WO1992016595A1 - Verfahren zum herstellen von aluminiumoxid zum schleifen und/oder polieren aus aluminiumhydroxid - Google Patents

Verfahren zum herstellen von aluminiumoxid zum schleifen und/oder polieren aus aluminiumhydroxid Download PDF

Info

Publication number
WO1992016595A1
WO1992016595A1 PCT/EP1992/000620 EP9200620W WO9216595A1 WO 1992016595 A1 WO1992016595 A1 WO 1992016595A1 EP 9200620 W EP9200620 W EP 9200620W WO 9216595 A1 WO9216595 A1 WO 9216595A1
Authority
WO
WIPO (PCT)
Prior art keywords
compacts
polishing
aluminum oxide
aluminum
temperature
Prior art date
Application number
PCT/EP1992/000620
Other languages
English (en)
French (fr)
Inventor
Bernhard H. Schepers
Original Assignee
Mineralien-Werke Kuppenheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mineralien-Werke Kuppenheim Gmbh filed Critical Mineralien-Werke Kuppenheim Gmbh
Publication of WO1992016595A1 publication Critical patent/WO1992016595A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to a method for producing aluminum oxide, which is used for grinding and / or polishing.
  • Aluminum oxide powders used for polishing also known as polishing clay, are produced on an industrial scale by calcining aluminum hydroxides.
  • aluminum hydroxides are produced on an industrial scale from bauxite by digestion with sodium hydroxide solution (BAYER process), more rarely also by digestion with soda.
  • the aluminum hydroxide obtained by these processes is dewatered (calcined) according to DE-PS 932 425 at high temperatures up to 1250 ° C. in the tube furnace to the oxide and is in the transition stage of y-aluminum oxide after the heat treatment to. -Aluminium oxide.
  • polishing clays produced in this way are not homogeneous with regard to the crystal phase composition due to the broad grain spectrum (10 to 120 ⁇ ). They are therefore not suitable for polishing sensitive surfaces, for example in metallography or for polishing plastics, if absolutely scratch-free surfaces are required.
  • From DE-25 14 758 C3 it is already known to produce an active alumina for use in chemical process engineering (cleaning and drying of liquids and gases as well as catalysis) by dry compression of aluminum hydroxide to an apparent density in the green granular Condition of at least 2.2 g / cm 3 and subsequent activation by heat treatment at temperatures such that the active clay obtained still has a residual water content of 1.6 to 18.1%.
  • the aim of the known method is to improve the bru resistance of active alumina granules while at the same time maintaining the absorption properties, which is based on their highly porous structure with a large specific surface area.
  • active alumina granules are neither determined nor suitable as agents for grinding or even polishing.
  • a particularly demanding area of application is the polishing of plastic lenses, e.g. made of CR39 polycarbonate. All attempts to use commercially available polishing clay for this purpose have so far been unsuccessful since the high requirements in terms of optics could not be met with them. When polishing plastic lenses, hairline cracks and scratches occur or the processed lenses reflect in so-called "orange peel colors". The material removal is often insufficient, so that traces of grinding remain on the surfaces.
  • special aluminum oxides have hitherto been used for which aluminum hydroxides are calcined, which are caused by thermal decomposition of aluminum salts such as alum, aluminum chloride, aluminum nitrate etc.
  • the object of the present invention is to make available a simpler method with which aluminum oxide powders can be produced which are also suitable for polishing sensitive surfaces, in particular in the field of optics.
  • an aluminum oxide which meets the high requirements can also be produced from industrially produced aluminum hydroxide (that is to say from aluminum hydroxide which has been obtained by the BAYER process or by the soda process) if, first of all, compacts are made from produces the aluminum hydroxide by compacting it and then calcining these compacts, the temperature and holding time during the calcination being selected so that practically anhydrous aluminum oxide is obtained, which consists predominantly of i -AiL 0 and a specific one Surface of not more than 50 m / g. Studies have shown that in this way a very uniform alumina is obtained in the phase composition, the primary particles of which are predominantly flat. are cheniform or scaly.
  • the particle structure for which the specific surface area of the powder particles is a measure, can be set quite precisely and above all repeatably by choosing the calcining conditions, namely by choosing the calcining temperature and the calcining time. In this way it is possible to produce “tailor-made” aluminum oxide, the phase composition of which is optimally adapted to the specific application (the particular grinding or polishing task).
  • it is necessary to compress the aluminum hydroxide it is preferably dry compressed to an apparent density of at least 2.1 g / cm 3 , more preferably to an apparent density of 2.3 g / cm 3 . How to achieve such a compression is known to the person skilled in the art from DE-25 14 758 C3.
  • the compacts are preferably comminuted (granulated) before calcining, expediently to particles with a diameter of less than 5 mm, preferably to particles with a diameter of less than 3 mm. If these limits are observed for the particle size of the aluminum hydroxide compacts, this contributes to the fact that the resulting calcine is quite homogeneous in its grain size and phase composition.
  • the calcining itself can take place under known conditions, in air, in a vacuum, or under a protective gas.
  • the Highly compressed aluminum hydroxide initially passes into the so-called f phase during gradual heating, y aluminum oxide is a mixture of different transition oxides with a high specific surface area. From a temperature of about 1100 ° C, these transition oxides gradually change into the stable ⁇ .- aluminum oxide with a hexagonal crystal structure.
  • this transition temperature In order for the aluminum oxide powder to consist predominantly of o (aluminum oxide, this transition temperature must in any case be reached and kept long enough. It is expedient to carry out the calcination in such a way that a temperature of at least 1150 ° C. is reached the calcining at temperatures between 1150 ° C.
  • the heat treatment is preferably carried out at such a high temperature and until such time that no y-aluminum oxide is present.
  • a specific surface area of 0.5 m 2 / g to 25 m 2 / g is preferred strives, depending on the calcination conditions (maximum temperature and their holding time) either a micro-abrasive grain with a specific surface in the range of approx. 0.5 to 5 m 2 / g or polishing clay with a specific surface in the range of approx. 5 up to 25 m 2 / g can be produced. It has been shown that by controlling the calcining process, the specific surface area in the preferred range from 0.5 to 25 m 2 / g can be set with an accuracy of better than + 1.5 m 2 / g, which is a great advantage of the inventive method is.
  • the primary particles agglomerated in the calcined granulate are exposed by grinding. How finely the powder is ground depends on the intended use.
  • the aluminum oxide powder is preferably ground to particle sizes smaller than 8 Jim.
  • the process according to the invention not only leads to a micro-abrasive grain or a polishing clay which fulfills the technical requirements even in terms of optics, but is also very inexpensive since it can start from aluminum hydroxide manufactured on a large industrial scale and there is none during calcining special, cost-driving environmental problems occur.
  • Aluminum hydroxide produced according to the BAYER process is dry compacted into approximately palm-sized compacts (Schülpen) with an apparent density of 2.3 g / cm 3 . The compacts are then crushed so that they only have a diameter between 1 mm and 3 mm.
  • the granules produced in this way are heated in an indirectly heated rotary kiln in a first calcination step to 500 to 600 ° C. in about 60 minutes, the aluminum hydroxide being converted into ⁇ - -alumina.
  • the temperature is gradually increased to approximately 1300 ° C. and held until the specific surface of the aluminum oxide reaches one 14 m 2 / g has dropped. Preliminary tests can determine when this is the case.
  • the specific surface is determined using the known BET method.
  • the aluminum oxide granules are allowed to cool and are then ground, e.g. in a ball mill to expose the agglomerated primary grain of the aluminum oxide present in the granulate.
  • the granules are g-ground so finely that there are no powder particles that are larger than 8 ⁇ (diameter).
  • Polishing clay produced in this way was dispersed in water using the additives known in grinding and polishing technology. With this dispersion, plastic lenses made of polycarbonate CR39 could be flawlessly and absolutely scratch-free and without the appearance of tarnishing colors in the specified cycle times of e.g. 4 min. be polished.
  • the calcining does not have to be carried out in one continuous process. Rather, it is also possible to use a two-stage process by compressing the aluminum hydroxide in a first stage and first converting it to ⁇ -alumina at a relatively low temperature (approx. 400 ° C. to 600 ° C.). This first stage of the process is particularly suitable for implementation in an aluminum smelter, which is already set up to produce and calcine aluminum hydroxide.
  • the y-aluminum oxide produced in the first stage is easy to handle and tradable; If required, it can then be further processed at a different location in a second stage to give differently fine, homogeneous polishing clay or aluminum oxide micro-abrasive grain by using a second calcination at a temperature above 1100 ° C under controlled conditions, predominantly in oC Aluminum oxide with a predetermined specific surface area is converted and ground if necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Aluminiumoxid zum Schleifen und/oder Polieren wird aus Aluminiumhydroxid, welches großtechnisch hergestellt sein kann (insbesondere nach dem BAYER-Verfahren), hergestellt, indem zunächst hochverdichtete Preßlinge aus dem Aluminiumhydroxid gebildet und diese dann bei einer solchen Temperatur mit solcher Dauer kalziniert werden, dass man praktisch wasserfreies Aluminiumoxid erhält, welches überwiegend aus α-Aluminiumoxid besteht. Man erhält auf diese Weise ein bezüglich der Phasenzusammensetzung sehr homogenes Aluminiumoxidpulver, welches je nach den Kalzinierungsbedingungen als Mikro-Schleifkorn oder als Poliertonerde entsteht und auch höchsten Anforderungen in der Optik gerecht wird.

Description

Verfahren zum Herstellen von Aluminiumoxid zum Schleifen und/oder Polieren aus Aluminiumhydroxid
Die Erfindung betrifft ein Verfahren zum Herstellen von Aluminiumoxid, welches zum- Schleifen und/oder Polieren ver¬ wendet wird. Zum Polieren verwendete Aluminiumoxidpulver, auch als Poliertonerden bezeichnet, werden großtechnisch durch Kalzination von Aluminiumhydroxiden hergestellt.
Aluminiumhydroxide werden im Zuge der Aluminiumherstellung großtechnisch aus Bauxit durch Aufschluß mit Natronlauge (BAYER-Verfahren) hergestellt, seltener auch durch Auf¬ schluß mit Soda. Das nach diesen Verfahren erhaltene Alu- iniumhydroxid wird nach der DE-PS 932 425 bei hohen Tempera¬ turen bis zu 1250°C im Röhrenofen zum Oxid entwässert (kalzi¬ niert) und befindet sich nach der Wärmebehandlung im Übergangs- Stadium von y-Aluminiumoxid zu . -Aluminiumoxid.
Die so hergestellten Poliertonerden sind wegen des breiten Kornspektrums (10 bis 120 μ ) bezüglich der Kristallphasen- zusammensetzung nicht homogen. Sie eignen sich deshalb nicht für das Polieren von empfindlichen Oberflächen, z.B. in der Metallographie oder beim Polieren von Kunststoffen, wenn abso- lut kratzerfreie Oberflächen verlangt werden. Aus der DE-25 14 758 C3 ist es bereits bekannt, eine Aktiv¬ tonerde zur Verwendung in der chemischen Verfahrenstechnik (Reinigung und Trocknung von Flüssigkeiten und Gasen sowie die Katalyse) herzustellen durch Trockenverdichtung von Aluminium- hydroxid bis zu einer scheinbaren Dichte im grünen körnigen Zu¬ stand von mindestens 2,2 g/cm3 und anschließendes Aktivieren durch Wärmebehandlung bei solchen Temperaturen, dass die er¬ haltene Aktivtonerde noch einen Restwassergehalt von 1,6 bis 18,1 % aufweist. Ziel des bekannten Verfahrens ist es, die Bruc festigkeit von Aktivtonerdegranulaten unter gleichzeitigem Er¬ halt der Absorptionseigenschaften zu verbessern, die auf ihrer hochporösen Struktur mit großer spezifischer Oberfläche beruht. Solche Aktivtonerdegranulate sind als Mittel zum Schleifen oder gar Polieren weder bestimmt noch geeignet.
Ein besonders anspruchsvolles Anwendungsgebiet ist das Polieren von Kunststofflinsen, z.B. aus Polykarbonat CR39. Alle Versuche hierfür handelsübliche Poliertonerden zu verwenden, waren bis¬ her erfolglos, da mit ihnen die hohen Anforderungen in der Opti nicht erfüllt werden konnten. Beim Polieren von Kunststofflinse treten Haarrisse und Kratzer auf oder die bearbeiteten Linsen reflektieren in sogenannten "Orangenschalenfarben". Häufig ist auch der Materialabtrag ungenügend, so dass noch Schleifspuren auf den Oberflächen sichtbar bleiben. Für die Polieraufgaben in der Optik und in anderen besonders anspruchsvollen Anwendungs¬ gebieten müssen heute bislang spezielle Aluminiumoxide verwende werden, für die man Aluminiumhydroxide kalziniert, die durch thermische Zersetzung von Aluminiumsalzen wie Alaunen, Alu¬ miniumchlorid, Aluminiumnitrat usw. oder durch Kalzinieren von speziell gefällten Böhmiten (Aluminiummonohydrat) herge¬ stellt werden. Infolge der andersartigen Hydroxide, von denen hierbei ausgegangen wird, haben die so gewonnenen speziellen Aluminiumoxide eine andere Phasenzusammensetzung. Die Her- Stellung dieser speziellen Aluminiumoxide ist jedoch erheb¬ lich teurer als bei Aluminiumoxiden, die durch Kalzinieren von Aluminiumhydroxiden gewonnen werden, die nach dem BAYER- Verfahren oder nach dem Soda-Verfahren aus Bauxit hergestellt werden. Ausserdem ist die thermische Zersetzung von Alu¬ miniumsalzen häufig mit umwelttechnischen Problemen ver¬ knüpft und auch deshalb aufwendig.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein einfacheres Verfahren verfügbar zu machen, mit welchem Alu- miniumoxidpulver hergestellt werden können, die sich auch zum Polieren von empfindlichen Oberflächen, insbesondere im Bereich der Optik, eignen.
Diese Aufgabe wird gelöst durch ein Verfahren mit den im An¬ spruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen des Verfahrens sind Gegenstand der abhängigen Ansprüche.
überraschenderweise hat sich gezeigt, dass man ein den hohen Anforderungen entsprechendes Aluminiumoxid auch aus gro߬ technisch hergestelltem Aluminiumhydroxid (also aus Alu¬ miniumhydroxid, welches nach dem BAYER-Verfahren oder nach dem Soda-Verfahren gewonnen wurde) erzeugen kann, wenn man zunächst Preßlinge aus dem Aluminiumhydroxid herstellt, in- dem man dieses verdichtet und diese Preßlinge anschließend kalziniert, wobei die Temperatur und Haltezeit beim Kalzi¬ nieren so gewählt werden, dass man praktisch wasserfreies Aluminiumoxid erhält, welches überwiegend aus i -AiL 0, be¬ steht und eine spezifische Oberfläche von nicht mehr als 50 m /g hat. Untersuchungen haben gezeigt, dass man auf diese Weise ein in der Phasenzusammensetzung sehr gleichförmiges Aluminiumoxid erhält, dessen Primärteilchen vorwiegend platt- chenförmig oder schuppenförmig sind. Damit lassen sich auch empfindlichste Oberflächen in der Optik kratzerfrei polieren. Als ein weiterer besonderer Vorteil hat sich gezeigt, dass man die Teilchenstruktur, für die die spezifische Oberfläche der Pulverteilchen ein Maß ist, durch Wahl der Kalzinierbedingungen, nämlich durch Wahl der Kalziniertemperatur und der Kalzinierdauer, recht genau und vor allem wiederholbar einstellen kann. Auf diese Weise ist es möglich, "maßgeschneidertes" Aluminium- oxid zu erzeugen, dessen Phasenzusammensetzung dem kon¬ kreten Anwendungsfall (der besonderen Schleif- oder Polier¬ aufgabe) optimal angepaßt ist. Für das Ergebnis des Verfahrens ist es notwendig, das Aluminiumhydroxid zu verdichten; es wird vorzugsweise trocken auf eine scheinbare Dichte von min- destens 2,1 g/cm3, noch besser auf eine scheinbare Dichte von 2,3 g/cm3 verdichtet. Wie man eine solche Verdichtung er¬ reichen kann, ist dem Fachmann aus der DE-25 14 758 C3 be¬ kannt.
Damit beim anschließenden Kalzinieren die Innenbereiche der
Preßlinge im wesentlichen denselben Temperaturverlauf erleben wie die Aussenbereiche, werden die Preßlinge vor dem Kal¬ zinieren vorzugsweise zerkleinert (granuliert) , und zwar zweckmässigerweise zu Teilchen mit weniger als 5 mm Durchmesser, vorzugsweise zu Teilchen mit weniger als 3 mm Durchmesser. Hält man diese Grenzen für die Teilchengröße der Aluminium¬ hydroxidpreßlinge ein, dann trägt das dazu bei, dass das ent¬ stehende Kalzinat in seiner Körnung und Phasenzusammen¬ setzung recht homogen ist.
Das Kalzinieren selbst kann unter bekannten Bedingungen statt¬ finden, in Luft, im Vakuum, oder unter einem Schutzσas. Das hochverdichtete Aluminiumhydroxid geht beim allmählichen Er¬ hitzen zunächst in die sogenannte f -Phase über, y -Aluminium¬ oxid ist ein Gemisch verschiedener Ubergangsoxide mit hoher spezifischer Oberfläche. Ab einer Temperatur von etwa 1100°C gehen diese Übergangsoxide allmählich in das stabile ^.-Aluminium oxid mit hexagonaler Kristallstruktur über. Damit das Aluminium¬ oxidpulver schließlich überwiegend aus o( -Aluminiumoxid besteht, muss diese Umwandlungstemperatur auf jeden Fall erreicht und lan genug gehalten werden. Zweckmässigerweise führt man das Kalzinie so durch, dass eine Temperatur von wenigstens 1150°C erreicht wird. Am besten führt man das Kalzinieren bei Temperaturen zwi¬ schen 1150°C und 1400°C durch. Je höher die Temperatur beim Kalzinieren ist und je länger die hohe Temperatur gehalten wird, desto mehr y-Aluminiumoxid wird in höhere Übergangsoxide und schließlich in -Aluminiumoxid umgewandelt; gleichzeitig ver¬ ringert sich die spezifische Oberfläche des Kalzinates, welche beim l/VAluminiumoxid mit typischerweise 200 bis 250 m2/g sehr groß ist. Vorzugsweise führt man die Wärmebehandlung bei so hohe Temperatur und so lange durch, bis kein y-Aluminiumoxid mehr vorhanden ist. Für Zwecke der vorliegenden Erfindung wird bevor¬ zugt eine spezifische Oberfläche von 0,5 m2/g bis 25 m2/g ange¬ strebt, wobei je nach Kalzinationsbedingungen (maximale Tempera¬ tur und deren Haltezeit) entweder ein Mikro-Schleifkorn mit einer spezifischen Oberfläche im Bereich von ca. 0,5 bis 5 m2/g oder Poliertonerde mit einer spezifischen Oberfläche im Bereich von ca. 5 bis 25 m2/g hergestellt werden können. Dabei hat sich gezeigt, dass sich durch die Steuerung des Kalziniervorgangeε die spezifische Oberfläche in dem bevorzugten Bereich von 0,5 bis 25 m2/g mit einer Genauigkeit von besser als + 1,5 m2/g ein- stellen läßt, was ein großer Vorteil des erfindungsgemässen Ver¬ fahrens ist. Die im kalzinierten Granulat agglomerierten Primärteil¬ chen werden durch Mahlen freigelegt. Wie fein das Pul¬ ver gemahlen wird, richtet sich nach dem Anwendungs¬ zweck. Vorzugsweise wird das Aluminiumoxidpulver auf Teilchengrδßen kleiner als 8 Jim gemahlen.
Das erfindungsgemässe Verfahren führt nicht nur zu einem Mikro-Schleifkorn oder einer Poliertonerde, die die techni¬ schen Anforderungen selbst in der Optik erfüllt, sondern ist auch sehr preiswert, da es von großtechnisch herge¬ stelltem Aluminiumhydroxid ausgehen kann und da beim Kal¬ zinieren keine besonderen, kostentreibenden Umweltprobleme auftreten.
Ausführungsbeispiel
Nach dem BAYER-Verfahren hergestelltes Aluminiumhydroxid wird zu ungefähr handtellergroßen Preßlingen (Schülpen) mit einer scheinbaren Dichte von 2,3 g/cm3 trocken verdichtet. Anschließend werden die Preßlinge zerkleinert, so dass sie nur noch einen Durchmesser zwischen 1 mm und 3 mm haben. Das so hergestellte Granulat wird in einem indirekt be¬ heizten Drehrohrofen in einer ersten Kalzinationsstufe in ca. 60 Minuten auf 500 bis 600°C erhitzt, wobei sich das Aluminiumhydroxid in γ- -Aluminiumoxid umwandelt. In einer zweiten Kalzinationsstufe wird die Temperatur all¬ mählich auf ca. 1300°C gesteigert und so lange gehalten, bis die spezifische Oberfläche des Aluminiumoxids auf einen Wert von ca. 14 m2/g gesunken ist. Wann das der Fall ist, kann durch Vorversuche ermittelt werden. Die spezifische Oberfläche wird nach dem bekannten BET-Verfahren bestimmt.
Nach dem Kalzinieren läßt man das Aluminiumoxidgranulat ab¬ kühlen und mahlt es dann, z.B. in einer Kugelmühle, um das im Granulat vorliegende, agglomerierte Primärkorn des Alu¬ miniumoxids freizulegen. Im vorliegenden Ausführungsbeispiel wird das Granulat so fein g-emahlen, dass keine Pulverteilchen vorhanden sind, die größer als 8 μ (Durchmesser) sind.
So hergestellte Poliertonerde wurde mit den in der Schleif¬ und Poliertechnik bekannten Additiven in Wasser dispergiert. Mit dieser Dispersion konnten Kunststofflinsen aus dem Polykarbonat CR39 einwandfrei und absolut kratzerfrei und ohne das Auftreten von Anlauffarben in den vorgegebenen Taktzeiten von z.B. 4 min. poliert werden.
Vergleichsbeispiel
Zum Vergleich wurde unter sonst gleichen Bedingungen eine Poliertonerde aus nicht-verdichtetem Aluminiumhydroxid herge-
stellt. Beim Polieren der gleichen Kunststofflinsen verur¬ sachte diese Poliertonerde Kratzer und Anlauffarben und zeigte gleichzeitig einen deutlich geringeren Abrieb als erfindungs- gemäss hergestellte Poliertonerde. Auch eine Verlängerung der Polierzeit über 4 min. hinaus brachte keine Verbesserung der Ergebnisse.
Das Kalzinieren muss im Rahmen der vorliegenden Erfindung nicht in einem durchgehenden Verfahrensgang erfolgen. Es ist vielmehr auch möglich, ein zweistufiges Verfahren anzuwenden, indem in einer ersten Stufe das Aluminiumhydroxid verdichtet und bei verhältnismässig niedriger Temperatur (ca. 400°C bis 600°C) zunächst in ^-Aluminiumoxid überführt wird. Diese erste Verfahrensstufe eignet sich besonders zur Durchführung in einer Aluminiumhütte, welche ohnehin darauf eingerichtet ist, Aluminiumhydroxid herzustellen und zu kalzinieren. Das in der ersten Stufe hergestellte y-Aluminiumoxid ist bequem handhabbar und handelbar; es kann dann nach Bedarf auch an anderem Ort in einer zweiten Stufe maßgeschneidert zu unter- schiedlich feiner, homogener Poliertonerde oder Aluminiumoxid- Mikroschleifkorn weiterverarbeitet werden, indem es durch eine zweite Kalzination bei einer Temperatur von oberhalb 1100°C unter kontrollierten Bedingungen überwiegend in oC-Aluminium¬ oxid mit vorgegebener spezifischer Oberfläche umgewandelt und bedarfsweise gemahlen wird.

Claims

Patentansprüche:
1. Verfahren zum Herstellen von Aluminiumoxid aus Alu¬ miniumhydroxid, durch
(a) Herstellen von Preßlingen aus Aluminiumhydroxid durch Verdichten des Aluminiumhydroxids und
(b) anschließendes Vermindern des Wassergehalts des Aluminium¬ hydroxids durch Wärmebehandlung der Preßlinge,
dadurch gekennzeichnet, dass zum Gewinnen von Aluminium¬ oxid zum Schleifen und/oder Polieren Preßlinge aus Aluminium¬ oxid bei einer solchen Temperatur und mit solcher Dauer, kalziniert werden, dass man praktisch kristallwasserfreies Al~0, erhält, welches überwiegend aus *C-A1 _ 0-, besteht und eine spezifische Oberfläche von nicht mehr als 50 m2/g (nach BET) hat, und dass die Preßlinge nach dem Kalzinieren er¬ forderlichenfalls zerkleinert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, ddaassss ddaass AAII ((OOHH)) -,, aauuff ιeine scheinbare Dichte von mindestens 2,1 g/cm3 verdichtet wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das AI (OH) , auf eine scheinbare Dichte von wenigstens 2,3 g/cm3 verdichtet wird.
4. Verfahren nach einen der vorstehenden Ansprüche, da¬ durch gekennzeichnet, dass die Preßlinge auf Größen kleiner als 5 mm (Durchmesser) zerkleinert werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Preßlinge auf Größen kleiner als 3 mm (Durch¬ messer zerkleinert werden.
6. Verfahren nach einem der vorstehenden Ansprüche, da¬ durch gekennzeichnet, dass beim Kalzinieren eine
Temperatur von 1150°C erreicht wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass beim Kalzinieren Temperaturen zwischen 1150°C und 1400°C erreicht werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Haltezeit bei den Temperaturen zwischen
1150°C und 1400°C so gewählt wird, dass ein Kalzinat mit vorgewählter spezifischer Oberfläche entsteht.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Haltezeit so gewählt wird, dass eine spezifische Oberfläche zwischen 0,5 m2/g bis 25 m2/g (nach BET) erreicht wird.
10. Verfahren nach einem der vorstehenden Ansprüche, da¬ durch gekennzeichnet, dass die Haltezeit und Tempera¬ tur so gewählt werden, dass das A120„ zu wenigstens 80 Gew.-% aus - -Al20^ besteht.
11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das entstandene A1_0, zum Aufbrechen on Agglomeraten gemahlen wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das entstandene Al^O, auf Teilchengrößen kleiner als 8 μm gemahlen wird.
13. Verfahren nach einem der vorstehenden Ansprüche, da¬ durch gekennzeichnet, dass die Preßlinge bei einer solchen Temperatur und mit solcher Dauer wärmebehandelt wer¬ den, dass das Aluminiumoxid kein f -A1_0, mehr enthält.
PCT/EP1992/000620 1991-03-21 1992-03-20 Verfahren zum herstellen von aluminiumoxid zum schleifen und/oder polieren aus aluminiumhydroxid WO1992016595A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4109264A DE4109264A1 (de) 1991-03-21 1991-03-21 Verfahren zum herstellen von aluminiumoxid zum schleifen und/oder polieren aus aluminiumhydroxid
DEP4109264.3 1991-03-21

Publications (1)

Publication Number Publication Date
WO1992016595A1 true WO1992016595A1 (de) 1992-10-01

Family

ID=6427872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/000620 WO1992016595A1 (de) 1991-03-21 1992-03-20 Verfahren zum herstellen von aluminiumoxid zum schleifen und/oder polieren aus aluminiumhydroxid

Country Status (2)

Country Link
DE (1) DE4109264A1 (de)
WO (1) WO1992016595A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069690A1 (en) * 2008-12-17 2010-06-24 Evonik Degussa Gmbh Process for preparing an aluminium oxide powder having a high alpha-al2o3 content
DE102011111224A1 (de) 2011-08-20 2013-02-21 Evonik Degussa Gmbh Verfahren zur Herstellung von alpha-Aluminiumoxid
EP3582932B1 (de) 2017-02-15 2022-03-30 Saint-Gobain Ceramics&Plastics, Inc. Aluminiumoxid-schleifpartikel für kfz-endbearbeitungszusammensetzungen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339031C1 (de) * 1993-11-15 1995-01-12 Treibacher Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung eines Schleifmittels auf Basis Korund

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168606A2 (de) * 1984-06-14 1986-01-22 Norton Company Verfahren zur Herstellung von Tonerdekörpern
JPS61127619A (ja) * 1984-11-21 1986-06-14 Nippon Light Metal Co Ltd 超微粒α−アルミナの製造方法
EP0254470A1 (de) * 1986-07-18 1988-01-27 Alcan International Limited Aluminiumoxid und keramische Materialien, die daraus hergestellt werden
EP0281265A1 (de) * 1987-02-26 1988-09-07 Sumitomo Chemical Company, Limited Verfahren zur Darstellung von leicht monodispergierbarem Aluminiumoxid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE932425C (de) * 1951-08-28 1955-09-01 Heinrich Van Dipl-Ing Thiel Verfahren zur Herstellung von Poliertonerde
CH598137A5 (de) * 1974-04-19 1978-04-28 Alusuisse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168606A2 (de) * 1984-06-14 1986-01-22 Norton Company Verfahren zur Herstellung von Tonerdekörpern
JPS61127619A (ja) * 1984-11-21 1986-06-14 Nippon Light Metal Co Ltd 超微粒α−アルミナの製造方法
EP0254470A1 (de) * 1986-07-18 1988-01-27 Alcan International Limited Aluminiumoxid und keramische Materialien, die daraus hergestellt werden
EP0281265A1 (de) * 1987-02-26 1988-09-07 Sumitomo Chemical Company, Limited Verfahren zur Darstellung von leicht monodispergierbarem Aluminiumoxid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 01, no. 0314 24. Oktober 1986 & JP,A,61 127 619 ( NIPPON LIGHT METAL ) 14. Juni 1986 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069690A1 (en) * 2008-12-17 2010-06-24 Evonik Degussa Gmbh Process for preparing an aluminium oxide powder having a high alpha-al2o3 content
US8834833B2 (en) 2008-12-17 2014-09-16 Evonik Degussa Gmbh Process for preparing an aluminium oxide powder having a high alpha-Al2O3 content
DE102011111224A1 (de) 2011-08-20 2013-02-21 Evonik Degussa Gmbh Verfahren zur Herstellung von alpha-Aluminiumoxid
WO2013026688A1 (de) 2011-08-20 2013-02-28 Evonik Degussa Gmbh Verfahren zur herstellung von alpha-aluminiumoxid
EP3582932B1 (de) 2017-02-15 2022-03-30 Saint-Gobain Ceramics&Plastics, Inc. Aluminiumoxid-schleifpartikel für kfz-endbearbeitungszusammensetzungen

Also Published As

Publication number Publication date
DE4109264A1 (de) 1992-09-24

Similar Documents

Publication Publication Date Title
EP1904252B1 (de) Herstellungsverfahren nanokristalliner sinterkörper auf basis von alpha-aluminiumoxid
DE68927106T2 (de) Kleine partikel und plättchen von alpha-aluminiumoxyd
DE3219607C2 (de)
DE3873377T2 (de) Verfahren zur darstellung von leicht monodispergierbarem aluminiumoxid.
DE3627317A1 (de) Sinterbare aluminiumnitridzusammensetzung, sinterkoerper aus dieser zusammensetzung und verfahren zu seiner herstellung
EP0209084A1 (de) Verfahren zum Herstellen eines keramischen, polykristallinen Schleifmittels
DE69303414T2 (de) Polykristalliner, lichtdurchlässiger Aluminiumoxidkörper und Verfahren zu seiner Herstellung
DE3418424C2 (de)
DE3318168A1 (de) Optisch durchscheinende mullit-keramik
DE10121656B4 (de) Verfahren zur Herstellung eines verbesserten Schleifkorns
WO1992016595A1 (de) Verfahren zum herstellen von aluminiumoxid zum schleifen und/oder polieren aus aluminiumhydroxid
DE3604848C2 (de)
DE4113476A1 (de) Polykristalline, gesinterte schleifkoerner auf basis von alpha-al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts), verfahren zu ihrer herstellung und deren verwendung
DE2123045B2 (de) Verfahren zur herstellung von feinteiligen metalloxiden und deren verwendung zur herstellung von gesinterten hitzebestaendigen formteilen
WO2014096142A1 (de) Keramikwerkstoff
DE4218288A1 (de) Transparente keramiken und verfahren zu ihrer herstellung
EP0622438B1 (de) Keramisches Korundschleifmittel
DE2111583A1 (de) Verfahren zur Herstellung dichter Koerper aus Aluminiumoxid oder Magnesiumaluminatspinell
EP0394501A1 (de) Verfahren zur Herstellung von alpha-A1203-Sinterkörpern
DE2733004C3 (de) Tonerde-Agglomerate
DE2733063C3 (de) Tonerde-Agglomerate
DE4229901A1 (de) Herstellung von granuliertem Strontiumcarbonat mit strontiumhaltigem Bindemittel
DE2733055C3 (de) Tonerde-Agglomerate
DE2604083C3 (de) Verfahren zur Herstellung von Aluminiumoxyd
DD154096B1 (de) Verfahren zur herstellung von aktivem technischem magnesiumoxid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase