WO1992010557A1 - Method of refining crude oil - Google Patents
Method of refining crude oil Download PDFInfo
- Publication number
- WO1992010557A1 WO1992010557A1 PCT/JP1991/001377 JP9101377W WO9210557A1 WO 1992010557 A1 WO1992010557 A1 WO 1992010557A1 JP 9101377 W JP9101377 W JP 9101377W WO 9210557 A1 WO9210557 A1 WO 9210557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fraction
- oil
- crude oil
- heavy
- separated
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
Definitions
- the present invention relates to a crude oil refining method, and more particularly, to a method for efficiently refining crude oil by simplifying a crude oil refining facility.
- the crude oil is fractionated by atmospheric distillation or the like to obtain each product fraction, and then each fraction is subjected to hydrorefining or other appropriate methods.
- the fractions had been processed to purification levels tailored to their respective purposes.
- the desulfurization treatment is generally carried out individually after fractionating crude oil into kerosene, light oil, heavy oil, and residual oil, and technical verification of batch treatment is established. Done I didn't.
- the present inventors have proposed a crude oil refining method and a simple crude oil refining method capable of reducing equipment costs and operation costs and achieving stable operation with simple operation management.
- a method to obtain each fraction with better properties in the process, a higher quality of middle distillate such as kerosene and light oil, a longer life of the catalyst used, and a higher yield of middle distillate We developed a method to enhance it.
- the desulfurization operation is performed after separating only the naphtha component in the crude oil in advance, and then the fractionation is performed in each fraction.
- the present invention relates to a method for obtaining a petroleum product by distilling and desulfurizing a crude oil, wherein a naphtha fraction in the crude oil is distilled and separated, and a residue obtained by removing the naphtha fraction is removed.
- Another object of the present invention is to provide a method for refining crude oil (first invention), which comprises hydrodesulfurizing a remaining fraction and then distilling the fraction to separate each fraction.
- the present invention provides a method wherein the naphtha fraction in the crude oil is separated by distillation, the remaining fraction excluding the naphtha fraction is hydrodesulfurized, then hydrorefined, and then distilled.
- Each fraction Another object of the present invention is to provide a method for refining crude oil (second invention), which is characterized in that the crude oil is separated into two types.
- Another object of the present invention is to provide a crude oil refining method (third invention) characterized in that the light fraction obtained is separated into a fraction and a heavy residual oil, and the obtained light fraction is hydrorefined.
- the present invention provides that the naphtha fraction in the crude oil is separated by distillation, then the remaining fraction excluding the naphtha fraction is subjected to hydrodesulfurization, and then lightened in a high-pressure separation tank. It is separated into a fraction and a heavy residue, and the separated heavy residue is subjected to fluid catalytic cracking and then fractionated, and the cracked oil obtained by the fractionation is hydrorefined together with the heavy fraction.
- Another object of the present invention is to provide a crude oil refining method (the fourth invention) characterized by the following. BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 to FIG. 4 are flow sheets showing an example of a basic device configuration for carrying out the present invention.
- FIG. 5 is a graph showing the storage stability of the light fraction obtained in Examples 2 and 3.
- FIG. 6 is a graph showing the storage stability of the heavy fraction obtained in Example 4 and Comparative Example 2.
- FIG. 7 is a graph showing the storage stability of the light fraction obtained in Example 5 and Comparative Examples 3 and 4.
- Atmospheric distillation column 4 Hydrodesulfurization unit (for naphtha) 5 Heat exchanger 6: Hydrorefining unit
- FIG. 1 is a flowchart showing an example of a basic device configuration for carrying out the first invention of the present invention.
- the refining apparatus embodying the first invention includes a pre-distillation column 1 for distilling and separating a naphtha fraction in crude oil, and desulfurization of the remaining fraction excluding the naphtha fraction.
- a desulfurization unit 2 for contacting the fraction with a desulfurization catalyst together with hydrogen to desulfurize it, and distilling the fraction after desulfurization to separate each fraction, ie, kerosene, light oil.
- An atmospheric distillation column 3 for fractionating heavy gas oil into residual oil and the like is provided.
- a hydrodesulfurizer 4 for desulfurizing the naphtha fraction separated in the pre-distillation column 1 and a heat exchanger 5 for heat recovery are provided.
- the preliminary distillation tower 1 Na full support fractions in crude oil (C 5 ⁇ l 5 7 ° C), you oil or al distillation.
- the optimum distillation conditions are selected according to the composition and properties of the crude oil, the configuration of the distillation column, and the number of stages. Normally, the pressure should be between normal pressure and 1 O kg / cm 2 G, and the temperature should be between 144 and 200 ° C. In particular, it is preferable that the pressure is around 1.5 kg / cm 2 G, and the naphtha fraction in crude oil in the above temperature range. Is separated.
- the naphtha fraction separated in the preliminary distillation column 1 is desulfurized in the hydrodesulfurization unit 4 in the same manner as in the prior art.
- LHSV liquid hourly space velocity
- the heavy fractions above the kerosene fraction which is the distillation residue of the pre-distillation column 1
- the hydrodesulfurization unit 2 in a lump with all of them mixed. It is desirable to control the cultivation of the desulfurizer 2 using the sulfur content of the final residual oil as a target value.
- a normal desulfurization catalyst such as Mo, One or more of Group VI and VIII metals such as W, Co, Ni, etc., specifically, Co — Mo or Ni — Mo
- a catalyst supported on a carrier such as mina, silica, zeolite or a mixture thereof is used at a temperature of 300 to 450 ° C and a pressure of 50 to 4 ° C. 0 0 kg / cm 2 and G, 0. the LHSV 1 to 5.
- the temperature should be between 370 ° C and 420 ° C and the pressure should be
- the fractions which have been desulfurized as described above are introduced into the atmospheric distillation column 3 and fractionated (separated) into each fraction. Is the condition at the time of fractionation of this, if for example, to have you under normal pressure, the mosquitoes Tsu door temperature of Na full support fraction C 5 ⁇ l 5 7. C, the cut temperature of the kerosene fraction is 157 to 239, the cut temperature of the oil fraction is 239 to 371 ° C, the cut temperature of the heavy gas oil fraction The kerosene fraction, gas oil fraction, heavy oil fraction and heavy oil fraction can be adjusted by setting the cutting temperature of the residue to 371-2 ° C or higher. It can be separated into residual oil.
- the sulfur content of the naphtha fraction can be reduced to the necessary limit. It is very difficult to reduce the sulfur content to the order of ppm, and when it is applied to the reformer, it acts as a catalyst poison, so that May cause problems. Therefore, the desulfurization operation is performed after the naphtha fraction is removed as described above, and then the kerosene fraction or more is fractionated, so that the product properties at or above the conventional level are not maintained.
- the equipment required for refining crude oil can be greatly simplified.
- the first invention since unstable substances that may be generated in the desulfurization step can be separated and removed by distillation in an atmospheric distillation column, particularly, an oil fraction which is an intermediate fraction It is possible to improve the stability of the vehicle. Further, by performing the desulfurization treatment using the residual sulfur content of the residual oil as a target value, the sulfur content in the light fraction can be reduced as compared with the conventional case.
- the second invention will be described as a method of obtaining each fraction having further improved properties by simple steps.
- FIG. 2 is a flowchart showing an example of a basic device configuration for carrying out the second invention.
- the refining apparatus for carrying out the second invention has a pre-distillation column 1 for distilling and separating a naphtha fraction in crude oil, and desulfurization of the remaining fraction excluding the naphtha fraction.
- a desulfurization unit for example, a hydrodesulfurization unit 2 for bringing the fraction into contact with a desulfurization catalyst together with hydrogen to desulfurize it, and a fraction after desulfurization
- a hydro-refining unit 6 for denitrification, etc., and an atmospheric distillation column 3 for subsequent distillation and fractionation into each fraction, ie, kerosene, gas oil, heavy gas oil, residual oil, etc. are provided.
- a hydrodesulfurization device 4 for desulfurizing the naphtha fraction separated in the pre-distillation column 1 is also provided.
- the heavy fractions above the kerosene fraction which is the distillation residue of the pre-distillation tower 1, are all introduced into the hydrodesulfurization unit 2 in a state where they are all mixed.
- the operation of the desulfurizer 2 is desirably controlled by setting the final sulfur content of the residual oil as a target value, and the operating conditions are the same as those of the first invention. .
- the fraction desulfurized as described above is then introduced into the hydrotreating unit 6 as a whole. It is desirable that the operation of the hydrorefining unit 6 be controlled with the goal of removing not only the sulfur content of the final residua but also other impurities such as nitrogen.
- the operating conditions include a catalyst known in the art as a catalyst, for example, a metal of Group VI of the periodic table (preferably, an oxide in which Mo or W is an oxide).
- the temperature is between 320 and 360 ° C
- the pressure is between 100 and 200 kg Zcra 2 G
- the LHSV is 0. .. 2 ⁇ 2 O hr - 1 and the hydrogen amount 8 0 0 ⁇ 2, 0 0 0 N m 3 / ⁇ and Ru der to be.
- the fraction that has been subjected to hydrorefining as described above is introduced into the atmospheric distillation column 3 and further fractionated (separated) into each fraction.
- the conditions for this fractionation are the same as in the first invention.
- the respective fractions of kerosene to residual oil obtained from the atmospheric distillation column 3 in this way have already been subjected to hydrodesulfurization and hydrorefining, so they can be used as needed. After heat exchange with crude oil in a heat exchanger to recover heat, it can be sent directly to each product storage tank where it is stored, or directly supplied to a demand destination.
- the naphtha fraction may, if necessary, be mixed with the naphtha separated from the crude oil and contain the hydrogen. It is desulfurized in the sulfurizing device 4.
- the sulfur content of naphtha can be reduced to the necessary limit. It is very difficult, it is impossible to reduce the sulfur content to about 1 ppm by weight, and if it is applied to reformers, it acts as a catalyst poison, which hinders subsequent processes. There is a thing to do.
- the desulfurization operation is performed after the naphtha fraction is removed as described above, and after hydrorefining, the kerosene fraction or more is fractionated. While maintaining the above properties, the equipment required for refining crude oil can be greatly simplified. By omitting the intermediate tank in this way, it is possible to reduce energy loss due to introduction and derivation to the tank. In addition, the integrated operation of hydrodesulfurization and hydrorefining makes it easier to manage the operation, reducing the cost of equipment for management equipment and reducing the number of operators. It becomes possible.
- unstable substances that may be generated in the desulfurization step can be separated and removed by distillation in the main distillation column. Furthermore, by performing the desulfurization treatment using the residual sulfur content of the residual oil as a target value, it is possible to reduce the sulfur content in the solid fraction more than before. . In addition, in the present method, it is possible to remove impurities such as nitrogen in the light fraction by performing hydrorefining, thereby improving the stability of the gas oil fraction. You can do it. Iii) Further, the above-mentioned third method can be used in a simple process, in particular, to increase the quality of middle distillates such as kerosene and light oil and to extend the life of the catalyst used. The invention will be described.
- FIG. 3 is a flowchart showing an example of a basic device configuration for carrying out the third invention.
- the refining device embodying the third invention includes a pre-distillation column 1 for distilling and separating a naphtha fraction in crude oil, and desulfurization of the remaining fraction excluding the naphtha fraction.
- a desulfurization apparatus for example, a hydrodesulfurization apparatus 2 for bringing the fraction into contact with a desulfurization catalyst together with hydrogen to desulfurize it, a high-pressure separation tank 7 for performing high-pressure separation of the fraction after desulfurization, a high-pressure separation tank Hydrorefining unit 6 for purifying the heavy fraction separated in the process, and then distillation under normal pressure for distillation and fractionation into each fraction, that is, naphtha, kerosene, gas oil, etc.
- Tower 3 is provided.
- a desulfurization device 4 for desulfurizing the naphtha fraction separated in the preliminary distillation column 1 is also provided.
- the heavy fractions above the kerosene fraction which is the distillation residue of the pre-distillation column 1 are all introduced into the hydrodesulfurization unit 2 in a state where they are all mixed.
- the desulfurization unit 2 it is desirable to control the sulfur content of the final heavy residual oil as a target value, and the operating conditions are as follows. Same as above.
- the fraction desulfurized as described above is then collectively introduced into the high-pressure separation tank 7.
- various separation methods For example, if hydrogen is introduced from the bottom of the separation tank, the above-mentioned fraction can be effectively separated into a light fraction and a heavy residual oil. As a result, hydrogen required for the subsequent hydrorefining is sufficiently supplied.
- the light fraction obtained in the high-pressure separation tank 7 is introduced into the hydrorefining unit 6. It is desirable that the operation of the hydrorefining unit 6 be controlled with the goal of removing not only the sulfur content of the final gas oil but also other impurities such as nitrogen.
- the operating conditions are the same as described above.
- the pressure is preferably set to be substantially the same as the pressure in the hydrodesulfurization unit 2 and the high-pressure separation tank 7 described above.
- the pressures of the hydrodesulfurization unit 2, the high-pressure separation tank 7 and the hydrorefining unit 6 are set at substantially the same level, the energy consumption can be minimized. This is preferred. In this way, in this method, the light fraction from which the heavy residual oil has been separated is hydrorefined, so that the degradation of the hydrorefining catalyst due to the heavy residual oil is prevented, and the catalyst life is reduced. It will be prolonged.
- the fraction that has been subjected to hydrorefining as described above is introduced into the atmospheric distillation column 3 alone or mixed with the heavy resid separated in the high-pressure separation tank.
- Fractionated into naphtha fraction, kerosene fraction, gas oil fraction and heavy residual oil (separated) Is done.
- Whether to distill the hydrorefined oil alone or to mix and distill it with the heavy resid is freely determined by the separation state of the heavy resid and the light fraction in the high-pressure separation tank, etc. You can choose. It should be noted that as the conditions at the time of fractionation of this, for example, under normal pressure, the mosquitoes Tsu door temperature of Na full support fraction c 5 ⁇
- the cut temperature of the kerosene fraction is 157 to 239
- the cut temperature of the gas oil fraction is 239 to 371 ° C
- the cut temperature of the heavy gas oil fraction is By setting the cut temperature at 37 1 to 47 2 and the cut temperature of heavy residual oil at 47 2 or more, it is possible to separate into naphtha fraction, kerosene fraction and gas oil fraction. it can.
- the respective fractions of kerosene, petroleum oil, etc. obtained from the atmospheric distillation column 3 in this way have already been subjected to hydrodesulfurization and hydrorefining, so that they can be used as needed. After heat exchange with crude oil in a heat exchanger to recover heat, it can be sent directly to each product storage tank where it is stored, or supplied directly to demand customers.
- the naphtha fraction is desulfurized in the hydrodesulfurization unit 4 together with the naphtha fraction separated from the crude oil, if necessary.
- the third invention it is possible to separate and remove unstable substances that may be generated in the desulfurization step by distillation in the main distillation column. Furthermore, by performing the desulfurization treatment using the residual sulfur content of the heavy residual oil as a target value, it is possible to reduce the sulfur content in the light fraction more than before. .
- nitrogen, metal, and other impurities in the light fraction can be removed by high-pressure separation and hydrorefining, so that the light fraction can be removed. In addition to improving the stability of the product, the quality can be further improved.
- the fourth invention will be described as a method for obtaining each fraction of extremely high quality in a simple process and increasing the yield of middle distillates such as kerosene and gas oil.
- FIG. 4 is a flowchart showing an example of a basic device configuration for carrying out the fourth invention.
- the refinery for carrying out the refinement method of the fourth invention includes crude oil A pre-distillation column 1 for distilling and separating the naphtha fraction in the reactor, and a desulfurization device for desulfurizing the remaining fraction excluding the naphtha fraction, for example, the fraction is converted to a desulfurization catalyst together with hydrogen.
- Hydrodesulfurization unit 2 for contacting and desulfurization, and high-pressure separation tank 7 for high-pressure separation of desulfurized fractions, cracking of heavy residual oil separated by high-pressure separation
- a chemical purification unit 6 and an atmospheric distillation column 3 for subsequent distillation to fractionate each fraction, ie, naphtha, kerosene, gas oil, etc., are provided.
- a hydrodesulfurization unit 4 for desulfurizing the naphtha fraction separated in the preliminary distillation column 1 is also provided.
- crude oil is either et distillation Na full support fractions in crude oil (C 5 ⁇ l 5 7 ° C).
- the distillation conditions at this time are the same as in the first invention.
- the heavy fractions above the kerosene fraction which is the distillation residue of the pre-distillation column 1 are all introduced into the hydrodesulfurization unit 2 in a state where they are all mixed. It is desirable to control the operation of the desulfurization unit 2 using the sulfur content of the final heavy residual oil as a target value.
- the operating conditions are the same as in the first invention.
- the fraction desulfurized as described above is then collectively introduced into the high-pressure separation tank 7.
- various separation methods for example, hydrogen from the bottom of the separation tank.
- the above fraction can be effectively separated into a light fraction and a heavy residual oil, and the hydrogen required for the subsequent hydrorefining can be sufficiently supplied.
- the obtained heavy residual oil is still close to 50% by weight with respect to the crude oil, and its utility value is low. Therefore, in the method of the present invention, the heavy residual oil is catalytically cracked by the fluidized catalytic cracking unit 8 to provide 8 to 18% by weight (based on crude oil) of cracked gas oil and gasoline. Obtain Lin etc. This can ultimately reduce heavy resids to 2-5% by weight (relative to crude oil).
- the conditions for the fluid catalytic cracking are as follows: a catalyst for cracking a heavy residual oil commercially available as a catalyst, for example, a zeolite-based cracking catalyst (5% by weight or less of rare earth element, preferably Or 0.5 to 2% by weight, and a zeolite content of 20 to 60% by weight, more preferably 30 to 40% by weight, and a catalyst Z oil ratio of 5 to 1%. 5 (weight ratio), preferably 8 to 10 (weight ratio), and a temperature of 450 to 560, preferably 510 to 540 ° C.
- the pressure should be set between 1.0 and 3.0 kg, cm 2 G.
- the light fraction obtained in the high-pressure separation tank 7 and the cracked gas oil obtained in the heavy residual oil fluid catalytic cracking device 8 are introduced into a hydrorefining device 6. It is desirable that the operation of this hydrorefining unit 6 be controlled with the goal of removing not only the sulfur content of the final gas oil but also other impurities such as nitrogen content.
- the operating conditions are the same as in the first invention.
- the fraction that has been subjected to hydrorefining as described above is introduced into the atmospheric distillation column 3, and further fractionated (separated) into each fraction. The conditions for this fractionation are the same as in the first invention.
- the respective fractions of kerosene, gas oil, etc. obtained from the atmospheric distillation column 3 in this way have already been subjected to hydrodesulfurization and hydrorefining, so they can be left as required.
- the naphtha fraction is desulfurized in the hydrodesulfurization unit 4 together with the naphtha separated from the crude oil.
- the crude oil is directly introduced into the desulfurization process without separating the naphtha fraction in the crude oil by pre-distillation, it is very difficult to reduce the sulfur content of the naphtha to the necessary limit.
- the sulfur content cannot be reduced to about 1 ppm by weight, and when it is applied to the reformer, it acts as a catalyst poison, which may hinder the subsequent processes. is there.
- a fluid catalytic cracking unit was incorporated in a series of operations for desulfurization and hydrorefining, and then the refined oil fraction was fractionated.
- the equipment required for refining crude oil can be greatly simplified while maintaining properties at least as high as those of the past.
- By omitting the intermediate tank in this way it is possible to reduce the energy loss due to introduction and derivation to the tank.
- hydrodesulfurization treatment and hydrogen Since the chemical purification process is performed in a lump, its operation and management can be facilitated, and the equipment cost for management equipment and the number of operators can be reduced.
- the fourth invention it is possible to separate and remove unstable substances that may be generated in the desulfurization step by distillation in the main distillation column. Further, by performing the desulfurization treatment using the residual sulfur content of the residual oil as a target value, it is possible to reduce the sulfur content in the solid fraction as compared with the conventional case.
- impurities such as nitrogen in the light fraction (including cracked gas oil) are removed by high-pressure separation, fluid catalytic cracking of heavy residue, and hydrorefining. As a result, the stability of the light fraction can be improved, and the yield of the high-value fraction can be significantly increased.
- C o - M o catalyst (C oO: 1. 2 wt% , M o 2 0 3: 1 0. 5 wt%, carrier: A Le Mi Into a hydrodesulfurization unit filled with sodium Z silica, surface area: 25 nf / g, pore volume: 0.62 cc / g), and a pressure of 135 kg / cm 2 G. Desulfurization was performed at a temperature of 390 ° C and LHSV O. Shr- 1 . The amount of hydrogen used at this time was 76 Nm 3 ZM.
- Example 2 The same crude oil as in Example 1 was refined by a conventional method.
- the conditions of the atmospheric distillation column used at this time were 45 tray stages, an operating pressure of 0.5 kgZcm 2 G, and a distillation column inlet temperature of 370.
- Table 1 shows the conditions for each hydrodesulfurization.
- the catalyst used was the same as that used in Example 1.
- Table 2 shows the properties of the obtained fractions.
- Heavy gas oil fraction 10.5 0.8 7 9 5 0.2 2 0.0 8 Residual oil 40.1 0.9.3 7 9 0.6.0.2 1 Gas 1.
- Ratio Naphtha 1. ⁇ 0.76 0 0 0 .0 0 9 1> * Comparison Kerosene fraction 16.4 0.7 9 6 0 0 .0 0 4 29.4 * Example Gas oil fraction 32.1 0. 8 6 4 8 0. 1 4 0. 0 3
- the naphtha fraction is separated at 157 ° C in a pre-distillation column operating at a pressure of 1.5 kg / cm 3 G.
- the crude oil from which this naphtha fraction has been separated is introduced into a hydrodesulfurization unit filled with a Co-Mo catalyst and the pressure is reduced.
- Example 3 The same operation as in Example 2 was performed except that a Ni—Mo based catalyst [hydrogenation catalyst (B)] (shown in Table 3) was used.
- the desulfurized product oil obtained at this time was continuously introduced into the hydrorefining apparatus without fractionation, and the same treatment as in Example 2 was performed.
- Table 4 shows the analysis results of the obtained fractions.
- Kerosene fraction 0.7 0.9 8 0 1 4.0 8 6 23.0 Applied light oil fraction 0.8 4 8 1 3 0.5 4 0 0 65
- Example 2 0.1 0.1 0.25 None
- Example 3 0.1 1 0.32 None Commercial light oil 0.09 0.19 None
- the residual oil after separation of this naphtha fraction is converted to a Co—Mo based catalyst ((00: 1.2% by weight, M203: 10.5% by weight, carrier: silica).
- (Z-Alumina) into the hydrodesulfurization unit, and the conditions are such that the sulfur content of the heavy residue becomes 0.5% by weight, that is, the pressure is 135 kg / cm.
- G at a temperature 3 8 0, LHSV O. 6 hr - ', the desulfurization was Tsu lines under the conditions of hydrogen quantity 1, 0 0 0 N m 3 Bruno.
- the desulfurized product oil is transferred to a high-pressure separation tank without lowering the pressure of the system, and the light fraction is separated by introducing hydrogen from the bottom of the tank. I did. Subsequently, the light fraction was introduced into a hydrotreating unit together with sufficient hydrogen for hydrotreating.
- the obtained hydrorefined oil is At atmospheric distillation tower, C 5 ⁇ I 5 7 naphtha fraction ° C,
- the treatment conditions for hydrorefining were as follows: Ni—Mo catalyst (Ni02: 4.0% by weight, M203: 25.0% by weight, carrier: using the a Le Mi Na), pressure 1 3 5 kgZ cm 2 G, a temperature 3 2 0 ° C, hydrogen l, 0 0 0 N m 3 Z ⁇ , LHSV 2. was one der 0 hr.
- Table 7 shows the properties of the kerosene and gas oil obtained in Example 4 and Comparative Example 2. From Table 7, it is clear that kerosene and oil obtained by the present invention have a particularly low nitrogen content and are excellent in smoke point and cetane index. .
- Example 4 a storage stability test was performed on the oil fractions obtained in Example 4 and Comparative Example 2. Specifically, the above gas oil fraction was placed in a 50-glass container with a vent.
- the sample was put in a place of 400 ml, stored in the place kept at 43, and the absorbance at 470 nm was measured at regular intervals.
- the measurement results are shown in Fig. 6 and Table 8.
- the storage stability test conformed to ASTMD 4 65 2 -86.
- a commercially available light oil (this is The results of storage stability tests of desulfurized gas oil and its raw material, a straight-run undesulfurized gas oil, which was prototyped for commercial light oil specifications) were also shown.
- the level of storage stability tests for ordinary commercial light oils is about 0.12 to 0.40 for 30 days of storage.
- Example 4 0. 0 1 0. 0 3 None Comparative Example 2 0.0 6 0. 1 4 None Comparative Example 3 and Example 5
- the crude oil is converted to a C0-M0-based catalyst (C0: 1.2 weight%, Mo203: 10.5 weight%, carrier: silica ZA).
- C0 1.2 weight%
- Mo203 10.5 weight%
- carrier silica ZA
- Desulfurization was performed under the conditions of /.
- the desulfurized product oil is transferred to a high-pressure separation tank without lowering the pressure of the system, and hydrogen is introduced from the bottom of the tank to separate solid fractions.
- the heavy residual oil continued to pass through the heavy residual oil fluidized catalytic cracking unit and was decomposed into gas, LPG, gasoline, cracked oil and heavy oil.
- the cracked gas oil thus obtained is referred to as Comparative Example 3, and its properties are shown in Table 9.
- the yield of cracked gas oil was 9.6% by weight (based on crude oil).
- the cracked gas oil was pressurized, mixed with the above light fraction, introduced into a hydrotreating unit, and hydrorefined.
- Table 9 shows the results of the analysis of the obtained gas oil fraction as Example 5.
- the yield of the gas oil fraction was 35.1 weight (based on crude oil).
- the treatment conditions for hydrorefining were as follows: a Ni-Mo based catalyst (Ni 4% by weight, Mo 25% by weight, alumina carrier) was used. , pressure 1 3 5 kg / cm 2 G , a temperature 3 4 0 ° C, the amount of hydrogen 1, 0 0 0 N m 3 / ⁇ , LHSV l O hr - was 1..
- Example 10 shows the hydrodesulfurization conditions at this time.
- the desulfurized heavy resid obtained by desulfurizing the heavy resid is continuously passed through a heavy residue fluid catalytic cracking unit to be decomposed into gas, LPG, gasoline, cracked gas oil and heavy oil. did.
- the decomposition conditions are the same as in Example 5.
- Table 9 shows the properties of the resulting decomposed oil.
- Example 5 a storage stability test of the gas oil fraction obtained in Example 5, Comparative Example 3 and Comparative Example 4 was performed. Specifically, the above light oil fraction was stored in a 500 glass container having a vent at 400 ⁇ and stored in a place maintained at 43 ° C. The absorbance at 70 nm was measured. The measurement results are shown in Fig. 7 and Table 9. Here, the storage stability test conformed to ASTM D4625-86. The level of storage stability testing for conventional commercial light oils is on the order of 0.12 to 0.40 for 30 days of storage.
- the cracked oil as in Comparative Example 4 had a low number of setants and a markedly high aromatic content as it was.
- the stability is poor, the color changes drastically with the passage of the storage time, and the color becomes dark brown, but the hydrorefining with light fractions is difficult.
- all of these problems are improved, and the properties and quality of the oil must be fully satisfied.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
明 細 書
' 原油 の精製方法
技術分野
本発明 は原油の精製方法に関 し、 詳 し く は原油 の 精製設備を簡略化 して効率 よ く 原油 を精製す る 方法 に関す る 。
背景技術
従来、 原油 を精製処理す る場合、 原油 を常圧蒸留 法な どに よ り 分留 して各製品留分 と した後、 水素化 精製 ま た は他の適当 な方法に よ り 、 各留分をそ れぞ れの 目 的に合わせた精製 レ ベルに ま で処理 して いた。
したが っ て、 従来法では、 原油を分留 した後にそ れぞれについて独立に精製処理を実施 して い る ため、 精製設備の基数が多 く な り 複雑な設備 と な つ て いた。
さ ら に、 原油の種類に よ り 各製品の得率及び硫黄 分含量が変わ る こ と 及び脱硫装置の兼用 (灯油 と軽 油) が行われる ため、 各設備間 に は中間 タ ン ク が設 け ら れ、 各留分をそ の中間 タ ン ク に一次貯留す る よ う に して いた。 そのため、 中間 タ ン ク を設 け る 費用 が必要であ り 、 そ のための土地 も 確保 しな ければな らず、 ま た各留分が中間 タ ン ク に貯蔵 さ れ る 際 に冷 却 さ れ、 エ ネ ルギーが有効に利用 さ れな い設備構成 と な っ ていた。
さ ら に、 精製設備の基数が多い こ と か ら、 各精製 設備の運転管理 も 、 それぞれについて独立に制御す る必要があ り 、 運転管理用 の設備や こ れに付随す る
各種設備 も多 く 、 複雑な運転管理を余儀な く さ れて いた。
従っ て、 設備の単純化によ る設備コ ス ト の低減, エネルギーの有効利用 に よ る運転コ ス ト の低減及び 総合的な運転管理の容易化な どが望ま れて いた。
ま た、 原油の精製効率を向上さ せる方法 と して、 従来か ら次の方法①〜④が知 られてい る。
①原油を昇圧 し、 水素を混合 して柽質油 と重質油 に分離 した後、 重質油を さ ら に昇圧 し、 水素を混合 して水素化脱硫する方法 (特公昭 5 0 ― 3 7 0 4 3 号公報) 。
②重質油の水素化脱硫及び Z又は水素化分解油を 原油 と熱交換 し、 加圧下で蒸留する 方法 (特公昭 5 1 一 2 1 4 0 7 号公報) 。
③原油を昇圧 し、 水素を混合 して軽質油 と重質油 に分離 した後、 軽質油を水素化脱硫する方法 (特公 平 2 - 2 5 9 5 2 号公報) 。
④重油を流動接触分解 して生成する沸点 1 5 0 〜 3 6 0 °Cの留分を、 水素化精製 して高セ タ ン価の炭 化水素油を製造する方法 (特開昭 6 3 - 2 9 1 8 5 号公報) 。
しか し、 上記の各方法を用 いて も潢足すべき安定 性を有 した留分を得る こ とができなか っ た。 ま た、 従来の方法では、 一般に脱硫処理を、 原油を灯油, 軽油, 重質柽油, 残油 に分留 した後、 個別に実施 し てお り 、 一括処理 した場合の技術的検証が確立 さ れ
ていなか っ た。
発明の開示
そ こ で本発明者 ら は、 設備 コ ス ト や運転 コ ス ト の 低減が可能で、 しか も簡単な運転管理で安定 した運 転を行 う こ と ができ る 原油の精製方法及び簡略なェ 程で一層す ぐ れた性状の各留分を得 る 方法、 さ ら に 灯油, 軽油等の中間留分の高品質化, 使用す る触媒 の長寿命化及び中間留分の得率を高め る 方法を開発 すべ く 鋭意研究を重ねた。 そ の結果、 あ ら か じ め原 油 中 の ナ フ サ成分のみを分離 してか ら脱硫操作を行 い、 そ の後各留分に分留す る こ と に よ り 、 あ る い は 該ナ フ サ留分を除いた残 り の留分を精製処理す る に あた り 、 水素化精製処理, 高圧分離処理, 重質残油 の流動接触分解処理等を巧みに導入 して処理 した後 に分留す る こ と に よ り 、 上記 目 的を達成でき る こ と を見出 した。 本発明 はかか る 知見に基いて完成 した も のであ る 。
すなわ ち、 本発明 は、 原油 を蒸留, 脱硫 して石油 製品を得 る 方法にお いて、 原油 中 の ナ フ サ留分を蒸 留分離 した後、 該ナ フ サ留分を除いた残 り の留分を 水素化脱硫 し、 次いで、 蒸留 して各留分に分離す る こ と を特徴 とす る 原油 の精製方法 (第 1 発明) を提 供す る も のであ る。
ま た、 本発明 は、 原油 中のナ フ サ留分を蒸留分離 した後、 該ナ フ サ留分を除いた残 り の留分を水素化 脱硫 し、 次いで水素化精製 した後、 蒸留 して各留分
に分離する こ と を特徵 とす る原油 の精製方法 (第 2 発明) を も 提供する も のであ る。
さ ら に、 本発明は、 原油中のナ フ サ留分を蒸留分 離 した後、 該ナ フ サ留分を除いた残 り の留分を水素 化脱硫 し、 次いで、 高圧分離槽で軽質留分 と重質残 油 と に分離 し、 得 られた軽質留分を水素化精製する こ と を特徵 とす る原油 の精製方法 (第 3 発明) を も 提供する も のであ る。
その上に、 本発明 は、 原油中のナ フ サ留分を蒸留 分離 した後、 該ナ フ サ留分を除いた残 り の留分を水 素化脱硫 し、 次いで、 高圧分離槽で軽質留分 と重質 残油 と に分離 し、 分離 した重質残油 は流動接触分解 後分留 し、 該分留 に よ り 得 られる分解柽油 は前記柽 質留分 と共に水素化精製する こ と を特徴 とす る原油 の精製方法 (第 4 発明) を も提供す る も のであ る。 図面の簡単な説明
第 1 図〜第 4 図は、 本発明を実施する ための基本 的な装置構成の一例を示す フ ロ ー シー ト であ る。
第 5 図は、 実施例 2 及び 3 で得 ら れた軽質留分の 貯蔵安定性を示す グラ フであ る。
第 6 図 は、 実施例 4 及び比較例 2 で得 られた柽質 留分の貯蔵安定性を示すグラ フ であ る。 第 7 図は、 実施例 5 , 比較例 3 及び 4 で得 られた軽質留分の貯 蔵安定性を示すグラ フ であ る。
なお、 図中の符号は、 次の通 り であ る 。
1 予備蒸留塔 2 : 水素化脱硫装置
3 常圧蒸留塔 4 : 水素化脱硫装置(ナ フ サ用 ) 5 熱交換器 6 : 水素化精製装置
7 高圧分離装置
8 重質残油流動接触分解装置
発明を実施す る ための最良の形態
先ず、 前記第 1 発明について説明す る。
第 1 図 は、 本発明の第 1 発明を実施す る た めの基 本的な装置構成の一例を示す フ ロ ー シー ト であ る 。
第 1 発明を実施す る 精製装置に は、 原油 中の ナ フ サ留分を蒸留分離す る ための予備蒸留塔 1 と、 該ナ フ サ留分を除いた残 り の留分の脱硫を行 う 脱硫装置 例え ば、 該留分を水素 と共に脱硫触媒に接触 さ せて 脱硫す る ための水素化脱硫装置 2 と、 脱硫後の留分 を蒸留 して各留分、 すなわち灯油, 軽油, 重質軽油 残油等に分留す る ための常圧蒸留塔 3 と が備え られ てい る 。 さ ら に、 前記予備蒸留塔 1 で分離 した ナ フ サ留分の脱硫を行 う ための水素化脱硫装置 4 及 び熱 回収を行 う 熱交換器 5 と が備え ら れて い る 。
ま ず、 予備蒸留塔 1 に おいて は、 原油 中のナ フ サ 留分 ( C 5〜 l 5 7 °C ) を、 原油か ら蒸留分離す る 。 こ の と き の蒸留条件は、 原油 の組成, 性状, 蒸留塔 の構成, 段数 に よ り 最適な条件を選択す る 。 通常 は 圧力 を常圧〜 1 O kg/ cm2G, 温度を 1 4 5 〜 2 0 0 °C と すれば よ い。 特に、 好 ま し く は圧力 を 1. 5 kg/ cm2G前後 と して上記温度範囲で原油 中 の ナ フ サ留分
を分離する。 こ の予備蒸留塔 1 で分離さ れた ナ フ サ 留分は、 水素化脱硫装置 4 にお いて従来 と 同様に し て脱硫さ れる 。 例えば、 触媒に C 0 — M 0 系触媒を 用 いて、 温度を 2 8 0 〜 3 4 0 °C , 圧力を 1 8 〜 4 O kgZcro2Gと し、 液時空間速度 (L H S V) を 3 〜 1 O h r -1及び水素量を 5 0 〜 1 0 O N n Z と する こ と に よ り 、 該ナ フ サ留分中の硫黄残留分を 1 重量 p p m以下にする こ とができ る 。 なお、 上述 し たナ フ サ留分の分離は、 蒸留 に よ り 行 う こ とが好ま しレ、が、 その他、 フ ラ ッ シ ュ 操作に よ り 行 う こ と も でき る 。
一方、 予備蒸留塔 1 の蒸留残分であ る 灯油留分以 上の重質分は、 こ れ らが全て混合 した状態で一括 し て水素化脱硫装置 2 に導入さ れる。 こ の脱硫装置 2 の運耘は、 最終的な残油の硫黄含量を 目 標値 と して 制御する こ とが望ま しい。 運転条件 と して は、 例え ば、 残油の硫黄残留分を 1 重量 以下、 好ま し は 0. 5 重量 以下にす る場合に は、 触媒 と して通常の 脱硫触媒、 例えば、 M o , W, C o , N i 等の周期 律表第 VI族金属 と同 VIII族金属の 1 種ま たは 2種以 上、 具体的には C o — M o又は N i — M o をア ル ミ ナ, シ リ カ, ゼォ ラ イ ト あ るい は こ れ ら の混合物等 の担体に担持 した触媒等を用 い、 温度を 3 0 0 〜 4 5 0 °C, 圧力 を 5 0 〜 4 0 0 kg/ cm2Gと し、 L H S Vを 0. 1 〜5. 0 h r 及び水素量を 5 0 0 〜 , 0 0 0 N n Z ^ とす る こ とが好ま しい。 ま た、 よ
り 好ま し く は、 温度を 3 7 0 〜 4 2 0 °C , 圧力 を
1 0 0 〜 2 0 O kgZ cm2Gと し、 L H S V を 0. 2 〜 2· 0 h r — 1及び水素量を 8 0 0 〜 2, 0 0 O N nf Z Mの範 囲 に設定す る と よ い。 こ れに よ り 、 残油以外の各留 分の硫黄分 も 充分に除去す る こ と ができ る 。
次に、 上記の よ う に して脱硫処理を終えた留分を 常圧蒸留塔 3 に導入 して各留分に分留 (分離) す る 。 こ の分留時の条件 と して は、 例え ば、 常圧下に お い て、 ナ フ サ留分の カ ツ ト 温度を C 5〜 l 5 7 。C、 灯 油留分の カ ツ ト 温度を 1 5 7 〜 2 3 9 、 柽油留分 の カ ツ ト 温度を 2 3 9 〜 3 7 1 °C , 重質軽油留分の カ ツ ト 温度を 3 7 1 〜 4 7 2 て及び残油 の カ ツ ト 温 度を 4 7 2 °C以上 とす る こ と に よ り 、 灯油留分, 軽 油留分, 重質柽油留分及び残油 に分離す る こ と がで さ る 。
こ の よ う に して主蒸留塔 3 か ら得 ら れ る 灯油乃至 残油の各留分は、 あ らか じめ脱硫工程を終えてい る ため、 そ の ま ま 熱交換器 5 で原油 と熱交換 さ せて熱 回収 した後に、 直接各製品貯槽に送 ら れて貯留 し、 あ る い は直接需要先に供給す る こ と がで き る 。
こ こ で、 予備蒸留 に よ り 原油 中の ナ フ サ留分を分 離せずに、 原油 を直接脱硫工程に導入す る と、 ナ フ サ留分の硫黄分を必要限度 ま で下げ る こ と は非常に 困難であ り 、 硫黄分を p p m オ ー ダ一 にす る こ と 力 で き ず、 リ フ ォ ー マ 一 にか け る と触媒毒 と して作用 す る ため、 後工程に支障を き たす こ と があ る 。
したが っ て上記の如 く ナ フ サ留分を除去 した後に 脱硫操作を行い、 次いで、 灯油留分以上を分留する こ と に よ り 、 従来 と同程度以上の製品性状を保持 し なが ら、 原油の精製に必要な設備を大幅に簡略化す る こ とができ る。 こ れに よ る 中間 タ ン ク の省略に よ つ て、 該タ ン ク への導入, 導出に伴 う エネ ルギー損 失を低減す る こ とができ る。 さ ら に、 脱硫処理を一 括 して行う ため に、 その運転管理が容易 と な り、 管 理用機器の設備費の低減や運転員の数の低減 も 図 る こ とが可能 と な る 。
第 1 発明に よれば、 脱硫工程において生成する お それのある不安定物質を常圧蒸留塔での蒸留で分離 除去する こ と も可能なため、 特に、 中間留分であ る 柽油留分の安定性を向上させる こ とが可能 と な る。 さ ら に、 脱硫処理を残油の残留硫黄分を 目標値 と し て行 う こ と に よ り 、 軽質留分中の硫黄分を従来よ り 低減す る こ と も でき る。
ま た、 簡略な工程で一層す ぐ れた性状の各留分を 得る方法 と して、 前記第 2 発明 について説明する 。
第 2 図は、 第 2 発明を実施す る ための基本的な装 置構成の一例を示す フ ロ ー シー ト であ る。
第 2 発明を実施する精製装置に は、 原油 中のナ フ サ留分を蒸留分離する ための予備蒸留塔 1 と、 該ナ フ サ留分を除いた残 り の留分の脱硫を行 う 脱硫装置、 例えば、 該留分を水素 と共に脱硫触媒に接触 さ せて 脱硫する ための水素化脱硫装置 2 と、 脱硫後の留分
の脱窒素な どを行 う 水素化精製装置 6 、 そ の後蒸留 して各留分、 すなわ ち灯油, 軽油, 重質軽油, 残油 等に分留す る ための常圧蒸留塔 3 が備え ら れて い る 。 ま た、 前記予備蒸留塔 1 で分離 した ナ フ サ留分の脱 硫を行 う ための水素化脱硫装置 4 も 備え ら れて い る 。
ま ず、 予備蒸留塔 1 において は、 原油 中 のナ フ サ 留分 ( C 5〜 l 5 7 eC ) を原油か ら蒸留分離す る 。 こ の と き の蒸留条件 と して は、 前記第 1 発明 と 同様 であ る 。 こ の結果、 該ナ フ サ留分中 の硫黄残留分を 1 重量 p p m以下にす る こ と がで き る 。 な お、 上述 した ナ フ サ留分の分離は、 蒸留 に よ り 行 う こ と が好 ま しいが、 その他、 フ ラ ッ シ ュ 操作に よ り 行 う こ と も で き る。
一方、 予備蒸留塔 1 の蒸留残分であ る 灯油留分以 上の重質分は、 こ れ ら が全て混合 した状態で一括 し て水素化脱硫装置 2 に導入 さ れ る 。 こ の脱硫装置 2 の運転は、 最終的な残油の硫黄含量を 目 標値 と して 制御す る こ とが望 ま し く 、 運転条件 と して は、 前記 第 1 発明 と 同様であ る 。
上記の よ う に して脱硫さ れた留分は、 次いで、 一 括 して水素化精製装置 6 に導入 さ れ る 。 こ の水素化 精製装置 6 の運転は、 最終的な残油 の硫黄分のみで な く 他の不純物であ る窒素分な どの除去を 目 標 と し て制御す る こ とが望 ま しい。 その運転条件 と して は、 触媒 と して通常の公知の触媒、 例え ば、 周斯律表第 VI族金属 (好 ま し く は M o ま た は Wを酸化物 と して
1 0 重量%以上、 よ り 好ま し く は 1 5 重量%以上含 有) と 同第 II族金属 (好ま し く は N i を酸化物 と し て 1 重量%以上、 よ り 好ま し く は 3 〜 8 重量%含有) を シ リ カ及び Z又はア ル ミ ナ, ゼォ ラ イ ト , 酸化ホ ゥ素あ る いは こ れ ら の混合物等の担体、 特に、 平均 細孔径 6 0 〜 2 0 0 オ ン グス ト ロ ー ム、 よ り 好ま し く は 8 0 〜 1 2 0 オ ン グス ト ロ ー ムの多孔質担体に 担持 した触媒を用 い、 温度を 3 0 0 〜 4 0 0 °C , 圧 力を 5 0 〜 4 0 0 kg/ cm2Gと し、 L H S Vを 0. 1 〜 5. 0 h r — 1及び水素量を 5 0 0 〜5, 0 0 0 N τα M に設定する こ とが好ま しい。 そ して、 状況に よ り 異 な る が、 よ り 好ま し く は、 温度を 3 2 0 〜 3 6 0 °C , 圧力 を 1 0 0 〜 2 0 0 kgZcra2Gと し、 L H S Vを 0. 2 〜2. O h r -1及び水素量を 8 0 0 〜2, 0 0 0 N m3 / ^ とすべきであ る。
次に、 上記の よ う に して水素化精製を終えた留分 を常圧蒸留塔 3 に導入 して、 さ ら に、 各留分に分留 (分離) する。 こ の分留時の条件 と して は、 前記第 1 発明 と同様であ る。
こ の よ う に して常圧蒸留塔 3 か ら得 られ る 灯油乃 至残油の各留分は、 すでに水素化脱硫及び水素化精 製を終えてい る ため、 必要に応 じてその ま ま熱交換 器で原油 と熱交換さ せて熱回収 した後に、 直接各製 品貯槽に送 られて貯留 し、 あ る いは直接需要先に供 耠す る こ とができ る 。 ま た、 ナ フ サ留分は、 必要に 応 じて、 原油か ら分離 さ れたナ フ サ と共に前記水素
化 硫装置 4 で脱硫 さ れ る 。
こ こ で、 予備蒸留 に よ り 原油 中 のナ フ サ留分を分 離せずに、 原油 を直接脱硫工程に導入す る と、 ナ フ ザの硫黄分を必要限度 ま で下げ る こ と が非常に困難 であ り 、 硫黄分を 1 重量 p p m程度にす る こ と がで き ず、 リ フ ォ ー マ ー にか け る と触媒毒 と して作用す る ため、 後工程に支障を き たす こ と があ る 。
したが っ て上記の如 く ナ フ サ留分を除去 した後 に 脱硫操作を行い、 水素化精製の後、 次いで、 灯油留 分以上を分留す る こ と に よ り 、 従来 と 同程度以上の 性状を保持 しなが ら、 原油 の精製に必要な設備を大 幅に簡略化す る こ と ができ る 。 こ れに よ る 中間 タ ン ク の省略に よ っ て、 該タ ン ク への導入, 導出 に伴 う エネ ルギー損失を低減す る こ と がで き る 。 さ ら に、 水素化脱硫処理や水素化精製処理を一括 して行 う た め に、 そ の運転管理が容易 と な り 、 管理用機器の設 備費の低減や運転員の数の低減 も 図 る こ と が可能 と な る 。
第 2 発明 に よ れば、 脱硫工程において生成す る お それの あ る 不安定物質を主蒸留塔での蒸留で分離除 去す る こ と も でき る 。 さ ら に、 脱硫処理を残油 の残 留硫黄分を 目 標値 と して行 う こ と に よ り 、 柽質留分 中の硫黄分を従来 よ り 低減す る こ とがで き る 。 そ し て、 本方法では、 水素化精製を行 う こ と に よ り 軽質 留分中の窒素な どの不純物を除去す る こ と がで き る ので、 軽油留分の安定性を向上 さ せ る こ と がで き る 。
丄 ) ら に、 簡略な工程で、 特に、 灯油, 軽油等の中 間留分の高品質化 と と も に、 使用す る触媒の長寿命 化を達成でき る方法 と して、 前記第 3 発明について 説明する。
第 3 図は、 第 3 発明を実施す る ための基本的な装 置構成の一例を示す フ ロ ー シ一 ト であ る。
第 3 発明を実施す る精製装置に は、 原油中のナ フ サ留分を蒸留分離す る ための予備蒸留塔 1 と、 該ナ フ サ留分を除いた残 り の留分の脱硫を行 う 脱硫装置、 例えば、 該留分を水素 と共に脱硫触媒に接触 させて 脱硫す る ための水素化脱硫装置 2 と、 脱硫後の留分 の高圧分離を行 う 高圧分離槽 7 、 高圧分離槽にて分 離さ れた柽質留分を精製する ための水素化精製装置 6 、 その後蒸留 して各留分、 すなわ ち ナ フ サ, 灯油, 軽油等に分留する ための常圧蒸留-塔 3 が備え られて い る。 ま た、 前記予備蒸留塔 1 で分離 したナ フ サ留 分の脱硫を行 う ための脱硫装置 4 も 備え られてい る。
まず、 予備蒸留塔 1 において は、 原油 中のナ フ サ 留分 ( C 5〜 i 5 7 で) を原油か ら蒸留分離す る。 こ の と き の蒸留条件 と して は、 前記第 1 発明 と 同様 であ る。
—方、 予備蒸留塔 1 の蒸留残分であ る 灯油留分以 上の重質分は、 こ れ らが全て混合 した状態で一括 し て水素化脱硫装置 2 に導入 さ れ る 。 こ の脱硫装置 2 の運転は、 最終的な重質残油の硫黄含量を 目 標値 と して制御する こ とが望ま し く 、 運転条件 と しては、
前記 と 同様であ る 。
上記の よ う に して脱硫 さ れた留分は、 次いで、 一 括 して高圧分離槽 7 に導入 さ れ る 。 こ こ では、 各種 の分離法があ る が、 例え ば、 分離槽の底部 よ り 水素 を導入すれば、 上記留分を軽質留分 と重質残油 と に 効果的 に分離す る こ と がで き る と共に、 後の水素化 精製時に必要 と な る 水素 も 充分に供給 さ れ る 。
上記高圧分離槽 7 で得 ら れた軽質留分は、 水素化 精製装置 6 に導入 さ れ る 。 こ の水素化精製装置 6 の 運転は、 最終的な軽油 の硫黄分のみでな く 他の不純 物であ る 窒素分等の除去を 目 標 と して制御す る こ と が望 ま しい。 そ の運転条件 と して は、 前記 と 同様で あ る 。 な お、 圧力 は、 上記の水素化脱硫装置 2 や高 圧分離槽 7 の圧力 と実質的に 同 じ に設定す る こ と が 好 ま しい。
こ の よ う に、 水素化脱硫装置 2 , 高圧分離槽 7 な ら びに水素化精製装置 6 の圧力 を、 実質的 に同 じ レ ベル に設定す る と、 消費エ ネ ルギー を最小にす る こ と がで き 好 ま しい。 こ の よ う に、 本方法では、 重質 残油 を分離 した軽質留分を、 水素化精製す る ため、 重質残油 に よ る 水素化精製触媒の劣化が防止 さ れ、 触媒寿命の長期化が図 ら れ る 。
次に、 上記の よ う に して水素化精製を終えた留分 は、 単独で、 あ る い は高圧分離槽で分離 し た重質残 油 と混合 して、 常圧蒸留塔 3 に導入 さ れ、 ナ フ サ留 分, 灯油留分, 軽油留分及び重質残油 に分留 (分離)
さ れる。 水素化精製油を単独で蒸留す る か、 重質残 油 と混合 して蒸留する かは、 高圧分離槽での重質残 油 と軽質留分 と の分離状態等に よ っ て 自 由 に選択で き る 。 なお、 こ の分留時の条件 と しては、 例えば、 常圧下において、 ナ フ サ留分のカ ッ ト 温度を c 5〜
1 5 7 。C、 灯油留分の カ ツ ト 温度を 1 5 7 〜 2 3 9 で、 軽油留分のカ ツ ト温度を 2 3 9 〜 3 7 1 °C , 重 質軽油留分のカ ツ ト 温度を 3 7 1 〜 4 7 2 で及び重 質残油の カ ツ ト温度を 4 7 2 以上 とする こ と に よ り 、 ナ フ サ留分, 灯油留分及び軽油留 に分離す る こ とができ る。
こ の よ う に して常圧蒸留塔 3 か ら得 られる 灯油, 柽油等の各留分は、 すでに水素化脱硫及び水素化精 製を終えてい る ため、 必要に応 じてその ま ま熱交換 器で原油 と熱交換させて熱回収 した後に、 直接各製 品貯槽に送 られて貯留 し、 あ る いは直接需要先に供 給す る こ とができ る 。 ま た、 ナ フ サ留分は、 必要に 応 じて原油か ら分離さ れたナ フ サ留分 と共に前記水 素化脱硫装置 4 で脱硫さ れ る 。
こ こ で、 予備蒸留に よ り 原油中のナ フ サ留分を分 離せずに、 原油を直接脱硫工程に導入す る と、 ナ フ ザの硫黄分を必要限度ま で下げる こ とが非常に困難 であ り 、 硫黄分を 1 重量 P p m程度にす る こ とがで きず、 リ フ ォ ーマ ー にか け る と触媒毒 と して作用す る ため、 後工程に支障を き たす こ とがあ る 。
したがっ て上記の如 く ナ フ サ留分を除去 した後に、
脱硫操作, 高圧分離, 水素化精製の一連の操作を行 い、 しか る後に精製油留分を分留す る こ と に よ り 、 従来 と 同程度以上の性状を保持 しなが ら、 原油 の精 製に必要な設備を大幅に簡略化す る こ と がで き る 。 こ れに よ る 中間 タ ン ク の省略に よ っ て、 該 タ ン ク へ の導入, 導出 に伴 う エ ネ ルギー損失を低減す る こ と ができ る。 さ ら に、 水素化脱硫処理や水素化精製処 理を一括 して行 う ために、 そ の運転管理が容易 と な り 、 管理用機器の設備費の低減や運転員 の数の低減 も 図 る こ と が可能 と な る 。
第 3 発明 に よ れば、 脱硫工程に お いて生成す る お そ れの あ る不安定物質を主蒸留塔での蒸留で分離除 去す る こ と も可能であ る。 さ ら に、 脱硫処理を重質 残油 の残留硫黄分を 目 標値 と して行 う こ と に よ り 、 軽質留分中の硫黄分を従来 よ り 僞減す る こ と がで き る 。 そ して、 第 3 発明では、 高圧分離及 び水素化精 製を行 う こ と に よ り 軽質留分中の窒素, 金属な どの 不純物を除去す る こ と ができ る ので、 軽質留分の安 定性を向上 さ せ る こ と ができ る と と も に、 品質を一 層向上 さ せ る こ と がで き る 。
更に、 簡略な工程で極めて高品質の各留分を得 る と と も に、 灯油, 軽油等の中間留分の得率を高め る 方法 と して、 前記第 4 発明 について説明す る 。
第 4 図 は、 第 4 発明を実施す る ための基本的な装 置構成の一例を示す フ ロ ー シ一 ト であ る 。
第 4 発明の精製法を実施す る 精製装置に は、 原油
中のナ フ サ留分を蒸留分離する ための予備蒸留塔 1 と、 該ナ フサ留分を除いた残 り の留分の脱硫を行う 脱硫装置、 例えば、 該留分を水素 と共に脱硫触媒に 接触 さ せて脱硫する ための水素化脱硫装置 2 と、 脱 硫後の留分の高圧分離を行 う 高圧分離槽 7 、 高圧分 離に よ り 分離さ れた重質残油を分解処理す る ための 重質残油流動接触分解装置 8 、 高圧分離槽 7 にて分 離さ れた軽質留分 と重質残油流動接触分解装置 8 に て分解された分解軽油を精製す る ための水素化精製 装置 6 、 その後蒸留 して各留分、 すなわ ち ナ フ サ, 灯油, 軽油等に分留する ための常圧蒸留塔 3 が備え られてい る。 ま た、 前記予備蒸留塔 1 で分離 したナ フ サ留分の脱硫を行 う ための水素化脱硫装置 4 も 備 え られてレ、 る 。
まず、 予備蒸留塔 1 においては、 原油 中のナ フ サ 留分 ( C 5〜 l 5 7 °C ) を原油か ら蒸留分離する。 こ の と き の蒸留条件は、 前記第 1 発明 と同様であ る 。
一方、 予備蒸留塔 1 の蒸留残分であ る 灯油留分以 上の重質分は、 こ れ らが全て混合 した状態で一括 し て水素化脱硫装置 2 に導入さ れる 。 こ の脱硫装置 2 の運転は、 最終的な重質残油の硫黄含量を 目 標値 と して制御する こ とが望 ま しい。 運転条件 と しては、 前記第 1 発明 と 同様であ る 。
上記の よ う に して脱硫さ れた留分は、 次いで、 一 括 して高圧分離槽 7 に導入さ れる。 こ こ では、 各種 の分離法があ る が、 例えば、 分離槽の底部よ り 水素
を 入すれば、 上記留分を軽質留分 と重質残油 と に 効果的 に分離す る こ と がで き る と共に、 後の水素化 精製時に必要 と な る 水素 も 充分に供給 さ れ る 。 得 ら れた重質残油 は依然 と して原油 に対 して 5 0 重量% 近 く あ り 、 利用価値が低い。 こ のため、 本発明の方 法では、 こ の重質残油を流動接触分解装置 8 に よ つ て接触分解 し、 8 〜 1 8 重量% (原油 に対 して) の 分解軽油 と ガ ソ リ ン等を得 る 。 こ れに よ つ て最終的 に は、 重質残油 は 2 〜 5 重量% (原油 に対 して) ま で減少 さ せ る こ と がで き る 。 こ こ で、 流動接触分解 の条件 と して は、 触媒 と して市販の重質残油分解触 媒、 例え ば、 ゼォ ラ イ ト 系分解触媒 (希土類元素 5 重量%以下、 好 ま し く は 0. 5 〜 2 重量% を含み、 ゼ オ ラ イ ト 量 2 0 〜 6 0 重量 、 さ ら に、 好ま し く は 3 0 〜 4 0 重量% を、 触媒 Z油比 = 5 〜 1 5 (重量 比) 、 好 ま し く は 8 〜 1 0 (重量比) で用 いて、 温 度を 4 5 0 〜 5 6 0 で、 好ま し く は 5 1 0 〜 5 4 0 °C と し、 圧力 を 1, 0 〜 3. 0 kg, cm2Gに設定すべ き で め る 。
次いで、 上記高圧分離槽 7 で得 ら れた軽質留分 と 上記重質残油流動接触分解装置 8 で得 ら れた分解軽 油 は、 水素化精製装置 6 に導入 さ れ る 。 こ の水素化 精製装置 6 の運転は、 最終的な軽油 の硫黄分のみで な く 他の不純物であ る 窒素分等の除去を 目 標 と して 制御す る こ とが望ま しい。 そ の運転条件 と して は、 前記第 1 発明 と 同様であ る 。
次に、 上記の よ う に して水素化精製を終えた留分 を常圧蒸留塔 3 に導入 して、 さ ら に、 各留分に分留 (分離) す る。 こ の分留時の条件 と しては、 前記第 1 発明 と 同様であ る。
こ の よ う に して常圧蒸留塔 3 か ら得 られ る灯油, 軽油等の各留分は、 すでに水素化脱硫及び水素化精 製を終えてい る ため、 必要に応 じてその ま ま熱交換 器で原油 と熱交換さ せて熱回収 した後に、 直接各製 品貯槽に送 られて貯留 し、 あ るいは直接需要先に供 給する こ とができ る。 ま た、 ナ フ サ留分は、 原油か ら分離さ れたナ フ サ と共に前記水素化脱硫装置 4 で 脱硫さ れる。
こ こ で、 予備蒸留 に よ り 原油中のナ フ サ留分を分 離せずに、 原油 を直接脱硫工程に導入する と、 ナ フ ザの硫黄分を必要限度まで下げる こ と は非常に困難 であ り 、 硫黄分を 1 重量 P P m程度にする こ とがで きず、 リ フ ォ ーマー にか け る と触媒毒 と して作用す る ため、 後工程に支障を き たす こ とがあ る。
したがっ て上記の如 く ナ フ サ留分を除去した後に、 脱硫, 水素化精製の一連の操作に流動接触分解装置 を組み込み、 しかる 後に精製油留分を分留す る こ と に よ り 、 従来 と 同程度以上の性状を保持 しなが ら、 原油 の精製に必要な設備を大幅に簡略化す る こ とが でき る。 こ れに よ る 中間 タ ン ク の省略によ っ て、 該 タ ン ク への導入, 導出 に伴う エネ ルギー損失を低減 す る こ とができ る。 さ ら に、 水素化脱硫処理や水素
化精製処理を一括 して行 う ために、 そ の運転管理が 容易 と な り 、 管理用機器の設備費の低減や運転員 の 数の低減 も 図 る こ と が可能 と な る。
第 4 発明に よ れば、 脱硫工程において生成す る お それの あ る 不安定物質を主蒸留塔での蒸留で分離除 去す る こ と も 可能であ る 。 さ ら に、 脱硫処理を残油 の残留硫黄分を 目 標値 と して行 う こ と に よ り 、 柽質 留分中の硫黄分を従来 よ り 低減す る こ と がで き る 。 そ して、 第 4 発明では、 高圧分離, 重質残油流動接 触分解及び水素化精製を行 う こ と に よ り 、 軽質留分 (分解軽油を含む ) 中の窒素な どの不純物を除去す る こ とができ る ので、 軽質留分の安定性が向上す る と と も に、 利用価値の高い柽質留分の得率を大巾 に 上げ る こ と が可能 と な る。
次に、 本発明を実施例及び比較例に よ り 、 さ ら に 詳 し く 説明す る。
実施例 1
原油 と して、
密 度 ( 1 5 'C ) 0. 9 1 0 1 g / cm3 硫黄分 2. 7 8 重量% 窒素分 0. 1 4 重量% ノ ナ ジ ゥ ム 4 1 重量 ppm ニ ッ ケル 1 4 重量 ppm ナ フ サ留分(C 5 ~157°C ) 2 0. 0 重量% 灯油留分(157。C -239°C ) 1 3. 0 重量% 軽油留分(239。C〜371。C ) 1 9. 2 重量%
重質柽油留分(371°C ~472°C以上) 7. 7 重量% 重質残油 (472°C以上) 4 0. 1 重量 の性状の も のを用 い、 こ れを圧力 1. 5 kg cm 2 Gで運 転する予備蒸留塔にて、 1 5 7 °Cでナフ サ留分を分 離 した。
こ のナ フ サ留分を分離 した後の原油 を、 C o — M o 系触媒 ( C oO : 1. 2 wt% , M o20 3 : 1 0. 5 w t % , 担体 : ア ル ミ ナ Zシ リ カ , 表面積 : 2 2 5 nf / g , 細孔容積 : 0. 6 2 cc / g ) を充塡 した水素化脱硫装 置に導入 し、 圧力 1 3 5 kg/ cm2G. 温度 3 9 0 °C , L H S V O. S h r -1の条件下で脱硫を行っ た。 こ の 際の水素使用量は 7 6 N m3 Z Mであ っ た。
次いで、 常圧蒸留塔で分留を行い、 各留分に分離 した。 得 られた各留分の性状を第 2 表に示す。
比較例 1
実施例 1 と 同 じ原油を従来法に よ り 精製 した。 こ の際に用 いた常圧蒸留塔の条件は、 ト レ ィ 段数 4 5 段, 運転圧力 0. 5 kgZcm2G, 蒸留塔入 口 温度 3 7 0 でであ っ た。
各留分に分留 した後に中間 タ ン ク に一時貯留 し、 次いで、 個別 に水素化脱硫処理を行っ た。 こ の際の 各水素化脱硫の条件は第 1 表に示す。 なお、 触媒は いずれ も 実施例 1 と 同 じ も のを用いた。 得 ら れた各 留分の性状を第 2 表に示す。
第 1表
O O
第 2表 製品組成 密度(15°C) 硫黄分 窒素分
(wt ) ( /cm3) (wt%) ( t ) ガス 2. 5
ナフサ 2. 3 0. 7 6 0 0 0. 0 0 9 1 >* 施 灯油留分 16. 0 0. 7 9 8 8 0. 0 0 2 1 4 * 例 軽油留分
0. 8 4 6 3 0. 1 0 0. 0 2
1 重質軽油留分 10. 5 0. 8 7 9 5 0. 2 2 0. 0 8 残油 40. 1 0. 9 3 7 9 0. 6 8 0. 2 1 ガス 1. 9
比 ナフサ 1. ΰ 0. 7 6 0 0 0. 0 0 9 1 >* 較 灯油留分 16. 4 0. 7 9 6 0 0. 0 0 4 29. 4 * 例 軽油留分 32. 1 0. 8 6 4 8 0. 1 4 0. 0 3
1 重質軽油留分 15. 0 0. 9 0 6 2 0. 2 4 0. 0 8 残油 33. 6 0. 9 4 4 7 0. 6 8 0. 2 3
2表 ( Κπ; 5 煙 点 セタン 残炭分 バナジウム ニッケル
(ra/m) 指数 (wt. ppra) (wt. ppm; ガス ― 一 一 ― ― 実 ナフサ ― ― 一 ― ― 施 灯油留分 2 2. 0 ― 一 ― ― 例 軽油留分 ― 5 7 ― ― ―
1 重質軽油留分 一 ― 0. 0 1 0. 0 5以下 0 5以下 残油 ― ― 8. 0 4 1 8. 4 7. 3 8 ガス
比 ナフサ
較 灯油留分 2 2. 0
例 軽油留分 5 7
1 重質軽油留分 0. 0 1 0.- 0 5以下 0. 0 5以下 残油 8. 0 1 5. 7 6. 7 2
実施例 2
原油 と して、
密度 ( 1 5 eC ) 0. 9 0 4 0 g / cm3 硫黄分 2. 6 0 重量% 窒素分 0. 1 5 重量%
ナ ジ ゥ ム 5 0 重量 ppm ニ ッ ケ ル 1 5 重量 ppm ナ フ サ留分 ( C 5 〜 1 5 7 °C ) 1 4 .5重量% 灯油留分 ( 1 5 7 〜 2 3 9 。C ) 1 1 .7重量% 軽油留分 ( 2 3 9 〜 3 7 0 °C ) 2 0 . 9重量% 残油 ( 3 7 0 °C以上) 5 2 . 9重量% の性状の も のを用 い 、 こ れを圧力 1. 5 kg/ cm3Gで運 転す る 予備蒸留塔にて、 1 5 7 °Cでナ フ サ留分を分
¾fe し 7 o
こ の ナ フ サ留分を分離 した後の原油 を、 C o — M o 系触媒を充填 した水素化脱硫装置に導入 し、 圧力
1 3 5 kg/ cm3G, 温度 3 9 0 。C, L H S V 0. 8 h r - 1 の条件下で脱硫を行 つ た。 脱硫で使用 した触媒の性 状を第 3 表に示す。
こ の脱硫 さ れた生成油 を、 分留す る こ と な く 引続 き 水素化精製装置に導入 して水素化精製 し た。 得 ら れた精製油 を蒸留塔にて C 5〜 l 5 7 °Cの ナ フ サ留 分, 1 5 7 〜 2 3 9 の灯油留分, 2 3 9 〜 3 7 0 eCの柽油留分及び 3 7 0 °C以上の重質残油 に分留 し た。 得 ら れた留分の分析結果を第 4 表に示す。 な お、 こ の と き の水素化精製の処理条件は、 触媒 と して
N i — M o 系触媒 〔水素化触媒(A )〕 (第 3 表に示 す。 ) を使用 し、 圧力 1 3 5 kg/ cm3G, 温度 3 6 0 で, L H S V 1. 2 5 h r — 1と した。
実施例 3
N i — M o 系触媒 〔水素化触媒 ( B ) 〕 (第 3 表 に示す。 ) を使用 した こ と以外は、 実施例 2 と同様 の操作を行 っ た。 こ の と き得 られた脱硫さ れた生成 油を、 分留する こ と な く 引続き水素化精製装置に導 入 し、 実施例 2 と 同様の処理を行っ た。 得 られた各 留分の分析結果を第 4 表に示す。
次に、 実施例 2 及び 3 で得 られた柽油留分の貯蔵 安定性試験を実施 した。 具体的には、 ベ ン ト を有 し た 5 0 のガラ ス容器に上記の柽油留分を 4 0 0
7 ^入れ、 4 3 で に保たれた喑所に貯蔵 し、 一定時間 毎に 4 7 0 n mにお ける吸光度を測定 した。 こ の測 定結果を、 第 5 図及び第 5 表に示す。 なお、 貯蔵安 定性試験は、 A S T M D 4 6 2 5 — 8 6 に準拠し た。 ま た、 参考 と して市販の柽油 の貯蔵安定性試験 の結果 も示 した。 通常の市販軽油の貯蔵安定性試験 の レベルは、 3 0 日 間の貯蔵で 0. 1 2 〜 0. 4 0 程度で あ る。 第 5 図中に、 その範囲を斜線で示 した。
第 3表
第 4表 密度(15°C) 得率 硫黄分 窒素分 煙点
(g/cms) (wt %) (wt. ppm) (wt. ppm) (m/m) 灯油留分 0. 7 9 6 3 1 5.0 - 8 3 23. 0 施 軽油留分 0. 8 4 7 1 3 1.5 5 0 0 51
例
2 残油 0. 9 3 5 0 5 2.5 5 5 0 0 1600
灯油留分 0. 7 9 8 0 1 4.0 8 6 23. 0 施 軽油留分 0. 8 4 8 1 3 0.5 4 0 0 65
例
3 残油 0. 9 3 3 0 5 4.5 5 2 0 0 1500
第 4表 (続き)
第 5表 (色相変化) 貯蔵試験前 貯蔵試験 30曰後 スラッジの有無 (吸光度) (吸光度)
実施例 2 0. 1 1 0. 2 5 無 実施例 3 0. 1 1 0. 3 2 無 市販軽油 0. 0 9 0. 1 9 無
実施例
原油 と して、
密度 ( 1 5 °C ) 0. 9 0 4 0 g / cm 硫 ¾分 2. 6 0 重量%
分 0. 1 5 重量% バナ ジ ゥ ム 5 0 重量 ppm 一 ッ ケ ル 1 5 重 ¾ ppm ナ フ サ留分 ( C 5 〜 1 5 7 °C ) 1 4 .5重量% 灯油留分 ( 1 5 7 〜 2 3 9 。C ) 1 1 .7重量 軽油留分 ( 2 3 9 〜 3 7 0 °C ) 2 0 .9重量 残油 ( 3 7 0 °C以上) 5 2 .9重量% の性状の も のを用 い、 こ れを圧力 1. 5 kg/ cm 2Gで運 転す る 予備蒸留塔にて、 1 5 7 °Cでナ フ サ留分を分 離 した。
こ の ナ フ サ留分を分離 した後の残留油 を C o — M o 系触媒 ( ( 0 0 : 1. 2 重量% , M 0 20 3 : 1 0. 5 重量% , 担体 : シ リ カ Zア ル ミ ナ) を充填 した水素 化脱硫装置に導入 して、 重質残油 の硫黄分が 0. 5 重 量% と な る よ う な条件、 すなわ ち圧力 1 3 5 kg/ cm G, 温度 3 8 0 で, L H S V O. 6 h r - ', 水素量 1, 0 0 0 N m3ノ の条件下で脱硫を行 っ た。
こ の脱硫さ れた生成油 を、 系の圧力 を落 と す こ と な く 高圧分離槽に移 し、 水素を槽の底部 よ り 導入す る こ と に よ り 軽質留分の分離を行 っ た。 引続 き 、 軽 質留分は、 充分な水素 と と も に水素化精製装置に導 入 して水素化精製 した。 得 ら れた水素化精製油 を、
常圧蒸留塔にて、 C 5〜 I 5 7 °Cのナフ サ留分,
1 5 7 〜 2 3 9 °Cの灯油留分, 2 3 9 〜 3 7 0 °Cの 軽油留分に分留 した。 なお、 こ の際の水素化精製の 処理条件は、 触媒 と して N i 一 M o 系触媒(N i 0 2 : 4. 0 重量 , M 0 20 3 : 2 5. 0 重量%, 担体 : ア ル ミ ナ) を使用 し、 圧力 1 3 5 kgZ cm2G, 温度 3 2 0 °C , 水素 l, 0 0 0 N m3Z^, L H S V 2. 0 h r であ つ た。
比較例 2
実施例 4 と 同 じ原油を用 いて、 従来法に従い常圧 蒸留後、 灯油留分, 柽油留分及び重質残油留分の各 留分に分離 し、 それぞれ水素化脱硫を行っ た。 こ の と き の水素化脱硫条件を第 6 表に示す。
実施例 4 及び比較例 2 で得 られた灯油, 軽油の性 状を第 7表に示 した。 第 7 表よ り 、 本発明で得 られ た灯油, 柽油 は、 特に窒素含有量が非常に小 さ く 、 煙点, セ タ ン指数において も優れてい る こ とが明 ら かであ る 。
次に、 実施例 4 及び比較例 2 で得 られた柽油留分 の貯蔵安定性試験を行っ た。 具体的に は、 ベ ン ト を 有 した 5 0 のガラ ス容器に上記の軽油留分を
4 0 0 m£入れ、 4 3 でに保たれた喑所に貯蔵 し、 一 定時間毎に 4 7 0 n mにお ける 吸光度を測定 した。 こ の測定結果を、 第 6 図及び第 8 表に示す。 なお、 貯蔵安定性試験は、 A S T M D 4 6 2 5 — 8 6 に 準拠 した。 ま た、 参考 と して市販の軽油 ( こ れは、
脱硫軽油 と そ の原料であ る 直留未脱硫軽油 と か ら市 販軽油仕様に試作 した も のであ る ) の貯蔵安定性試 験の結果 も示 した。 通常の市販軽油の貯蔵安定性試 験の レ ベルは、 3 0 日 間の貯蔵で 0. 1 2 〜 0. 4 0 程 度であ る 。
第 6 表
第 7 表 灯油留分 軽質留分 実施例 4 比較例 2 実施例 4 比較例 2 密度 (g/cnf) 0.7933 0.7990 0.8397 0.8403 硫黄分(wt. ppm) 4 38 200 900 窒素分(wt. ppm) 1> 1> 1> 68 煙点 (m/m) . 31.0 24.5
セタン指数 63 61
^ 7 ¾ Zさ j
第 8表 (色相変化) 貯蔵試験前 貯蔵試験 3 0日後 スラ ッ ジの有無 (吸光度) (吸光度)
実施例 4 0. 0 1 0. 0 3 無 比較例 2 0. 0 6 0. 1 4 無
比較例 3 及び実施例 5
原油 と して、
密度 ( 1 5 で) 0. 9 0 4 0 g Z cm3 硫黄分 2. 6 0 重量% 窒素分 0. 1 5 重量% ナ ジ ゥ ム 5 0 重重 p pm ニ ッ ケル 1 5 直 ppm ナ フ サ留分 ( C 5 1 5 7 °C ) 1 4 .5重量% 灯油留分 ( 1 5 7 2 3 9 °C ) 1 1 .7重量% 柽油留分 ( 2 3 9 3 7 0 °C ) 2 0 .9重量% 残油 ( 3 7 0 °C以上) 5 2 .9重量% の性状の も のを用 い、 こ れを圧力 1. 5 kg/ cm2 Gで運 転する 予備蒸留塔にて、 1 5 7 ででナ フ サ留分を分 離 した。
こ のナ フ サ留分を分離 した後の原油を C 0 一 M o 系触媒 ( C o O : 1. 2 重量 , M o 20 3 : 1 0. 5 重量%, 担体 : シ リ カ Zア ル ミ ナ) を充填 した水素 化脱硫装置に導入 し、 圧力 1 3 5 kg/ cm2G, 温度 3 8 0 °C , L H S V 0. 6 h r -1, 水素量 1, 0 0 0 N m3 / の条件下で脱硫を行 っ た。
こ の脱硫さ れた生成油 を系の圧力 を落 と す こ と な く 高圧分離槽に移 し、 槽の底部 よ り 水素を導入す る こ と に よ り 柽質留分の分離を行っ た。 重質残油 は、 引続き重質残油流動接触分解装置に通油 し、 ガス, L P G, ガ ソ リ ン, 分解柽油及び重油 に分解 した。 こ こ にお け る 分解条件は、 触媒 と して市販流動接触
分解触媒 〔希土類元素 0. 5 重量% : U S Y型ゼオ ラ イ ト 4 0 重量 含有カ オ リ ンノア ル ミ ナ〕 を用 い、 触媒 Z油比 = 7 (重量比), 温度 5 2 0 °C , 圧力 1. 5 kg/ cm2Gであ っ た。 こ こ で得 ら れた分解軽油 を比較 例 3 と し、 そ の性状を第 9 表に示す。 な お、 分解軽 油 の得率は 9. 6 重量% (原油 に対 し) であ っ た。
引続き 、 分解軽油 は、 昇圧後、 先の軽質留分 と混 合 して水素化精製装置に導入 し、 水素化精製 した。 得 ら れた精製油 を常圧蒸留塔にて C 5 〜 1 5 7 での ナ フ サ留分, 1 5 7 〜 2 3 9 °Cの灯油留分, 2 3 9 〜 3 7 0 °Cの軽油留分に分留 した。 得 られた軽油留 分の分析結果を実施例 5 と して第 9 表に示す。 こ の 場合の軽油留分の得率は、 3 5. 1 重量 (原油 に対 し) であ っ た。 な お、 こ の と き の水素化精製の処理 条件は、 触媒 と して N i 一 M o 系触媒 ( N i 4 重量 % , M o 2 5 重量%, 担体ア ル ミ ナ) を使用 し、 圧 力 1 3 5 kg/ cm2G, 温度 3 4 0 °C , 水素量 1, 0 0 0 N m3 / ^ , L H S V l. O h r — 1 と し た。
比較例 4
実施例 5 と 同 じ原油 を用 いて、 従来法に従い常圧 蒸留後、 灯油留分, 軽油留分及び重質残油留分の各 留分に分離 し、 それぞれ水素化脱硫を行 っ た。 こ の と き の水素化脱硫条件を第 1 0 表に示す。 重質残油 を脱硫 して得 ら れた脱硫 した重質残油 は、 引続き 重 質残油流動接触分解装置に通油 し、 ガス, L P G , ガ ソ リ ン , 分解軽油及 び重油 に分解 した。 こ の と き
の分解条件は実施例 5 と同 じであ る。 得 ら れた分解 柽油の性状を第 9 表に示す。
次に、 実施例 5 , 比較例 3 及び比較例 4 で得 ら れ た軽油留分の貯蔵安定性試験を行っ た。 具体的に は、 ベ ン ト を有 した 5 0 0 の ガラ ス容器に上記の軽油 留分を 4 0 0 τηβ れ、 4 3 °C に保たれた喑所に貯蔵 し、 一定時間毎に 4 7 0 n m にお け る 吸光度を測定 した。 こ の測定結果を、 第 7 図及び第 9 表に示す。 こ こ で、 貯蔵安定性試験は、 A S T M D 4 6 2 5 - 8 6 に準拠 した。 通常の市販軽油 の貯蔵安定性試 験の レベルは、 3 0 日 間の貯蔵で 0 . 1 2 〜 0 . 4 0 程 度であ る。
こ の結果か らわか る よ う に、 比較例 4 の如 き分解 柽油 は、 その ま ま ではセ タ ン措数が低 く 、 芳香族分 が著 し く 多い。 ま た、 安定性に劣 り 、 貯蔵時間の経 過に従っ て変色が激 し く 、 濃い褐色を呈す る に至 る が、 軽質留分 と と も に水素化精製す る こ と に よ っ て、 こ れ ら の問題がすべて改善さ れ、 柽油 と しての性状 な ら びに品質が充分に満足すべ き も の とな る 。
第 9表
(°C) ( kg/cm2G) (hi-- 灯 油 3 2 0 4 0 5 軽 油 3 6 0 4 0 3 重質残油 3 7 0 1 3 5 0. 2
Claims
( 1 ) 原油を蒸留, 脱硫 して石油製品を得る方法に おいて、 原油 中の ナ フ サ留分を蒸留分離 した後、 該 ナ フ サ留分を除いた残 り の留分を水素化脱硫 し、 次 いで蒸留 して各留分に分離する こ とを特徴 とする原 油 の精製方法。
( 2 ) 原油を蒸留, 脱硫 して石油製品を得る方法に おいて、 原油中のナ フ サ留分を蒸留分離 した後、 該 ナ フ サ留分を除いた残 り の留分を水素化脱硫 し、 次 いで水素化精製 した後、 蒸留 して各留分に分離す る こ と を特徵 とす る原油 の精製方法。
( 3 ) 原油を蒸留, 脱硫 して石油製品を得る方法に おいて、 原油中のナ フ サ留分を蒸留分離 した後、 該 ナ フサ留分を除いた残 り の留分を水素化脱硫 し、 次 いで高圧分離槽で柽質留分 と重質残油 と に分離 し、 得 られた軽質留分を水素化精製す る こ とを特徵 とす る原油の精製方法。
( 4 ) 原油を蒸留, 脱硫 して石油製品を得る 方法に おいて、 原油中のナ フ サ留分を蒸留分離 した後、 該 ナ フ サ留分を除いた残り の留分を水素化脱硫 し、 次 いで髙圧分離槽で軽質留分 と重質残油 どに分離 し、 分離 した重質残油は流動接触分解後分留 し、 該分留 に よ り 得 られた分解軽油 は前記柽質留分 と共に水素 化精製する こ と を特徴 とする原油の精製方法。
( 5 ) 水素化精製を M 0 ま たは W と N i を担持 した 触媒の存在下で行う 請求項 2 〜 4 のいずれかに記載
の原油 の精製方法。
( 6 ) 高圧分離槽に水素を導入 して軽質留分を分離 す る請求項 3 又は 4 記載の原油 の精製方法。
( 7 ) 水素化脱硫, 高圧分離及 び水素化精製の各ェ 程が、 実質的 に同 じ圧力で行われ る 請求項 3 記載の 原油の精製方法。
( 8 ) 水素化精製後、 蒸留 して各.留分に分離す る 請 求項 3 又は 4 記載の原油 の精製方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69117937T DE69117937D1 (de) | 1990-12-07 | 1991-10-09 | Rohölraffinationsverfahren |
EP91917699A EP0514549B1 (en) | 1990-12-07 | 1991-10-09 | Method of refining crude oil |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40619290A JPH04209696A (ja) | 1990-12-07 | 1990-12-07 | 原油の精製方法 |
JP2/406192 | 1990-12-07 | ||
JP41406390A JP2863325B2 (ja) | 1990-12-26 | 1990-12-26 | 原油の精製方法 |
JP2/414064 | 1990-12-26 | ||
JP2/414063 | 1990-12-26 | ||
JP41406490A JP2863326B2 (ja) | 1990-12-26 | 1990-12-26 | 原油の精製法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992010557A1 true WO1992010557A1 (en) | 1992-06-25 |
Family
ID=27341918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1991/001377 WO1992010557A1 (en) | 1990-12-07 | 1991-10-09 | Method of refining crude oil |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0514549B1 (ja) |
DE (1) | DE69117937D1 (ja) |
WO (1) | WO1992010557A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0860165A (ja) | 1994-08-24 | 1996-03-05 | Idemitsu Kosan Co Ltd | 燃料油組成物及びその製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3098029A (en) * | 1959-07-22 | 1963-07-16 | Socony Mobil Oil Co Inc | Combination catalytic crackinghydroprocessing operation |
US3671419A (en) * | 1970-02-27 | 1972-06-20 | Mobil Oil Corp | Upgrading of crude oil by combination processing |
US3775290A (en) * | 1971-06-28 | 1973-11-27 | Marathon Oil Co | Integrated hydrotreating and catalytic cracking system for refining sour crude |
JPS5037043B2 (ja) * | 1972-05-27 | 1975-11-29 | ||
JPS5518499A (en) * | 1978-07-26 | 1980-02-08 | Standard Oil Co | Hydrogenation metallization of hydrocarbon and hydrogenation desulfurization |
JPS5544796B1 (ja) * | 1970-11-19 | 1980-11-14 |
-
1991
- 1991-10-09 EP EP91917699A patent/EP0514549B1/en not_active Expired - Lifetime
- 1991-10-09 DE DE69117937T patent/DE69117937D1/de not_active Expired - Lifetime
- 1991-10-09 WO PCT/JP1991/001377 patent/WO1992010557A1/ja active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3098029A (en) * | 1959-07-22 | 1963-07-16 | Socony Mobil Oil Co Inc | Combination catalytic crackinghydroprocessing operation |
US3671419A (en) * | 1970-02-27 | 1972-06-20 | Mobil Oil Corp | Upgrading of crude oil by combination processing |
JPS5544796B1 (ja) * | 1970-11-19 | 1980-11-14 | ||
US3775290A (en) * | 1971-06-28 | 1973-11-27 | Marathon Oil Co | Integrated hydrotreating and catalytic cracking system for refining sour crude |
JPS5037043B2 (ja) * | 1972-05-27 | 1975-11-29 | ||
JPS5518499A (en) * | 1978-07-26 | 1980-02-08 | Standard Oil Co | Hydrogenation metallization of hydrocarbon and hydrogenation desulfurization |
Also Published As
Publication number | Publication date |
---|---|
EP0514549B1 (en) | 1996-03-13 |
DE69117937D1 (de) | 1996-04-18 |
EP0514549A1 (en) | 1992-11-25 |
EP0514549A4 (en) | 1993-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5851381A (en) | Method of refining crude oil | |
KR100831590B1 (ko) | 원유의 탈황 방법 | |
AU685808B2 (en) | Method for producing feedstocks of high quality lube base oil from unconverted oil of fuels hydrocracker operating in recycle mode | |
EP0778873B1 (en) | A process for removing essentially naphthenic acids from a hydrocarbon oil | |
EP1600491A1 (en) | Catalytic hydrorefining process for crude oil | |
JPS63161072A (ja) | 高オクタン価ガソリンの製法 | |
EP0550079B1 (en) | Process for upgrading a hydrocarbonaceous feedstock | |
JP2863326B2 (ja) | 原油の精製法 | |
WO1992010557A1 (en) | Method of refining crude oil | |
EP1199347A1 (en) | Process for treating crude oil | |
JPH0753968A (ja) | 重質炭化水素油の水素化処理方法 | |
JP2863325B2 (ja) | 原油の精製方法 | |
JP4217324B2 (ja) | 軽油の脱硫方法および軽油の脱硫システム | |
JPH05230473A (ja) | 重質炭化水素油の処理方法 | |
JPH07102266A (ja) | 石油蒸留物の低イオウ化方法 | |
JP3001775B2 (ja) | 原油の水素化精製方法 | |
JP2010053235A (ja) | 炭化水素油の製造方法 | |
JP2008074998A (ja) | 高オクタン価ガソリン基材の製造方法 | |
JP2003238970A (ja) | 低硫黄ガソリン基材の製造方法 | |
RU2135548C1 (ru) | Способ переработки дистиллятов вторичного происхождения | |
JPH04209696A (ja) | 原油の精製方法 | |
JPH08231965A (ja) | 重質炭化水素油の水素化処理方法 | |
WO1999064542A1 (en) | Process to produce distillates | |
JP4700153B2 (ja) | 燃料油 | |
JPH05230474A (ja) | 重質炭化水素油の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991917699 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1991917699 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991917699 Country of ref document: EP |