WO1992014046A1 - System for controlling revolution frequency of prime mover in hydraulically driven vehicle - Google Patents

System for controlling revolution frequency of prime mover in hydraulically driven vehicle Download PDF

Info

Publication number
WO1992014046A1
WO1992014046A1 PCT/JP1992/000115 JP9200115W WO9214046A1 WO 1992014046 A1 WO1992014046 A1 WO 1992014046A1 JP 9200115 W JP9200115 W JP 9200115W WO 9214046 A1 WO9214046 A1 WO 9214046A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
control
traveling
hydraulic
prime mover
Prior art date
Application number
PCT/JP1992/000115
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Ichimura
Seiji Tamura
Akira Tatsumi
Mitsuo Kihara
Junichi Hosono
Kazuo Asano
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3545191A external-priority patent/JP2744707B2/ja
Priority claimed from JP3060923A external-priority patent/JP2634330B2/ja
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP92904397A priority Critical patent/EP0528042B1/en
Priority to DE69210713T priority patent/DE69210713T2/de
Publication of WO1992014046A1 publication Critical patent/WO1992014046A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/103Infinitely variable gearings of fluid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4061Control related to directional control valves, e.g. change-over valves, for crossing the feeding conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed

Definitions

  • the present invention relates to a prime mover speed control device used for a hydraulically driven vehicle such as a wheel type hydraulic excavator.
  • the present applicant has previously proposed the following hydraulically driven vehicle in, for example, Japanese Patent Application Laid-Open No. 3-135584.
  • this hydraulically driven vehicle during traveling acceleration, the engine speed is reduced according to the amount of depression of the traveling pedal, and the flow rate supplied to the traveling hydraulic motor is increased.
  • the engine rotation speed is gradually reduced according to the passage of time without immediately reducing the engine tilling speed to the idling speed even after the travel pedal is released.
  • slow return control is performed to gradually return the traveling control valve to the neutral position S.
  • the purpose of the present invention is to provide a hydraulic motor / vehicle motor rotation control device that prohibits engine control during a specific operation.
  • the present invention provides a hydraulic pump driven by a prime mover, a traveling hydraulic motor driven by oil discharged from the hydraulic pump during traveling, and a hydraulic oil discharged from the hydraulic pump during work.
  • An operation work device to be operated a traveling pedal for controlling a traveling speed according to an operation amount during traveling, and a deceleration determining means for determining that the depression amount of the traveling pedal is reduced.
  • a first motor rotation speed control for controlling the rotation of the prime mover according to the amount of depression of the pedal; and a delay when the amount of depression of the travel pedal is determined to be small is determined to be small.
  • the present invention is applied to a prime mover rotational speed control device S of a hydraulically driven vehicle comprising: a prime mover rotational speed control unit that performs second prime mover rotational speed control for reducing and controlling the prime mover rotational speed.
  • the above object is achieved by providing a prohibiting means for prohibiting the second motor rotation speed control under specific operating conditions even when the amount of depression of the travel pedal is reduced.
  • a work judging means for judging that the working hydraulic work is ready to operate is included in the prohibiting means, and the work working is activated by the work judging means.
  • the second prime mover speed control is not performed, and the operation feeling during work is not impaired.
  • the traveling hydraulic motor may be further provided with a traveling determination means for determining that the traveling hydraulic motor is operating. In this case, the traveling hydraulic motor is operated by the traveling determining means.
  • the rotation speed control unit controls the rotation speed of the prime mover by the second rotation speed control of the prime mover.
  • the engine speed is increased according to the depressed amount. That is, the first prime mover speed control (normal prime mover speed control) is performed.
  • the engine speed should be adjusted according to the amount of depression. The engine speed is reduced over time without declining. That is, the second prime mover speed control (slow down control) is performed. Therefore, the occurrence of cavitation during traveling deceleration is prevented.
  • the work determining means and the traveling determining means may be provided.
  • a motor rotation speed control device includes: a forward / backward detecting means for detecting forward, backward and neutral states of a vehicle; a work brake device S for applying a braking force to traveling wheels during work;
  • the present invention can be applied to a vehicle having a brake detection means for detecting that the brake device S is operating.
  • the work determination means determines that the work is performed when the forward / backward movement detection means detects a neutral state and the brake detection means detects the operation of the work brake device S.
  • a motor rotation speed control device includes: a forward / backward detection unit that detects forward, backward, and neutral states of the vehicle rain; a work brake device that applies a braking force to traveling wheels during work;
  • the present invention can also be applied to a vehicle provided with a brake detecting means for detecting that the work brake device ⁇ is not operating, and a hydraulic motor operation detecting means for detecting that the traveling hydraulic motor is operating.
  • the traveling determination unit detects that the forward / reverse detection unit detects a state other than neutral, the brake detection unit does not detect the operation of the work brake device ⁇ g, and the operation of the traveling hydraulic motor is not performed. When detected, it is determined that the vehicle is traveling.
  • the rotation speed control means includes: command means for commanding the target engine rotation speed; detection means for detecting a governor lever position S representing the control rotation speed; It is preferable to provide a driving means for driving and controlling the governor lever based on the difference between the number and the control rotation speed.
  • the second prime mover speed control may be achieved by delaying the drive control timing of the governor lever based on a difference between the target engine speed and the control speed. It may be.
  • the idle speed set by the speed control means is as follows.
  • the prime mover speed is set to the first idle speed
  • the prime mover speed is set to the first idle speed.
  • the idle speed is set lower during work and higher than when running, so that the fuel during work is not degraded. The following effects are sometimes obtained.
  • the engine does not drag when accelerating, improving acceleration.
  • the control valve for controlling the flow rate of the oil flowing into the hydraulic motor allows the pump discharge oil to flow at a flow rate corresponding to the thirteen-year-old running pedal, but the prime mover speed is a predetermined value. It is preferable to start the valve opening in the area that is equal to or greater than the stepping speed that is accelerated.
  • the hydraulic oil is supplied to the traveling hydraulic motor. It does not stop or emit black smoke.
  • the prohibition means is configured to include a determination step when the stepping-on time of the travel pedal is determined, and the depression time determination means determines that the travel pedal is not depressed for a predetermined time or more. In this case, it is possible to prohibit the control of the prime mover speed by the second prime mover speed control.
  • FIG. 1 is a diagram showing a first embodiment of the overall configuration of a motor rotation speed control device, a hydraulic circuit, and a brake circuit according to the present invention.
  • FIG. 2 is an enlarged view of each part of FIG.
  • FIG. 3 is an enlarged view of each part of FIG.
  • FIG. 4 is an enlarged view of each part of FIG.
  • Fig. 5 is an inverted view of the wheel type hydraulic excavator.
  • FIG. 6 is a detailed block diagram of the controller of FIG.
  • FIG. 7 is a schematic diagram of the delay control circuit and the servo control circuit of FIG. 6 implemented by a program.
  • FIG. 8 is a block diagram showing details of the controller in the second embodiment.
  • Fig. 9 is a flowchart when the delay control circuit and servo control circuit in Fig. 8 are realized by a program.
  • FIG. 10 is a graph showing an example of the traveling pilot pressure, the engine speed, and the stroke of the control valve spool in the traveling control valve used in each of the above embodiments.
  • FIG. 11 is a graph showing another example of the travel pilot pressure, the engine speed, and the stroke of the control valve spool in the travel control valve used in each of the above embodiments.
  • a first embodiment in the case where the present invention is applied to a rotation speed control device of a wheel type hydraulic excavator will be described with reference to FIGS.
  • the mouth-down control is performed during driving, and the slow-down control is prohibited during work such as excavation. It is intended to improve the operation feeling when the engine speed is controlled by the travel pedal during work.
  • the wheel hydraulic excavator has an upper revolving unit U S and a lower traveling unit LT, and a work attachment AT is attached to the upper revolving unit U S.
  • Figure 1 shows the traveling hydraulic circuit, speed control circuit, and brake circuit of this type of hydraulic excavator. 2 to 4 are enlarged views of each part in FIG.
  • the control valve 2 is switch-controlled by a pilot hydraulic circuit including a hydraulic pump 5, a pie port valve 6, a slow return valve 7, and a forward / reverse switching valve 8.
  • the governor 2 la of the engine 21 is connected to the pulse motor 32 via a link mechanism 31, and the rotation of the pulse motor 32 controls the rotation speed of the engine 21. That is, the rotation speed increases with the forward rotation of the pulse motor 32 and decreases with the reverse rotation.
  • the rotation of the pulse motor 32 is controlled by a control signal from the controller 33.
  • a potentiometer 34 is connected to the governor 2 la. The potentiometer 34 detects a governor lever position corresponding to the rotation speed of the engine 21 and detects a governor position detection ⁇ (hereinafter referred to as a control rotation speed). Input to controller 33 as N rp.
  • the controller 33 is also connected to the fuel lever 23 provided in the cab of the upper revolving superstructure US, the ⁇ -coil of the forward / reverse selector switch 35, and the W terminal of the brake switch 36.
  • a pressure gauge 37 provided in a pipeline between the outlet valve 6 and the forward / reverse switching valve 8 is connected. The pressure gauge 37 detects a pilot pressure Pi generated in proportion to the operation amount of the travel pedal 6a and inputs the detected pilot pressure Pi to the controller 33.
  • the fuel wrapper 23 is for manually changing the rotation speed of the engine 21, and inputs a rotation speed signal No corresponding to the operation amount to the controller 33.
  • the common terminal of the forward / reverse selector switch 35 is connected to the battery 38, and the f and r terminals are connected to the solenoid of the forward / reverse selector valve 8 via the normally closed contacts RS1 and RS2 of the relay R.
  • the forward / reverse switching valve 8 is switched to the N, F, and R positions, respectively, in accordance with the switching to the n, f, and r positions.
  • a high-level signal indicating a neutral state is input to the controller 33.
  • the forward / reverse selector valve 8 When the forward / reverse selector valve 8 is switched to the F position (forward position) or the R position yang (reverse position) and the travel pedal 6a is operated, the discharge pressure of the hydraulic pump 5 is controlled by the pilot valve 6, and the pedal 6a Is guided to the pilot port 2a or 2b of the control valve 2 via the slow return valve 7 and the forward / reverse switching valve 8, and the control valve 2 is switched by a predetermined amount in a predetermined direction. At this time, the engine speed is also reduced according to the operation amount of the travel pedal 6a as described later. Of the discharge oil of the hydraulic pump 1 that rotates according to the operation amount of the travel pedal 6 a, only the amount corresponding to the switching amount of the control valve 2 is guided to the hydraulic motor 4. As a result, the hydraulic motor 4 is moved, and the vehicle moves forward or backward at a speed corresponding to the operation amount of the travel pedal 6a.
  • the brake switch 36 is selected and operated by the operator during running, parking, and work.
  • the common terminal is connected to the battery 38, and the W terminal is connected to the controller 33.
  • the W terminal of the brake switch 36 is also connected to a relay coil RC, and the relay coil RC is excited as the switch 36 is switched to the W position.
  • the above-mentioned normally closed contacts RS 1 and 2 are opened.
  • the forward / reverse switching switch 35 and the forward / reverse switching valve 8 are shut off, and the switch 35 is in the f-position fi or the r-position.
  • the forward / reverse selector valve 8 maintains the neutral position SN even if the operation is performed in the above.
  • the discharge oil from the above-described hydraulic pump 1 is also guided to a working cylinder (for example, a boom cylinder) 52 via a control valve 51.
  • the control valve 51 is operated by the work lever 51a to extend and contract the cylinder 52, thereby driving the work attachment to perform work.
  • the control valve 51 may be switched by a hydraulic pilot.
  • the engine speed can be controlled by the traveling pedal as described later, and finer control (fine adjustment) can be performed than when the fuel lever 23 is used to control the engine speed. It contributes to noise reduction and improved fuel efficiency without increasing the engine speed.
  • 100 indicates a brake system
  • the system 100 has a positive main brake system S108 that applies service brakes with air from the compressed air source 101 that sends out compressed air, and the brake is released by the compressed air from the compressed air source 100, and the compressed air is exhausted.
  • the vehicle is equipped with a negative parking brake device 106 that applies a brake.
  • the main brake device 108 and the parking brake device S 106 are simultaneously applied during work.
  • the compressed air source 101 is connected to the air tank 101c via a check valve 101b to connect the delivery of the compressor 101la operated by the engine 21. Further, a relief valve 101d for keeping the internal pressure of the fuel tank 101c constant is provided.
  • One input line 102a connected to the air tank 101c is kneaded to the input port of the travel brake valve 103, and the other input line 102b is connected to one input port of the brake switching valve 104. To be kneaded.
  • the output port of the traveling brake valve 103 is connected to the other input port of the brake switching valve 104.
  • the traveling brake valve 103 outputs a pressure corresponding to the straddling amount of the pedal 103a to the output port, and when the valve 103a is released, the output port communicates with the atmosphere port 103b.
  • the brake switching valve 104 is operated by switching the brake switch 36 to the terminals T, P, and W, respectively, so that the travel position S (T), the parking position (P), and the working position (W) can be moved to the respective positions g. Switch.
  • the brake switching valve 104 is also provided with an exhaust port 104a.
  • One output port of the brake switching valve 104 is connected to a negative type parking brake device S106 by a line 105, and the other output port is connected to a positive type main brake device S108 by a line 107. It is connected. Further, the output port of the travel brake valve 103 is connected to the main brake device 108 through a pipe 109 in which a check valve 110 is arranged, and the air pressure from the travel brake valve 103 is applied to the main brake device 108. Allow to flow directly to
  • the pipeline 107 connected to the main brake device S108 is connected to the input port of the pneumatic-hydraulic conversion booster device S108a, the output port of which is connected to the brake cylinder 108b for multiple wheels. Connected to. When the brake cylinder 108b pushes the brake drum 108d by the brake cylinder 108b, the brake is applied. Also, 108 e is a return spring.
  • the pipeline 105 connected to the parking brake g106 is connected to the input port of the pneumatic-to-hydraulic conversion booster 106a, and the biston load 106b is connected to the brake lever 106c. Brakesh is connected to the 1 06 d. The brake drum 106e is pressed by the brake shoe 106d to apply the brake.
  • a return spring 106 f is inserted into the piston load 106 b, and the restoring force is constantly urged in the direction of applying the parking brake. Therefore, the parking brake device S106 releases the brake when the compressed air is supplied, and operates the brake when the compressed air is exhausted.
  • the brake switching valve 104 when the brake switch 36 is switched to the traveling position lightning T, the brake switching valve 104 is switched to the T position S shown in the figure, and the compressed air source 101 supplies compressed air to the parking brake device S106.
  • the parking brake is deactivated, and when the brake pedal 103a is depressed, the main brake device 108 is activated during traveling, so-called service brake is activated.
  • the brake switch 36 is switched to the working position W, the brake switching valve 104 is switched to the W position, and regardless of the depression of the brake pedal 103a, air is supplied to the main brake device 108 and the service brake is released. At the same time as the working, the compressed air is exhausted from the parking brake device S106, so the parking brake works.
  • FIG. 6 is a conceptual diagram illustrating the details of the controller 33.
  • the controller 33 includes two function generators 33a, 33b, a selection circuit 33c, a maximum value selection circuit 33d, a delay control circuit 33e, a servo control circuit 33f, Gate-33 g, 33 h.
  • the signal indicating the pilot pressure Pi detected by the pressure gauge 37 (also indicating the travel pedal depression amount 0 P) is output from the function generators 33 a and 33 b, the delay control circuit 33 e and the AND gate 3 Entered in 3 h.
  • the walnut generators 33a and 33b are determined by functions (rotational speed characteristics) LI and L2 that associate the pilot pressure Pi with the target rotation speed of the engine 21. It outputs the full number of rotations N t, N d.
  • the function L1 is a running speed characteristic suitable for running, and L2 is a working speed characteristic suitable for performing work using the work attachment AT. L1 has a steeper rise in rotation speed than L2, and the maximum rotation speed is also set higher. In other words, during work, the engine speed can be controlled by the travel pedal 6a with the speed characteristics suitable for the work, and during running, the engine speed can be controlled by the travel pedal 6a with the speed characteristics suitable for the run. .
  • the selection circuit 3 3 c outputs the rotation speed Nt according to the running rotation speed characteristic L 1, the fixed contact X kneaded to the generator 3 3 a, and the rotation speed according to the working rotation speed characteristic L 2. It has a fixed contact Y connected to a frequency generator 33b that outputs Nd, and has a fixed contact Z that is grounded. When the surface fixed contact Z is connected, a rotation speed signal indicating a rotation speed lower than the idling rotation speed is selected.
  • the selection circuit 33c is switched by signals from AND gate 33g and AND gate 33h.
  • the non-inverting input terminal of the AND gate 33g is connected to the W terminal of the brake switch 36 and the neutral terminal n of the forward / reverse switching switch 35.
  • the inverting input terminal of the AND gate 33h is connected to the W terminal of the brake switch 36 and the neutral terminal n of the forward / reverse switching switch 35, and the non-inverting input terminal is connected to the pressure gauge 37. ⁇ has been.
  • the brake switch 36 is switched to the W position S, the Yasuko W goes high, and the W terminal goes low at the T and P positions.
  • the forward / reverse selector switch 35 is switched to the neutral position g n, the neutral terminal n goes high, and the n terminal goes low at positions f and r.
  • the traveling signal output from the AND gate circuit 33h is at a high level during actual traveling, and the work signal output from the AND gate circuit 33g is at a high level during work.
  • the delay control circuit 33 receives the output signals of AND gates 33 g and 33 h indicating the traveling state or the working state and the pilot pressure Pi indicating the amount of depression of the traveling pedal. e calculates the governor lever position target ⁇ N ro and inputs it to the servo control circuit 33 f.
  • the servo control circuit 33 f also receives the current control rotation speed, ie, the governor lever position S detection ⁇ N rp, from the potentiometer 34 described above. According to the procedure shown in (1), control is performed to change the engine speed to the governor lever position S target value Nro. In other words, both circuits 33e and 33f perform slowdown control only when the running speed is low, and in other cases, control the normal speed according to the travel pedal depression amount.
  • FIG. 7 shows a control procedure when the delay control circuit 33e and the servo control circuit 33f are realized by a program.
  • step S1 it is determined whether traveling or work is performed based on signals from the AND gates 33g and 33h. If the output signal of ANDGADE 33g is at a high level, it is determined to be working, and if the output signal of ANDGADE 33h is at a high level, it is determined to be traveling. If it is determined that the vehicle is running, the process proceeds to step S2.
  • step S3 If it is determined in step S2 that the operation amount 0p of the pedal 6a is equal to or greater than the predetermined value 0 po, in step S3 the deceleration flag F1 is set to 1 and the process proceeds to step S4, where the current target rotation speed N roa Is smaller than the previous value N ro 1.
  • the fact that Nroa ⁇ Nr01 indicates that the traveling pedal 6a is being operated in the deceleration direction, that is, that the deceleration command has been issued.
  • step S4 If step S4 is denied, that is, if it is determined that the operation is not being performed in the deceleration direction, the deceleration flag F1 is set to zero in step S5, and the process proceeds to step S12 described later.
  • step S6 When affirmative, that is, when it is determined that the operation is being performed in the deceleration direction, the process proceeds to step S6, and it is determined whether the variable i is zero. This variable i indicates how many times the control loop of FIG. 7 has been repeated.
  • the deceleration flag F1 is set to 1 in step S3, and is set to zero in step S5 after the negation of step S4. Indicates that deceleration operation is being performed.
  • step S6 When step S6 is affirmed, in step S7, a predetermined value io (however, io> 0) is substituted for a variable i, and the process proceeds to step S8, where the unit is calculated from the previous actual target rotation speed N ro 1.
  • the number of rotations ⁇ N is subtracted, that is, N rol— ⁇ ⁇ ⁇ ⁇ is set as the current actual number of rotations N ro and the process proceeds to step S9.
  • step S9 the previous actual target rotation speed N ro 1 is replaced by the current actual rotation speed N r, and the process proceeds to step S21.
  • step S6 if the step S6 is rejected, i is incremented by “ ⁇ 1” in the step S10, and the actual number of revolutions N ro is reduced in the step S11 to the previous actual number.
  • the target rotational speed is replaced by N rol and the process proceeds to step S9.
  • step S2 it is determined in step S14 whether the deceleration flag F1 is 1 or not. If affirmed, the process proceeds to step S4, and if denied, the predetermined value is set to i in step S12. At step S13, the value io is substituted, and at step S13, the previous target rotational speed N roa is substituted for the current actual rotational speed N ro, and the routine proceeds to step S9.
  • step S 21 the difference N rp—N ro between the current governor lever position S and the actual governor lever position indicating the rotational speed is determined, and the result is stored in a memory as a rotational speed difference A.
  • step S22 it is determined whether or not IAI ⁇ K by using a predetermined reference rotational speed difference K. If step S22 is affirmed, the process proceeds to step S23, where it is determined whether or not the rotation speed difference A> 0.If A> 0, the current control rotation speed is higher than the actual building rotation speed Nro, In step S24, a signal for commanding a reverse rotation of the motor is output to the pulse motor 32 in order to lower the engine speed from the current speed by a predetermined unit speed ⁇ ⁇ . As a result, the pulse motor 32 rotates in the reverse direction, and the rotation speed of the engine 21 decreases by N.
  • the above-described maximum value ⁇ N of the unit rotation speed is the maximum rotation speed that can be reduced during execution of one loop.
  • step S23 If step S23 is denied, since the control speed is lower than the target speed Nro, the motor rotates forward in step S25 to increase the engine speed from the current value by the unit speed ⁇ N. Is output to the pulse motor 32. As a result, the pulse motor 32 rotates forward and the rotation speed of the engine 21 increases by ⁇ N. If step S22 is negative, the process proceeds to step S26 to output a motor stop signal, whereby the rotation speed of the engine 21 is maintained at a constant value. Execution of steps S24 to S26 returns to the beginning.
  • steps S1 to S14 described above represent processing troubles by the delay control circuit 33e, and steps S21 and thereafter represent processing procedures by the servo control circuit 33f. You.
  • the engine speed is controlled as follows.
  • both the main brake device S 108 and the parking brake device 106 operate as described above to apply the work brake.
  • the forward / reverse switching switch 35 is switched to the neutral position Sn
  • the output of the AND gate 33 g becomes high level
  • the selection circuit 33 c is switched to the Y contact.
  • the working speed characteristic L2 is selected from the frequency generator 33b.
  • the traveling pedal is depressed with the brake switch 36 switched to the T or P position ⁇ and the forward / reverse switching switch 35 switched to the forward position or the reverse position r
  • the output of the AND gate 33h is output.
  • the selection circuit 33c is switched to the X contact.
  • the traveling tillage number characteristic L1 is selected from the function generator 33a.
  • the selection circuit 33c is switched to the Z contact, and a signal indicating a rotation speed lower than the idle rotation speed is selected.
  • the rotation speed selected as described above is input to the maximum value selection circuit 33d and compared with the rotation speed No set by the fuel repeller 23, and the larger one is set as the target rotation speed N roa. Selected.
  • the target rotation speed Nro is input to the delay control circuit 33e, the actual target rotation speed Nro is calculated, and Nro is input to the servo control circuit 33f. Then, according to the procedure shown in FIG. 7, the slowdown control is executed only at the time of traveling deceleration, and in other cases, the normal engine speed control is executed.
  • step S4 when the traveling pedal 6a is operated in the acceleration direction during traveling, step S4 is denied, and in step S13, the value N roa selected by the selection circuit 33c is set as the actual target rotation speed N ro. Since the setting is made, the engine speed increases quickly according to the operation of the travel pedal 6a.
  • the engine speed decreases in proportion to the passage of time. Also, when the operation is determined by the step SI, the engine speed is controlled in the loop of the steps S12, S13, S9, and steps S21 to S26. However, the slowdown control is not performed, and the engine speed control is normally performed. This improves the operation feeling when controlling the engine speed with the traveling pedal during work.
  • a second embodiment will be described with reference to FIGS.
  • the above-mentioned loader-supplying town is performed.
  • the slowdown control is not performed even if the pedaling amount decreases, preventing unintentional starting of the vehicle during driving.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the remote points will mainly be described.
  • FIG. 8 is a conceptual diagram sharpening the details of the controller 33A of the second embodiment.
  • the controller 33A includes two M number generators 33a and 33b, a selection circuit 33c, a maximum value selection circuit 33d, and a delay control circuit 33e similar to the controller 33 of the first embodiment. And a service control circuit 33f, and gates 33g and 33h, and further includes a timer 33i, a flag selection switch 33j, and plug setting devices 33k and 331.
  • the timer 33 i starts timing, and after a predetermined time, the output signal of the timer 33 i rises, and the flag “1” setting unit 331 is selected by the flag selection switch 33 j. .
  • the timer 33i is reset when the pi-outlet pressure Pi falls, and at this time, the selection switch 33j selects the flag "0" setting unit 33k.
  • This flag is referred to as a pedal depression flag F2.
  • FIG. 9 shows a control procedure when the delay control circuit 33e and the servo control circuit 33f in the second embodiment are realized by a program.
  • the same parts as in the first embodiment are denoted by the same reference numerals, and the differences will be mainly described.
  • step S 1 A it is determined whether the work signal and the travel signal are on, and the travel signal is If it is on, the process proceeds to step SIB, and if the work signal is on, the process proceeds to step S30.
  • step S 1 B it is determined whether the pedal depression flag F 2 is 0 or 1. If the flag F2 is 0, the travel pedal is depressed only instantaneously, so the steps below step S30 are executed, and the engine speed is reduced according to the depression amount of the travel pedal. If the flag F2 is 1, the traveling pedal has been engaged for a predetermined time or more, so that the steps S2 and lower are executed, and the slowdown control can be executed as in the first embodiment.
  • steps S1A to S14 show the processing procedure by the delay control circuit 33e
  • steps S21 onward show the processing procedure by the servo control circuit 33f.
  • the slowdown control is executed only when the deceleration operation is performed after the travel pedal is depressed for a predetermined time or more during traveling according to the procedure shown in FIG. Means that the engine speed is reduced according to the amount of depression of the travel pedal.
  • step S1B is rejected and the process proceeds to the step S13 via the steps S30, S14, S12, so that the slow-down control is not performed.
  • the traveling pedal is depressed, the engine speed is reduced for a moment, but immediately drops to the idle speed. Therefore, even if the control valve 2 is opened by the traveling pilot pressure generated only momentarily and the control valve 2 is opened for a short time after the traveling pedal is released by the slow return control, the engine speed is immediately increased. Since the number of idle tills becomes the discharge flow rate of the hydraulic pump 1 is small, there is no possibility that oil will flow into the hydraulic motor 4 as the vehicle starts moving.
  • step S1A If it is determined that work is performed at step S1A, the engine speed is controlled in a loop of steps S30, S1, steps S12, 13, 9, and steps S21 to 26, so that pedal operation is performed. Slowdown control is not performed even when the amount of depression is reduced, and normal engine speed control is performed, improving the operational feeling when controlling the engine speed with the traveling pedal during work.
  • the engine speed increases quickly according to the operation of the travel pedal 6a, as in the first embodiment.
  • the traveling pedal 6a is operated in the deceleration direction during traveling, the engine speed also decreases in proportion to the passage of time, similarly to the first embodiment. That is, slow down control is performed.
  • the controller 33 determines the vehicle speed according to the operation amount of the traveling pedal 6a from the working speed characteristic L2. If the rotation speed Nd is selected and the fuel lever 23 is operated to the idle position, the rotation speed of the engine 21 is controlled to be the rotation speed Nd.
  • the rotation speed Nt according to the pedal operation amount is selected from the rotation speed characteristic L1 for running, and control is performed so that the rotation speed of the engine 21 becomes the rotation speed Nt. Is done.
  • the running speed characteristic L1 has a steeper rise in the speed due to pedal operation than the working speed characteristic L2, and therefore, acceleration during running is not impaired.
  • the number of rotations does not undesirably increase during operation, and operability and fuel efficiency are improved.
  • the relay coil RC is conducted from the battery 38 through the W terminal of the brake switch 36, and the normally closed contacts ESI, 2 are generated. Therefore, even when the forward / reverse switch 35 is at the f position and the r position S, the forward / reverse switching valve 8 is maintained at the neutral position S. Therefore, when the rotational speed is controlled during work by rubbing the traveling pedal 6a, even if the operator forgets to switch the forward / reverse switching valve 8 to the neutral position S, there is no possibility that the vehicle rain may start moving undesirably.
  • the value of the engine speed determined by the travel pedal 6a by the maximum selection circuit 33d and the value of the engine speed determined by the fuel lever 23 are compared in magnitude. There are also the following advantages because we choose the larger one.
  • the traveling wheel 6a can be reduced. There is no need to step on the engine to increase or decrease the number of revolutions. Eliminating engine revolutions reduces harsh noise and reduces black smoke. In addition, fuel is improved. In the case of light load, it is preferable to set the engine speed in the low speed range with the fuel hopper 23 and reduce the speed with the traveling pedal 6a as necessary in terms of noise and fuel consumption. Further, in each of the above-described embodiments, the following advantage can be obtained by setting the minimum rotation speed of the prime mover rotation speed characteristic L2 suitable for work to be higher than the maximum rotation speed set by the fuel lever.
  • the rotational speed set by the fuel lever can be set to a very high value, it may be used at a high speed at all times, and the engine, hydraulic equipment, etc., durability, fuel efficiency, noise, etc. Not preferred. Therefore, with the above settings, even if the fuel lever is set to the maximum value, it is limited at an appropriate speed, and the speed is increased to the desired high speed range by pedal only when necessary (at heavy load). As a result, the required flow rate can be ensured even under heavy load, and the durability of the engine and hydraulic equipment can be ensured to reduce fuel consumption and noise.
  • the operation amount of the travel pedal 6a is detected by the pilot pressure gauge 37.
  • a potentiometer or the like may be directly attached to the travel pedal 6a to detect the operation amount.
  • the configuration of the controller is not limited to the one described above.
  • one forward / reverse switching valve 8 can take the neutral position ⁇ and the third position S in the forward / reverse position.
  • the two valves, the switching valve that switches to the two forward / backward positions and the open / close valve are used. You may comprise.
  • the traveling idle speed N ti of the traveling speed characteristic L1 set in the frequency generator 33 of FIG. 6 is changed to the working speed characteristic L L of the traveling generator 33 set in the frequency generator 33.
  • the traveling state is determined by the fact that the brake switch 36 is switched to a position other than the W position S, that the forward / reverse switching switch is switched to a position other than N, and that the traveling pedal is operated.
  • the running state may be determined only by the state of the brake switch or only by the state of the forward / reverse switching switch.
  • the work state is detected by detecting the actual operation of the parking brake device 106 and the main brake device S 108, and the traveling condition and work state are detected at the actual position of the forward / reverse switching valve 8. May be.
  • the wheel type excavator has been described, but the present invention can be similarly applied to other hydraulically driven vehicles.
  • FIGS. 10 and 11 the opening area diagram for the traveling pilot pressure Pi of the traveling control valve 2 used in the first and second embodiments will be clarified.
  • Fig. 10 (a) only the engine speed is increased until the traveling pilot pressure Pi exceeds the predetermined pressure Ps and reaches Po, and when the pilot pressure exceeds the predetermined pressure Po, the engine speed increases.
  • the spool of control valve 2 starts moving.
  • hydraulic oil is supplied to the traveling hydraulic motor 4 after the engine torque reaches a predetermined value or more, and traveling torque is generated, so that engine torque does not become over-torque and engine stall is prevented. Also, the generation of black smoke is prevented.
  • the A and B ports communicate with the maximum opening at the neutral position S, and until the pilot port pressure Pi substantially exceeds the predetermined pressure Po, the A and B ports are connected.
  • the mouth face is gradually closed, and when the pressure reaches almost the predetermined pressure Po, the connection between the A and B ports is shut off.
  • the pressure exceeds the predetermined pressure Po the opening between the P-A port and the opening between the B-T port starts.
  • the engine speed is increased when the pilot pressure exceeds a predetermined value Ps, as shown in FIG. 11A, similarly to FIG.
  • the motor rotation speed control device is used for self-propelled construction machines such as a wheel type hydraulic excavator, a truck crane, a rough terrain, and a wheel loader. It is effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Fluid Gearings (AREA)
  • Operation Control Of Excavators (AREA)

Description

明細書 油圧駆動車両の原動機回転数制御装 S 技術分野
本発明は、 ホイール式油圧ショベル等の油圧駆動車両に用いられる原動機回転 数制御装置に関する。
背景技術
本出願人は先に、 たとえば特開平 3— 1 3 5 8 4 4号公報に次のような油圧駆 動車両を提案している。 この油圧駆動車両では、 走行加速時は走行ペダルの踏み 込み量に応じてエンジン回転数を增速するとともに走行油圧モー夕への供給流量 も増加させる。 また、 走行ペダルを離す滅速操作時には、 キヤビテーシヨン防止 の観点から、 走行ペダルを離しても直ちにエンジン回耘数をアイ ドリング回転数 まで下げずに時間絰過に応じてエンジン回転数を徐々に下げるスローダウン制御 を行なうとともに、 走行用制御弁を徐々に中立位 Sに戻すスローリターン制御を 行なっている。
しかしながら、 上述したスローダウン制御を常に許可すると特定の運転下で種 々の問題が起きる。
①本出願人は、 特穎平 2— 1 8 5 8 7 6号明細書において、 走行時のみならず 据削などの作業時においても走行ペダルの踏み込み量に応じてェンジン回転数を 增滅させることができる油圧駆動車両を提案しているが、 上述したように走行滅 速時にスローダウン制御をするようにすると、 作業時に走行ペダルでエンジン回 転数を調節するときいつもスローダウン制御が働いてしまい、 操作フィーリング が悪いという問題がある。
②運転者は、 発進する意図がないのに走行ペダルの上に足を置いて瞬時だけ僅 かに踏込み操作 (エンジン回転数が僅かに増速され、 走行用制御弁も僅かに開く 程度) することがある。 このとき、 上記スローダウン制御とスローリターン制御 が行なわれると、 走行用制御弁から油圧モータへ圧油が供給されるおそれがある。
発明の開示
本発明の目的は、 走行ペダルの減速操作時における原動機回転数のスローダウ ン制御を特定の運転時に禁止するようにした油圧艇勖車両の原動機回転数制卸装 置を提拱することにある。
( 1 ) 本発明は、 原動機に艇動される油圧ポンプと、 走行時に前記油圧ポンプ からの吐出油により蘊勖される走行用油圧モ一夕と、 作業時に前記油圧ポンプか らの吐出油により黩動される作業用ァクチユエ一夕と、 走行時に操作量に応じて 走行速度を制御する走行ペダルと、 前記走行ペダルの踏み込み量が滅少している ことを判定する滅速判定手段と、 この走行ペダルの踏み込み量に応じて前記原動 機回転数を增滅制御する第 1の原動機回転数制御、 および前記走行ペダルの踏込 み量が滅少していると判定されるときにはその滅少量に遅延させて前記原動機回 転数を低減制卸する第 2の原動機回転数制御を行なう回転数制御手段とを具備す る油圧駆動車両の原動機回転数制御装 Sに適用される。
そして、 前記走行ペダルの踏み込み量が減少しているときでも特定の運転条件 下では前記第 2の原動機回転数制揮を禁止する禁止手段を具備することにより、 上記目的を達成する。
特定の運転時において、 第 2の原動機回転数制御の弊害を防止できる。
( 2 ) 前記作業用油圧ァクチユエ一夕が作動し得る状態であることを判定する 作業判定手段を前記禁止手段に含めるように構成し、 この作業判定手段により前 記作業用油圧ァクチユエ一夕が作動し得る状態であることが判定されているとき は、 前記第 2の原動機回転数制御で原動機回転数を制御することを禁止するのが 好ましい。
作業時に走行ペダルで原動機回転数を調節する場合、 第 2の原動機回転数制御 が行なわれず、 作業時の操作フイーリングが損われることがない。
( 3 ) また、 前記走行用油圧モー夕が作動していることを判定する走行判定手 段をさらに有するようにしてもよく、 この場合、 走行判定手段により前記走行油 圧モータが作動していることが判定されているときは、 前記回転数制卸手段によ り、 前記第 2の原動機回転数制御で原動機回転数を制御する。
走行状態検出時、 走行ペダルを踏込む加速時には踏込み量に応じて原動機回 転数を増加させる。 つまり、 第 1の原動機回転数制御 (通常原動機回転数制御) を行う。 走行ペダルを難す減速時には、 踏込み量の滅少に応じて原動機回転数を 低滅せず、 時間経過により原動機回転数を低減する。 つまり、 第 2の原動機回転 数制御 (スローダウン制御) を行う。 したがって、 走行減速時にキヤビテ一ショ ンの発生が防止される。
( 4 ) 上記作業判定手段と、 走行判定手段とを備えるようにしてもよい。
( 5 ) 本発明による原動機回転数制御装置を、 車両の前進、 後進および中立状 態を検出する前後進検出手段と、 作業時に走行輪に制動力を付与する作業ブレー キ装 Sと、 この作業ブレーキ装 Sが作動していることを検出するブレーキ検出手 段とを備えた車両に適用することができる。 この場合、 前記作業判定手段は、 前 記前後進検出手段が中立状態を検出し、 前記ブレーキ検出手段が作業ブレーキ装 Sの作動を検出しているときに、 作業と判定する。
( 6 ) 本発明による原動機回転数制御装置を、 前記車雨の前進、 後進および中 立状態を検出する前後進検出手段と、 作業時に走行輪に制動力を付与する作業ブ レーキ装置と、 この作業ブレーキ装 βが作勖していないことを検出するブレーキ 検出手段と、 前記走行油圧モータが作動していることを検出する油圧モータ作動 検出手段とを備えた車両に適用することもできる。 この場合、 前記走行判定手段 は、 前記前後進検出手段が中立以外の状態を検出し、 前記ブレーキ検出手段が作 業ブレーキ装 {gの作勖を検出せず、 前記走行油圧モー夕の作動が検出されている ときに、 走行と判定する。
( 7 ) 原動機がディーゼルエンジンであれば、 前記回転数制御手段は、 目棟ェ ンジン回転数を指令する指令手段と、 制御回転数を表すガパナレバー位 Sを検出 する検出手段と、 目檫エンジン回転数と制御回転数の差に基づいてガパナレバ一 を駆動制御する駆動手段とを備えて構成するのが好ましい。
( 8 ) 上記ディーゼルエンジンを使用する場合、 前記第 2の原動機回転数制御 は、 前記目標エンジン回転数と制御回転数との差に基づく前記ガパナレバーの駆 動制御タイ ミングを遅延させて達成するようにしてもよい。
( 9 ) 前記回転数制御手段で設定されるアイ ドル回転数は次のようにするのが 好ま しい。 走行時に前記走行ペダルが操作されないときは前記原動機回転数を第 1のアイ ドル回転数に設定し、 作業時に前記走行ペダルが操作されないときは前 記原動機回転数を第 1のアイ ドル回転数よりも低い第 2のアイ ドル回転数に設定 する。
走行ペダルによりエンジン回転数を制御するとき、 作業時はアイ ドル回転数が 低めに設定され、 走行時はそれよりも高めに設定されるので、 作業時の燃 »を悪 化することなく、 走行時に次のような効果が得られる。
①油圧パワーステアリングを用いる場合、 発進時のステアリング操作角が大き くても流量が不足せず鞋快なステァリング操作が可能となる。
②走行操作を油圧パイ口 トで行なう場合、 発進時に油圧パイ口 ト用ポンプ の流量が多くなり、 パイロヅ トリ リーフ弁のオーバーライ ド特性による応答性の 悪化が防止できる。
③滅速時のポンプ流量が多いので、 ステァリング操作力が急に重たくなること がない。
④滅速時のキヤビテーシヨンを防止できる。
⑤加速時にエンジンの引きづり現象が発生せず、 加速性が向上する。
( 1 0 ) 前記油圧モータに流入する油の流量を制御する制御弁は、 前 13走行べ ダルの黯込み童に応じた流量のポンプ吐出油を通逷させるが、 前記原動機回転数 が所定値まで增速される踏込み量以上の領域で開弁を閱始するようにするのが好 ましい。
原動機回転数が所定回転数以上に增速されてから、 すなわち、 原動機出力が所 定值以上になつてから圧油が走行油圧モ一夕へ供給されるから、 オーバートルク にならず、 原動機が停止したり、 黒煙を噴くこともない。
( 1 1 ) また前記禁止手段が前記走行ペダルの踏込み時間を判定する踏込み時 閎判定手段を含むように構成し、 この踏込み時間判定手段により前記走行ペダル が所定時間以上踏込まれていないと判定されるときは、 前記第 2の原動機回転数 制御で原動機回転数を制御することを禁止することもできる。
このように禁止手段を構成する場合にも、 上記と同様な種々の態様が可能であ る。 そして、 走行ペダルが睽時だけ踏込まれる場合には第 2の原動機回転数制御 が行われず、 走行ペダルを離せば直ちに原動機回転数は低滅する。 したがって、 走行用流量制御弁をスロ一リターン制御する場合でも、 多量の圧油が油圧モー夕 に流れ込むことがなく、 不所望な発進を防止できる。 本発明によれば、 走行滅速時にキヤビテーション防止の観点からいわゆるスロ 一ダウン制御を行なう場合、 いわゆるペダルチヨィ踏み後にペダルから足を雜し た時にはスローダウン制御を禁止し、 すぐに原動機回転数を低減するようにした ので、 走行滅速時には確実にキヤビテ一シヨンを防止すると共に、 ペダルチヨィ 躊み時に圧油が走行乇一夕に供給されるおそれがない。
図面の簡単な説明
図 1は本発明に係わる原動機回転数制御装置、 油圧回路、 およびブレーキ回路 の全体構成の第 1の実施例を示す図である。
図 2は図 1の各部の拡大図である。
図 3は図 1の各部の拡大図である。
図 4は図 1の各部の挞大図である。
図 5はホイール式油圧ショベルの倒面図である。
図 6は図 1のコントローラの詳細ブロヅク図である。
図 7は図 6の遅延制御回路とサーポ制御回路をプログラムで実現した場合のフ 口一チヤ一トである。
図 8は第 2の実施例におけるコントローラの詳細を示すブロヅク図である。 図 9は図 8の運延制御回路とサーボ制御回路をプログラムで実現した場合のフ ローチャー トである。
図 1 0は、 上記各実施例に使用される走行用制御弁における、 走行パイロッ ト 圧力とエンジン回転数および制御弁スプールのス トロークの一例を表すグラフで ある。
図 1 1は、 上記各実施例に使用される走行用制御弁における、 走行パイロッ ト 圧力とエンジン回転数および制御弁スプールのス トロ一クの他の例を表すグラフ である。
本発明を実施するための最良の形態
一第 1の実施例一
図 1〜図 7により、 本発明をホイ—ル式油圧ショベルの回転数制御装置に適用 した場合の第 1の一実施例について説明する。 この第 1の実施例は、 走行時はス 口一ダウン制御を行ない、 掘削などの作業時はスローダウン制御を禁止して、 作 業時に走行ペダルでエンジン回転数を制御する場合の操作フイーリングの向上を 図ったものである。
図 5に示すように、 ホイール式油圧ショベルは、 上部旋回体 U Sと下部走行体 L Tとを有し、 上部旋回体 U Sに作業用ァタヅチメント A Tが取付けられている。 図 1はこの種の油圧ショベルの走行油圧回路, 回転数制御回路およびブレーキ回 路を示している。 なお、 図 2〜 4は図 1の各部を拡大して示すものである。
図 1〜4において、 原動機、 好ましくはオールスピードガパナ付きディーゼル エンジン 2 1により駆勖される油圧ポンプ 1からの吐出油は、 油圧パイ口ヅ ト式 制御弁 2を介してカウンタパランス弁 3を経て走行用の油圧モ一夕 4に導かれる ようになつている。 この制御弁 2は、 油圧ポンプ 5 , パイ口ヅト弁 6, スローリ ターン弁 7および前後進切換弁 8から成るパイロッ ト油圧回路により切換制御さ れる。
エンジン 2 1のガパナ 2 l aは、 リンク機構 3 1を介してパルスモー夕 3 2に 接続され、 パルスモータ 3 2の回転によりエンジン 2 1の回転数が制御される。 すなわち、 パルスモータ 3 2の正転で回転数が上昇し、 逆転で低下する。 このパ ルスモー夕 3 2の回転は、 コン トローラ 3 3からの制御信号により制御される。 またガパナ 2 l aにはポテンショメ一夕 3 4が接続され、 このポテンショメ一夕 3 4によりエンジン 2 1の回転数に応じたガパナレバー位置を検出し、 ガパナ位 置検出值 (以下、 制御回転数とも呼ぶ) N r pとしてコントローラ 3 3に入力す る。
コン トローラ 3 3にはまた、 上部旋回体 U Sの運転室に設けられた燃料レバ一 2 3 , 前後進切換スイッチ 3 5の η凝子, ブレーキスィッチ 3 6の W端子が接続 されるとともに、 パイ口ヅ ト弁 6と前後進切換弁 8との間の管路に設けられた圧 力計 3 7が接続されている。 この圧力計 3 7は、 走行ペダル 6 aの操作量に比例 して発生するパイロット圧 P iを検出してコントローラ 3 3に入力する。 燃料レ パー 2 3は、 手動操作によりエンジン 2 1の回転数を変更するためのものであり、 操作量に応じた回転数信号 N oをコン トローラ 3 3に入力する。
前後進切換スィッチ 3 5の共通端子はバッテリ 3 8に接続され、 f , r端子は、 リレー Rの常閉接点 R S 1、 R S 2介して前後進切換弁 8のソレノィ ド部にそれ ぞれ接統され、 n , f , r位置への切換えに伴って前後進切換弁 8をそれぞれ N, F, R位置に切換える。 前後進切換スィ ヅチ 3 5が 11位¾のときコントローラ 3 3に中立状態を示すハイ レベル信号が入力される。
前後進切換弁 8を F位置 (前進位置) または R位鴦 (後進位置) に切換えて走 行ペダル 6 aを操作すると、 油圧ポンプ 5の吐出圧がパイロッ ト弁 6で制御され、 ペダル 6 aの操作に応じた圧力がスロー リターン弁 7および前後進切換弁 8を介 して制御弁 2のパイロッ トポート 2 aまたは 2 bに導かれ、 制御弁 2は所定方向 に所定量だけ切換わり、 このとき、 後述するように走行ペダル 6 aの操作量に応 じてエンジン回転数も增滅される。 走行ペダル 6 aの操作量に応じて回転する油 圧ポンプ 1の吐出油のうち制御弁 2の切換量に応じた量だけが油圧モー夕 4に導 かれる。 これにより油圧モー夕 4が艇動され、 走行ペダル 6 aの操作量に応じた 速度で車両が前進または後進する。
ブレーキスィッチ 3 6は、 オペレータが走行時、 駐車時および作業時に応じて 選択操作するものであり、 その共通端子はパヅテリ 3 8に、 W端子はコント口一 ラ 3 3に接統される。 またこのブレーキスイッチ 3 6の W端子は、 リレーコイル R Cにも接続されており、 スイッチ 3 6が W位置に切換わるのに伴ってリレーコ ィル R Cが励磁される。 コイル R Cが励磁されると上述の常閉接点 R S 1 , 2は 開き、 この状態では前後進切換スィッチ 3 5 と前後進切換弁 8とが遮断され、 ス イッチ 3 5が f 位 fiまたは r位置に操作されても前後進切換弁 8は中立位 S Nを 保持する。
また、 上述の油圧ポンプ 1からの吐出油は、 制御弁 5 1を介して作業用のシリ ンダ (例えばブームシリンダ) 5 2にも導かれるようになつている。 そして、 作 業用レバー 5 1 aにより制御弁 5 1を操作してシリンダ 5 2を伸縮させ、 これに より作業用アタッチメン トを駆動して作業を行う。 制御弁 5 1を油圧パイロッ 卜 で切り換えるようにしてもよい。 この作業時には、 後述するようにして走行ぺダ ルによりエンジン回転数制御を行うことができ、 燃料レバー 2 3で回転数制御を 行う場合よりも細かい制御 (微調整) が可能となり、 不所望にエンジン回転数を 上げることなく騒音防止や燃費の向上に寄与する。
さらに図 1および図 4において、 1 0 0はブレーキ系統を示し、 このブレーキ 系統 100は、 圧縮空気を送り出す圧気源 1 0 1からの圧気でサービスブレーキ をかけるポジティブ型の主ブレーキ装 S 108と、 圧気源 1 00からの圧気でブ レーキが解除され、 その圧気が排気されるとブレーキがかかるネガティブ型の駐 車ブレーキ装置 10 6とを備えている。 そして、 この実施例では、 作業時に主ブ レーキ装置 108と駐車ブレーキ装 S 106とを同時にかけるようにしている。 圧気源 10 1は、 エンジン 2 1によって作動する圧縮機 1 O l aのデリベリ倒 を逆止弁 10 1 bを介してエアタンク 10 1 cに接続して梅成される。 また、 ェ ァタンク 10 1 cの内圧を一定に保つリ リーフ弁 10 1 dが設けられる。 エア夕 ンク 10 1 cに接铳された一方の入力管路 1 02 aは走行用ブレーキ弁 103の 入力ポートに接練され、 他方の入力管路 102 bはブレーキ切換弁 104の一方 の入力ポートに接練される。 また、 走行用ブレーキ弁 103の出力ポートがブレ ーキ切換弁 104の他方の入力ポートに接耪されている。 走行用ブレーキ弁 10 3は、 ペダル 103 aの跨み込み量に相応した圧力を出力ポートに出力し、 ぺ夕 ル 103 aを解放すると出力ポー卜が大気ポート 103 bと連通する。 また、 ブ レーキ切換弁 104は、 ブレーキスイッチ 36を端子 T , P , Wにそれぞれ切換 え操作することにより、 走行位 S (T ) 、 駐車位置 (P ) および作業位置 (W) の各位 gに切り換わる。 ブレーキ切換弁 104にも排気ポート 1 04 aが設けら れている。
ブレーキ切換弁 104の一方の出力ポ一トは管路 105によってネガティブ型 の駐車ブレーキ装 S 10 6に接続されており、 他方の出力ポートは管路 107に よってポジティブ型の主ブレーキ装 S 108に接続されている。 また、 走行用ブ レーキ弁 1 03の出力ポートは逆止弁 1 10が配罱された管路 109により主ブ レーキ装置 1 08に接続され、 走行用ブレーキ弁 103からの圧気が主ブレーキ 装置 108に直接流れるのを許容する。
主ブレーキ装 S 1 08に接続された管路 1 07は、 空圧一油圧変換倍力装 S 1 08 aの入力ポートに接続され、 その出力ポー卜が複数の車輪のブレーキシリン ダ 1 08 bに接続される。 なお、 ブレーキシリンダ 108 bによりブレーキシュ 一 1 08 cがブレーキドラム 108 dを押圧するとブレーキがかかる。 また、 1 08 eは戻りばねである。 駐車ブレーキ装 g 106に接続された管路 1 05は、 空圧一油圧変換倍力装 10 6 aの入力ポー トに接続され、 そのビス トンロヅ ド 1 0 6 bがブレーキレバ 一 1 06 cを介してブレーキシュ一 1 06 dに連結されている。 このブレーキシ ユー 1 06 dによりブレーキ ドラム 1 06 eを押圧してブレーキがかかる。 また、 ピス ト ンロヅ ド 1 06 bには戻りばね 1 06 f が遒挿されており 、 その復元力が 常時駐車ブレーキをかける方向に付勢されている。 したがって、 この駐車ブレー キ装 S 106は、 圧気が供給されるとブレーキ解除、 圧気が排気されるとブレー キ作動となる。
以上のブレーキ系統 1 00では、 ブレーキスィ ヅチ 36を走行位雷 Tに切換え るとブレーキ切換弁 104が図示の T位 Sに切換わり、 駐車ブレーキ装 S 106 へ圧気源 1 0 1から圧気が供給され、 駐車ブレーキが非作動となり、 また、 ブレ —キペダル 1 03 aの踏込みにより、 走行時に主ブレーキ装置 1 08を作動させ ていわゆるサービスブレーキが働く。 ブレーキスイ ッチ 36を作業位置 Wに切換 えると、 ブレーキ切換弁 1 04が W位置に切換わり、 ブレーキペダル 103 aの 踏込みに拘らず、 主ブレーキ装置 108へは圧気が供給されてサービスブレーキ が働く とともに、 駐車ブレーキ装 S 106から圧気が排気されるので駐車ブレー キが働く 。 すなわち、 2つのブレーキが同時に働く いわゆる作業ブレーキ状態と なる。 ブレーキスィ ヅチ 36を駐車位 ¾Pに切換えると、 ブレーキ切換弁 104 が P位 に切換わり 、 駐車ブレーキ装 S 106から圧気が排気されて駐車ブレー キが働く 。 主ブレーキ装 S 108はブレーキペダル 103 aの踏込みにより作動 する。
図 6はコン トローラ 3 3の詳細を説明する概念図である。
コン トローラ 33は、 2つの関数発生器 3 3 a, 33 bと、 選択回路 33 cと、 最大値選択回路 3 3 dと、 遅延制御回路 33 eと、 サ―ボ制御回路 33 f と、 ァ ン ドゲー ト- 33 g , 33 hとを有する。
圧力計 3 7で検出されるパイ ロッ ト圧 P iを示す信号 (走行ペダル踏込み量 0 Pをも示す) は関数発生器 33 a , 33 b、 遅延制御回路 3 3 eおよびアン ドゲ ー ド 3 3 hに入力される。 閭数発生器 3 3 a , 33 bは、 パイロッ ト圧 P iとェ ンジン 2 1の目標回転数を対応付けた関数 (回転数特性) L I , L 2によって定 まる回転数 N t , N dを出力する。 関数 L 1は走行に適した走行用回転数特性で あり、 L 2は作業用ァタツチメン卜 A Tを使用して作業を行う場合に適した作業 用回転数特性である。 L 1は L 2よりも回転数の立上りが急峻となっており、 最 高回転数も高く設定されている。 すなわち、 作業時には作業に適した回転数特性 で走行ペダル 6 aによりエンジン回耘数制御を可能にし、 走行時には走行に適し た回転数特性で走行ペダル 6 aによりエンジン回転数制卸を可能にする。
選択回路 3 3 cは、 走行用回転数特性 L 1により回転数 N tを出力する閬数発 生器 3 3 aに接練される固定接点 X、 および作業用回転数特性 L 2により回転数 N dを出力する閲数発生器 3 3 bに接統される固定接点 Yを有するとともに、 接 地されている固定接点 Zを備える。 面定接点 Zが接続されるとアイ ドリング回転 数よりも低い回転数を示す回転数信号が選択される。 この選択回路 3 3 cの切換 えは、 アンドゲート 3 3 gおよびアンドゲート 3 3 hからの信号により行なわれ る。
アンドゲート 3 3 gの非反転入力端子はブレーキスィヅチ 3 6の W端子と前後 進切換えスィ ヅチ 3 5の中立端子 nに接絲されている。 また、 アンドゲート 3 3 hの反転入力端子はブレーキスィヅチ 3 6の W嫁子と前後進切換えスィヅチ 3 5 の中立端子 nにそれぞれ接続されるとともに、 非反転入力端子は圧力計 3 7に接 耪されている。 ここで、 ブレーキスィヅチ 3 6が W位 Sに切換えられるとその W 靖子はハイレベルとなり、 T , P位置で W端子はローレベルとなる。 また、 前後 進切換えスイッチ 3 5が中立位 g nに切換えられるとその中立端子 nはハイレべ ルとなり、 f , r位镢で n端子はローレベルとなる。 さらに、 走行ペダル 6 aを 踏込むと圧力計 3 7からの信号はハイレベルとなる。 したがって、 実走行時はァ ンドゲード回路 3 3 hの出力である走行信号がハイレベル、 作業時はアンドゲー ド回路 3 3 gの出力である作業信号がハイレベルとなる。
選択回路 3 3 cの切換位置に応じて関数発生器 3 3 aまたは 3 3 bのいずれか —方からのエンジン回転数信号あるいは固定接点 Zからの低回転数信号が選択さ れ、 最大値選択回路 3 3 dに入力される。 この最大値選択回路 3 3 dの他方の入 力端子には燃料レバー 2 3から回転数 N oも入力され、 いずれか大きい方が目標 回転数 N r o aとして遅延制御回路 3 3 eに入力される。 遅延制御回路 3 3 eに は、 走行状態か作業状態かを示すアンドゲー ド 3 3 g, 3 3 hの出力信号と、 走 行ペダル踏込み量を示すパイロッ ト圧 P iとが入力されており、 この遅延制御回 路 3 3 eはガバナレバー位置目標值 N r oを算出してサーボ制御回路 3 3 f に入 力する。 サ―ボ制御回路 3 3 f には、 上述のポテンショメータ 3 4から現在の制 御回転数、 すなわちガパナレバー位 S検出值 N r pも入力されており、 このサー ポ制御回路 3 3 f は、 図 7に示す手順に従ってエンジン回転数をガパナレバ—位 S目標値 N roに変更する制御を行う。 つまり、 両回路 3 3 eと 3 3 f により、 走 行滅速時のみスローダウン制御を行い、 その他の場合は走行ペダル踏込み量に応 じた通常回転数制御を行なう。
図 7は運延制御回路 3 3 eおよびサーボ制御回路 3 3 f をプログラムで実現す る場合の制御手順を示している。 ステップ S 1でアンドゲー ド 3 3 g, 3 3 hか らの信号に基づいて走行か作業かを判定する。 アンドゲード 3 3 gの出力信号が ハイ レベルならば作業、 アンドゲード 3 3 hの出力がハイレベル場合ならば走行 と判定する。 走行と判定されるとステヅブ S 2に進む。 ステップ S 2でペダル 6 aの操作量 0 pが所定值 0 p o以上と判定されると、 ステップ S 3で減速フラグ F 1を 1としてしてステヅブ S 4に進み、 現在の目標回転数 N r o aがその前回 値 N r o 1より小さいか否かを判定する。 ここで、 N r o a < N r 0 1であるとい うことは、 走行ペダル 6 aが減速方向に操作されていること、 すなわち滅速指令 がなされていることを示している。
ステヅブ S 4が否定されると、 すなわち滅速方向に操作されていないことが判 定されるとステップ S 5で滅速フラグ F 1をゼロとして後述するステヅブ S 1 2 に進み、 ステップ S 4が肯定されると、 すなわち滅速方向に操作されていること が判定されるとステヅブ S 6に進み、 変数 iがゼロか否かを判定する。 この変数 iは、 この図 7の制御ループを何回繰り返したかを示すものである。 また滅速フ ラグ F 1は、 ステヅブ S 3で 1に設定され、 ステヅブ S 4が否定された後のステ ヅブ S 5でゼロに設定されるので、 このフラグ F 1が 1ということは、 減速操作 がなされていることを示している。
ステヅブ S 6が肯定されるとステップ S 7で変数 iに所定値 i o (ただし、 i o > 0 ) を代入してステヅブ S 8に進み、 前回の実目標回転数 N r o 1から単位 回転数 Δ Nを引き、 すなわち N r o l— ΔΝを今回の実目擦回転数 N r oとして ステップ S 9に進む。 ステップ S 9では、 前回の実目標回転数 N r o 1を現在の 実目檫回転数 N r Οで置換してステヅブ S 2 1に進む。 一方、 ステヅブ S 6が否 定された場合には、 ステップ S 10で iを 「― 1」 だけ歩進するとともに、 ステ ップ S 1 1で今回の実目檫回転数 N r oを前回の実目標回転数 N r olで置き換 えてステヅブ S 9に進む。
またステヅブ S 2が否定された場合には、 ステップ S 14で減速フラグ F 1が 1か否かを判定し、 肯定されるとステヅブ S 4に進み、 否定されるとステヅブ S 12で iに所定値 i oを代入するとともに、 ステヅブ S 13で今回の実目棵回転 数 N r oに前回の目標回転数 N r o aを代入してステップ S 9に進む。
ステップ S 2 1では、 現在のガバナレバー位 Sと実目檫回転数を示すガパナレ パー目檫值との差 N r p— N r oを求め, その結果を回転数差 Aとしてメモリに 格納し、 ステップ S 22において、 予め定めた基準回転数差 Kを用いて、 I A I ≥Kか否かを判定する。 ステップ S 22が肯定されるとステヅブ S 23に進み、 回転数差 A > 0か否かを判定し、 A> 0ならば現在の制御回転数が実目棟回転数 Nr oよりも高いから、 エンジン回転数を現在の值から予め定めてある単位回転 数 Δ Νだけ下げるべくステップ S 24でモー夕逆転を指令する信号をパルスモー タ 3 2に出力する。 これによりパルスモータ 32が逆転しエンジン 2 1の回転数 が厶 Nだけ低下する。 ここで、 上述の単位回転数の最大値 Δ Nは、 1ループを実 行する間に增滅できる最大の回転数である。
ステップ S 23が否定された場合には、 制御回転数が目標回転数 N r oよりも 低いから、 エンジン回転数を現在の値から上記単位回転数 Δ Nだけ上げるべくス テヅプ S 25でモータ正転を指令する信号をパルスモータ 32に出力する。 これ によりパルスモータ 32が正転しエンジン 2 1の回転数が Δ Nだけ増加する。 ス テヅブ S 22が否定されるとステヅブ S 26に進んでモータ停止信号を出力し、 これによりエンジン 21の回転数が一定値に保持される。 ステップ S 24〜S 2 6を実行すると始めに戻る。
ここで、 以上説明したステップ S 1〜 S 14が遅延制御回路 33 eによる処理 手煩を、 ステップ S 2 1以降がサーボ制御回路 33 f による処理手順を示してい る。
このような第 1の実施例では次のよう にしてエンジン回転数が制御される。 作業を開始するに当たりブレーキスイ ッチ 36を W位置に切換えると、 上述し たように主ブレーキ装 S 1 08と駐車ブレーキ装置 106の双方が作動して作業 ブレーキがかかる。 このとき、 前後進切換えスィ ヅチ 35を中立位 Snに切換え ると、 アン ドゲー ト 33 gの出力がハイ レベルとなり、 選択回路 33 cは Y接点 に切換えられる。 その結果、 闉数発生器 33 bから作業用回転数特性 L 2が選択 される。 一方、 ブレーキスイッチ 36が Tまたは P位 βに切換えられるとともに 前後進切換えスィ ツチ 35が前進位 または後進位 «rに切換えられた状態で 走行ペダルが踏込まれると、 アン ドゲー ト 33 hの出力がハイ レベルとなり、 選 択回路 33 cは X接点に切換えられる。 その結果、 関数発生器 3 3 aから走行用 回耘数特性 L 1が選択される。
以上の 2つの状態以外の時には、 選択回路 33 cは Z接点に切換えられ、 アイ ドル回転数よりも低い回転数を示す信号が選択される。 以上のようにして選択さ れた回転数は最大値選択回路 33 dに入力されて燃料レパー 23で設定された回 転数 N oと比較され、 いずれか大きい方が目標回転数 N r o aと して選択される。 そして、 この目標回転数 N r o aが遅延制御回路 33 eに入力されると実目標回 転数 N r oが算出され、 さらに N r oはサーボ制御回路 33 f に入力される。 そ して、 図 7に示す手順にしたがって走行減速時のみスローダウン制御が実行され、 その他の場合には通常エンジン回転数制御が実行される。
すなわち、 走行時に走行ペダル 6 aを加速方向に操作した場合には、 ステップ S 4が否定され、 ステヅブ S 1 3において、 選択回路 33 cによって選択された 値 N r o aを実目標回転数 N r oとして設定するので、 エンジン回転数は、 走行 ペダル 6 aの操作に応じて速やかに上昇する。 一方、 走行ペダル 6 aが滅速方向 に操作された場合には、 ステップ S 4が肯定され、 i = 0のときのみ実目標回転 数 N r oが、 その前回値 N r o 1から Δ N (単位回転数) を引いた値に設定され る (ステヅブ S 8 ) 。 変数 iは、 ステヅブ S 1 0を通るたびに 「一 1」 づっ歩進 されるので、 この図 7の制御ル―ブを i回繰り返すごとにステヅブ S 8が実行さ れることになる。 したがってエンジン回転数は、 時間の経過に比例して滅少する。 また、 ステヅブ S Iで作業と判定されると、 ステヅブ S 1 2 , 13, 9、 ステ ヅプ S 2 1〜 26のループでエンジン回転数が制御されるので、 走行踏込み量が 滅少する操作時でもスローダウン制御が行なわれず、 通常ェンジン回転数制御が 実行され、 作業時に走行ペダルでエンジン回転数制御する際の操作フィ一リング が向上する。
—第 2の実施例一
図 8および図 9により第 2の実施例について説明する。 第 2の実施例は、 走行 時に走行ペダルが所定時間以上踏込まれた後に滅速操作されたとき上記スローダ ゥン制街を行ない、 走行べダウ黯込み時間が所定時間未濁の場合には走行ペダル の跨込み量が減少してもスローダウン制御を行なわないようにし、 走行時にオペ レー夕の意図しない発進を防止するようにしたものである。 第 1の実施例と同様 な箇所には同一の符号を付して相遠点を主に説明する。
図 8は第 2の実施例のコントローラ 33 Aの詳細を鋭明する概念図である。 コントローラ 33 Aは、 第 1の実施例のコントローラ 33と同様な、 2つの M 数発生器 33 a, 33 bと、 選択回路 33 cと, 最大値選択回路 33 dと、 遅延 制御回路 33 eと、 サーポ制御回路 33 f と、 アンドゲ一ド 33 g, 33 hとを 備えるとともに、 さらに、 タイマ 33 iと、 フラグ選択スィヅチ 33 j と、 ブラ グ設定器 33 k, 3 3 1とを有する。
走行パイロット圧 P iが発生すると夕イマ 33 iは計時を開始し、 所定時間経 »するとタイマ 33 iの出力信号が立上がり、 フラグ選択スィツチ 33 j により フラグ " 1 " 設定器 33 1が選択される。 タイマ 33 iはパイ口ヅ 卜圧 P iが立 ち下がるとリセッ トされ、 このとき選択スィヅチ 33 jはフラグ "0" 設定器 3 3 kを選択する。 後述するように、 フラグ " 0 " が選択されている時には、 スロ 一ダウン制御が行われず、 フラグ " 1 " が選択されている時には、 スローダウン 制御が行われる。 このフラグをペダル踏込みフラグ F 2と呼ぶ。
図 9は、 第 2の実施例における遅延制御回路 33 eおよびサーボ制御回路 33 f をプログラムで実現する場合の制御手順を示している。 第 1の実施例と同様な 箇所には同一の符号を付して相違点を主に説明する。
ステップ S 1 Aで作業信号と走行信号がオンしているかを判別し、 走行信号が オンしていればステップ S I Bに進み、 作業信号がオンしていればステヅブ S 3 0に進む。 ステヅブ S 1 Bではペダル踏込みフラグ F 2が 0か 1かを判定する。 フラグ F 2が 0ならば、 走行ペダルは瞬時だけ踏込まれているので、 ステヅブ S 30以下のステヅブを実行して、 走行ペダルの踏込み量に応じてエンジン回転数 を增減する。 フラグ F 2が 1ならば、 走行ペダルは所定時間以上接込まれている ので、 ステヅブ S 2以下を実行して、 第 1の実施例と同様にスローダウン制御を 実行可能する。
図 9において、 ステヅブ S 1 A〜 S 14が運延制御回路 33 eによる処理手 順を、 ステップ S 2 1以降がサーポ制御回路 33 f による処理手順を示している。 このような第 2の実施例では、 図 9に示す手順にしたがって、 走行時に所定時 間以上走行ペダルが踏込まれた後で減速操作される時のみ、 スローダウン制御が 実行され、 その他の場合には、 走行ペダルの踏込み量に応じてエンジン回転数が 增滅する。
すなわち、 走行ペダル 6 aを峰時だけ瞎込んだときには、 ステップ S 1 Bが否 定されてステップ S 30 , 14 , 12を介してステヅブ S 13に進むから、 スロ —ダウン制御が行われない。 その結果、 走行ペダルをいわゆるチヨィ踏みしたと きには、 エンジン回転数が一瞬だけ增速されるが直ちにアイ ドル回転数まで低下 する。 したがって、 瞬時だけ発生する走行パイ ロッ ト圧力により制御弁 2が開き、 スローリターン制御によ り走行ペダルを離した後も若干の間だけ制御弁 2が開い ていても、 エンジン回転数はすぐにアイ ドル回耘数となり油圧ポンプ 1の吐出流 量は僅かであるから、 車両が発進するほどに油圧モータ 4に油が流入するおそれ がない。
また、 ステヅブ S 1 Aで作業と判定されると、 ステップ S 30, S 1 , ステ ヅプ S 12 , 13, 9、 ステヅブ S 2 1〜 26のループでェンジン回転数が制御 されるので、 ペダル踏込み量が減少する操作時でもスローダウン制御が行なわれ ず、 通常エンジン回転数制御が実行され、 作業時に走行ペダルでエンジン回転数 制御する際の操作フィー リ ングが向上する。
さ らに、 走行時に走行ペダルを加速方向に操作した場合には、 第 1の実施例と 同様に、 エンジン回転数は、 走行ペダル 6 aの操作に応じて速やかに上昇する。 一方、 走行時に走行ペダル 6 aが滅速方向に操作された場合には、 やはり第 1の 実施例と同様に、 エンジン回転数は時間の経通に比例して減少する。 すなわち、 スローダウン制御が行なわれる。
以上の第 1および第 2の実施例にあっては、 コン トローラ 3 3により車雨が作 業状態と判断されると、 作業用回転数特性 L 2から走行ペダル 6 aの操作量に応 じた回転数 N dが選択され、 燃料レバー 2 3をアイ ドル位置に操作してあればェ ンジン 2 1の回転数がこの回転数 N dとなるように制御される。 車雨が走行状態 と判断されると走行用回転数特性 L 1からペダル操作量に応じた回転数 N tが ¾ 択され、 エンジン 2 1の回転数がこの回転数 N tとなるように制御される。 走行 用回転数特性 L 1は、 作業用回転数特性 L 2よりもペダル操作による回転数の立 ち上がりが急峻となっており、 したがって、 走行時の加速性が損なわれることが ない。 また、 作業時には不所望に回転数が商くならず操作性, 燃費が向上する。 さらに以上の実施例では、 ブレーキスイッチ 3 6が W位置に切換えられると、 ブレーキスイッチ 3 6の W端子を通してパヅテリ 3 8からリレーコイル R Cが通 電され常閉接点 E S I , 2が闢く。 そのため、 前後進スィヅチ 3 5が f位置, r 位 Sにあっても前後進切換弁 8が中立位 Sに保持される。 したがって、 走行ぺダ ル 6 aの揉作により作業時に回転数制御を行う場合、 オペレータが前後進切換弁 8の中立位 Sへの切換操作を忘れても車雨が不所望に動きだすおそれがない。 第 1および第 2の実施例では、 最大值逢択回路 3 3 dにより走行ペダル 6 aに よって決まるエンジン回転数目棵值と燃料レバ一 2 3によって決まるエンジン回 転数目檩値とを大小比較して大きい方を選択するようにしているので、 次のよう な利点もある。
作業負荷が重負荷の場合はエンジンを髙回転数で運転するのが望ましいが、 燃 料レバー 2 3でエンジン回転数を高回耘域に設定しておけば、 いちいち走行ぺダ ル 6 aを踏み込んで回転数を増減させる必要がなく、 エンジン回転数增滅により 耳障りな騒音が抑制されるとともに、 黒煙の発生も低減される。 さらに、 燃费も 向上する。 軽負荷の場合は燃料レパー 2 3でエンジン回転数を低回転域に設定し ておき、 必要に応じて走行ペダル 6 aで回転数を增滅すれば騒音, 燃费の点で好 ま しい。 さらに以上の各実施例において、 作業時に適した原動機回転数特性 L 2の漦髙 回転数を燃料レバーで設定される最高回転数よりも高く設定しておく と次のよう な利点がある。
( 1 ) 燃料レバーにより設定される回転数を非常に高く設定できるようにする と、 常時、 高回転で使用されるおそれがあり、 エンジン, 油圧機器等の耐久性, 燃費, 騒音等の点で好ましくない。 そこで以上のように設定すれば、 燃料レバー を最大値に設定しても適度な回転数で制限され、 必要な時 (重負荷時) だけぺダ ルにより回転数を所望の高回転域まで増加できるので、 重負荷時にも必要な流量 を確保できると共に、 エンジン, 油圧機器等の耐久性を確保して燃费, 騒音を低 滅することができる。
( 2 ) ブレーカ, 破砕機等の大流量を要する特殊アタッチメン トを装着した場 合にも、 ペダル操作で対応できるので ( 1 ) の効果が得られる。
なお以上では、 走行ペダル 6 aの操作量をパイロ ヅ ト圧力計 3 7で検出したが、 例えばポテンショメータ等を走行ペダル 6 aに直接取付けてその操作量を検出す るようにしてもよい。 また、 コン トローラの構成も上述のものに限定されない。 さらに以上では、 1つの前後進切換弁 8が中立位 β, 前後進位置の 3位 Sを取り 得るようにしたが、 前後進位置の 2位置に切換わる切換弁と開閉弁の 2つの弁で 構成しても良い。
さらに、 囡 6の閟数発生器 3 3 aに設定された走行用回転数特性 L 1の走行ァ ィ ドル回転数 N t iを、 閟数発生器 3 3 に設定された作業用回転数特性 L 2の 作業アイ ドル回耘数 N d iよりも高く設定することにより、 作業時の燃簧を悪化 することなく、 次の様な効果が得られる。
①発進時にステアリング操作する時、 ステアリング操作角が大きくても流量が 不足せず軽快なステアリング操作が可能となる。
②発進時にポンプ流量が多くなり、 パイロヅ トリ リーフ弁のオーバ一ライ ド特 性による応答性の悪化が防止できる。
③滅速時のポンプ流量が多いので、 ステアリング操作力が急に重たくなること がない。
④減速時のキヤビテーションを防止できる。 ⑤加速時にエンジンの引きづり現象が発生せず、 加速性が向上する。
さらにまた、 以上では、 ブレーキスィヅチ 3 6が W位 S以外に切換っているこ と、 前後進切換えスィッチが N以外に切換わっていること、 および走行ペダルが 操作されていることにより走行状態を判別しているが、 ブレーキスィツチの状態 だけ、 あるいは、 前後進切換えスィヅチの状態だけで走行状態を判別してもよい。 駐車ブレーキ装置 1 0 6と主ブレーキ装 S 1 0 8の実際の作動を検出することに より作業状態を検出したり、 前後進切換弁 8の実際の位置で走行状想や作業状態 を検出しても良い。 さらに、 ホイール式油圧ショベルについて説明したが、 これ 以外の油圧魘動車両にも本発明を同様に邃用できる。
次に図 1 0および図 1 1により、 上記第 1および第 2の実施例に使用される走 行用制御弁 2の走行パイロット圧 P iに対する開口面積線図について鋭明する。 図 1 0 ( a ) に示すように、 走行パイロッ ト圧 P iが所定值 P sを越え P oに 達するまではエンジン回転数だけを增速し、 パイロヅ ト圧が所定值 P oを越える と制御弁 2のスプールが動き出すようにしている。 その結果、 エンジントルクが 所定值以上になつてから走行油圧モータ 4に圧油が洪給されて走行トルクが発生 するので、 ォ一パートルクにならずエンジンス トールが防止される。 また、 黒煙 の発生も防止される。
また、 制街弁 2の開口面積籙図を図 1 1 ( b ) に示すように定めれば、 走行パ イロヅ ト圧 P iの発生と同時に制御弁 2のスプールを操作させても上述したと同 様な作用効果が得られる。
すなわち、 この制御弁 2は、 中立位 Sで A— Bポー卜が最大開口で連通してお り、 パイ口ヅ ト圧 P iがほぼ所定圧力 P oを越えるまでは、 A— Bポート間の閱 口面稹を徐々に閉じていき、 所定圧力 P oにほぼ達すると A— Bポート間が遮断 される。 そして、 ほぽ所定圧力 P oを越えると、 P— Aポ一卜間および B— Tポ —ト間を開き始める。 一方、 エンジン回転数は、 図 1 0と同様に、 図 1 1 ( a ) に示す通り、 パイロヅト圧力が所定値 P sを越えると増速される。
産業上の利用可能性
以上説明した本発明に係る原動機回転数制御装置は、 ホイール式油圧ショベル、 卜ラヅククレーン、 ラフテレーン、 ホイールローダなどの自走式建設機械に利用 して効果がある。

Claims

請求の範囲
( 1 ) 原動機に艇動される油圧ポンプと、
走行時に前記油圧ポンプからの吐出油により駆動される走行用油圧モータと、 作業時に前記油圧ポンプからの吐出油により艇勖される作業用ァクチユエ一夕 と、
走行時に操作量に応じて走行速度を制御する走行ペダルと、
前記走行ペダルの踏み込み量が滅少していることを判定する減速判定手段と、 この走行ペダルの踏み込み量に応じて前記原動機回転数を增滅制御する第 1の 原動機回転数制御、 および前記走行ペダルの黯込み *が滅少していると判定され るときにはその滅少量に運延させて前記原動機回転数を低滅制御する第 2の原動 機回転数制御を行なう回転数制御手段とを具備する油圧艇動車両の原動機回転数 制御装 Sにおいて、
前記走行ペダルの黯み込み量が滅少しているときでも特定の ¾転条件下では前 記第 2の原動機回転数制卸を禁止する禁止手段を具備することを特徵とする油圧 駆動車両の原動機回転数制御装置。
( 2 ) 前記禁止手段は、 前記作業用油圧ァクチユエ一夕が作動し得る状態であ ることを判定する作業判定手段を含み、
この作業判定手段により前記作業用油圧ァクチユエ一夕が作動し得る状態であ ることが判定されているときは、 前記第 2の原動機回転数制御で原動機回転数を 制御することを禁止する請求項 1の油圧 ¾動車両の原動機回転数制御装 S。
( 3 ) 前記走行用油圧モータが作動していることを判定する走行判定手段をさ らに有し、
この走行判定手段により前記走行油圧モータが作動していることが判定されて いるときは、 前記回転数制御手段により、 前記第 2の原動機回転数制御で原動機 回転数を制御する請求項 1の油圧艇勖車雨の原動機回転数制御装 S。
( ) 前記走行用油圧モータが作動していることを判定する走行判定手段をさ らに有し、
前記禁止手段は、 前記作業用油圧ァクチユエ一夕が作動し得る状態であること を判定する作業判定手段を含み、 前記作業判定手段により前記作業用油圧ァクチユエ一夕が作勖し得る状態であ ることが判定されているとき、 前記禁止手段により前記第 2の原動機回転数制御 で原動機回転数を制御することを禁止し、 前記走行判定手段により前記走行油圧 モー夕が作勖していることが判定されているとき、 前言己回転数制御手段により前 記第 2の原動機回転数制御で原動機回転数を制御する請求項 1の油圧 «動車両の 原動機回転数制御装資。
( 5 ) 前記油圧 ¾動車両は、
車両の前進、 後進および中立状懲を検出する前後進検出手段と、
作業時に走行輪に制勖カを付与する作業ブレーキ装置と、
この作秉ブレーキ装置が作動していることを検出するブレーキ横出手段とを備 え、
前記作業判定手段は、 前紀前後進検出手段が中立状》を検出し、 前記ブレーキ 検出手段が作業ブレーキ装置の作動を検出しているときに、 作業と判定する請求 項 2または 4項の油圧雕勖車両の屎動機回転数制御装置。
( 6 ) 前記油圧霸勖車两は、
前配車両の前進、 後進および中立状想を検出する前後進検出手段と、 作業時に走行輪に制動力を付与する作業ブレーキ装匿と、
この作業ブレーキ装 *が作動していないことを検出するブレーキ検出手段と、 前記走行油圧モータが作動していることを検出する油圧モー夕作勖検出手段と を備え、
前紀走行判定手段は、 前記前後進検出手段が中立以外の状態を検出し、 前記ブ レーキ検出手段が作業ブレーキ装 Sの作動を検出せず、 前記走行油圧モータの作 動が検出されているときに、 走行と判定する請求項 3または 5項の油圧 S [動車両 の原動機回転数制御装置。
( 7 ) 原動機をディーゼルエンジンとしたとき、 前記回転数制御手段は、 目標エンジン回転数を指令する指令手段と、
制御回耘数を表すガパナレバー位置を検出する検出手段と、
目樓エンジン回転数と制御回転数の差に基づいてガパナレバーを駆勖制御する 動手段とを備える請求項 1 〜 6のいずれかの項に記載の油圧駆動車両の原動機 回転数制街装 s。
( 8 ) 前記第 2の原動機回転数制御は、 前記目檫エンジン回転数と制御回転数 の差に基づいた前記ガパナレパーを駆勋制御するタイミングを遅延させて達成さ れる請求項 7の油圧 J¾動車両の原助機回転数制御装 «。
( 9 ) 前記回転数制御手段は、 走行時に前記走行ペダルが操作されないときは 前記原動機回転数を第 1のアイ ドル回転数に設定し、 作業時に前記走行ペダルが 操作されないときは前 18原動機回転数を第 1のアイ ドル回転数よりも低い第 2の アイ ドル回転数に設定する請求項 1〜8のいずれかの項に紀載の油圧 «勖車雨の 厘動機回転数制御装置。
( 1 0 ) 前記走行ペダルの踏込み量に応じた流量のポンプ吐出油を走行用油圧 モー夕へ導くとともに、 前記原動機回転数が所定値まで增速される踏込み量以上 の領域で関弁を »始する制御弁をさらに備えた請求項 1〜9のいずれかの項に記 載の油圧組助車両の康動機回転数制糠装 S。
( 1 1 ) 前紀禁止手段は、 前記走行ペダルの踏込み時 IBIを判定する踏込み時 ffl 判定手段を含み、
この踏込み時閎判定手段により前記走行ペダルが所定時間以上蹐込まれていな いと判定されるときは、 前記第 2の原勖機回転数制御で厣勖機回転数を制御する ことを禁止する請求項 1の油圧駆勐車雨の屎助機回転数制御装置。
( 1 2 ) 原動機をディーゼルエンジンとしたとき、 前記回転数制御手段は、 目樓エンジン回転数を指令する指令手段と、
制御回転数を表すガバナレバー位置を検出する検出手段と、
目檫エンジン回転数と制御回転数の差に基づいてガパナレパーを g動制御する 鬆動手段とを備える腈求項 1 1の油圧 動車雨の原動機回転数制御装置。
( 1 3 ) 前記第 2の原動機回転数制御は、 前記目棵エンジン回転数と制御回転 数の差に基づいた前記ガパナレバ一を艇勖制御するタイミングを運延させて達成 される請求項 1 2の油圧艇勖車雨の原動機回転数制御装 S
( 1 4 ) 前記回転数制御手段は、 走行時に前記走行ペダルが操作されないとき は前記原助機回転数を第 1のアイ ドル回転数に設定し、 作業時に前記走行ペダル が操作されないときは前記原動機回転数を第 1のアイ ドル回転数よりも低い第 2 のアイ ドル回転数に設定する請求項 1 1 ~ 1 3のいずれかの項に記載の油圧駆動 車雨の原動機回転数制御装 S。
( 1 5 ) 前記走行ペダルの踏込み量に応じた流量のポンプ吐出油を走行用油圧 モータへ導くとともに、 前記原動機回転数が所定値まで增速される踏込み量以上 の領域で閧弁を開始する制御弁さらに備えた請求項 1 1〜 1 4のいずれかの項に 記載の油圧駆動車雨の原動機回転数制御装置。
PCT/JP1992/000115 1991-02-05 1992-02-05 System for controlling revolution frequency of prime mover in hydraulically driven vehicle WO1992014046A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92904397A EP0528042B1 (en) 1991-02-05 1992-02-05 System for controlling revolution frequency of prime mover in hydraulically driven vehicle
DE69210713T DE69210713T2 (de) 1991-02-05 1992-02-05 System zum regeln der drehzahl einer kraftmaschine in einem hydraulisch angetriebenen fahrzeug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/35451 1991-02-05
JP3545191A JP2744707B2 (ja) 1991-02-05 1991-02-05 油圧駆動車両の原動機回転数制御装置
JP3060923A JP2634330B2 (ja) 1991-02-08 1991-02-08 油圧駆動車両の原動機回転数制御装置
JP3/60923 1991-02-08

Publications (1)

Publication Number Publication Date
WO1992014046A1 true WO1992014046A1 (en) 1992-08-20

Family

ID=26374444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000115 WO1992014046A1 (en) 1991-02-05 1992-02-05 System for controlling revolution frequency of prime mover in hydraulically driven vehicle

Country Status (4)

Country Link
US (1) US5277269A (ja)
EP (1) EP0528042B1 (ja)
DE (1) DE69210713T2 (ja)
WO (1) WO1992014046A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135789A (ja) * 1994-11-09 1996-05-31 Komatsu Ltd 車両の油圧式駆動装置の変速装置およびその変速制御方法
JPH11166248A (ja) * 1997-12-05 1999-06-22 Komatsu Ltd 油圧駆動式作業車両
JP3660501B2 (ja) * 1998-05-28 2005-06-15 日立建機株式会社 建設機械のエンジン回転数制御装置
JP3819699B2 (ja) * 2000-10-20 2006-09-13 日立建機株式会社 油圧走行車両
WO2004029435A1 (ja) * 2002-09-26 2004-04-08 Hitachi Construction Machinery Co., Ltd. 建設機械の原動機制御装置
JP3936364B2 (ja) * 2002-09-26 2007-06-27 日立建機株式会社 建設機械の原動機制御装置
US7484814B2 (en) * 2006-03-03 2009-02-03 Husco International, Inc. Hydraulic system with engine anti-stall control
JP4956171B2 (ja) * 2006-12-15 2012-06-20 日立建機株式会社 作業車両の制御装置
SE531298C2 (sv) * 2007-06-15 2009-02-17 Sandvik Intellectual Property Krossanläggning och metod för styrning av densamma
SE532428C2 (sv) * 2008-05-29 2010-01-19 Scania Cv Abp Metod för reglering av en motors varvtal
US8738250B2 (en) 2010-11-30 2014-05-27 Caterpillar Inc. Power source speed control in a machine with a CVT
DE102011113485A1 (de) * 2011-09-15 2013-03-21 Bomag Gmbh Verfahren zum Ansteuern eines Antriebsstranges eines Fahrzeugs und Vorrichtung zur Durchführung des Verfahrens
JP5705706B2 (ja) * 2011-11-15 2015-04-22 日立建機株式会社 作業車両のエンジン制御装置
JP5161386B1 (ja) * 2012-06-22 2013-03-13 株式会社小松製作所 ホイールローダ及びホイールローダの制御方法
US11371209B2 (en) * 2019-06-24 2022-06-28 Deere & Company Work vehicle with switchable propulsion control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212603A (ja) * 1989-02-14 1990-08-23 Toshiba Mach Co Ltd 油圧回路
JPH03135844A (ja) * 1989-07-13 1991-06-10 Hitachi Constr Mach Co Ltd 油圧走行車両の原動機回転数制御装置
JPH0473331A (ja) * 1990-07-13 1992-03-09 Hitachi Constr Mach Co Ltd 油圧駆動車両の原動機回転数制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542802A (en) * 1982-04-02 1985-09-24 Woodward Governor Company Engine and transmission control system for combines and the like
US4704866A (en) * 1984-06-04 1987-11-10 Sundstrand Corporation Automatic travel speed control for a harvesting machine
JP2567222B2 (ja) * 1986-04-01 1996-12-25 株式会社小松製作所 装輪式建設機械のエンジン制御方法および装置
US4759185A (en) * 1987-09-18 1988-07-26 Deere & Company Operator presence switch with service by-pass
EP0364192A3 (en) * 1988-10-12 1990-09-05 Frederick C. Schilplin Clamp assembly for clamping a seat in position

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212603A (ja) * 1989-02-14 1990-08-23 Toshiba Mach Co Ltd 油圧回路
JPH03135844A (ja) * 1989-07-13 1991-06-10 Hitachi Constr Mach Co Ltd 油圧走行車両の原動機回転数制御装置
JPH0473331A (ja) * 1990-07-13 1992-03-09 Hitachi Constr Mach Co Ltd 油圧駆動車両の原動機回転数制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0528042A4 *

Also Published As

Publication number Publication date
EP0528042A4 (en) 1993-12-01
DE69210713D1 (de) 1996-06-20
EP0528042A1 (en) 1993-02-24
EP0528042B1 (en) 1996-05-15
US5277269A (en) 1994-01-11
DE69210713T2 (de) 1997-01-16

Similar Documents

Publication Publication Date Title
US7273124B2 (en) Prime mover control device of construction machine
WO1992014046A1 (en) System for controlling revolution frequency of prime mover in hydraulically driven vehicle
US9644547B2 (en) Engine control device for work vehicle
WO2005033557A1 (ja) 油圧駆動車両の走行制御装置および油圧駆動車両
US20140005900A1 (en) Drive Control Device for Work Vehicle
EP2811139B1 (en) Engine control device for work vehicle
US7506717B2 (en) Hydraulically driven vehicle
JP4473200B2 (ja) 作業車両の原動機制御装置
EP0553348B1 (en) System for controlling number of rotations of prime mover in hydraulically driven vehicle
JP4416063B2 (ja) トランスミッションのクラッチカットオフ方法及びその装置
JP4069795B2 (ja) 油圧走行駆動装置
JP2868592B2 (ja) 油圧駆動車両の原動機回転数制御装置
JP2744707B2 (ja) 油圧駆動車両の原動機回転数制御装置
JPH08182109A (ja) 電気自動車の走行制御装置
JP3201218B2 (ja) オートクルーズ制御方法
JP4394308B2 (ja) 車両のエンジン制御装置
JP3670718B2 (ja) 油圧走行車両の油圧制御装置
JP2634330B2 (ja) 油圧駆動車両の原動機回転数制御装置
JP2680744B2 (ja) 油圧走行車両の油圧駆動装置
JPH08282329A (ja) オートクルーズ制御方法
JPH05180336A (ja) Hst油圧走行駆動装置
JPH0711145B2 (ja) 油圧シヨベルの油圧制御装置
JP2945349B2 (ja) 走行モード切換装置
KR100680929B1 (ko) 건설 기계의 원동기 제어 장치
JPS62291443A (ja) 油圧駆動作業機を有する車両のリタ−ダ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992904397

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992904397

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992904397

Country of ref document: EP