WO1993003287A1 - Ball-and-roller bearing - Google Patents

Ball-and-roller bearing Download PDF

Info

Publication number
WO1993003287A1
WO1993003287A1 PCT/JP1991/001072 JP9101072W WO9303287A1 WO 1993003287 A1 WO1993003287 A1 WO 1993003287A1 JP 9101072 W JP9101072 W JP 9101072W WO 9303287 A1 WO9303287 A1 WO 9303287A1
Authority
WO
WIPO (PCT)
Prior art keywords
races
rotating body
raceway surface
axis
ring
Prior art date
Application number
PCT/JP1991/001072
Other languages
English (en)
French (fr)
Inventor
Nobuo Takada
Original Assignee
Nobuo Takada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nobuo Takada filed Critical Nobuo Takada
Priority to KR1019930701079A priority Critical patent/KR930702626A/ko
Priority to DE69131767T priority patent/DE69131767T2/de
Priority to AU83133/91A priority patent/AU649708B2/en
Priority to US07/987,274 priority patent/US5322374A/en
Priority to PCT/JP1991/001072 priority patent/WO1993003287A1/ja
Priority to EP91914451A priority patent/EP0551516B1/en
Publication of WO1993003287A1 publication Critical patent/WO1993003287A1/ja
Priority to NO93931232A priority patent/NO931232L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/70Positive connections with complementary interlocking parts
    • F16C2226/76Positive connections with complementary interlocking parts with tongue and groove or key and slot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft

Definitions

  • the present invention relates to a roller bearing that rotates only in one direction.
  • Roller bearings generally include cylindrical roller bearings, tapered roller bearings, and self-aligning roller bearings.
  • rollers linearly contact the inner ring and outer ring, and all the dial loads are vertical loads acting on the contact parts.
  • the radial load is a vertical load acting perpendicular to the inclined surface and a load parallel to the inclined surface direction. Since a thrust load is applied to prevent misalignment, this component force is applied as the contact surface pressure acting between the inner and outer rings and the rollers. The vertical load acting on the contact surface of the roller prevents the roller from jumping out to the large end because the force that pushes the roller out of the track from the small end to the large end works. It is necessary to provide a guide flange. However, since the rollers come into contact between the large end surface of the tapered rollers and the guide flange, The PV value due to friction greatly limits the load-carrying capacity of tapered roller bearings.
  • Roller bearings are often used for applications that rotate in both forward and reverse directions.However, depending on the machine in which the bearings are installed, they may rotate only in one direction. Not good.
  • the present invention is directed to a roller bearing used for such an application, which has a large load capacity of a conventional cylindrical tapered roller bearing and has a large load capacity like a tapered roller shaft.
  • the roller performance is improved without the increase in rubbing friction at the large end of the roller, and the roller is provided with high efficiency, suitable for high rotation, and free from seizure. Let and be issues.
  • the present invention has a structure provided with an inner ring, an outer ring, and an intermediate rotating body, and a biasing means, wherein the inner square represents a single-leaf rotary hyperboloid of a uniaxial rotation.
  • An inner raceway surface, the outer race has an outer raceway surface that forms a single-plane rotational hyperboloid of the uniaxial rotation, the inner raceway surface and the outer raceway surface face each other, and one end to the other end.
  • the intermediate rotator forms a trajectory whose radius increases toward the side, and the intermediate rotator has a cylindrical or conical surface.
  • a plurality of the intermediate rotators are disposed in the circumferential direction of the track with the central axis of the intermediate rotator being inclined at a constant angle from the cross section including the axis, and the surfaces of the intermediate rotator are the inner raceway surface and the outer raceway.
  • the inner ring or the outer ring rotates only in a fixed direction such that the intermediate rotating body is rolled along the inner raceway surface in the uniaxial direction in a direction in which the raceway radius is smaller.
  • An inner ring or an outer ring having an annular portion for stopping the movement of the intermediate rotating body in the axial direction when the inner ring or the outer ring rotates in the fixed direction, wherein the annular member faces the component body in the one axial direction.
  • the urging means is provided between the inner races or the outer races disposed so as to face each other in the uniaxial direction, and the distance between the opposed inner races or the outer races is reduced.
  • Inner rings or outer rings that are opposed in the linear direction and that are not biased by the biasing means are fixed so as not to move in the axial direction. It is characterized by
  • both the inner and outer orbital surfaces are uniplane hyperboloids of revolution, the orbit formed by these increases in radius from one end to the other.
  • the intermediate rotating body is provided to be inclined with respect to the axial section, so that the inner ring or the outer ring is rotated when used as a bearing. Then, the intermediate rotating body is guided on both track surfaces, rolls over it while maintaining line contact, and also tries to move in the axial direction.
  • the directions in which the intermediate rotating body tends to advance in the axial direction are opposite to each other.
  • the inner race and the outer race have the intermediate rotating body as a result. Through which are separated from each other in the axial direction.
  • the internal transfer or the outer ring rotates only in a fixed direction such that the intermediate rotating body advances on the ⁇ -side raceway in the direction with the smaller track radius.
  • This is a force that moves the outer ring in the direction of the smaller radius of the track by moving the outer ring in the direction of the larger radius, and the effect of always increasing the track spacing is produced between the inner and outer rings.
  • the components including the inner and outer rings and the intermediate rotating body are disposed so as to face each other in the axial direction, and a pair of inner rings or outer wings that face each other in the axial direction is fixed in the axial direction. Since one set is urged by the urging means in the direction to reduce the orbital distance, the inner ring and the outer ring which face each other in the radial direction by the separating force are not separated.
  • the inner and outer rings rotate while rising from the intermediate rotating body by receiving a biasing force from the opposite direction while receiving the separating force.
  • the reaction is such that the inner and outer surfaces receive the separating force.
  • the intermediate rotating body receives forces in the axial direction opposite to each other from the inner and outer rings. If there is a difference in this force, the intermediate rotating body will move in the axial direction. If the intermediate rotating body has a conical shape, the intermediate rotating body also receives a force that is pushed from the small end to the large end, and the balance with the separation force causes the axis to rotate. It will move in any of the directions.
  • the annular portion provided on the inner ring or the outer ring stops such movement of the intermediate rotating body at a predetermined position, and serves to prevent the intermediate rotating body from coming off the track.
  • the separation force generated on the contact line between the intermediate rotating body and the inner and outer raceway surfaces is different in magnitude depending on the state of contact. That is, the intermediate rotating body comes into contact with the inner raceway surface by the convex portions, but comes into contact with the outer raceway surface by the convex portions and the concave portions, so that the contact that occurs when a radial load is applied
  • the surface pressure increases on the inner raceway side, and the separation force increases on the inner raceway side.
  • the intermediate rotating body has a cylindrical shape
  • the intermediate rotating body advances in the axial direction and stops against the annular portion due to the difference in the separating force, and this force is applied. This acts as a contact surface pressure between the intermediate rotating body and the annular portion.
  • the difference in this force is not so great that friction at the contact does not matter.
  • the intermediate rotating body has a conical shape, as described above, the intermediate rotating body receives a pushing force due to the pressure of the contact portion, but the contact pressure itself is affected by the separating force.
  • the large contact surface pressure is generated between the intermediate rotating body and the annular portion, the difference in the pulling force acts in the direction opposite to the pushing force. It is not.
  • FIG. 1 is a cross-sectional view of a roller bearing according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a main part thereof
  • FIG. 3 is a perspective view showing an arrangement of the rollers
  • FIG. 4 and 5 are explanatory diagrams of the relationship of forces
  • FIG. 6 is a cross-sectional view showing another embodiment
  • FIGS. 7 to 9 show the track shapes in the embodiment shown in FIG.
  • FIG. 10 is a cross-sectional view showing still another embodiment.
  • FIG. 11 is an explanatory diagram of forces acting on the roller in the embodiment of FIG.
  • At least one pair of structures 20 and 20 ′ each including the inner rings 1 and 1 ′, the outer rings 2 and 2 ′, and the rollers 3 and 3 ′ as intermediate rotating bodies are opposed to each other. This bearing is provided.
  • Structure Adults 20 and 20 ' have the same structure; ⁇ et al. Describe one side of construct 20.
  • the inner race 1 is mounted on the shaft 4 by, for example, a key 5, and forms an outer race 8 with the outer race 2 provided with the inner raceway surface 1a and the outer raceway surface 2a. are doing.
  • the roller 3 which is an example of the intermediate rotating body, has a cylindrical shape, and has an angle with respect to a cross section including the central axis 6 of the inner ring 1 which is a single axis as shown in FIG. 3; Many are installed in the track 8 at an angle of about 15 °.
  • the preload spring 7 as the urging means is provided between the inner rings ′ that are arranged opposite to each other.
  • the inner ring 1 is provided with a collar 9 as an annular portion for stopping the movement of the hob 3 in the axial direction. This is because when the inner ring 1 rotates and the hob 3 rotates and advances in the direction of the central axis 6, the progress is stopped. It is also possible to provide the collar 9 on the outer ring 2 side.
  • the stoves 3 are arranged on the inner ring 1 at an angle J5 from the cross section including the central axis 6, and the positions of the stoves are held by retainers 10 between the stoves. contact Shina, it is being done. By doing so, the adjacent openings that rotate in the same direction do not collide with the tangential velocities in the opposite directions, and the rotation and revolution of the roller 3 are smooth. become.
  • the shaft 4 is always rotated in the clockwise direction (direction of arrow A) when viewed from the right side in FIG. And shaft 4 moves the inner ring 1 in the same direction.
  • the roller 3 When rotated in the direction (A), the roller 3 is guided in contact with the inner raceway surface la while linearly contacting the inner ring raceway surface la, while rotating in the counterclockwise direction (direction B) as viewed from the right side, and over there. At the same time, go left in the figure.
  • roller 3 If the roller 3 rotates in the direction B shown in the figure, the roller 3 will also rotate to the outer raceway surface 2a while keeping line contact, and will move to the right in the figure.
  • FIG. 4 is a diagram for explaining the relationship between the inner and outer races receiving such a movement of the hob 3.
  • Line 3 makes line contact with the inner and outer raceways l a and 2 a
  • the inner ring 1 and the outer ring 2 receive forces that are pulled away from each other in the direction of the central axis 6 via the hob 3, and this embodiment
  • the inner ring 1 moves rightward in FIGS. 1 and 2, that is, in a direction to increase the interval of the track 9.
  • Such a force acting on the inner and outer races is balanced with the biasing force of the preload spring 7 to produce an effect of causing the inner and outer races to float on the hob 3, thereby reducing the contact surface pressure of the rollers. And reduce the occurrence of accidents such as smearing, drilling, and quenching during overload.
  • the contact between the roller 3 and the outer ring 2 is caused by the contact between the convex part of the roller 3 and the concave part of the outer ring raceway surface 2a.
  • the maximum contact surface pressure P i on the inner ring 1 side becomes the maximum contact surface pressure on the outer ring 2 side. It becomes bigger than Po. Therefore, at the contact portion between the roller 3 and the inner and outer rings, local deformation is larger on the inner ring 1 side than on the outer ring 2 side.
  • the same vertical force N acts on the import / export side.
  • the force R i of the hob 3 moving the inner wheel 1 becomes greater than the force R o of moving the outer wheel 2.
  • FIG. 6 shows another embodiment.
  • the inner ring 1 is fixed to the shaft 4 so as not to move in the axial direction, and the outer ring 2 is movable in the axial direction.
  • the preload spring 7 is provided between the outer races 2 and 2 '.
  • FIG. 7 to FIG. 9 are explanatory diagrams for obtaining these shapes, and show a case where the spiral 3 is a cylindrical spiral.
  • FIG. 7 shows the port 3 in the X-Y-Z coordinate, and its central axis 3a passes through the Y-axis at a distance F from the origin O on the Y-axis and is parallel to the X-Z plane.
  • FIG. 9 is a perspective view showing a state in which the device is placed at an angle of 8 with respect to the X—Y plane.
  • the X axis indicates the common central axis 6 of the inner and outer rings 1 and 2.
  • the cross section 3b of kor3 is a cross section of kor3 cut at a position X at an arbitrary distance X on the X-axis and parallel to the Y-Z plane, and points Uc and U'c are The center of kro 3 on that surface And X — the intersection of the perpendicular drawn on the Z plane and the X — Y plane.
  • the line 3a 'passing through the origins O and c is a line that projects the central axis 3a of the opening to the X-Z plane, and forms an angle with the X-axis] 8.
  • equation (1) is a hyperbolic equation, it is formed by inner and outer halves 1 and 2 according to the axis of kolo 3 The center line of the axial path is hyperbolic with respect to the central axis 6.
  • FIG. 8 is a diagram for explaining a state in which the inner and outer rings 1 and 2 come into contact with the stalk 3 arranged as described above.
  • P i U i and P o U o are derived from points P i and P o, respectively.
  • Figure 9 is an enlarged view of the relevant parts for obtaining this relationship.
  • R 2 F 2 + ⁇ (x co cos 2 ⁇ ) s in ⁇ 2
  • the inner and outer raceways are hyperbolic
  • Fig. 10 is a diagram corresponding to Fig. 1, and the rollers of Fig. 10 are different from those of Fig. 1 in that the rollers 3, 3 'are not cylindrical. The only difference is the conical shape.
  • Rolling performance is further improved by using a cone-shaped stove.
  • FIG. 11 is a diagram for explaining this point.
  • rollers 3, 3 receive the axial component forces Ri, 1Ro from the inner and outer rings, and the force of Ri> Ro. Component force to move toward the small end in the direction of the center
  • the pulling force u acting on the large end side of the roller 3 in the conventional tapered roller bearing is significantly reduced, and It is only necessary to provide an auxiliary flange on the large end side or small end side of the hob 3, and that the PV value due to rubbing does not limit the load carrying capacity. Become.
  • the shape of the raceway surface of the inner and outer rings is a straight line in which the generatrix of the tapered rollers is inclined.
  • the shape is inclined only by the inclination of the conical bus.
  • the bearing of FIG. 10 has a structure corresponding to the bearing of FIG. 1, it may be a structure corresponding to the bearing of FIG.
  • the intermediate rotating body has a cylindrical shape or a conical shape.
  • the intermediate rotating body may be shaped like a drum or a drum.
  • the inner ring should be cylindrical and the outer ring should be It is formed by a curved surface that combines a spheroid and a hyperboloid.
  • the inner ring is a composite surface of the spheroid and the hyperboloid, and the outer ring is cylindrical. .
  • the center rotating body is arranged in the track in an inclined position, the inner and outer rings are pulled apart, and the inner and outer rings are lifted from the intermediate rotating body, and the intermediate rotating body is moved in the axial direction.
  • the bearing load capacity and roller performance are improved, and the occurrence of various accidents due to seizure and poor lubrication can be prevented without large burring friction.
  • high-speed rotation can be facilitated and bearing efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

明 細 書
こ ろ 力 S リ こ ろ 軸 受
〔産業上の利用分野〕
本発明 は、 一方向のみに回転する こ ろが リ こ ろ軸受に 関する。
〔従来の技術〕
こ ろが リ 軸受 と して は、 一般に 円筒 こ ろ軸受、 円錐こ ろ軸受及ぴ 自 動調心こ ろ軸受が ある。
円筒 こ ろ軸受では、 こ ろは内輪及び外輪に線状に接触 し、 ジアル荷重は全てその接触部に作用する垂直荷重 と な る 、
方、 円錐こ ろ軸受及び 自 動調心 こ ろ軸受では、 ジ ア ル荷重は傾斜面 に直角 に作用する垂直荷重 と 傾斜面方 向 に平行な荷重 と にな る が、 内外輪間の軸方向のずれを 防止する た めス ラ ス ト 荷重が加え られる の で 、 こ の分力 が内外輪 と こ ろ と の間に作用する接触面圧 と して加わる 更に、 内外輪と こ ろ と の接触面に作用する垂直荷重に よ リ 、 小端側か ら大端側の方向へ こ ろ を軌道か ら押 し 出す 力が働 く ため、 大端側に こ ろの飛び出 しを防止する案内 鍔を設け る必要が生ずる。 と こ ろが、 円錐こ ろ の大端面 と 案内鍔 と の間ではすペ リ 接触にな る ため、 こ のすベ リ 摩擦によ る P V値が円錐こ ろ軸受の荷重負荷能力 に と つ て大きな制限と なる。
〔発明が解決 しよ う と する課題〕
こ ろが リ こ ろ軸受は、 正転、 逆転の両方向 に回転する よ う な用途に用い られる こ と が多いが、 軸受が組み込ま れる機械によっ ては、 一方向 にのみ回転する場合も少な く ない。
本発明は、 こ の よ う な用途に用い られる こ ろが リ こ ろ 軸受であっ て、 従来の 円筒ノ円錐こ ろ軸受ょ リ 負荷能力 が大き く 、 且つ円錐こ ろ軸 の よ う に こ ろの大端部で大 き なすベ リ 摩擦を伴わずこ ろが リ 性能が向上 され、 更に 高効率で高回転に も適 し焼付等の発生 しない こ ろが リ こ ろ軸受を提供する こ と を課題 と する。
〔課題を解決する ための手段〕
本発明は、 上記課題を解決する ために、 内輪と外輪と 中間回転体と を備えた構成体と 、 付勢手段 と を有 し、 前 記内耠は一軸線まわ リ の単葉回転双曲面をなす内側軌道 面を備え、 前記外輪は前記一軸線まわ リ の単葉回転双曲 面をなす外側軌道面を備え、 前記内側軌道面 と 前記外側 軌道面 と は、 相対向 し、 一端側から他端側に向かっ て半 径が大き く なる軌道を形成し、 前記中間回転体は、 こ ろ が リ 面が円筒形状又は円錐形状でぁ リ 、 前記軌道におい て該中間回転体の 中心軸を前記軸線を含む断面か ら一定 角度傾斜 して前記軌道の 円周方向に複数個配設 さ れ、 該 中間回転体の表面は前記内側軌道面 と 前記外側軌道面 と に線状に接触 し、 前記内輪又は外輪は、 前記中間回転体 を前記内側軌道面に沿っ て前記一軸線方向 において前記 軌道半径の小 さ い方向へ転がすよ う な一定方向にのみ回 転 し、 前記内輪又は外輪が 、 前記一定方向 に回転する と き の前記中間回転体の前記軸線方向の動き を停止 させる 環状部を備えていて、 前記構成体を前記一軸線方向 に相 対向 して配設 し、 前記付勢手段は、 前記一軸線方向に相 対向 して配設 される前記内輪間又は外輪間に設け られ、 該相対向する 内輪同士又は外輪同士を前記軌道の間隔を 狭 く する方向に付勢 し 、 前記一軸線方向に相対向する 内 輪同士又は外輪同士であ っ て前記付勢手段に よ っ て付勢 さ れない も のは、 前記軸線方向 には動かない よ う に固定 さ れてい る こ と を特徴 と する。
〔作 用〕
内側軌道面 と 外側軌道面 と は共に単葉回転双曲面であ る か ら 、 これら で形成 さ れる軌道は、 その半径が一端側 か ら他端側に向かっ て大き く な る。 そ して 、 こ の 中で中 間回転体が軸線断面に対 して傾斜 して設け られる ので、 軸受 と して用レ、 られる と き に内輪又は外輪が回転 さ れる と 、 中間回転体は両軌道面に案内 されて線接触を保ちつ つその上を転がる と共に、 軸線方向に も進行 しよ う とす る。 しかし、 内側軌道面 と外側軌道面と では、 軸線方向 において中間回転体が進行 し よ う と する方向が互いに反 対方向であ るか ら 、 結果と して内輪と 外輪と は中間回転 体を介 して互いに軸線方向において引 き離 されるカ を受 ける。
こ の場合、 内輸又は外輪は、 中間回転体を內側軌道面 上で軌道半径の小 さい方向へ進行させる よ う な一定方向 側にのみ回転する から 、 前記引 き離し力は、 内輪を軌道 半径の大き い方向へ動か し、 外輪を軌道半径の小 さ い方 向へ動かすよ う な力 と な リ 、 内外輪間には、 常に軌道間 隔を広げよ う と する作用が生ずる こ と になる。
—方、 内外輪 と 中間回転体と を含む構成体は軸線方向 に相対向 して配設され、 軸線方向に相対向する 内輪同士 又は外轅同士の一組を軸線方向に固定 し、 他の一組を付 勢手段によ リ 軌道間隔を狭く する方向に付勢する ので、 上記引 き離し力 に よ リ 半径方向 に相対向する 内輪と 外輪 と が離れて しま う こ と がな く 、 内外輪は引 き離 しカ を受 けつつ反対方向か ら付勢力を受けて中間回転体か ら浮上 しつつ回転する。
このよ う に、 内外输が引 き離 し力を受け る反作用 と し て、 中間回転体は内外輪か ら軸線方向 に互いに反対方向 の力 を受け る こ と にな る。 そ して、 こ の力 に差が あれば 中間回転体は軸線方向に動 く こ と にな る。 又 中間回転体 が 円錐形状であ る場合に は、 中間回転体は小端側か ら大 端側に押 し出 さ れる力 も受け、 引 き 離 し力 と のパ ラ ンス に よ リ 軸線方向の何れかの方向 に動 く こ と にな る。 内輪 又は外輪に設け られる環状部は、 中間回転体の こ の よ う な動き を所定位置で停止 させ、 中間回転体の軌道か ら の 抜け出 し を防止する作用 をする。
次ぎに、 中間回転体 と 内側及び外側軌道面 と の接触線 上で生ずる 前記引 き離 し力は、 それぞれの接触の状態に ょ リ' その大き さ が異な る。 即ち 中間回転体は、 内側軌道 面 と は凸部同士で接触する が外側軌道面 と は凸部 と 凹部 と で接触する こ と にな る ため、 ラ ジアル荷重が加わっ た と き に発生する接触面圧は、 内側軌道面側が大き く な リ 従っ て引 き 離 し力は内側軌道面側が大き く な る。 こ の結 果、 中間回転体が 円筒形状であ る場合には、 こ の引 き離 し力の差に よ リ 中間回転体が軸線方向 に進み環状部に当 たっ て停止 し、 こ の力の差が 中間回転体と 環状部 と の間 に接触面圧 と して作用する こ と にな る。 しカゝ し、 こ の力 の差はそれ程大き く な ら ないので、 接触部の摩擦が問題 にな る こ と はない。 一方、 中間回転体が円錐形状であ る場合には、 前述の 如 く 中間回転体は接触部の圧力によ る押 し出 し力 を受け る が、 引 き離し力にょ リ 接触圧力 自 体が軽減され、 さ ら に引 き離 し力の差が押 し出 し力の反対方向に作用する の で、 中間回転体と環状部 と の間に大き な接触面圧が発生 する と レゝ う こ と はない。
〔実 施 例〕
以下に、 本発明の詳細を図に示す実施例に基づき説明 する。
第 1 図は本発明によ る実施例の こ ろが リ こ ろ軸受の断 面図、 第 2 図はその主要部の斜視図、 第 3 図はこ ろの配 列を示す斜視図、 第 4 図及び第 5 図は力の関係の説明図, 第 6 図は他の実施例を示す断面図、 第 7 図乃至第 9 図は 第 6 図に示す実施例におけ る軌道形状を求め る ための説 明図、 第 1 0 図は更に他の実施例を示す断面図.、 第 1 1 図は第 1 0 図の実施例におけ る こ ろ に作用する力 の説明 図であ る。
まず第 1 図ない し第 3 図に よ リ 本こ ろが リ こ ろ軸受の -構造を説明する。
それぞれ内輪 1 、 1 ' 、 外輪 2 、 2 ' 、 中間回転体と しての コ ロ 3 、 3 ' 等を含む構成体 2 0 、 2 0 ' は、 少 な く と も 1 組相対向 して設け られ本軸受を構成する。 構 成体 2 0 、 2 0 ' は同一構造の も のであ る ; ^ ら 、 片側の 構成体 2 0 について説明する。
内輪 1 は、 例えばキー 5 に よ リ 軸 4 上に取 リ 付け られ これに対向 して設け られる外輪 2 と の間で、 内輪軌道面 1 a 及び外輪軌道面 2 a に よ リ 軌道 8 を形成 して い る。
中間回転体の一例であ る コ ロ 3 は、 円筒形状でぁ リ 、 第 3 図に示す如 く 一軸線であ る 内輪 1 の中心軸 6 を含む 断面に対 して角度 ; 3 、 例 えば 1 5 ° 程度傾斜 して軌道 8 内 に多数配設 さ れる。
付勢手段 と しての予圧ばね 7 は、 本実施例では相対向 して配設 されてい る 内輪 ' 間に設け られ、 内輪
' 間に予圧力 を与えている。 こ の予圧力 の方向 は軌道
8 の間隔を狭 く する方向即ち 内輪 ' 間 を離す方向 で あ る。
又内輪 1 には、 コ ロ 3 の軸方向の動き を停止 さ せ る環 状部 と して鍔 9 が設け られてい る。 こ れは、 内輪 1 が回 転 し コ ロ 3 が 自 転 して 中心軸 6 方向 に も進行する と き に その進行を停止 さ せる た めであ る。 なお、 鍔 9 を外輪 2 側に設け る こ と も 可能であ る。
第 3 図において 、 コ ロ 3 は内輪 1 上に中心軸 6 を含む 断面か ら角度 J5 だけ傾けて配列 され、 各コ ロ 間は リ ティ ナー 1 0 に よ リ それぞれの位置を保持 され、 互いに接触 しなレ、よ う に されている。 こ の よ う にする と 、 互いに同 方向に 自転する 隣接 したコ 口 同士が互いに反対方向の接 線速度を も っ て衝突する こ と がな く 、 コ ロ 3 の 自 転、 公 転が滑らかになる。
本実施例のこ ろが リ こ ろ軸受では、 軸 4 が常に一定方 向である 、 第 2 図において右側から見て時計方向 (矢印 A方向) に回転される。 そ して軸 4 が内輪 1 を同方向
( A方向) に回転させる と 、 コ ロ 3 は内輪軌道面 l a に 線状に接触 しつつ これに案内 されて、 右側か ら見て反時 計方向 ( B方向) に回転 しつつその上を下っ て行 く と 同 時に、 図において左方向へ進む。
—方、 コ ロ 3 が図示の B方向に回転すれば、 コ ロ 3 は 外側軌道面 2 a に対して も 同様に線接触を保ちつつ回転 十る と 共に図において右方向 に進行 し よ う と する。
第 4 図は、 こ の よ う な コ ロ 3 の動き にょ リ 内外輪が受 ける力の関係を説明する ための図であ る。
コ ロ 3 と 内外側軌道面 l a 、 2 a と は線接触をするが
(実際には一定の幅を持つ線状即ち面状に接蝕する こ と にな る) 、 説明 を簡単にする ためにその一部であ る接蝕 点 A、 B を考える。 コ ロ 3 は中心軸 6 断面に対 して角度 jS 傾けて配設されている ため、 その回転 し ょ う と する方 向 S は、 中心軸 6 に直角 の軌道断面の方向 T に対 して角 度 β の方向 であ る か ら 、 コ ロ 3 が回転 される と 内外輪は それぞれ図示の如 く 、 コ ロ 3 の公転方向の分力 T i 、 T o 及びコ ロ 3 の軸方向の分力 R i 、 R o を受 け る こ と な る。
こ の分力 R i 、 R o の発生に ょ リ 、 内輪 1 及び外輪 2 は、 コ ロ 3 を介 して中心軸 6 方向において互いに反対方 向 に引 き 離 される 力を受け、 本実施例では外輪 2 が 固定 さ れてい る ため、 内輪 1 が第 1 図及ぴ第 2 図 において右 方向即ち軌道 9 の間隔を広げる方向へ動 く こ と にな る。
内外輪に働 く こ の よ う な力は、 予圧ばね 7 の付勢力 と 釣 リ 合っ て コ ロ 3 に対 して内外輪を浮上 さ せる効果を発 生 させ、 こ ろが リ 接触面圧を減少 さ せる と 共に、 過負荷 におけ る ス メ ァ リ ングや嚙 リ 、 焼入等の事故の発生を防 止する。
コ ロ 3 の内外輪に対する接触に関 しては、 第. 5 に示 す如 く 、 コ ロ 3 と 外輪 2 と の接触が コ ロ 3 凸部 と 外輪軌 道面 2 a の凹部 と の接触にな る のに対 して 、 コ ロ 3 と 内 輪軌道面 l a と は凸部同士の接触にな る の で、 内輪 1 側 の最大接触面圧 P i が外輪 2 側の最大接触面圧 P o よ リ 大き く な る。 従っ て、 コ ロ 3 と 内外輪 と の接触部におい て は、 外輪 2 側 よ リ も 内輪 1 側において局部的変形が大 き く なる。 その結果、 内外輸側に同 じ垂直力 Nが作用 し て コ ロ 3 が回転する と き に、 コ ロ 3 が内輪 1 を動かす力 R i は外輪 2 を動かす力 R o ょ リ 大き く な る。
こ の よ う な分力 R i 、 R o の反作用 と して、 コ ロ 3 は 内外輪か ら R i 、 R o と 大き さ が同 じで反対方向の力一 R i 、 一 R o を受ける こ と にな リ 、 その結杲コ ロ 3 は内 輸軌道面 1 a 側で案内 されて中心 1* 6 方向において第 1 図及び第 2 図上で左方向に進む。 こ の よ う な コ ロ 3 の動 き を停止 させる ために、 前述 した如 く 鍔 9 が設け られて レヽる。
こ の場合、 鍔 9 と コ ロ 3 の端面と の間はコ ロ 3 の 自転 , 公転の際にすベ リ 接触をする が、 こ の間の圧接力は ( R i - R o ) であ る ため余 リ 大き な値にな らず、 軸受に と つ てこ のすペ リ 摩擦が問題にな る こ と はない。
こ の結果、 本軸受においては, 従来の円錐コ ロ 軸受に 見 られる よ う な、 高速回転における案内鍔の P V値ォー ーによ る焼付、 潤滑不良に伴 う 各種事故の発生等の問 題点が解決される。 更に、 すベ リ 摩擦損失が小さ い こ と 及び高速回転が可能になる こ と から 、 軸受の機械的損失 が小 さ く 軸受効率も大幅に向上する。
第 6 図は、 他の実施例を示す。
本実施例の こ ろが リ こ ろ軸受では、 内輪 1 が軸方向に 動かない よ う に軸 4 に固定され、 外輪 2 が軸方向 に可動 になっ ていて、 外輪 2 、 2 ' の間に予圧ばね 7 が設け ら れて レヽ る 。
従っ て本軸受では、 軸 4 が一方向側に回転 される と 、 コ ロ 3 、 3 ' が回転 し外輪 2 、 2 ' を軌道間隔を広げる 方向であ る互いに接近する方向 に進めて、 内外輪 1 、 1 へ 及び 2 、 2 ' が コ ロ 3 、 3 ' か ら浮上 しそ の間の接触 面圧が軽減 される こ と にな る。 その他本軸受の機構及ぴ 機能は、 第 1 図に示す も の と 基本的に 同 じであ る ので、 詳細説明 を省略する。
次に、 コ ロ 3 と 内輪 1 及ぴ外輪 2 と が線接触す る ため に必要 と な る 内外輪軌道面 l a 、 2 a の形状について説 明する。
第 7 図乃至第 9 図は、 これ ら の形状を求め る た めの説 明図でぁ リ 、 コ ロ 3 が 円筒 コ ロ であ る場合を示す。
先ず第 7 図は、 X — Y — Z 座標において、 コ.口 3 を、 そ の 中心軸 3 a が Y軸上原点 O か ら距離 F の位置で Y軸 を通 リ X — Z 平面に平行で X — Y平面に対 して角度 )8 だ け傾斜 さ せて置いた状態を示す斜視図であ る。 こ の場合 X軸は内外輪 1 、 2 の共通の 中心軸 6 を示す。 そ して、 コ ロ 3 の断面 3 b はコ ロ 3 を X軸上任意の距離 X の位置 で Y — Z 平面に平行な面で切っ た断面を示 し、 点 U c 、 U ' c はそれぞれ、 その面の コ ロ 3 の 中心 P c 力 ら X軸 及び X — Z 平面に下ろ した垂線の X軸及ぴ X — Y平面へ の交点である。 こ の場合、 原点 O と c と を通る線 3 a ' はコ 口 の中心軸 3 a を X — Z平面へ投影 した線にな リ 、 X軸と は角度 ]8 をなす。 本図か ら 明 ら かな よ う に
U c U = t an β
P c U 7 c = F
であ る 力 ら 、 X軸でぁ リ 中心軸 6 力 ら コ ロ 3 の中心: P c ま での距離を P c U c = y c と する と 、
y c 2 = F 2 + ( x tan j3 ) 2 従って
y c 2 Z F 2 - x 2 / ( F /tan S ) 2 = 1 · · ( 1 ) 式 ( 1 ) は双曲線を示す式である から、 コ ロ 3 の軸心 従っ て内外翰 1 、 2 で形成する軸道の 中心線は中心軸 6 に対 して双曲線である。
第 8 図は、 上記によ う に配置 し た コ ロ 3 に対 して内外 輪 1 、 2 が接触する状態を説明する ための図である。
前記の コ ロ 3 の中心点 P c を通 リ 、 コ ロ 3 の軸心 3 a に直角 な面と X軸 と の交点を Q とする。 こ の Q点を 中心 と してコ ロ 3 に内接及び外接する球 S i 及ぴ S o を考え る と (第 8 図では外接する球 S o を図示) 、 コ ロ 3 と球
S i 及び S o と の接点 P i 、 P o は垂線 Q P c 上にある こ と にな リ 、 P c 点か ら それぞれコ ロ 3 の半径 r だけ離 れた位置になる。 従っ て、 Q P c = R とすれば、 球 S S o の半径はそれぞれ R — ]: 、 R + r と な る。
点 P i 及ぴ P o を通 リ Y — Z 面に平行な面 と X軸 と の 交点をそれぞれ U i 及び U o と する と (第 9 図参照)
P i U i 及び P o U o はそれぞれ点 P i 及び点 P o か ら
X軸ま での距離を示 し、 原点 O カゝ ら距離 O U i 及び O U o はそれぞれ点 P i 及び点 P o の X軸上の座標を示すこ と にな る。 従っ て 、 O U i = x O U 0 X o P
U i = y i 、 P o U o = y o と する と 、 x i と y i 及び x o と y o の関係式 F ( x i 、 y i ) 及ぴ F ( x o 、 y o ) が、 それぞれ内外輪の軌道面 l a 、 2 a の曲面形状 を表す式と なる。
第 9 図は、 こ の関係を求め る ための関連部分の拡大図 であ る。
R を示す Q P c は、 軸 3 a に直角 でぁ リ 且つ点 U ' c は点 P c か ら X — Z 面への垂線が同面 と 交わる点であ る か ら 、 U ' 。 0 は軸 3 & ' と 直角 をなす。 従っ て
O Q = ( / cos β ) /cos β = x / co s2 β
R 2 = F 2 + { ( x ノ cos2 β ) s in β } 2
= F 2 + x 2t an2 β / cos 2 jS
次に Z Q P c U c - と する と 、 A Q P c U c は直角 三角形であ る か ら 、
Figure imgf000016_0001
と なる。 一方、 P c i = P c P o = r で且つ A Q P i U i 及び Δ Ο Ρ o U o は共に A Q P c U c と相似形であ る力 ら 、
Figure imgf000016_0002
と なる。 そ してこれらの式か ら 、 関係式 F ( x i 、 y i ) 、 F ( o . y o ) は、
Yl
Figure imgf000016_0003
2 C¾ ¾S F X2 / co ) 。
y° ^ . ~ ^ と な る。 これ ら の式は、 内外輪軌道面 l a 、 2 a の 曲面 形状を表す式であ るが、 二次曲面以上の特性を示す こ と はでき ない こ で ( X X ) と ( y i — y ) 及び
( x o - χ ) と ( y o — y c ) のそれぞれの比率を求め る と 、 式 ( 2 ) 乃至 ( 5 ) 力ゝ ら 、
Figure imgf000017_0001
/o-/c' co f 一 /c τ
と な リ 、 x と y c と の関係は ( 1 ) 式か ら双曲線でぁ リ 且つ上式で t an2 j8 は定数であ る から 、 X i と y i と の関 係及び x o と y o と の関係は双曲線でぁ リ 、 従っ て内外 輪軌道面 1 a 、 2 a は共通の 中心軸 6 を 中心 と した単葉 回転双曲面であ る。
例 えば内外輪軌道をそれぞれ双曲線の式
y I / a l 2 _ x i 2/ b i 2 =
y o 2 / a o 2— x o 2 / b o 2 = 1
と おいて、 F = 9 、 r = 1.5 、 β = 1 5。 と して実際に 計算する と 、 a i 、 b i 、 a o 、 b o の値は、 それぞれ 約 7.5、 30.7 、 10.5 、 36.2 と な リ 、 內外輪軌道面は 単葉回転双曲面 と して与え られる。
次ぎに、 中間回転体が 円錐形状の場合について説明す る 第 1 0 図は第 1 図に対応する 図でぁ リ 、 第 1 0 図の こ ろが リ こ ろ軸受は第 1 図の も の に較べて コ ロ 3 、 3 ' が 円筒形状ではな く 円錐形状になってい る点が異な る のみ であ る。
円錐形状コ ロ を用い る と 、 転が リ 性能は更に向上され る o
一方、 円錐こ ろ軸受では一般に こ ろの大端側のすベ リ 摩擦が問題になる が、 本発明の こ ろが リ こ ろ軸受ではこ の点が改良 されている。
第 1 1 図はこ の点を説明する ための図であ る。
前述の如 く 、 コ ロ 3 、 3 ' は内外輪から軸方向分力一 R i 、 一 R o を受け、 且つ R i > R o であ る 力 ら 、 図示 の如 く コ ロ 3 は軸心方向小端側へ動かそ う と する分力
( R i ' 一 R o ' ) を受ける。 又コ ロ 3 が 円錐形状であ る こ と か ら 、 図示の如 く 接蝕面に働 く 垂直力 Nに よ リ コ 口 3 は小端側か ら大端側へ押 し出 される軸方向分力 u を 受ける。
この よ う に、 コ ロ 3 に作用する分力 ( R i ' — R o ' ) と u と の大小に よ リ コ 口 3 は何れかの方向に動 く こ と に な リ 、 その動 く 方向にその動き を停止する ための環状部 が内輪 1 又は外輪 2 に設け られる こ と になる。 第 1 0 図 の実施例の軸受では ( R i ' — R o ' ) 〉 u と 佤定 して コ ロ 3 の小端側の内輪 1 上に鍔 9 を設けてい る。
こ の よ う に、 本発明 の 円錐こ ろ を用 いた軸受に よれば、 従来の 円錐こ ろ軸受において コ ロ 3 の大端側に作用 して いた引 き抜き力 u が大幅に低減 され、 コ ロ 3 の大端側又 は小端側には補助的な鍔を設け る だけでよ く 、 すベ リ 摩 擦に よ る P V値が荷重負荷能力 の制限にはな ら ない こ と にな る。
円錐こ ろ の場合の内外輪の軌道面の形状は、 円錐こ ろ の母線が傾斜 した直線であ る か ら 、 円筒 こ ろ の場合 と 同 様に単葉回転双曲面でぁ リ 、 こ れを 円錐母線の傾斜分だ け傾斜 させた形状にな る。
なお、 第 1 0 図の軸受は第 1 図の軸受に対応する構造 と している が、 これを第 6 図の軸受に対応する構造に し て も よ レヽ 。
又以上の実施例では、 軸 4 が回転する場合について説 明 したが 、 軸 4 及び内輪 1 が回転せずボス側 (図示せず) 及び外輪 2 が回転する軸受 と して も使用でき る こ と は勿 冊 であ o
更に、 以上では中間回転体を 円筒形状又は 円錐形状と したが、 これを鼓形又は太鼓形にする こ と も 可能であ る。
コ 口 の表面を楕円 の一部分が外側の軸を 中心 と して回 転 した鼓形にする場合には、 内輪を 円筒形状 と し外輪を 回転楕円面 と 回転双曲面 と を合成 した曲面で形成する。 又、 コ 口 の表面を楕円 の一部分がその 中心軸を 中心 と し て回転した太鼓形にする場合には、 内輪を回転楕円面 と 回転双曲面 と の合成曲面 と し外輪を 円筒形状にする。 〔発明の効果〕
以上の如 く 、 本発明 に よれば、 軌道内で中閬回転体を 傾斜させて配置 し、 内外輪を引 き離 し これを 中間回転体 か ら浮上させる と 共に中間回転体の軸線方向の動き を均 —化させる こ と に よ リ 、 軸受負荷能力及びこ ろが リ 性能 を向上 し大きなすベ リ 摩擦を伴わず焼付、 潤滑不良に伴 う 各種事故の発生を防止する こ と ができ る と 共に、 高速 回転を容易に し軸受効率を向上させる こ と ができ る。

Claims

請求の範囲
( I ) 内輪 と外輪 と 中間回転体 と を備えた構成体 と 、 付 勢手段 と を有 し、
前記内輪は、 一軸線ま わ リ の単葉回転双曲面 をな す内側軌道面を備え、
前記外輪は、 前記一軸線ま わ リ の単葉回転双 曲面 を なす外側軌道面を備え、
前記内側軌道面 と 前記外側軌道面 と は、 相対向 し 一端側か ら他端側に向かっ て半径が大き く な る軌道 を形成 し、
前記中間回転体は、 こ ろが リ 面が円筒形状又は円 錐形状でぁ リ 、 前記軌道において該中間回転体の中 心軸を前記軸線を含む断面から一定角度傾斜 して前 記軌道の円 周方.向 に複数個配設 さ れ、 該中間回転体 の表面は前記内側軌道面 と 前記外側軌道面 と に線状 に接触 し、
前記内輪又は外輪は、 前記中間回転体を前記内側 軌道面に沿っ て前記一軸線方向 において前記軌道半 径の小 さ い方向へ転がすよ う な一定方向 にのみ回転 し、
前記内輪又は外輪は、 前記一定方向 に回転す る と き の前記中間回転体の前記軸線方向の動き を停止 さ せる環状部を備えていて、
前記構成体を前記一軸線方向 に相対向 して配設 し 前記付勢手段は、 前記一軸線方向に相対向 して配 設 される前記内输間又は外輪間に設け られ、 該相対 向する 内輪同士又は外輪同士を前記軌道の間隔を狭 く する方向に付勢 し、
前記一軸線方向に相対向する 内輪同士又は外輪同 士であって前記付勢手段に よ っ て付勢されない も の は、 前記軸線方向 には動かない よ う に固定 されてい る 、
こ と を特徴と する こ ろが リ こ ろ軸受。
PCT/JP1991/001072 1991-08-09 1991-08-09 Ball-and-roller bearing WO1993003287A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019930701079A KR930702626A (ko) 1991-08-09 1991-08-09 감마 롤러 베어링
DE69131767T DE69131767T2 (de) 1991-08-09 1991-08-09 Rollenlager
AU83133/91A AU649708B2 (en) 1991-08-09 1991-08-09 Ball-and-roller bearing
US07/987,274 US5322374A (en) 1991-08-09 1991-08-09 Antifriction roller bearing
PCT/JP1991/001072 WO1993003287A1 (en) 1991-08-09 1991-08-09 Ball-and-roller bearing
EP91914451A EP0551516B1 (en) 1991-08-09 1991-08-09 Roller bearing
NO93931232A NO931232L (no) 1991-08-09 1993-03-31 Rullelager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1991/001072 WO1993003287A1 (en) 1991-08-09 1991-08-09 Ball-and-roller bearing

Publications (1)

Publication Number Publication Date
WO1993003287A1 true WO1993003287A1 (en) 1993-02-18

Family

ID=14014539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001072 WO1993003287A1 (en) 1991-08-09 1991-08-09 Ball-and-roller bearing

Country Status (7)

Country Link
US (1) US5322374A (ja)
EP (1) EP0551516B1 (ja)
KR (1) KR930702626A (ja)
AU (1) AU649708B2 (ja)
DE (1) DE69131767T2 (ja)
NO (1) NO931232L (ja)
WO (1) WO1993003287A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9403308U1 (de) * 1994-02-28 1994-04-28 INA Wälzlager Schaeffler KG, 91074 Herzogenaurach Ausgleichsgetriebe für ein Kraftfahrzeug
US5975762A (en) * 1997-10-14 1999-11-02 The Timken Company Tapered roller bearing with true rolling contacts
DE19912402A1 (de) * 1999-03-19 2000-09-21 Schaeffler Waelzlager Ohg Wälzlager für Längsbewegungen einer Schaltschiene
DE20314660U1 (de) 2003-09-23 2003-12-04 Ab Skf Lagerung für den Rotor einer Windkraftanlage
EP2833012A4 (en) * 2012-03-30 2015-06-17 Nsk Ltd BEARING DEVICE
RU2585437C2 (ru) * 2014-09-10 2016-05-27 Виктор Николаевич Хлопонин Роликовый подшипник качения
CN107076200B (zh) * 2014-11-03 2023-02-28 光洋轴承北美有限责任公司 滚子轴承组件
CN105065449B (zh) * 2015-07-09 2017-10-31 深圳市智康新能科技有限公司 自动减小间隙轴承
RU2613549C1 (ru) * 2015-11-16 2017-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Роликовый подшипник
RU2619476C1 (ru) * 2016-05-19 2017-05-16 Виктор Николаевич Хлопонин Сепаратор роликового подшипника качения
CN108035971A (zh) * 2018-01-15 2018-05-15 海南冠星电机有限公司 单向轴承
RU2685632C1 (ru) * 2018-06-14 2019-04-22 Виктор Николаевич Хлопонин Роликовый подшипник качения
US12018721B2 (en) 2020-01-27 2024-06-25 Volvo Truck Corporation Rotational lock in inner ring of outboard bearing to avoid lock washer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717132Y2 (ja) * 1975-10-31 1982-04-09

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB324792A (en) * 1929-01-17 1930-02-06 Humfrey Sandberg Company Ltd Improvements relating to clutch devices
JPS5121093B1 (ja) * 1968-03-29 1976-06-30
FR2615575B1 (fr) * 1987-05-22 1994-01-14 Glaenzer Spicer Roulement a rouleaux coniques entrecroises, et application a un moyeu pour automobile
JPH03113U (ja) * 1989-05-22 1991-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717132Y2 (ja) * 1975-10-31 1982-04-09

Also Published As

Publication number Publication date
EP0551516B1 (en) 1999-11-03
NO931232D0 (no) 1993-03-31
EP0551516A1 (en) 1993-07-21
US5322374A (en) 1994-06-21
AU8313391A (en) 1993-03-02
AU649708B2 (en) 1994-06-02
EP0551516A4 (ja) 1994-01-19
KR930702626A (ko) 1993-09-09
NO931232L (no) 1993-03-31
DE69131767D1 (de) 1999-12-09
DE69131767T2 (de) 2000-11-16

Similar Documents

Publication Publication Date Title
WO1993003287A1 (en) Ball-and-roller bearing
JP2938966B2 (ja) ころがり軸受クラッチ
CA2015041A1 (en) Rolling-contact bearing type clutch
JP2006242284A (ja) 鍔付円筒ころ軸受
JPH08296653A (ja) 保持器付自動調心ころ軸受
JPS62270819A (ja) ロ−ラベアリング
WO2018072754A1 (zh) 一种滚动深沟球轴承
US4795279A (en) Rolling ball separator
JPS6133298Y2 (ja)
WO2015057137A1 (en) Bearing for combined loads
WO1992016766A1 (fr) Dispositif absorbeur de couple
JP2857220B2 (ja) ころがりころ軸受
JP2016138572A (ja) スラストころ軸受
JP3480000B2 (ja) 転がり軸受
JPH09126233A (ja) クロスローラ軸受
Ricci Ball bearings subjected to a variable eccentric thrust load
EP1022476A1 (en) Rolling bearing
JP2006118591A (ja) 多点接触玉軸受
CA2093648A1 (en) Antifriction roller bearing
JP2010025191A (ja) 自動調心ころ軸受
JPS5855362B2 (ja) 二方向荷重型玉軸受
JP7483809B2 (ja) 転がり軸受
WO2024053321A1 (ja) ころ軸受
Bercea et al. Optimum initial axial compression due to preload in an arrangement of two tapered roller bearings Part 1: Analysis
JP3815054B2 (ja) スラスト玉軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR NO SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991914451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2093648

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1991914451

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991914451

Country of ref document: EP