分けて駆動した他の例の印加電圧波形図。
図 3 1 は前記実施例における選択期間を 1 フレーム内で複 数回に分けて駆動した他の例の印加電圧波形図。
図 3 2 は本発明による液晶素子等の躯動方法の他の実施例 を示す印加電圧波形図。
図 3 3 は電極の配置構成および表示データ の説明図。
図 3 4 は本発明による液晶素子等の躯動方法の他の実施例 を示す印加電圧波形図。
図 3 5 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 3 6 は上記実施例における選択期間を 1 フ レーム内で複 数面に分けて躯動した実施例の印加電圧波形図。
図 3 7 は前記実施例における選択期間を 1 フ レーム内で複 数回に分けて駆動した他の例の印加電圧波形図。
図 3 8 は前記実施例における選択期間を 1 フ レーム内で複 数面に分けて駆動した他の例の印加電圧波形図。
図 3 9 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 4 0 は上記実施例における選択期間を 1 フレーム内で複 数回に分けて躯動した実施例の印加電圧波形図。
図 4 1 は前記実施例における選択期間を · 1 フ レーム内で複 4
18
数回に分けて駆動した他の例の印加電圧波形図。
図 4 2は前記実施例における選択期間を 1 フレーム内で複 数回に分けて駆動した他の例の印加電圧波形図。
図 4 3 は本発明による液晶素子等の駆動方法の他の実施例 を示す印加電圧波形図。
図 4 4は上記実施例における選択期間を 1 フレーム内で複 数面に分けて駆一動した実施例の印加電圧波形図。
図 4 5 は従来の液晶素子等の駆動方法の一例を示す印加電 圧波形図。
図 4 6は表示パターンの説明図。
図 4 7 は従来の液晶素子等の躯動方法の他の例を示す印加 電圧波形図。
図 4 8 は走査電極への印加電圧波形の説明図。 発明を実施するための最良の形態
以下、 図に示す実施例に基づいて本発明による液晶素子等 の駆動方法と駆動回路および表示装置を具体的に説明する。 〔実施例 1〕
図 1 は本発明による液晶表示素子等の躯動方法の一実施例 を示す印加電圧波形図であり、 同図 ( a ) は走査電極 X , · Χ2 · Χ3 に印加される電圧波形、 ( b ) は走査電極 Χ4 - Χ5 · Χ6 に印加される鼋圧波形、 ( c ) は信号電極 Υ, に 印加される電圧波形、 ( d ) は走查電極 Xt と信号電極 Y , とが交差する画素に印加される電圧波形を示す。
本実施例は順次 3つの走査電極を同時に選択して図 2に示 すような表示を行ったものである。
同時に選択される走査電極への印加電圧波形としては、 前 記図 4 8の ( a ) もしく は ( b ) に示す波形を用いることも できるが、 本実施例においては上記図 1 の ( a ) に示す波形 を用いている。
前記図 4 8の ( a ) もしく は ( b ) に示すようなビ ッ ト ヮ ードパターンに対応した電圧波形を用いる場合には、 各パル ス幅が狭く なる不具合があり、 特に同時に選択する走査電極 の数が増加すると、 前記のビ ッ トワー ドバタ一ンの数は指数 関数的に増大し、 それに伴って必然的に各バルス幅が狭く な り、 実際に画素に印加される際には、 いわゆるナマリ による クロス トークが生じるおそれがある。 しかも本実施例はもと より後述する実施例のようにパルス幅の変調による階調表示 を行う場合には、 パルス幅が更に狭く なつてク ロ ス トーク の 発生原因となる。
そこで、 本実施例においては、 以下の要領で走査電極への 印加電圧波形を設定してパルス幅が広く なるようにしたもの である。
走査電極への印加電圧波形は、
① . 各走査電極が区別できること
② . 各走査電極に加わる周波数成分が大き く異ならないこと ③. 1 フ レームあるいは数フレーム内での交流性が保証され ること
などを考慮して決める。
即ち、 ナチュラルバイナリ、 ウ オルシュ、 アダマール等の 直交関数系の中から上記条件を考慮して印加電圧のパターン を適宜選択することである。
このうち上記の項目①は絶対条件である。 特に項目①を満 足するためには、 各走査電極への印加電圧波形が互いに直交 するように決める。
上記の要件を考慮して決定したのが、 図 3の ( a ) および
( b ) に示す印加電圧波形であり、 図 3の ( a ) の印加電圧 波形は、
X 1 : * Δ t 0
X 2 : 4 * Δ t 0 > 2 * Δ t 0
X 3 : 2 * Δ t 0
という異なる周波数成分を含んでいる。
また図 3の ( b ) に示す印加電圧波形は、
X , : 4 *厶 t 0 、 2 水 A t 0
X z : 4 * Δ " 、 2 *厶 "
X 3 : 6 *厶 " 、 2 * Δ "
という異なる周波数成分を含んでいる。
前記図 4 8の ( a ) . ( b ) に示す波形の最も短いパルス 幅は厶 t。 であったのに対し、 上記図 3の ( a ) · ( b ) の 波形の最も狭いパルス幅△ t は 2 Δ t 。 であり、 2倍に拡大 できる。 このようにパルス幅を広く するこ とによって波形の ナマリ の影響を少な くすることができ、 ク ロス トークを減少 させることができると共に、 同時に選択する走査電極の数を 増大させることが可能となる。 なお図 3の ( a ) · ( b ) に 示す波形は一例であって適宜変更できると共に、 走査電極の 選択順序や各走査電極に印加するパルスパターンの配列順序 等は直交関数の性質を利用して適宜変更できる。
前記図 1 の ( a ) 及び ( b ) に示す本実施例の走査電圧波 形は上記図 3の ( b ) の波形を基にして同時に選択される 3 つの走査電極への印加電圧波形を構成したものである。 また 本実施例においては選択期間を 1 フ レーム F内で t , 、 t 2 . t 3 . t 4 の 4回に分けて駆動するようにした例を示す。
一方、 信号電極 Y , 〜 Υ π には、 図 1 の ( c ) に示すよう に上記の分けた各選択期間 t , 、 t 2 、 t 3 、 t 4 を更に複 数の期間に分割し、 その各分割した期間に、 所望の表示デ一 夕に応じて重み付けをした電圧を印加している。
即ち、 本実施例においては t , の期間を 2等分して a と b の 2つの期間に分け、 4階調表示を 2進法により 2 ビッ トで 表した前記図 2に示す表示データに基づいてビッ ト毎に所定 の重み付けをした信号 m圧を、 上位ビッ トについては期間 a に、 下位ビッ トについては b期間にそれぞれ印加するように したものである。 具体的には、 走查電極に電圧 Vxlを印加するときをオン、 電圧一 Vxlを印加するときをオフとし、 表示データは 0をォ フ、 1をオンとして、 同時に選択される走查電極のオン . ォ フと表示データのオン · オフとをビッ ト毎に順に対比して不 一致数を算定し、 上位ビッ トについては、 不一致数が 3のと きは Vy4、 2のときは Vy2、 1 のときは一 V 2、 0のときは — V 耷それぞれ印加し、 下位ビッ トについては、 不一致数 が 3のときは Vy3、 2のときは VY1、 1 のときは一 VYI、 0 のときは一 VY3をそれぞれ印加するようにしている。 なお各 電圧レベルの関係は、 2 * VY1 = V 、 2 * V V3 = V V4. 2 * VY1 = Vy3 - VYI 2 * V Y2= V Y4— V YZとしている。
例えば、 図 1の ( c ) において t , の期間についてみると、 走査電極 Xt 、 X2 、 X3 に印加する選択パルスはオン、 ォ ン、 オフの順番となり、 信号電極 と走査電極 X , 、 Χ ζ 、 Χ3 との各交点の画素の表示データは ( 0 0 ) ( 0 1 ) ( 1 0 ) で、 上位ビッ トについてみるとオフ、 オフ、 オンとなり、 比較すると不一致の数が 3 となり、 信号電極 Yt には期間 a において電圧 V が印加されている。 また下位ビッ トについ てみるとオフ、 オン、 オフとなり、 走査電極と比較すると不 一致の数が 1 となり、 b期間においては電圧— VY1が印加さ れている。
このようにして、 走查電極 X , 、 Xz 、 X3 上の表示デ一 タを各信号電極 〜Ym ごとに走査電極に印加する選択パ ルスと比較し、 不一致の数に応じた信号電圧が印加されるも のである。
次に、 走査電極 X4 、 Χ 5 、 Χ6 を同時に選択してそれに 対応した信号電極波形を信号電極に印加する。 このようにし て走査電極を 3 ライ ンずつ同時に選択しながら表示データに 応じた信号電圧波形を信号電極に印加して行き全ての走查電 極 〜Xn が走査し終わると、 再び最初の走査電極 X , 、 X2 、 X3 に戻り、 t 2 、 t 3 、 t 4 の期間でも上記と同様 の要領で順次所定の電圧を印加していく。 そしても , 〜 t 4 の 4つの期間が全ての走査電極 X , 〜Xn について走査し終 わると 1 フ レームが終了し、 次のフ レームが橾り返される。 なお本実施例ではフレーム毎に印加電圧の極性を交互に異な らせて、 いわゆる交流駆動を行っている。
上記のように駆動することによってクロス トーク等の少な い良好な階調表示を行わせることができるものである。
なお上記の期間 t , 〜 t 4 に走査電極に印加する走査電圧 波形の順番は全てのフ レームについて若し,く はフ レーム毎に 適宜入れ替えてもよ く、 また走査電極に印加する走査電圧波 形として前記図 3 の ( a ) に示す波形もしく は前述の要件を 満足する他の波形を用いることもできる。 さらに例えば走査 電極 X , 〜X 3 では図 3の ( a ) に示す波形を用い、 次の走 查電極 X4 〜Χ 6 では図 3 の ( b ) に示す波形を用いるとい うように同時に選択される走査電極毎に 2種類の波形を交互 に入れ替える、 あるいは 3種類以上の波形を順番に入れ替え ることもできる。 また上記の期間 t t 〜 t 4 の波形の入れ替 えと同時に選択される走査電極毎の波形の入れ替えとを組み 合わせることも可能である。
また上記の期間 〜 t 4 は本実施例のように各期間毎に 分けて駆動する、 あるいは 1 フ レーム内に連続的に設けて駆 動するようにしてもよいが、 本実施例のように選択期間を 1 フ レーム Fで複数回に分けて駆動するようにすると、 非選択 期間が短く なつてコ ン トラス トを高めることができる。 この 場合、 上記実施例においては、 選択期間を 〜 t 4 の 4回 に分けて駆動するようにしたが、 その分ける回数は任意であ り、 例えば上記 t t 〜 t 4 の期間を 2回に分けて駆動したり、 それ以上に分けて駆動することもできる。
さらに上記実施例では、 走查電極を配列順序に従って同時 に 3本ずつ選択したが、 その選択本数は適宜であり、 また必 ずしも配列順序に従う ことなく選択することもできる。
以上に記載した変更は、 後述する実施例 fこおいても同様に 適用可能である。
次に上記のような駆動方法を実行させる駆動回路の構成例 を図 4〜図 6に基づいて説明する。
図 4は駆動回路の一例を示すブロ ック図であり、 図におい て 1 は走査電極ドライバ、 2 は信号電極ドライバ、 3 はフ レ ームメ モ リ、 4は演箕回路、 5 は走査データ発生回路、 6 は ラ ツチである。
図 5 は走査電極ドライバのブロ ック図、 図 6 は信号電極ド ライバのブロ ック図であり、 図 5および図 6において 1 1 · 2 1 はシフ ト レジスタ、 1 2 · 2 2 はラ ッチ、 1 3 · 2 3 は デコーダ、 1 4 . 2 4 はレベルシフタである。
上記の構成において、 各走査電圧波形は、 図 4 の走査デ一 タ発生回路 5から発生する、 正の選択か、 負の選択か、 ある いは非選択であるかのデータを発生させ、 走査電極 ドライバ 1 に転送する。
その走査電極ドライバ 1では図 5に示すように走査データ 発生回路 5からの走査データ信号 S 3を走査シフ トク ロ ック 信号 S 5でシフ ト レジスタ 1 1 に転送し、 一走査期間におけ る各走査電極のデータを転送した後ラ ツチ信号 S 6 によって 各データがラ ッチされ、 各走査電極の状態を表すデータをデ コー ドし、 各出力ごとのアナログスィ ツチ 1 5 で 3 つのスィ ツチのう ちの 1つをオンさせて、 正の選択のときは V X 1、 負 の選択のときは一 V X 1、 非選択のときは 0 の電圧を選択され た走査電極に出力する。
一方、 各信号電圧波形は、 フレームメ モ リ 3からの同時に 選択される 3本の走査電極毎の表示データ信号 S 1 を読みだ し、 その表示データ信号 S 1 と走査データ信号 S 3から選択 パルスデータをラ ッチし、 表示データ信号 S 1 と選択パルス データ信号 S 4を演算回路 4でデータ変換する。 そのデータ 変換は、 前述の要領でなされ、 信号電極ドライバ 2に転送さ れる。
その信号電極ドライバ 2では図 6に示すように演算面路 4 からのデータ信号 S 2をシフ トクロ ック信号 S 7でシフ ト レ ジスタ 2 1に転送し、 一走查期閭における各信号電極のデー タを転送した後ラ ッチ信号 S 8によって各データがラ ッチさ れ、 各信号電極の状態を表すデータをデコードし、 各出力ご とのァ ログスィ ツチ 2 5で 8つのスィ ツチのう ちの 1つを オンさせて、 VY" Vy3、 VYZ、 V yi — VYl、 一 Vy2、 一 VY3、 一 VY<の 8つの電圧のいずれかの電圧を各信号電極に 出力する。
上記のような駆動回路を用いることによって、 前記のよう な駆動方法を簡単 *確実に実行させることができる。
.また前記のような表示素子等を有する表示装置に上記のよ うな駆動面路を備え、 前記のような駆動方法を実行させるよ うにすれば、 ク ロス トーク等の発生が少なく良好な階調表示 を行う ことのできる表示装置が得られるものである。
〔実施例 2〕
上記実施例 1においては、 信号電極に表示データの各ビッ ト毎に 4種類の電圧の中から表示データに応じて 1つを電圧 選択して印加するようにしたが、 仮想電極を設けることによ つて信号電極に印加する電圧レベルの数を削減することがで さる。 図 7 は上記実施例 1 において仮想電極を設けるこ とによつ て信号電極に印加する電圧レベルの数を削滅して駆動した本 実施例による電圧波形図、 図 8 は仮想電極を設けることによ つて信号電極に印加する電圧レベルの数を削減する要領を示 す説明図である。
本実施例は、 例えば図 8に示すように同時に選択される走 查電極 次に Χ^ + , Χ« + ζ ·· ··のような仮想電極を設け、 例 えば走査電極 X , 、 Χ2 、 Χ3 が選択されるときに、 それと 同時に Χη + 1 も選択されると仮定し、 実施例 1 と同様に走査 電極に電圧 Vxiを印加するときをオン、 電圧一 VX1を印加す るときをオフとし、 表示データは 0をオフ、 1 をオンとして 不一致数を算定する。 この場合、 仮想電極の状態を適宜変え ることによつて不一致数が常に 1か 3になるようにする。
そして表示データの上位ビッ トでは不一致数が 1 のとき一 V γ2. 不一致数が 3のとき VY2を選択し、 表示データの下位 ビッ トでは不一致数が 1 のとき一 Vyi、 不一致数が 3 のとき VY1を選択するものである。 なお各電圧レベルの関係は、 2 * VY1 = Vy2とする。
上記図 7 は上記の要領で前記図 2に示す表示を行ったもの で、 f 1 の期間についてみると、 走査電極 X , 、 X z 、 X 3 および仮想電極 Χη + ι に印加する選択パルスは順にオン、 ォ ン、 オフ、 オンとなり、 信号電極 と走査電極 X , 、 Χ 2 、 Χ3 および Χη + 1 との各交点の画素の表示データは ( 0 0 ) ( 0 1 ) ( 1 0 ) ( 1 1 ) で、 上位ビッ トについてみるとォ フ、 オフ、 オン、 オンとなり、 順に比較すると不一致の数が 3で、 この不一致の数に応じて変換データ S 2をつく り、 信 号電極 Yt には期間 aにおいて電圧 Vy2が印加されている。
また下位ビッ トについてみるとオフ、 オン、 オフ、 オンと なり、 走査電極と比較すると不一致の数が 1 となり、 この不 一致の銖に応じて変換データ S 2をつく り、 信号電極 Y, に は期間 bにおいて電圧一 VYIが印加されている。
このようにして、 走查電極 、 Xz 、 X 3 および Χη+ι 上の表示データを各信号電極 Yt 〜Ym ごとに走査電極に印 加する選択パルスと比較し、 不一致の数に応じた電圧を印加 していく。
次に、 走査電極 X' 、 X5 、 X6 および Χη + Ζ を同時に選 択してそれに対応した信号電極波形を信号電極に印加する。 このようにして走査電極を 3ライ ンと仮想電極 1 ラィ ンずつ 同時に選択しながらそれに対応した信号電極波形を信号電極 に印加していき走查電極 Χη まで走査し終わると、 再び最初 の走査電極 Xi 、 X2 、 X 3 に戻り、 t 2 で示すパルスバタ —ンで順番に走査していく。 このようにして、 、 t z 、 t 3 t * に示す各バルスパターンで 4面走査することによ つて 1フレーム期間を終了し、 次のフレームで同様の操作が 操り返えされる。
上記のように仮想電極を設けることによって信号電極に印 加する電圧レベルの数を実施例 1 の場合より も少な く できる ものである。
なお上記のように仮想電極を設けることによって信号電極 に印加する電圧レベルの数を減少させることは、 後述する各 実施例にも適用できる。
また本実施例および後述する各実施例においても、 前記実 施例 1 同様の駆動回路を用いるこ とができる。 その場合、 前記図 4における演算回路 4 は各実施例に応じてデータ処理 を行う構成とし、 また図 5 の走査電極ドライバおよび図 6 の 信号電極ドライバの電圧レベルは各実施例に応じて設け、 ァ ナログスィ ツチ 1 5 · 2 5でいずれかの電圧レベルを選択す るように構成すればよい。
例えば本実施例においては、 前記図 4 における演算回路 4 および図 5 の走査電極ドライバは実施例 1 と同様とし、 図 6 の信号電極ドライバは実施例 1 においては VY4、 Vy3、 V YZ、 Vyi、 一 VY1、 — VY2、 一 VY3、 一 VY4の 8 つの電圧レベル を設けたが、 本実施例においては VYZ、 VY1、 — VY1、 - V y2の 4つの電圧レベルを設けるだけでよい。
〔実施例 3 〕
上記各実施例は表示データに応じて電圧値を変えて階調階 調表示を行ったが、 パルス幅を変えるこ とによって階調表示 を行う こともできる。
図 9 はパルス幅変調による階調表示を行った実施例の印加 電圧波形図である。
先ずパルス幅変調による階調表示を行う場合の一般的な手 順等について説明する。
一般に、 パルス幅変調による階調表示を行うに当たっては、 前記パルスの時間幅 Δ tを、 f 偭の不等間隔の時間幅に分割 する。
Δ t, 9 = 2 / C 2 ' - 1 ) ( ίは階調のビッ ト数) 例えば、 f = 2のときは、 2 2 = 4階調であり、 時間幅は 図 1 0 に示すように
厶 1^ = ( 1 / 3 ) 厶 1: 0 、 厶 1 2 = ( 2 / 3 ) 厶 1 。 に分割する。
次に、 各データを f ビッ トに分割 ( f ビッ トで表現) する。
d , = ( d !, f . d lf r-!
d z = ( d 2, f d 2, f - j · · · d z, l ) d h = ( d k, f v d k, f- 1 · * * d R, i ) そして、 厶 t gの簡隔で走査電極の選択パターンとデータ パターンの各ビッ トを比較する。
例えば、 f = 2のとき
d! = ( d 2 . d ! )
α 2 = 1 ひ 2 ヽ α 2, I ) となり、 まず のう ち、 d ,, , (下位ビッ ト) と走査電極 選択パターンを比較し、 A t , の間ディ スプレイ に印加する, 次に、 d ,, 2 と走査電極選択パターンを比較し、 A t z の 間デイ スプレイに印加する。
これを各 dについて、 上記と同様の要領で順次行えばよい, 本実施例による上記図 9 は、 上記の要領でパルス幅変調に より前 ^図 2に示すような 4階調の表示を行ったものである, 本例においては、 各走査電極 X , 〜 X n に前記図 4 7 の従 来例と同様の走査電圧を印加し、 それに対する信号電極 Y , 〜Ym のパルス幅を上記の階調表示に応じて変調させるよう にしたものである。
すなわち、 各パルス幅厶 t を均等に 3分割し、 0から 3ま での 4段階の階調表示を、 2進法により 2 ビッ トの表示デ一 タ ( 0 0 ) 、 ( 0 1 ) 、 ( 1 0 ) 、 ( 1 1 ) で表し、 同時に 選択される走査電極のオン · オフと、 上記の表示データの上 位ビッ トとの不一致数によって 3分割のう ちの 2分割の電圧 レベルを決め、 下位ビッ トとの不一致数で残りの 1分割分に ついて電圧レベルを決めるものである。 また 3分割を均等で なくすことによって階調表示の輝度変化を補正することもで きる。
具体的には上記図 9において走査電極に電圧 VX1を印加す るときをオン、 電圧一 VX1を印加するときをオフとすると、 走査電極 X , - Xz - X 3 に印加する最初のバルスは、 全て オフであり、 これに対して前記図 2の走査電極 X t · X z - X 3 の表示データの下位ビッ トは 0をオフ、 1をオンとして オフ · オン · オフであるから、 不一致数は 1 となり、 Δ t t の間の電圧パルスは一 V Y 1となり、 上位ビッ トはオフ · オフ · ォンであるから、 不一致数は 1 となり Δ t 2 の間の電圧バ ルスは一 V y iとなる。 このようにして各選択期間 Δ t毎に比 較して偉号電極に印加する電圧パルスを求めればよい。
そして本実施例においては上位ビッ トに対する電圧は 3分 割のうちの後の 2つの期間に、 下位ビツ トに対する電圧は 3 分割のうちの前の 1つの期間に印加するようにしたものであ る。 なお上位ビッ トに対する電圧を 3分割のうちの前の 2つ の期間に、 下位ビッ トに対する電圧を 3分割のうちの後の 1 つの期間に印加してもよい。
〔実施例 4〕
上記のような階諷表示を行う場合にも前記実施例 1 の場合 と同様に選択期間を 1フレームの中で複数回に分けて駆動す ることができる。
図 1 1 はその一例を示すもので、 前記図 9 の実施例におい て走查電極および信号電極に印加する 8つのパルスバタ一ン (ブロ ック) よりなる電圧波形を、 パルスパターン毎に等間 隔に 8つに分割して出力するようにした例を示す。
上記のように選択期間を 1 フレームの中で複数回に分けて 駆動すると、 前記実施例と同様にコン ト ラス トを高めること ができる。
〔実施例 5 〕
上記実施例 3および実施例 4においては、 信号電極の電圧 レベルとして、 νΥ2 · V γ, · - V V , · 一 V y2の 4 つのレベル を用いたが、 前記実施例 2 と同様に仮想電極を設けるこ とに よって上記の電圧レベル数を削減することができる。
図 13は上記実施例 3に仮想電極を設けて信号電極への印 加電圧レベルを減らすと共に、 実施例 4 と同様に選択期間を 1 フ レーム内で複数回に分けて駆動した例を示す。
上記のように仮想電極を設けることによつて電圧レベル数 を削減する要領等については、 既に前記実施例 2で説明した が、 ここではその一般的な手法等をも舍めて説明する。
先ず、 前述のサブグループ h本の内、 e本を仮想走査電極 (仮想ラ イ ン) とし、 この仮想走査電極のデータの一致 · 不 一致を制御するこ とにより、 全体の一致 · 不一致数を制限し- 信号電極の駆動電圧のレベル数を削減する。
不一致数を M i、 V cを適当な定数とすると、 信号電極へ の印加電圧 V cLumnは、
V Vc ∑ 3 K * h ㊉ d k « h
= V c ( 2 M i - h ) ( V c : 定数) あるいは単純に
V cdumn = V (i ) 0≤ i ≤ h いずれにせよ、 V C0Lumftは ίι十 1 レベルある。
例えば、 サブグループ Ιι = 4、 仮想走査電極 e = 1 の場合 について考える。
前記実施例のように、 1ι = 3の場合のレベル数は、 一 VYZ. 一 VY1、 Vyi、 VY2の 4 レベルであり、 このとき仮想走查電 極で偶数個の不一致となるように制御すると下記表のように なる。 ,
Figure imgf000036_0001
上記のように、 元の電圧レベルが 4段階であつたものを 3 段階にすることができる。 また、 不一致数が奇数個になるよ うにすると、 上記表中の修正後の不一致数は、 上から順に 1. 1、 3、 3 となり、 修正後の電圧レベルを、 例えば V a · V a - V b · V bの 2 レベルにすることができる。
またサブグループが h == 4で、 電圧レベルを削減しない場 合の電圧レベルは、 例えば一 V Y2、 — VY I、 0、 V Y 1、 V yz の 5 レベル必要であるのに対し、 仮想走査電極で偶数個の不 一致となるように制御すると、 下記表のようになる。
Figure imgf000037_0001
上記のように、 もとの電圧レベルが 5段階であつたものを 3段階にすることができる。 上記の場合も不一致数が奇数個 になるようにして電圧レベルを設定することができる。
なお、 上記の仮想走査電極は、 通常は表示しな く てよいの で、 必ずしも現実に設ける必要はないが、 設ける場合には表 示に影響しない部分に設けるとよ く、 例えば液晶表示装置等 においては、 図 1 3に示すように表示領域 Rの外に仮想走查 電極 X n + 1 …を設ける、 あるいは表示領域 Rの外側に余剰の 走査電極がある場合にはそれを仮想走査電極として用いると もできる。
また、 仮想走査電極の数 eを増加させれば、 レベル数はさ らに削減できる。 その場合、 上記のように e = l の場合は、 不一致数が全て 2で割れるように制御したが、 例えば e = 2 の場合は、 不一致数が全て 3で割れるように制御すればよい < ただし、 全てが 3で割って 1余る、 あるいは 2余るようにし てもよい。
さらに上記の手法で削減できる最大削減数は、 1 Z ( e + 1 ) であり、 e = lのときは 0 Vを除いて 1 Z 2である。 本実施例による前記図 1 2は同時に 3本の走査電極と 1本 の仮想走查電極とを選択して信号電極への印加電圧レベルを 减らすと共に、 選択期間を 1 フ レーム内で複数回に分けて駆 動するようにしたものである。
その選択期間は、 本実施例においてば図 1 2および図 1 4 に示すように 1 フレーム内で 4面に分割して各期間毎に仮想 走査電極を舍めた 4本の走査電極について表示データの各ビ ッ ト に不一致数を数え、 その不一致数が常に奇数になるよ うにすることで、 不一致数が 1か 3になり、 それに応じて信 号電圧波形の電圧レベルが V Y 1と一 V Y 1の 2つのレベルにな るようにしている。
具体的には、 例えば前記図 1 3に示すような表示を行う場 合に、 前記図 8に示すように最初に選択される走査電極 • X 2 · X 3 の次に仮想走査電極 Χ η + 1 があるものとする。 ただし、 実際には前述のように設けなくてもよく、 設ける場 合には図 1 3に示すように表示領域 Rの外に設けるのが望ま しい。
また、 上記の走査電極に印加する電圧がプラスの場合をォ ン、 マイナスの場合をオフとして、 各選択期間 Δ tをそれぞ れ 3分割し、 同時に選択される走査電極 · Χ 2 · X 3 の 表示データが図 1 3のように ( 0 0 ) 、 ( 0 1 ) 、 ( 1 0 ) であるときは、 前記図 8に示すように仮想走査電極のデータ は ( 1 1 ) とすればよい。
そして、 各ビッ ト毎に不一致数を数えて V y ,か一 V y iのい ずれかの電圧レベルを決定し、 上位ビ ッ トに対する電圧は 3 分割のうちの後の 2つの期間、 下位ビ ッ トに対する電圧は 3 分割のうちの前の 1 つの期間に印加すればよい。 なお上位ビ ッ トに対する電圧を 3分割のうちの前の 2つの期間に、 下位 ビッ トに対する電圧を 3分割のう ちの後の 1 つの期間に印加 してもよいことは、 前記実施例 3 と同様である。
上^のように表示データによって各ビッ ト毎に比較するこ とによって V y ,あるいは一 V y ,の電圧のパルス幅を決めれば よ く、 仮想走査電極に印加する選択パルスの極性と表示デー タとが常に不一致数が 1、 3…等の奇数になるようにするこ とによって、 信号電極に印加する電圧レベルを削減するもの で、 本実施例においては 2 レベルとすることができる。 ただ し、 前述のように不一致数が偶数になるようにしてもよい。 また上記のようにすると、 液晶ドライバの回路構成が簡単 で、 従来のパルス幅変調用 ドライバとほぼ同じものも使用で きる-。
なお上記実施例では、 4階調表示について説明したが、 そ れ以上の多階調表示も可能であり、 例えば表示データを 3 ビ ッ トとして各選択期間を表示データの各ビッ トに対してパル ス幅に重み付けをした 3分割とすることで、 8階調表示がで き、 さらに袠示データを 4ビッ トとして各選択期間を表示デ ータの各ビッ トに対してバルス幅に重み付けをした 4分割と することで 1 6階調の表示を行う ことができる。 このように 各選択期間の分割数を変えることで、 多階調表示ができるも のである。
〔実施例 6 〕
上記実施例 5のように仮想電極を設けて信号電極への印加 電圧レベルを減らした上でパルス幅変調による階調表示を行 う ことは、 同時に選択される走査電極に前記実施例 1 のよう な走査電圧を印加する場合にも適用可能であり、 図 1 4はそ の一例を示す説明図である。
同時に選択される走査電極への印加電圧波形は上記のよう に実施例 1における図 1 と同様とし、 各選択期間 t , 〜 t 4 - 5 〜 t 8 をそれぞれ 3分割し、 同時に選択される走查電極 X 1 · X ζ · X 3 の表示データが図 1 3 のように ( 0 0 ) 、 ( 0 1 ) 、 ( 1 0 ) であるときは、 前記図 8に示すように仮 想走査電極のデータは ( 1 1 ) とすればよい。
そして、 各ビッ ト毎に不一致数を数えて電圧レベルを決定 し、 上位ビッ トでは 3分割のうちの 2つの期間、 下位ビッ ト では 3分割のうちの 1つの期間について V Y 1か一 V Y!の電圧 を印加すればよい。
上記のようにすることによって実施例 5 と同様の効果が得 られる。
なお上記の各選択期間 t , 〜 t 4 は 1 フ レーム F内に連続 させて設けても、 あるいは 1 フ レーム F内で各々分けて設け るようにしてもよい。 選択期間 t 5 〜 t 8 についても同様で る
〔実施例 7 〕
上記 ように選択期間の分割および印加電圧レベルの削減 を行った上でフレーム変調による階調表示を行う ことも可能 であり、 図 1 5 は上記実施例 6 と同様に順次 3本の走査電極 と 1本の仮想走査電極とを用いて信号電極への印加電圧レべ ルを減らし、 かつ選択期間を 1 フ レーム内で複数回に分けて 駆動すると共に、 フ レーム変調による階調表示を行った場合 の実施例を示す。
なお同時に選択される走査電極への印加電圧として、 本実 一施例においては前記図 3 の ( b ) の波形を用いたものである が、 同図 ( a ) もしく は前記図 4 8 の ( a ) または ( b ) 等 の波形を用いることもできる。
フレーム変調による階調表示は、 あるフ レーム期間の中で 何フ レームをオンとし、 何フ レームをオフにするかで階調表 示を行う もので、 例えば図 1 6 のように F 1間でオン、 F 2 間でオフ電圧を印加すると、 オンとオフとの中間調が表示さ れる。
また本実施例では 1 フ レームの中で 4 回選択されるので F 1期間と F 2期間での明暗の差が小さ くなり、 チラツキが目 立たなく なる。
例えば、 複数のフレーム期間を 1つのブロ ック として階調 表示する場合に、 上記の複数フ レームの中で選択パルスの位 置を入れ替えることも可能で、 例えば図 1 5において、 t 3 間と t 7 間を入れ替えることによってフレーム間の差をより 小さ くすることもできる。
なお上記実施例では、 2 フ レームのうちの 1 フレームでォ ン、 1 フレームでオフとすることによって階諷表示を行う例 を示したが、 それ以上のフレーム、 例えば 7 フ レームを 1つ のブロ ック としてその中でのオンフレームとォフフ レームが いくつあるかの組合せによって 8階調の表示を行う こともで き、 また 1 5 フレームを 1ブロ ックとして 1 6階調の表示を 行うこともできる。 このように 1つのブロ ッ クを何フ レーム にするかで任意の階調数の表示ができるものである。
〔実施例 8〕
さらに前記のように選択期間の分割および印加電圧レベル の削减を行った上でパルス幅変調とフ レーム変調との組合せ による階調表示を行う ことも可能であり、 図 1 7はパルス幅 変調とフレーム変調との組合せによる階調表示を行う要領の 一例を示す説明図である。
或る何フレーム期間の中で、 いくつかの中間調を表示する ことによって、 各階調データ と階調データの中間の階調の表 示を可能とする。
例えば、 図 1 8 に示すように最初のフレーム F 1 の期間で は、 ( 0 0 ) を表示し、 次のフ レーム F 2 の期間では、 ( 0 1 ) を表示することによつて、 実際には ( 0 0 ) と ( 0 1 ) の中間を表示することができる。
上記のように選択期間の分割および印加電圧レベルの削減 を行う 共に、 パルス幅変調とフ レーム変調との組合せによ る階調表示を行う と、 表示のチラツキを減少させることがで きると共に、 多階調表示が可能となる。 また実施例 6 と同様 に選択バルスの入れ替えができる。
さらに例えば前記実施例 2に示すような表示データによつ て電圧に重み付けをする場合、 そのほか先の他の実施例もし く は後述する実施例にも、 本実施例のようなフ レーム変調と の組合せによる階調表示を行わせることもできる。
また前記実施例 5〜本実施例 8 は、 仮想走査電極を設けた 場合について説明したが、 仮想走査電極を設けない場合でも、 フレーム変調による階調表示ゃフレーム変調とパルス幅変調 との組合せによる階調表示を行う ことができる。
〔実施例 9 〕
上記各実施例では、 表示データを 2 ビ ッ ト として各ビッ ト に対応した重み付けをした信号電圧を印加することによって 階調表示を実現しているが、 階調数は幾つにすることも可 能であり、 例えば図 1 9の示すような信号電極波形として 8 階調表示とすることもできる。
即ち、 図 1 9 は前記図 2における各走査電極に印加する走 査電極波形は実施例 1の場合と同じとして、 走査電極 X , 、 Xz 、 X3 と信号電極 の交点の各画素の表示データが上 から順に ( 0 0 1 ) ( 0 1 0 ) ( 1 0 0 ) としたときの信号 電極波形である。
本実埯例においては前記実施例 1における 4つの各選択期 間 t , 、 t z 、 t 3 、 t 4 をそれぞれ 3等分して a、 b、 c の 3つの期間に分割し、 3 ビッ トの表示データのうち最上位 ビッ トに対応する電圧波形を期間 aに、 中位ビッ トに対応す る電圧波形を期間 bに、 最下位ビッ トに対応する電圧波形を 期間 cに、 それぞれ実施例 1 と同様の要領で各ビッ トの表示 データに応じた重み付けをして印加するようにしたもので^) る。
すなわち、 期間 aでは最上位ビッ トの表示データに応じて
— VY6、 - V V Y4. VY6の電圧レベルから 1つを選び、 期間 bでは中位ビッ トの表示データに応じて一 Vys、 - Vy2, VY2、 VY5の電圧レベルから 1つを選び、 期間 cでは最下位 ビッ トの表示データに応じて一 V Y3、 一 VY,、 Vyi、 Vy3の 電圧レベルから 1つを選ぶ。 なお各電圧レベルの関係は、 4
* V Υ1 = 2 * V V Y4 4 * V Y3 = 2 * V YS = Vy6 2 *
V VI = VY3- V VI. 2 * V γΖ= V V rz, 2 * V Y4= V 一 VY<としている。 このような条件で、 実施例 1 と同様の要領で、 表示データ の各ビッ トごとに不一致の数によって信号電極波形を作るこ とによって 8階調表示を行う ものである。
以上のように、 前記実施例 1では選択期間を 2等分した各 期間に対応した電圧を選んで信号電極に印加することによつ て 4階調表示を行い、 本実施例では 3等分するこ とで 8階調 表示を行っている。 これを更に 4等分することで 1 6階調と いうように、 選択期間をい く つかに分割してそれぞれの期間 に対応した電圧を信号電極に印加するこ とによって階調数を 増やすことができる。 また、 各信号電極の電圧の比を変えた り、 選択期間の中を等分割でな く少し変えるこ とによって各 階調における輝度を調整することも可能である。
〔実施例 1 0 〕
上記実施例 9 の図 1 9 においては信号電極に印加する電圧 を変えることによる階調表示において、 表示データのビッ ト 数に応じて分割した期間 a、 b、 cに、 各ビッ トに応じた電 圧を上位ビッ トから順番に印加するようにしたが、 その順番 を信号電極毎に適宜入れ替えることもできる。
上記実施例 9において、 例えば走査電極 X , 、 X 2 、 X 3 と信号電極 Y 2 〜Y m とが交差する各画素の表示が、 走査電 極 X i 、 X 2 、 X 3 と信号電極 とが交差する画素の表示 と同じであるとすると、 信号電極 〜Y m に印加する信号 電圧波形は全て図 1 9に示す波形と同じとなる。 しかし、 こ のような場合、 各画素に印加される波形のナマリ等が大き く なってしまい表示品質が悪くなる。
そこで、 本実施例においては図 2 0に示すように各信号電 極 Y , 〜Y m に印加される信号電極波形を順に入れ替えるよ うにしたものである。
すなわち、 前記実施例 9においては 3 ビッ トの表示データ のうち绿上位ビッ トに対応する電圧を期間 aで、 中位ビッ ト に対応する電圧を期間 bで、 最下位ビ 'ン トに対応する電圧を 期間 cで、 その順に信号電極 に印加している。 他の信号 電極 〜Y m についても同様である。
これに対し、 本実施例においては図 2 0に示すように、 最 上位ビツ トに対する電圧を印加する期間を a、 中位ビッ トに 対する電圧を印加する期間を b、 最下位ビッ 卜に対する電圧 を印加する期間を c とすると、 例えば信号電極 Y , では実施 例 2と同様に上位ビッ トから順に a · b · cの順番で印加す れば、 次の信号電極では順番を適宜入れ替えて例えば信号電 極 Y 2 では a · c . b、 信号電極 Y 3 では b . a . c、 信号 電極 Y 4 では b . c · a、 信号電極 Y 5 では c · a · b、 信 号電極 では ' b · aの順にそれぞれ印加していく、 他 の信号電極 Y 7 〜Y m についても上記のような組み合わせの 繰り返しとする。
上記のようにすると、 上記実施例においては順番の異なる 6種の組合わせの波形がほぼ同じ数だけ信号電極に印加され るため各信号電極波形の立ち上がりや立ち下がりの影響が相 殺しあい各画素に印加される波形のナマリ等を減少させるこ とができるものである。
な.お、 各信号電極に印加する波形の組み合わせはどのよう にしてもよ く、 例えば、 信号電極ドライバが 6偭あれば信号 電極ドライバごとに各組合わせの波形を印加するようにして もよい。, このように、 各信号電極に印加する波形の組み合わ せがほぼ同数となるようにすることによって、 表示品質を向 上することができる。
また上記のように表示データの各ビッ トに対応する電圧を 各信号電極 Y , 〜Y m 毎に適宜入れ替えて印加することは、 前述の各実施例および後述する実施例にも適用可能である。 〔実施例 1 1 〕
前記実施例 9においては走査電極に印加する走查電圧波形 として図 1 の ( a ) すなわち図 3の ( b ) に示すような波形 を用いて 8階調の表示を行ったが、 図 3の ( a ) もし く は前 記従来例における図 4 8の ( a ) または ( b ) の波形を用い ることも可能であり、 以下図 3の ( a ) に示す波形を用いて 8階調の表示を行う場合を例にして更に詳しく説明する。 図 2 1 は同時に選択される走査電極に印加する走査電圧波 形として図 3の ( a ) に示す波形を用いて図 2 2に示す表示 データに基づいて 8階調の表示を行った実施例の印加電圧波 形図であり、 同図 ( a ) は走査電極 X , · X z · X 3 に印加 される走査電圧波形、 同図 ( c ) は信号電極 Yt に印加され る信号電圧波形、 同図 ( d ) は走査電極 Xt と信号電極 とが交差する画素に印加される電圧波形を示す。
本例においても走査電極を順次同時に 3本ずつ選択して駆 動するようにしたもので、 図 2 1においては 3つの走査電極 X! · Χ2 · Χ3 のみを示しが、 図 2 3に示すように走查電 極 Xt ; Χζ · X3 が選択された後は、 次の 3つの走査電極 X 4 · Xs · X6 が選択されてそれぞれ走査電極 X, - Χ ζ • Χ3 と同様の電圧が印加され、 以下同様に順に 3つずつ選 択されて全ての走査電極が選択されたところで 1つのフ レー ムが終了する。
また同時に選択される 3つの走査電極には、 上記のように 前記図 3の ( a ) に示す走査電圧波形を印加するようにした もので、 その最小パルス幅 Δ tは前記図 4 8の従来例におけ る最小バルス幅△ t 0 の 2倍の大きさであり、 各走查電極の 1フレーム内での全ての選択期間 tは、 上記バルス幅 Δ tの 大きさの 4つの期間 t i 〜 t 4 で構成されている。
上記の 4つの斯間 t , 〜 t 4 を、 表示データのビッ ト数に 合せてそれぞれ 3つの期間 a · b · cに分割し、 その各分割 期間に表示データのビッ トに対応して所定の重み付けをした 信号電圧を信号電極に印加するようにしたものである。
即ち、 図 2 2において 2進法により 3桁の数字で表した表 示データの上位ビッ トを各斯間 〜 t 4 の始めの分割期間 aに、 中央のビッ トを次の分割期間 bに、 下位ビッ トを最後 の分割期間 cにそれぞれ対応させ、 上位ビッ トに対しては所 定の重み付けをした土 V Y4または ± V y6を、 中央ビッ 卜に対 しては ± VY2または土 VYSを、 下位ビッ トに対しては士 Vyi または土 VY3を、 それぞれ後述する条件に従って印加する。 なお上記の電圧値の比は、
, VY1 V V2 : V V4 = 1 : 2 : 4
V Y 3 V Y 5 V Y 6 1 : 2
V v. : V Y 3 1 : 3
に設定されている。
また上記の条件としては、 走査電極に印加する走査電圧波 形が正側のときをオン、 負側のときをオフとし、 表示データ の 1をオン、 0をオフとして、 同時に選択された走査電極の オン · オフと、 その選択された走査電極上における印加すベ き信号電極との交点の表示データの同位ビッ トのオ ン · オフ とを各位毎に順に対比して、 その不一致数に応じて所定の電 圧を信号電極に印加する。
具体的には、 本例においては走査電極と上位ビッ ト との不 一致数が 0のときは一 VY6、 1 のときは一 V Y4、 2のときは VY4、 3のときは VY6をそれぞれ印加し、 走査電極と中央ビ ッ トとの不一致数が 0 のときは一 V y5、 1 のときは— V y2、 2のときは VY2、 3のときは V y5をそれぞれ印加し、 走查電 極と下位ビッ トとの不一致数が 0のときは一 VY3、 1 のとき 23844
48
は一 VY1、 2のときは VY1、 3のときは VY3をそれぞれ印加 するようにしたものである。
そこで、 図2 1 の実施例においては、 先ず 3つの走查電極 Xi * Xz - Χ3 が同時に選択され、 その選択された走查電 極 Xi · Χ2 · Χ3 は順にオフ ' オフ ' オンで、 その走査電 極 X, · Χ2 · Χ3 上における信号電極 Yt との交点の表示 データ 上位ビッ トは順にオフ ' オン ' オンであり、 両者を 順に対比すると不一致数は 1となり、 最初の期間 t t のうち の最初の分割期間 aに一 Vy<の電圧が信号電極 に印加さ れている。 他の信号電極 Υ2 〜Υπ> についても同様の要領で 重み付けした電圧が同時に印加される。
つぎに、 最初の期間 t i のうちの次の分割期間 bにおいて は、 走查電極 Xt · Χ2 · Χ3 のオン ' オフは上記と同じォ フ · オフ ' オンであり、 その分割期間 bに対応する中央ビッ トは順にオン ' オフ ' オフであるから、 不一致数は 2で VY2 の電圧が印加され、 また最後の分割期間 cに対する下位ビッ トはオフ - オン · オフであるから、 不一致数は 2で VY1が印 加されている。
また次の斯間 t 2 については、 走査電極 X, · X2 - Xs 上のオン ' オフは順にオフ · オン ' オフであり、 これに対し て走查電極 X, · Χ2' · X3 上における信号電極 との交 点の袠示データの上位ビッ トは上記と同様に順に フ ' オン • ォンで不一致数が 1であるから— VY4が、 中央ビッ トは順 にオン · オフ · オフで不一致数は 2であるから VY2の電圧力 下位ビッ トはオフ · オ ン · オフで不一致数は 0であるから一 VV3の電圧が、 それぞれ分割期間 a · b · c において信号電 極 Y, に順に印加されている。
さらに次の期間 t 3 および t 4 についても上記と同様の要 領で不一致数に応じた信号電圧が全ての信号電極 Y , 〜 Ym に同時 印加されて、 走査電極 X , · X 2 · Χ 3 の選択が終 了し、 次いで走査電極 Χ4 · Χ 5 - Χ 6 が選択されて上記と 同様の要領で信号電極 Υ , 〜Ym に所定の信号電圧が印加さ れ、 全ての走査電極が選択されたところで 1 つのフ レーム F が終了する。 その後、 再び始めの走査電極 X , · X 2 - X 3 から順に選択されて次のフ レームが開始されるもので、 その とき走査電極に印加される電圧の正負は反転され、 それに伴 つて信号電極に印加される電圧の正負も反転されて、 いわゆ る交流躯動がなされる。
なお前記の電圧比は、 必ずしも厳密に前述の条件にしなけ ればならないという ものではな く、 また期間 〜 t 4 や分 割した期間 a · b · c も必ずしも厳密に等分に分割しな く て もよ く、 例えば液晶の特性等に応じて適宜調整するようにし てもよい。 さらに上記の分割した期間 a · b · c の順番を入 れ替えてもよい。 また上記と同様の要領で種々の階調数の表 示を行う ことも可能であり、 例えば 1 6階調では 4 ビッ トで 表された表示データの各ビッ トに対応して重み付けした電圧 とすればよい。 以上の点は後述する実施例についても同様で ある。
〔実施例 1 2〕
上記実施例 1 1ば各走査電極の選択期間 tを 1フ レーム F 内で 1 @1にまとめて設けるようにしたが、 1 フ レーム F内で 複数回に分けて設けてもよい。
例え 、 前記の期間 t i 〜 t 4 毎に分けて、 各期間につい て全ての走查電極が選択されるまでを 1フィールドとし、 こ れを 1フレーム Fで 4つのフ ィ ール ドを繰り返すようにして もよく、 あるいは更に分割して表示データの各ビッ ト毎に全 ての走査電極について操り返すようにしてもよい。 図 2 4、 図 2 6、 図 2 7はその一例を示すものである。
図 2 4は前記実施例 1 1における 4つの期間 t , 〜 t 4 毎 に複数回に分けて躯動した実施例を示す印加電圧波形図、 図 2 5は走査電極 〜X6 に印加される走査電圧波形図であ る。
先ず、 走查電極 X, · Χ2 · Χ3 が選択されて上記実施例 1 1と同様の要領で 3つのビッ トとの不一致数に応じた信号 電圧が順に信号電極 Yt 〜Ym に印加され、 次いで走査電極 X 4 · Χ5 · Χβ が選択されて上記と同様の要領で信号電圧 が印加されて行き、 全ての走査電極が選択されたところで期 間 1^ に対するフィールド が終了する。 つぎに、 再び始 めの走査電極 Xt · X2 · Χ3 から順に選択されて次の期間 t 2 に対するフ ィール ド ! " 2 が実行され、 4つの期間 t i 〜 t 4 に対する 4つのフ ィ ール ド 〜 ί 4 が終了したところ で、 1 つのフ レーム Fが完了する ものである。
図 2 6 は表示データのビッ ト毎に、 すなわち前記実施例に おける 4つの期間 t i 〜 t 4 のう ちの分割期間毎にまとめて 実行するようにしたものである。
先ず、,前記図 1 の 4つの期間 t , 〜 t 4 内の始めの分割期 間 aを順にひとまとめにして全ての走査電極が選択されるま でを 1つのフ ィールド f , とし、 同様にして他の分割期間 b に対してのフ ィ ールド f 2 および分割期間 c に対してのフィ 一ル ド f 3 が終わるまでを、 1 フ レームとしたものである。 なお走査電極への印加電圧は 1 フィールド毎に正負反転させ それに合わせて信号電極への印加電圧も反転させている。 図 2 7 は更に細分化して図 2 6 における分割期間 a · b · c毎に全ての走査電極について実行するようにしたものであ る。 本例においては前記図 2 1 の実施例を表示データのビッ ト毎にフ レーム階調したものと同等と見ることができる。 上記のように走査電極の選択期間を 1 フ レーム F内で複数 回に分けて実行すると、 各走査電極、 すなわち各画素に選択 電圧が印加されない期間を短く できるので、 表示の明るさの 増減が軽減されてコ ン ト ラス トの低下を防止することが可能 となる。
〔実施例 1 3 〕 前記実施例 1 1においては、 1選択期間を階調ビッ ト数 n と同数すなわち 3分割して、 V Y 1〜V Y 6の 6つのレベルの信 号電圧を信号電極に選択的に印加するようにしたが、 上記の 分割数を增やすことによって信号電圧のレベル数を缄らすこ とができる。
例えば液晶表示バネル等の液晶素子を駆動する場合の実効 電圧は、 t一般に電圧値と印加時間 (パルス幅) とで決定され 高い電圧を短時間印加しても、 低い電圧を長時間印加しても 同等に駆動させることができる。
従って、 上記複数個の電圧レベルのうち、 高いレベルの電 圧を用いる代わりにそれより も低いレベルの電圧を使用して 印加時間を長く しても同等に駆動させることが可能であり、 例えば前記の実施例 1 における V y 6および V Y <の電圧レベル を用いる代わりにそれぞれ V y sおよび V y 2の電圧レベルを用 い、 その印加時間を長く しても前記実施例 1 の場合と同様に 駆動することができる。 それによつて信号電圧のレベル数を 狨らすことが可能となる。
図 2 8 は上記の要領で信号電圧のレベル数を减らした実施 例を示す印加電圧波形図である。
前記図 2 1 の場合は 4 つの各選択期間 t t 、 t 2 、 t 3 、 t 4 をそれぞれ表示データのビッ ト数に合わせて n分割すな わち a · b · cの 3つに分割したのに対し、 本実施例は上記 の各選択期間を n + 1すなわち a · a · b · cの 4つに分割 し、 その始めの 2つの分割期間 a · a を表示データの上位ビ ッ トの電圧印加時間に当てたものである。
すなわち実施例 1 1 における上位ビ ッ トに対する電圧レべ ル V y 6および V y 4の代わりに、 その 2分の 1 の大きさの中間 ビッ 卜 の電圧レベル V y5および V Y2をそれぞれ用い、 印加時 間は中間ビッ 卜の 2倍になるようにしたものである。 その結 果、 液昴素子等に印加される電圧値と時間とは、 中間ビッ ト の 2倍、 下位ビッ 卜の 4倍になり、 各ビッ 卜に対する重み付 けの比は、 前記図 1 の場合と同じように、 1 : 2 : 4 の関係 になる。
上記のようにすると、 前記実施例 1 1 の場合より も信号電 極への印加電圧レベルを 1 つ少なく した上で実施例 1 の場合 と同等に駆動させることができる。
なお本実施例においては前記実施例 1 1 における最も高い 2つの電圧レベル VY6および VY4を省く ようにしたが、 前記 実施例 1 1 における中間ビ ッ トに対する電圧レベル VY5およ び VYZの代わりに下位ビ ッ ト の電圧レベル VY3 · VY1をそれ ぞれ用いると共に、 その印加時間を上記と同様の要領で下位 ビ ッ ト の 2倍なるようにしてもよい。 また更に、 4以上の電 圧レベルを削減することも可能であり、 上記のように電圧レ ベルを減らすことは、 特に階調数が多い場合に躯動画路等の 構成を簡略化するのに有効である。
〔実施例 1 4 〕 上記実施例 1 3においても実施例 1 2 の場合と同様に分割 した選択期間 t t 〜 t 4 を 1 フ レーム F内で複数回に分けて 実行することも可能であり、 図 2 9、 図 3 0、 図 3 1 はその 一例を示す。
図 2 9 は上記実施例 1 3において 1選択期間を n + 1、 具 体的には 4つに分割した選択期間を、 実施例 1 2の場合と同 様に 1 マレーム内で複数回、 具体的には 4回のフィールド f に分けて実行したものである。 ただし 2面もしくは 3回にわ けることもできる。
図 3 0 は前記実施例における 4つの期間 t ^ 〜 t 4 のうち の分割期間毎にまとめて実行するようにしたもので、 前記図 2 1の 4つの期間 t t 〜 t 4 内の分割期間 a · aのうちの始 めの分割期間 aを順にひとまとめにして全ての走査電極が選 択されるまでを 1つのフィール ド とし、 同様にして次の 分割期間 aに対してのフ ィール ド f 2 と、 分割期間 bに対し てのフィールド f 3 、 および分割期間 cに対してのフィ一ル ド £ < が終わるまでを、 1つのフ レーム F t としたものであ る。 なお走査電極への印加電圧は 1 フィールド毎に正負反転 させ、 それに合わせて信号電極への印加電圧も反転させてい る。
図 3 1 は更に細分化して図 1 0における分割期間 a · a · b · c毎に全ての走査電極について実行するようにしたもの である。 - 上記図 3 0および図 3 1 の実施例は、 各フィール ド毎に信 号電極への印加電圧に重み付けをしたフレーム階調と同等と 見ることができる。
〔実施例 1 5 〕
前述のように液晶素子等を躯動する場合の実効電圧は、 一 般に印加される電圧値と印加時間 (パルス幅) とによって決 定され、,信号ー電極への印加電圧の電圧値と印加時間とを適宜 組み合わせることによって所望の階調表示を行う ことができ る。
図 3 2 は信号電極への印加電圧の電圧値と印加時間とを適 宜組み合わせることよって、 図 3 3に示す表示データに基づ いて 1 6階調の表示を行った実施例の印加電圧波形図である < 本実施例も走査電極を順次 3つずつ選択し、 その各走查電 極には前記実施例 1 と同様に 4つの期間 t , 〜 t 4 からなる 選択期間内に走査電圧を印加する。
上記の 4つの期間 t , 〜 t 4 を、 それぞれ 6つの期間 a〜 f に分割し、 始めの 2つの分割期間 a · bを図 3 3に示す 2 進法 4桁の表示データの最上位のビ ッ ト に、 次の分割期間 c を 2番目のビッ トに、 次の 2つの分割期間 d · eを 3番目の ビ ッ ト に、 最後の分割期間 ί を最下位のビ ッ ト にそれぞれ対 応させる。
そして、 上位 2つの-ビッ ト とに対しては士 V Υ 4または土 V の偉号電圧を、 下位 2つのビッ トに対しては土 V Y 1または 土 VY3の信号電圧を、 それぞれ後述する条件に従って信号電 極に選択的に印加する。
なお上記の電圧値の比は、
Vy, : VY3= 1 : 3
νϊ4: VY6= 1 : 3
Vvi : Vy4= 1 Ϊ 4
に設定されている。
上記のように上位 2つのビッ トと下位 2つのビッ トは、 そ れぞれ同じ 2組の電圧が用いられ、 上位から 2番目のビッ ト に対する最上位ビッ ト、 および最下位のビッ トに対する下位 から 2番目のビッ トは、 それぞれバルス幅を 2倍にすること によって重み付けされており、 上位 2 ビッ トで 4階調、 下位 2ビッ トで 4階調を表現し、 両者を掛け合わせて 4 X 4 = 1 6階調の表現ができる。
前記の条件としては、 走査電極の電圧波形が正側のときを オン、 負側のときをオフとし、 表示データの 1 をオ ン、 0を オフとして、 同時に選択された走査電極のオ ン * オフと、 そ の選択された走査電極上における印加すべき信号電極との交 点の表示デ タの同位ビッ トのオ ン ' オフとを各位毎に順に 対比して、 その不一致数に応じて所定の電圧を信号電極に印 加する。
具体的には、 本例においては走査電極と最上位ビッ トとの 不一致数が 0のときは一 VY6、 1のときは一 VY4、 2のとき は VY4、 3のときは VY6をそれぞれ分割期間 a と bで信号電 極に印加し、 走査電極と 2番目のビッ ト との不一致数に対し ては上記と同じ条件で同じ電圧を分割期間 cで信号電極に印 加する。 また走査電極と 3番目のビッ トとの不一致数が 0の ときは一 VY3、 1 のときは一 VY 1、 2のときは VY1、 3 のと きは Vy3を分割期間 d ♦ eで信号電極に印加し、 走査電極と 最下位 t ッ トとの不一致数に対しては上記と同じ条件で同じ 電圧を分割期間 f で信号電極に印加するものである。
そこで、 図 3 2においては、 始めに 3つの走査電極 X , - X z ♦ X 3 が同時に選択され、 その選択された走查電極 X , • X 2 · X 3 の走査電圧波形は順にオフ ' オフ · ォンで、 そ の走査電極 X , · X 2 · Χ 3 上における信号電極 Υ , との交 点の表示データの最上位ビッ トは順にオフ ' オフ ' オンであ り、 両者を順に対比すると不一致数は 0 となり、 最初の期間 t , のうちの最初の分割期間 a · bに— Vy6の電圧が信号電 極 に印加されている。
次に上位から 2番目のビッ トはオフ · オン ' ォフで走査電 極 X , · X 2 · Χ 3 のオフ · オフ . オンと対比して不一致数 は 2で Vy4の電圧が分割期間 cに印加され、 また 2番目のビ ッ トはオン ' オフ ' ォフで不一致数は 2 で V Y 1が分割期間 d , eに、 さらに最下位のビッ トはオフ ' オン ' オフで不一致 数は 2で V yiが印加されている。 他の信号電極 Y 2 〜Ym に ついても同様の要領で重み付けした電圧が同時に印加される。 このようにして次の期間 t 2 〜 t 4 についても上記と同様 の要領で不一致数に応じた信号電圧が全ての信号電極 Y , 〜 に同時に印加されて、 走査電極 · X z · Χ 3 の選択 が終了し、 次いで走査電極 X - Χ 5 · Χ 6 が選択されて上 記と同様の要領で信号電極 〜Y m に所定の信号電圧が印 加され、 全ての走査電極が選択されたところで 1つのフ レー ム Fが柊了する。 その後、 再び始めの走査電極 X , · X z · X 3 から順に選択されて次のフ レームが開始されるもので、 そのとき走査電極に印加される電圧の正負は反転され、 それ に伴って信号電極に印加される電圧の正食も反転されて、 い わゆる交流駆動がなされる。
上記のように信号電極への印加電圧の電圧値と時間とを適 宜組み合わせることよって所望の階調表示を行う ことができ るもので、 特に階調数の多い場合でも少ない電圧レベルで階 調表示を行う ことが可能となる。
なお前記実施例 1 1において既に述べたように前記の電圧 比は必ずしも厳密に前述の条件に設定しなく ともよ く、 また 期間 t » 〜 t 4 や分割した期間 a〜 f も必ずしも厳密に等分 に分割しなくてもよい。 また上記の分割した期間 a〜 f の順 番を適宜入れ替えてもよい。
〔実施例 1 6 〕 '
上記実施例 1 5においても実施例 1 2 と同様に選択期間を 1 フレーム F内で複数回に分けて実行することができる。 図 3 4 はその一例を示すもので、 上記図 3 2 における期間 t 1 〜 t 4 を前記実施例 2 と同様に 1 フ レーム F内で各々別 々 に 4つに分けて各期間について全ての走査電極が選択され るまでを 1 フ ィ ール ド f として 1 フ レーム F内で 4回操り返 すようにしたものである。
また図には省略したが、 上記実施例 1 5においても前記実 施例 1 4における図 3 0や図 3 1 の場合と同様に表示データ のビ ッ ト毎もしく は更に細分化して躯動することもできる。 〔実施例 1 7 〕
上記実施例 1 1 〜 1 6 は信号電極に表示データのビ ッ トに 対する重み付け、 即ち信号電極に印加する電圧レベルを変え て階調表示を行うようにしたが、 走査電極に重み付けをする、 即ち走査電極に印加する電圧レベルを変えて階調表示を行う こともできる。
図 3 5 は走査電極に印加する電圧レベルを表示データのビ ッ トに応じて変えて実施例 1 1 と同様に前記図 2 2の表示デ ータに基づいて 8階調の表示を行った実施例の印加電圧波形 図である。
走査電極は実施例 1 1 の場合と同様に順次 3本ずつ選択し、 各走査電極には表示データの上位ビ ッ トに対しては VX4また は一 V J を、 中央ビッ トに対しては V X 2または一 V X 2を、 下 位ビッ トに対しては VX1または一 V X1を、 それぞれ印加する ようにしたもので、 VX1 : V x2 : V X4は 1 : 2 : 4 の関係に P TJP9300604
60
設定されている。
一方、 信号電極 Y, '"には、 走査電極 X , · X2 · Χ3 の オン * ォフと表示データのォン · オフとを各ビッ ト毎に対比 して不一致数が、 ひのときは一 VY3を、 1のときは一 VY1を. 2のときは Vyiを、 3のときは VY3を、 それぞれ印加するよ うにしたもので、 VY1 : VY3は 1 : 3の関係に設定されてい 前記実施例 1 1のように信号電極側の電圧レベルを増やす 代わりに、 本実施例のように走査電極側の電圧レベルを増や すようにすると、 信号電極に印加する電圧のレベル数を大幅 に減らすことができ、 信号電極側の ドライバの回路構成を簡 略化できる等の利点がある。
〔実施例 1 8〕
上記実施例 1 7においても実施例 1 2 と同様に選択期間を 1 フレーム F内で複数面に分けて実 ί亍することができる。 図 3 6、 図 3 7、 図 3 8 はその一例を示す。
図 3 6は上記図 3 5における期間 t , 〜 t 4 を前記実施例 1 2 と同様に 1 フレーム F内で各々別々に 4つに分けて各期 間について全ての走査電極が選択されるまでを 1 フ ィールド f として 1 フレーム F内で 4回操り返すようにしたものであ る。
図 3 7 は表示データのビッ ト毎に、 すなわち前記実施例に おける 4つの期間 t t 〜 t 4 のうちの分割期簡毎にまとめて 実行するようにしたものである。
すなわち上記図 3 5における 4つの期間 t , 〜 t 4 内の始 めの分割期間 aを順にひとまとめにして全ての走査電極が選 択されるまでを 1 つのフィール ド f , とし、 同様にして他の 分割期間 bに対してのフ ィ ール ド f 2 および分割期間 c に対 してのフ ィ ール ド ί 3 が終わるまでを、 1 フ レームとしたも のであ 。 なお走査電極への印加電圧は 1 フ ィ 一ル ド毎に正 負反転させ、 それに合わせて信号電極への印加電圧も反転さ せている。
図 3 8 は更に細分化して分割期間 a · b · c毎に全ての走 查電極を順次選択して駆動するようにしたものである。
上記のように 1 フレーム内で複数回に分けて駆動すること によつて実施例 1 2 と同様の効果が得られる。
〔実施例 1 9 〕
前記実施例 1 7 においても実施例 1 3 と同様に選択期間の 分割数を増やして印加電圧レベル数を少な くすることができ る。
図 3 9 はその一例を示すもので、 前記図 3 5における各期 間 t i 〜も , を前記図 2 8 と同様に 1 フ レーム F内で 4つに 分けて始めの 2つの分割期間を上位ビ ッ トに対する印加時間 に、 他の分割期間をそれぞれ中間ビ ッ トおよび下位ビ ッ トに 対する印加時間としたものである。 なお本実施例において印 加電圧の関係は、 VX1 : VX2= 1 : 2、 VY1 : VY3= 1 : 3 に設定されている。
〔実施例 2 0 〕
上記実施例 1 9 においても選択期間を 1 フレーム F内で複 数回に分けて実行することができる。 図 4 0、 図 4 1、 図 4 2はその一例を示すものである。
図 4 0は上記図 3 9における各期間 t t 〜 t 4 を前記図 2 5 と同棒に 1 フレーム F内で 4回に分けて各期間毎に全ての 走査電極が選択されるまでを 1 フィールド f として 1 フレー ム F内で 4面操り返すようにしたものである。
図 4 1 は前記実施例における 4つの期間 t , 〜 t 4 のうち の分割期間毎にまとめて実行するようにしたもので、 図 3 9 における 4つの期間 t ! 〜 t < 内の分割期間 a · aのう ちの 始めの分割期間 aを順にひとまとめにして全ての走査電極が 選択されるまでを 1つのフィール ド f t とし、 同様にして次 の分割期間 aに対してのフィール ド f 2 と、 分割期間 bに対 してのフィールド f 3 、 および分割期間 cに対してのフ ィ一 ルド ί 4 が終わるまでを 1 フレームとしたものである。 なお 走査電極への印加電圧は 1 フ ィ ール ド毎に正負反転させ、 そ れに合わせて信号電極への印加電圧も反転させている。
図 4 2は上記図 4 1の選択期間を更に細分化して分割期間 毎に全ての走查電極を順次選択して駆動するようにしたもの である。
上記のように 1 フ レーム内で複数回に分げて駆動すること によつて実施例 1 2 と同様の効果が得られる。
〔実施例 2 1 〕
前記実施例 1 5のように電極への印加電圧の電圧値と印加 時間とを適宜組み合わせることによって所望の階調表示を行 う場合においても前記実施例 1 6 と同様に信号電極側の電圧 レベルを増やす代わりに走査電極側の電圧レベルを増やすこ とによマて実施例 1 5 と同様に駆動させることができる。
図 4 3 はその一例を示す。 本例は走査電極への印加電圧レ ベルとして、 前記図 1 3における表示データの上位 2つのビ ッ トに対しては Vx<または一 VX4を、 また下位 2つのビッ ト に対しては VXiまたは一 VX1を、 それぞれ用いるようにした もので、 VX1 : VX4は 1 : 4 の関係に設定されている。
一方、 信号電極 Y, …には、 走査電極 X , · X 2 · X 3 の オン · オフと表示データのオン · オフとを各ビッ ト毎に対比 して不一致数が、 0のときは一 VY3を、 1 のときは一 VY1を. 2のときは VY1を、 3のときは V Y3を、 それぞれ印加するよ うにしたもので、 Vyi : VY3は 1 : 3の関係に設定されてい る。
〔実施例 2 2 〕
上記実施例 2 1 においても選択期間を 1 フ レーム F内で複 数回に分けて実行することができる。
図 4 4はその一例を示すもので、 上記図 4 1 における各期 間 t t 〜 t 4 を前記図 2 4 と同様に 1 フ レーム F内で 4回に 分けて各期間毎に全ての走査電極が選択されるまでを 1 フィ 一ルド f として 1 フ レーム F内で 4面操り返すようにしたも のである。 本例においても、 前記実施例と同様に更に細分化 して駆動させることができる。
また図には省赂したが、 上記実施例 2 1においても前記実 施例 2 0における図 4 1や図 4 2の場合と同様に表示データ のビッ ト毎もレく は更に細分化して駆動することもできる。 なお以上の各実施例は走査電極を同時に 3本ずつ選択する 場合を例にして説明したが、 前述の考え方に準じて同様の要 領で走査電極を 2本もしく は 4本以上同時に選択して所望の 階調.数の階調表示を行わせることができる。 例えば 6本の走 查電極を同時に選択する場合の一例を示すと、 1 フレーム期 間の間に 〜 t 8 の 8つに区分した選択期間を設け、 同時 に選択される 6つの走查電極 X , 〜X 6 の各選択期間 t t 〜 t 8 に下記表のような電圧を印加する。
Figure imgf000066_0001
なお非選択期間には 0 ボル トを印加する。 上記のようにし て各走査電極 X , 〜 X 6 に所定 走查電圧を印加して行き、 それと同時に各信号電極には前 ¾の各実施例と同様の要領で 所定の信号電圧を印加すればよい。
さらに走査電極に印加する電圧の波形も前記各実施例に限 らず、 例えば図 4 8 の ( a ) · ( b ) もしく は図 3 の ( a ) • ( b ), のいずれかに変更したり、 あるいはそれ等のパルス 波形を適宜選択し、 もしく は配列順序を適宜入れ替えて使用 してもよ く、 同時に選択される走査電極への印加波形が互い に混同することな く区別して駆動することができればよい。 また前述のように順次複数本の走査電極を同時に選択し、 かつその選択期間を 1 フレームの中で複数回に分けて駆動す ることは、 M I M素子等の非線形素子を使った液晶素子等を 躯動する場合にも適用できる。 産業上の利用可能性
以上説明したように本発明による液晶素子等の駆動方法お よび表示装置は、 順次複数本の走査電極を同時に選択し、 か つ 1選択期間をを複数の期間に分割し、 その各分割した選択 期間に、 所望の表示データに応じて重み付けをした電圧を印 加して階調表示を行うようにしたから、 画素に選択電圧が印 加されない時間が長く なつてコ ン ト ラス トが低下したり、 橾 り返し周期が長く なつてチラツキを生じたり、 あるいは印加 電圧波形のなまりによるク ロス トークの発生等が防止され、 良好に階調表示を行う ことができる。 また階調数のわりに印 加電圧レベル数を少なくすることが可能であり、 ドライバ等 の駆動手段を構造簡単に構成できると共に、 信頼性および表 示性能に優れた液晶素子等の駆動方法および表示装置を提供 できる等の効果がある。

Claims

請 求 の 範 囲
1 . 走査電極を有する基板と信号電極を有する基板との間に 液晶層を介在させてなる液晶素子等を、 順次同時に複数本 の走査電極を選択してマルチプレクス駆動する液晶素子等 の駆動方法において、 上記の選択期間を複数の期間に区分 し、 やの区分した選択期間に、 所望の表示データに応じた 重み付けをした電圧を電極に印加して階調表示を行う こと を特徴とする液晶素子等の駆動方法。
2 . 所望の表示データに応じて重み付けをした信号電圧を信 号電極に印加して階調表示を行うようにした請求の範囲第 1項に記載の液晶素子等の躯動方法。
3 . 前記の表示データを複数ビッ トで表し、 その各ビッ ト毎 にパルス幅を変調した信号電圧を信号電極に印加して階調 一 表示を行う請求の範囲第 2項に記載の液晶素子等の駆動方 法。
4 . 前記の表示データを複数ビッ トで表し、 そのビッ ト数に 応じて前記の各区分した選択期間を更に細分化し、 その各 細分化した期間に各ビッ ト毎の表示データに応じた信号電 圧を信号電極に印加して階調表示を行う ことを特徴とする 請求の範囲第 2項に記載の液晶素子等の駆動方法。
5 . 前記の表示データを複数ビッ トで表し、 前記の各区分し た選択期間を表示データのビッ ト数より も多く細分化し、 その細分化した選択期間の複数個をいずれかのビッ トに対 応した表示データに割り当てることによって印加電圧レべ ル数を減少させるようにした請求の範囲第 2項に記載の液 晶素子等の駆動方法。
6 . 前記の区分した選択期間を更に細分化し、 その細分化し た選択期間に信号電極に印加する電圧の電圧値と印加時間 を適耷組み合わせて複数階調の表示を行う ことを特徴とす る請求の範囲第 2項に記載の液晶素子等の駆動方法。
7 . 信号電極に印加する電圧を複数フ レーム間で変調して階 調表示を行うようにした請求の範囲第 1〜 6項のいずれか に記載の液晶素子等の駆動方法。
8 . 所望の表示データに応じて重み付けをした走査電圧を走 查電極に印加して階調表示を行うようにした請求の範囲第 1項に記載の液晶素子等の駆動方法。
9 . 前記の表示データを複数ビッ トで表し、 そのビッ ト数に 応じて前記の各区分した選択期間を更に細分化し、 その各 細分化した期間に各ビッ ト毎の表示データに応じた信号電 圧を信号電極に印加して階調表示を行うことを特徴とする 請求の範囲第 8項に記載の液晶素子等の駆動方法。
10. 前記の表示データを複数ビッ トで表し、 前記の各区分し た選択期間を表示データのビッ ト数より も多く細分化し、 その細分化-した選択期間の複数個をいずれかのビッ トに対 応した表示データに割り当てることによつて印加電圧レべ ル数を減少させるようにした請求の範囲第 8項に記載の液 晶素子等の駆動方法。
11. 前記の区分した選択期間を更に細分化し、 その細分化し た選択期間に走査電極に印加する電圧の電圧値と印加時間 を適宜組み合わせて複数階調の表示を行う ことを特徴とす る請求の範囲第 8項に記載の液晶素子等の駆動方法。
12. 走査電極に印加する電圧を複数フレーム間で変調して階 調表示を行うようにした請求の範囲第 8〜: 11項のいずれか に記載の液晶素子等の駆動方法。
13. 仮想電極を設けるこ とによって信号電極に印加する信号 電圧の電圧レベル数を減少させるようにした請求の範囲第 1 〜12項のいずれかに記載の液晶素子等の駆動方法。
14. 各走査電極および信号電極に印加される電圧波形の配列 順序を各フレーム内で入れ替えるようにした請求の範囲第 1 〜13項のいずれかに記載の液晶素子等の駆動方法。
15. 各走査電極および信号電極に印加される電圧波形の配列 順序をフレーム毎に入れ替えるようにした請求の範囲第 1 〜13項のいずれかに記載の液晶素子等の駆動方法。
16. 信号電極に印加される信号電圧波形の配列順序を信号電 極毎に入れ替えるようにした請求の範囲第 1〜: 15項のいず れかに記載の液晶素子等の駆動方法。
17. 前記の選択期間を 1 フレーム内に連続的の設けて駆動す るようにした請求の範囲第 1 〜: 16項のいずれかに記載の液 晶素子等の駆動方法。
18. 前記の選択期間を複数の期間に区分し、 その区分した選 択期間毎に全ての走査電極が選択されるまでを 1つのフィ ールドとし、 これを上記の区分した全ての選択期間が終了 するまでを 1 フレーム内で実行することを特徴とする請求 の範囲第 1〜16項のいずれかに記載の液晶素子等の駆動方 法。 ,
19. 前記の区分した選択期間を、 複数ビツ トで表した表示デ ータのビッ ト毎に更に細分化し、 その各細分化した選択期 藺毎に全ての走査電極が選択されるまでを 1つのフィール ドとし、 これを上記の区分し且つ細分化した全ての選択期 間が終了するまでを 1フレーム内で実行することを特徴と する請求の範囲第 1〜16項のいずれかに記載の液晶素子等 の駆動方法。
20. 前記の区分した選択期間を、 複数ビッ トで表した表示デ ータのビッ ト数よりも多く細分化し、 その各細分化した選 択期簡毎に全ての走查電極が選択されるまでを 1つのフィ 一ルドとし、 これを上記の区分し且つ細分化した全ての選 択期間が終了するまでを 1 フレーム内で実行することを特 徵とする請求の範囲第 1〜16項のいずれかに記載の液晶素 子等の駆動方法。
21. 走査電極に印加する電圧の極性を 1 フ レーム毎に反転さ せて駆動する請求の範囲第 1〜20項のいずれかに記載の液 晶素子等の駆動方法。
22. 走査電極に印加する電圧の極性を 1 フ レーム内で反転さ せて駆動する請求の範囲第 1 〜20項のいずれかに記載の液 晶素子等の駆動方法。
23. 走査電極を有する基板と信号電極を有する基板との間に 液晶層を介在させてなる液晶素子等を、 順次同時に複数本 の走耷電極を選択してマルチブレック ス駆動する液晶素子 等の駆動回路において、 走査データ発生回路から発生した 選択パルスデータと、 同時に選択される複数本の走査電極 上の表示データとを演算回路で演算すると共に、 その演算 結果に基づくデータを信号電極ドライバに転送し、 それと 同時に走査データを走査電極に転送して、 上記の表示デー タに応じた所望の階調表示を行わせるように構成したこと を特徴とする液晶素子等の駆動回路。
24. 走査電極を有する基板と信号電極を有する基板との問に 液晶層を介在させてなる液晶素子等を、 順次同時に複数本 の走査電極を選択してマルチプレック ス駆動する液晶素子 等の表示装置において、 走査データ発生回路から発生した 選択パルスデータと、 同時に選択される複数本の走査電極 上の表示データとを演算回路で演算すると共に、 その演算 結果に基づくデータを信号電極ドライバに転送し、 それと 同時に走査データを走査電極に転送する駆動回路を備え、 上記の選択期間を複数個に区分し、 その各区分した選択期 間に、 上記の駆動回路により所望の表示データに応じて重 み付けをした電圧を電極に印加して階調表示を行わせるよ うにしたことを特徴とする液晶素子等の表示装置。
PCT/JP1993/000604 1992-03-05 1993-05-10 Method and circuit for driving liquid crystal device, etc., and display device WO1993023844A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP93911979A EP0598913B1 (en) 1992-05-08 1993-05-10 Method and circuit for driving liquid crystal device, and display device
DE69326740T DE69326740T2 (de) 1992-05-08 1993-05-10 Steuerungsverfahren und -schaltung für flüssigkristallelemente und bildanzeigevorrichtung
JP52004893A JP3508115B2 (ja) 1992-05-08 1993-05-10 液晶装置及びその駆動方法並びに駆動回路
US08/178,949 US5877738A (en) 1992-03-05 1994-01-07 Liquid crystal element drive method, drive circuit, and display apparatus
US08/454,037 US5959603A (en) 1992-05-08 1995-05-30 Liquid crystal element drive method, drive circuit, and display apparatus
US09/641,555 US6452578B1 (en) 1992-03-05 2000-08-17 Liquid crystal element drive method, drive circuit, and display apparatus
US09/641,812 US6611246B1 (en) 1992-03-05 2000-08-17 Liquid crystal element drive method, drive circuit, and display apparatus
US10/219,537 US7138972B2 (en) 1992-03-05 2002-08-15 Liquid crystal element drive method, drive circuit, and display apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP14348292 1992-05-08
JP4/143482 1992-05-08
JP4/123623 1992-05-15
JP12362392 1992-05-15
JP19907792 1992-07-02
JP4/199077 1992-07-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000279 Continuation-In-Part WO1993018501A1 (en) 1992-03-05 1993-03-04 Method and circuit for driving liquid crystal elements, and display apparatus

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US08/148,083 Continuation-In-Part US6084563A (en) 1992-03-05 1993-11-04 Drive method, a drive circuit and a display device for liquid crystal cells
US08/178,949 Continuation-In-Part US5877738A (en) 1992-03-05 1994-01-07 Liquid crystal element drive method, drive circuit, and display apparatus
US08/454,037 Continuation-In-Part US5959603A (en) 1992-03-05 1995-05-30 Liquid crystal element drive method, drive circuit, and display apparatus

Publications (1)

Publication Number Publication Date
WO1993023844A1 true WO1993023844A1 (en) 1993-11-25

Family

ID=27314759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000604 WO1993023844A1 (en) 1992-03-05 1993-05-10 Method and circuit for driving liquid crystal device, etc., and display device

Country Status (5)

Country Link
EP (2) EP0836173B1 (ja)
JP (2) JP3508115B2 (ja)
DE (2) DE69331812T2 (ja)
TW (1) TW280874B (ja)
WO (1) WO1993023844A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683479A1 (en) * 1994-05-18 1995-11-22 Seiko Instruments Inc. Gray scale controller suited for active addressing

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739803A (en) * 1994-01-24 1998-04-14 Arithmos, Inc. Electronic system for driving liquid crystal displays
CN1107301C (zh) * 1994-08-23 2003-04-30 旭硝子株式会社 液晶显示器的驱动方法
JP2796619B2 (ja) * 1994-12-27 1998-09-10 セイコーインスツルメンツ株式会社 液晶表示パネルの階調駆動装置
KR100337865B1 (ko) * 1995-09-05 2002-12-16 삼성에스디아이 주식회사 액정 표시 소자의 구동방법
FR2784489B1 (fr) 1998-10-13 2000-11-24 Thomson Multimedia Sa Procede d'affichage de donnees sur un afficheur matriciel
JP4273660B2 (ja) * 1999-03-15 2009-06-03 セイコーエプソン株式会社 液晶表示装置及びその駆動方法
EP1396838A4 (en) * 2001-06-13 2008-04-30 Kawasaki Microelectronics Inc EASY DRIVE PROCESS AND EASY CONTROL DEVICE FOR MATRIX LIQUID CRYSTALS
JP3642328B2 (ja) * 2001-12-05 2005-04-27 セイコーエプソン株式会社 電気光学装置、その駆動回路、駆動方法及び電子機器
EP1365384A1 (en) * 2002-05-23 2003-11-26 STMicroelectronics S.r.l. Driving method for flat panel display devices
JP2004287118A (ja) 2003-03-24 2004-10-14 Hitachi Ltd 表示装置
EP1471496A1 (en) * 2003-04-23 2004-10-27 STMicroelectronics S.r.l. Driving method for a liquid crystal display
JP2006527407A (ja) * 2003-06-12 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 省エネルギー・パッシブ・マトリクス・ディスプレイ装置および駆動方法
JP4945119B2 (ja) * 2005-11-16 2012-06-06 株式会社ブリヂストン 情報表示用パネルの駆動方法
TW201227660A (en) * 2010-12-22 2012-07-01 Ind Tech Res Inst Apparatus and method for driving multi-stable display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715393B2 (ja) * 1973-04-20 1982-03-30
JPS61262724A (ja) * 1985-05-08 1986-11-20 Stanley Electric Co Ltd 液晶表示器
JPS62102230A (ja) * 1985-10-30 1987-05-12 Seiko Epson Corp 液晶素子の駆動方法
JPH01267694A (ja) * 1988-04-20 1989-10-25 Hitachi Ltd アクティブマトリクス方式の表示装置及びその走査回路と走査回路の駆動回路
JPH03185490A (ja) * 1989-12-15 1991-08-13 Hitachi Ltd 階調表示方式および液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633764B1 (fr) * 1988-06-29 1991-02-15 Commissariat Energie Atomique Procede et dispositif de commande d'un ecran matriciel affichant des niveaux de gris
US5103144A (en) * 1990-10-01 1992-04-07 Raytheon Company Brightness control for flat panel display
US5485173A (en) * 1991-04-01 1996-01-16 In Focus Systems, Inc. LCD addressing system and method
US5459495A (en) * 1992-05-14 1995-10-17 In Focus Systems, Inc. Gray level addressing for LCDs
EP0522510B1 (en) * 1991-07-08 1996-10-02 Asahi Glass Company Ltd. Driving method of driving a liquid crystal display element
US5621425A (en) * 1992-12-24 1997-04-15 Seiko Instruments Inc. Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715393B2 (ja) * 1973-04-20 1982-03-30
JPS61262724A (ja) * 1985-05-08 1986-11-20 Stanley Electric Co Ltd 液晶表示器
JPS62102230A (ja) * 1985-10-30 1987-05-12 Seiko Epson Corp 液晶素子の駆動方法
JPH01267694A (ja) * 1988-04-20 1989-10-25 Hitachi Ltd アクティブマトリクス方式の表示装置及びその走査回路と走査回路の駆動回路
JPH03185490A (ja) * 1989-12-15 1991-08-13 Hitachi Ltd 階調表示方式および液晶表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP0598913A4 *
SID International Symposium 1992 Digest of Technical Papers (May, 1992) p. 228-231. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683479A1 (en) * 1994-05-18 1995-11-22 Seiko Instruments Inc. Gray scale controller suited for active addressing

Also Published As

Publication number Publication date
EP0836173A2 (en) 1998-04-15
EP0836173A3 (en) 1999-04-07
JP3391334B2 (ja) 2003-03-31
DE69326740D1 (de) 1999-11-18
EP0598913B1 (en) 1999-10-13
TW280874B (ja) 1996-07-11
EP0598913A4 (en) 1994-10-26
EP0598913A1 (en) 1994-06-01
EP0836173B1 (en) 2002-04-10
DE69331812D1 (de) 2002-05-16
JP3508115B2 (ja) 2004-03-22
DE69326740T2 (de) 2000-04-06
JP2000347163A (ja) 2000-12-15
DE69331812T2 (de) 2002-11-14

Similar Documents

Publication Publication Date Title
US6208323B1 (en) Drive method, a drive circuit and a display device for liquid crystal cells
US6452578B1 (en) Liquid crystal element drive method, drive circuit, and display apparatus
JPH09319342A (ja) 液晶表示装置及び液晶表示装置の駆動方法
US5508716A (en) Plural line liquid crystal addressing method and apparatus
EP0618562A1 (en) A display apparatus and a driving method for a display apparatus
WO1993023844A1 (en) Method and circuit for driving liquid crystal device, etc., and display device
JPH08184807A (ja) 液晶表示パネルの階調駆動装置
US5959603A (en) Liquid crystal element drive method, drive circuit, and display apparatus
JP3896874B2 (ja) 電気光学素子の駆動方法
JP3482940B2 (ja) 液晶装置の駆動方法、駆動回路及び表示装置
JPH0627904A (ja) 液晶表示素子の駆動方法
JP3482941B2 (ja) 液晶装置の駆動方法、駆動回路及び表示装置
JP3855974B2 (ja) 液晶装置の駆動方法と駆動回路および液晶装置
JP3501157B2 (ja) 液晶装置の駆動方法と駆動回路および液晶装置
JP3900118B2 (ja) 液晶装置の駆動方法と駆動回路および液晶装置
JP2003302954A (ja) 液晶装置の駆動方法、駆動回路及び表示装置
JP3391330B2 (ja) 液晶装置の駆動方法、液晶表示装置及び駆動回路
JP3391331B2 (ja) 液晶装置の駆動方法、液晶表示装置及び駆動回路
JPH08160919A (ja) 画像表示装置の駆動方法
JPH07134280A (ja) 液晶素子等の駆動方法及び表示装置
JPH09304752A (ja) 液晶表示装置
JP2003202547A (ja) 液晶装置の駆動方法と駆動回路および液晶装置
JP2001282172A (ja) 階調表示方法、階調電圧発生装置および画像表示装置
JP2001108963A (ja) 液晶装置の駆動方法、液晶表示装置及び駆動回路
JP2001059959A (ja) 液晶装置の駆動方法及び表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08178949

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993911979

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993911979

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993911979

Country of ref document: EP