WO1992018884A1 - Dispositif pour faire passer un fil a travers un tube - Google Patents

Dispositif pour faire passer un fil a travers un tube Download PDF

Info

Publication number
WO1992018884A1
WO1992018884A1 PCT/JP1991/001080 JP9101080W WO9218884A1 WO 1992018884 A1 WO1992018884 A1 WO 1992018884A1 JP 9101080 W JP9101080 W JP 9101080W WO 9218884 A1 WO9218884 A1 WO 9218884A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
coanda
supply device
inlet
spiral
Prior art date
Application number
PCT/JP1991/001080
Other languages
English (en)
Japanese (ja)
Inventor
Kiyoshi Horii
Kakuji Ohsumi
Original Assignee
Toa Kikai Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Kikai Kogyo Co., Ltd. filed Critical Toa Kikai Kogyo Co., Ltd.
Priority to BR919106685A priority Critical patent/BR9106685A/pt
Priority to KR1019920702312A priority patent/KR960007907B1/ko
Publication of WO1992018884A1 publication Critical patent/WO1992018884A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/08Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle through tubing or conduit, e.g. rod or draw wire for pushing or pulling
    • H02G1/086Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle through tubing or conduit, e.g. rod or draw wire for pushing or pulling using fluid as pulling means, e.g. liquid, pressurised gas or suction means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4485Installing in protective tubing by fluid drag during manufacturing

Definitions

  • the present invention relates to a wiring device. More specifically, the present invention provides a total extension having a number of bend bends.
  • the present invention relates to a wiring device that can easily and efficiently pass through optical fibers and the like, even if the length of the conductor is 100 m or more or the length of the drum is 1000 m or more.
  • optical fibers have been increasingly used as conductors.However, it is difficult to smoothly carry out the fiber without damaging the fiber by the conventional wiring method. However, even with the method using compressed gas, it was impossible to pass through the optical fiber with the connection terminal attached. For this reason, on the site, there is a drawback in that after the difficult wiring work has been completed, the more difficult end joining of the optical fiber must be performed using a microscope. Such labor was a heavy burden, even for skilled workers.
  • the disadvantages of the conventional wiring method are eliminated, and even if it is a long-distance conduit with many bends and a total length of 100 m or more, or a total length of 1000 m or more wound on a drum, Even with small tubes, high-speed and high-speed wiring can be easily performed.
  • the inventor of the present invention has already proposed a new wiring device. The device is based on the Coanda spiral flow, which the inventor of the present invention has been actively studying for application to various application fields. It was the principle method for that line.
  • this Coanda spiral flow has a large velocity difference and density difference between the axial flow through which the fluid flows and its surroundings, and shows a steep velocity distribution.
  • this spiral flow is a flow that converges on the pipe axis in the flow inside the pipe, the degree of turbulence is small, and it is possible to suppress severe contact with the pipe inner wall due to automatic vibration.
  • a method has been developed for conducting wires with high efficiency and without causing damage to conductors, etc., by means of brazing.
  • FIG. 1 is a schematic diagram showing the method and apparatus for that.
  • a Coanda spiral flow unit (3) is connected via a flexible hose (2) or the like to a predetermined conduit (1) for conducting a conductor c.
  • This Coandasno This Coandasno ,.
  • the Iranolehu Lunitt (3) has The compressed gas is supplied from the compressed gas supply means (5) through the Coanda slit (4) in the direction of the line of the pipe (1).
  • a predetermined conducting wire (7) is inserted into the suction inlet (6) of the Coanda spiral flow unit (3).
  • the conductor (7) is automatically conveyed by a flexible hose (2) and a spiral flow in the conduit (1), and the passage of the wire proceeds at a high speed.
  • a compressed gas supply means (5) is air or an appropriate cylinder of compressed gas such as N 2, or alternatively, it can be used air one co compressors. When a cylinder is used, it is sufficient that the supply pressure of the compressed gas to the Coanda spiral mouth unit (3) can be maintained at about 5 to 20 Kg / cm 2 .
  • the Coanda Spiral Flow Unit (3) has an annular ring between the connection port (8) to the pipeline and the suction port (6) for introducing the conductor (7).
  • a structure having a coanda slit (4), an inclined surface (9) in the vicinity thereof, and a compressed gas distribution chamber (10) can be shown.
  • the angle of the inclined surface (9) By setting the angle of the inclined surface (9) to, for example, about 5 to 70 °, a spiral flow is formed and the suction inlet is formed. A strong negative pressure suction force is generated in (6), and the wire (7) is guided by the negative pressure suction force to pass through the pipe (1) in FIG. 1 at high speed by a Coanda spiral flow.
  • the present invention has been made to solve the above-described problems, and can provide more stable, high-speed, long-distance traffic.
  • the purpose is to provide a new line device that can perform high-speed lines without damaging it.
  • the present invention achieves the above objects by providing a pipe connection port and an inlet for a lead wire or a guide wire, and a connector in a pipe direction.
  • a conductor or an induction wire is connected to an inlet of a conductor or an induction wire.
  • a wiring device characterized by including a Coandauff opening supply device for supplying a wire.
  • FIG. 1 is a configuration diagram illustrating a traffic route method proposed by the inventor of the present invention and a device therefor.
  • FIG. 2 is a cross-sectional view illustrating a Coanda spiral flow unit for this purpose.
  • FIG. 3 is a sectional view illustrating the device of the present invention
  • FIG. 4 is a partially enlarged sectional view thereof.
  • 5 and 6 are cross-sectional views showing still another example of the present invention.
  • FIGS. 7 (a) and 7 (b) are schematic diagrams illustrating the motion states of the wires in the conventional method and the method according to the present invention.
  • FIG. 8 shows a correlation between the feed speed of an optical fiber and its distance as an embodiment of the present invention.
  • a Coanda spout supply device for supplying a lead wire or a guide wire to the suction inlet (6) of the Coanda spiral port mouthpiece (3).
  • a feeder for supplying a lead wire or a guide wire to the suction inlet (6) of the Coanda spiral port mouthpiece (3).
  • FIG. 3 shows an example of the wiring device of the present invention.
  • a Coanda spout supply device (11) is provided at the suction inlet (6) of the Coanda spy lanole reflex unit (3).
  • a Coanda spiral flow generator is provided, and the Coanda flow feeder (11) is equipped with a Coanda slit.
  • the pipe connection port (8) of one unit is connected to the suction inlet port (6) of another unit.
  • a single unit may be used.
  • the Coandaf mouth supply device (11) has a smaller diameter than the suction inlet (6) of the Coandas spiral flow unit (3), and is capable of storing compressed gas such as air. It is preferable to provide a diameter of the inlet (14) that suppresses the flow and is slightly larger than the diameter of the conductor (7). Moreover, as shown in an enlarged scale in FIG. 4, a small-diameter Coanda flow supply device for introducing and suctioning the conductor (7).
  • one or two or more annular grooves (15) shall be provided at a position between the inlet and outlet (14) and the annular co-and-slit (12). However, it is more advantageous.
  • the groove (15) the backflow of the pressurized gas is more effectively suppressed due to the so-called Ravidence effect.
  • the multi-stage Coanda spiral floor unit (3) may have various shapes and structures as exemplified in FIGS. 5 and 6, for example.
  • the Coanda flow supply device (11) is a sealing plate (16) (17) made of a hard elastic plate such as rubber or resin, a metal plate such as iron or stainless steel, or a laminated plate thereof.
  • a noise reduction device may be attached to the inlet (14) to reduce the noise when passing through the wire.
  • the conductor (7) can be sent out while applying tension by an opposing roll rotated by driving of a motor or the like.
  • a groove (21) may be provided on one or both peripheral end surfaces of the roll (19) (20).
  • the groove (21) may be made of an elastic material.
  • a split type Coanda spiral mouth unit that can be disposed in the middle of a pipeline to provide a line for a long distance of 500 m or more is provided in a booth. You may be prepared in the evening. This booster further maintains and stabilizes the spiral flow for transit lines.
  • Coanda flow supply device (11) may be a Coanda flowing type as shown in FIG.
  • a sensor for detecting the movement of a conducting wire or an induction wire is provided in a pipe near the Coanda spiral fluit, and a feed of the feeder (13) is performed by a signal from the sensor. Controlling the speed is also effective.
  • the optical sensor can be used to stabilize the conducting wire if the conductor (7) vibrates or the tip of the wire undulates. If the vibration or undulation of the conductor (7) in the conduit (1) is detected, reduce the feed speed of the feeder (13) so that the state shown in Fig. 7 (b) is obtained. Fix it.
  • the diameter of the connection port (8) with the pipe (1) was set to 8 mm using the Coanda spiral flow hood (3) having the two-stage unit configuration shown in Fig. 3, and the Use the configuration shown in Fig. 4 where the diameter of the inlet (1 2) of the device (11) is 2.3 mm and the plastic tube with a diameter of 6 mm inserted into the drum 1000 m (500 m: high density)
  • a 1.8 mm diameter optical fiber was passed through a polyethylene tube (500 m: low-density polyethylene tube). This optical fiber has a weight of about 2 g Zm and is made of quartz fiber.
  • the angle of inclination of the annular slit was set to 20 °, and compressed air at a pressure of 8 kg / cm 2 was introduced from the annular slit.
  • Example 2 In the same manner as in Example 1, a wire was connected to a 500-meter tube. As a result, the connection was completed in 10 minutes.
  • the device according to the present invention realizes extremely high-speed traffic.
  • the present invention can be used as a communication line to an information communication cable or an underground pipe of a conductor, an indoor or outdoor piping line, or a power line to such a line.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Cable Installation (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Supports For Pipes And Cables (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

L'invention se rapporte à un dispositif pour faire passer un fil à travers un tube au moyen d'une unité à écoulement spiral par effet Coanda. Ce dispositif est pourvu d'une unité d'avance du fil à écoulement par effet Coanda, qui sert à acheminer un fil conducteur ou un fil de guidage, cette unité d'avance étant disposée au niveau d'une ouverture d'aspiration-introduction du dispositif pour faire passer le fil, de façon à permettre l'introduction du fil selon le mode énoncé ci-dessus. Un dispositif d'alimentation est en outre placé à l'extérieur de l'unité d'avance à écoulement par effet Coanda. Il est ainsi possible d'obtenir une introduction stable du fil à des vitesses élevées et avec un niveau d'efficacité élevé. Grâce à cette invention, il est également possible de faire passer un mince fil de fibre optique à travers un tube sur une longue distance.
PCT/JP1991/001080 1991-04-10 1991-08-14 Dispositif pour faire passer un fil a travers un tube WO1992018884A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR919106685A BR9106685A (pt) 1991-04-10 1991-08-14 Dispositivo de instalacao
KR1019920702312A KR960007907B1 (ko) 1991-04-10 1991-08-14 통선장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7790991 1991-04-10
JP3/77909 1991-04-10
JP3/139286 1991-06-11
JP13928691 1991-06-11

Publications (1)

Publication Number Publication Date
WO1992018884A1 true WO1992018884A1 (fr) 1992-10-29

Family

ID=26418956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001080 WO1992018884A1 (fr) 1991-04-10 1991-08-14 Dispositif pour faire passer un fil a travers un tube

Country Status (9)

Country Link
US (1) US5172890A (fr)
EP (1) EP0508016A1 (fr)
KR (1) KR960007907B1 (fr)
CN (1) CN1040044C (fr)
AU (1) AU643554B2 (fr)
BR (1) BR9106685A (fr)
CA (1) CA2076545C (fr)
NO (1) NO301145B1 (fr)
WO (1) WO1992018884A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9419079D0 (en) * 1994-09-22 1994-11-09 Bicc Plc Method and apparatus for installing an optical fibre element in a tube
NL1003130C2 (nl) * 1996-05-15 1997-11-18 Nederland Ptt Trekorgaan voor het installeren van een kabel in een buis alsmede een buizenstelsel voorzien van een dergelijk trekorgaan.
SE9900623L (sv) 1999-02-22 2000-06-26 Ericsson Telefon Ab L M Anordning för matning av optofiber
NL1013901C2 (nl) * 1999-12-21 2001-06-25 Koninkl Kpn Nv Werkwijze voor het met behulp van een flu´dum onder druk installeren van optische vezels of kabels in een buis.
US20040065444A1 (en) * 2002-07-03 2004-04-08 Smith David R. Pulsed deployment of a cable through a conduit located in a well
GB0506568D0 (en) * 2005-03-31 2005-05-04 British Telecomm Optical fibre air chamber apparatus
GB0817639D0 (en) * 2008-09-26 2008-11-05 British Telecomm Cable installation apparatus
BR112014019410A8 (pt) * 2012-02-07 2017-07-11 Commw Scient Ind Res Org Dispositivo e método de redução de atrito de um fluxo de fluido viscoso em um duto
CN104977685B (zh) * 2014-04-14 2018-10-30 泰科电子(上海)有限公司 光缆安装设备
CN105304223B (zh) * 2015-12-03 2017-07-28 浙江正导光电股份有限公司 一种微细铜线穿模引导装置
EP4036621A1 (fr) * 2021-02-01 2022-08-03 Dipl.-Ing. Dr. Ernst Vogelsang GmbH & Co. KG Procédé d'insertion d'au moins un câble dans un tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104607A (ja) * 1982-11-08 1984-06-16 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ 光フアイバケ−ブルの布設方法および装置
JPS6364510A (ja) * 1986-09-02 1988-03-23 堀井 清之 電線・ケ−ブルの貫通方法
JPS6345508U (fr) * 1986-09-11 1988-03-28
JPH01500304A (ja) * 1986-07-16 1989-02-02 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ 伝送線路部材の推進力制御装置および伝送線路吹き流し装置
JPH0271924A (ja) * 1988-09-01 1990-03-12 Mitsubishi Electric Corp ワイヤカット放電加工装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3367981D1 (en) * 1982-11-08 1987-01-15 British Telecomm Optical fibre transmission lines
ATE23926T1 (de) * 1982-11-08 1986-12-15 British Telecomm Optische uebertragungsfasern.
US4691896C1 (en) * 1982-11-08 2001-05-08 British Telecomm Optical fibre transmission line
JPH0660640B2 (ja) * 1985-09-09 1994-08-10 清之 堀井 管路に螺旋流体流を生成させる装置
JPS6345508A (ja) * 1986-08-13 1988-02-26 Nippon Denso Co Ltd エンジンの吸入空気量測定装置
DE3707970A1 (de) * 1987-03-12 1988-09-22 Rheydt Kabelwerk Ag Verfahren zum transport einer optischen faser
GB8706803D0 (en) * 1987-03-23 1987-04-29 British Telecomm Optical fibre installation
JP2506108B2 (ja) * 1987-04-20 1996-06-12 住友石炭鉱業株式会社 多段コアンダスパイラルフロ−生成装置
JPS6464517A (en) * 1987-09-02 1989-03-10 Sumitomo Coal Mining Wiring method through conduit
GB8809594D0 (en) * 1988-04-22 1988-05-25 Bicc Plc Method of conveying optical fibre member
GB8813068D0 (en) * 1988-06-02 1988-07-06 British Telecomm Transmission line installation
JPH0811625B2 (ja) * 1988-06-17 1996-02-07 フクビ化学工業株式会社 短繊維集塊の解繊・搬送方法
GB8906765D0 (en) * 1989-03-23 1989-05-10 British Telecomm Fibre storage
DE9001082U1 (fr) * 1990-02-01 1991-05-29 Witte - Gmbh, 3065 Nienstaedt, De
CA2024856C (fr) * 1990-05-18 1999-02-23 Kiyoshi Horii Methode pour passer un cable ou un fil dans un passage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104607A (ja) * 1982-11-08 1984-06-16 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ 光フアイバケ−ブルの布設方法および装置
JPH01500304A (ja) * 1986-07-16 1989-02-02 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ 伝送線路部材の推進力制御装置および伝送線路吹き流し装置
JPS6364510A (ja) * 1986-09-02 1988-03-23 堀井 清之 電線・ケ−ブルの貫通方法
JPS6345508U (fr) * 1986-09-11 1988-03-28
JPH0271924A (ja) * 1988-09-01 1990-03-12 Mitsubishi Electric Corp ワイヤカット放電加工装置

Also Published As

Publication number Publication date
AU643554B2 (en) 1993-11-18
CN1065733A (zh) 1992-10-28
BR9106685A (pt) 1993-06-29
KR960007907B1 (ko) 1996-06-15
NO913199L (no) 1992-10-12
CA2076545C (fr) 1996-07-09
EP0508016A1 (fr) 1992-10-14
US5172890A (en) 1992-12-22
CN1040044C (zh) 1998-09-30
KR930700991A (ko) 1993-03-16
AU8333491A (en) 1992-11-17
NO301145B1 (no) 1997-09-15
NO913199D0 (no) 1991-08-15

Similar Documents

Publication Publication Date Title
CA2024856C (fr) Methode pour passer un cable ou un fil dans un passage
WO1992018884A1 (fr) Dispositif pour faire passer un fil a travers un tube
CN1177242C (zh) 一种安装光纤的方法及其设备
JP2803695B2 (ja) 通線装置
JP2511619B2 (ja) 通線方法
JP2548465B2 (ja) 通線装置
JP2583680B2 (ja) 通線装置
JPH082131B2 (ja) コアンダフロー通線装置
JPH075351A (ja) 通線装置
JP2837021B2 (ja) 通線装置
JPH06217433A (ja) 通線装置
JPH0810965B2 (ja) 通線方法
JPS6364510A (ja) 電線・ケ−ブルの貫通方法
JPH06205513A (ja) 通線装置
JPS6364511A (ja) 電線・ケ−ブル貫通用のコアンダスパイラルフロ−装置
JPH01292302A (ja) 光ファイバの布設方法
JPH10148617A (ja) 管路診断方法とその装置
EP2743747B1 (fr) Installation de fibre optique plastique ou polymère destinée à être utilisée dans un réseau
JP2002010424A (ja) ケーブル通線用管路端末具
JPH04157290A (ja) 既設配管の通線方法
JPH05346511A (ja) 光屋内配線方法および光屋内線路
JPH0549133A (ja) 管路排水方法
JPS6364509A (ja) 電線・ケ−ブルの貫通搬送方法
JPS60168564A (ja) 多岐配管の管内面ライニング施工法
JPH04169838A (ja) 細径管路の障害検知方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2076545

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA KR

ENP Entry into the national phase

Ref country code: CA

Ref document number: 2076545

Kind code of ref document: A

Format of ref document f/p: F