WO1992006480A1 - Noyau magnetique - Google Patents

Noyau magnetique Download PDF

Info

Publication number
WO1992006480A1
WO1992006480A1 PCT/JP1991/001294 JP9101294W WO9206480A1 WO 1992006480 A1 WO1992006480 A1 WO 1992006480A1 JP 9101294 W JP9101294 W JP 9101294W WO 9206480 A1 WO9206480 A1 WO 9206480A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
magnetic
width
ribbon
insulating material
Prior art date
Application number
PCT/JP1991/001294
Other languages
English (en)
French (fr)
Inventor
Masami Okamura
Takao Kusaka
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP91916787A priority Critical patent/EP0503081B1/en
Priority to DE69120248T priority patent/DE69120248T2/de
Priority to KR1019920701209A priority patent/KR970000872B1/ko
Priority to JP51529891A priority patent/JP3156850B2/ja
Publication of WO1992006480A1 publication Critical patent/WO1992006480A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons

Definitions

  • the present invention relates to a magnetic core used for a pulse generator, a transformer, and the like, and more particularly, to a magnetic core used for a high-power pulse, and the like. Related to the magnetic core.
  • Pulse power supply devices used for lasers, particle accelerators, etc. have magnetic pulses suitable for generating high-power, short-pulse pulses.
  • a compression circuit is used. This magnetic pulse compression circuit utilizes the saturation characteristics of the saturable core to transfer the current pulse width when transferring the charge of the capacitor to the next stage capacitor. Is compressed.
  • the induction core of the linac operates essentially as a 1: 1 trans, and the charged particle beam that passes through the center of the core due to the voltage generated in the secondary gap.
  • these high-power pulse cores have the characteristics of high saturation magnetic flux density, high squareness of magnetization curve, and low iron loss.
  • Magnetic material ribbons such as iron-based amorphous alloy ribbons or cobalt-based amorphous base metal ribbons and polyester films or polyimids When a magnetic core is used in which a polymer film such as a film is alternately wound with a different electrical insulating material. It is.
  • the insulation between the magnetic material ribbons is important because the magnetic core is intended for high-power pulses.
  • the width of the electrically insulating material is set wider than the width of the magnetic material ribbon in order to secure interlayer insulation between the ends of the magnetic material ribbon. This is being done
  • FIG. 2 which is a schematic cross-sectional view of a conventional magnetic core
  • the end of the electrically insulating material 2 protrudes from the end of the magnetic material ribbon 1
  • the electrical insulating material 2 generally has low thermal conductivity
  • the space between the protruding portions of the electrical insulating material 2 becomes the thermal insulating layer 3. That is.
  • the cooling effect on the heat generation of the magnetic core during use in other words, the heat generated by the heat generation of the magnetic material ribbon decreases, and the temperature of the magnetic core increases.
  • the magnetic core is cooled by a cooling medium such as air, insulating oil, or a fluorine-based inert liquid, but the magnetic flux of the magnetic core decreases due to the temperature rise of the magnetic core. If the characteristics change over time, the problem of the inability to obtain the required functions will inevitably occur.
  • An object of the present invention is to solve the above problems and to provide a magnetic core having excellent cooling characteristics.
  • the width of the magnetic material ribbon is defined as a and the width of the electrical insulating material is defined as b in the magnetic core formed by laminating or winding the magnetic material ribbon and the electrical insulating material. In this case, it is characterized by having a relationship of 0.5 ab.
  • FIG. 1 is a schematic view showing a cross section of a magnetic core of the present invention
  • FIG. 2 is a schematic diagram showing a cross section of a conventional magnetic core
  • FIGS. 3 and 4 are circuit diagrams showing equivalent circuits of the KrF excimer laser device.
  • Fig. 5 and Fig. 6 show the temperature of the magnetic core at various ratios (W i N zw AM ) of the width (W j N ) of the electrically insulating material and the width (w A ") of the amorphous alloy.
  • Fig. 7 is an external view showing the positional relationship between the amorphous alloy and the electrical insulating material.
  • Fig. 8 is a graph showing the relationship between the distance C in Fig. 7 and the temperature rise of the magnetic core.
  • the width of the electrically insulating material 2 is made smaller than the width of the magnetic material ribbon 1.
  • the magnetic alloy ribbon is protruded to increase the contact area of the magnetic alloy thin ribbon 1 with the cooling medium, thereby generating heat from the magnetic core during use. That is, it improves the heat dissipation of the magnetic material ribbon against heat generation.
  • the width b of the electrically insulating material in order to improve the contact area of the magnetic material ribbon with a cooling medium such as air, insulating oil, or a fluorine-based inert liquid, the width b of the electrically insulating material must be equal to the magnetic material ribbon. However, if the width is too narrow, the distance between the layers will be reduced due to the deflection due to the thin thickness of the magnetic material ribbon.
  • the width b of the electrically insulating material is smaller than the width a of the magnetic material strip from the viewpoint of preventing short-circuiting, because the width becomes narrower and a short-circuit easily occurs when a high voltage is applied. And 0.5 a or more and less than a. Preferably it is not less than 0.9a and less than a.
  • the cooling characteristics depending on the width of the magnetic material ribbon and the electrically insulating material are affected by the difference in width as the ratio of the thickness of the magnetic material ribbon to the thickness of the electrically insulating material increases. It will be great.
  • both ends in the width direction of the magnetic material ribbon 1 are also located at both ends in the width direction of the electrically insulating material 2. It is preferable that it protrudes o
  • the width of the magnetic material ribbon and the width of the electrical insulating material in the case of a magnetic core in which the magnetic material ribbon and the electrical insulating material are laminated are the outer diameter and the inner diameter of each material. 1/2 of the difference between
  • the width of the electrical insulating material is less than the width of the magnetic alloy thin layer, and the interlayer insulation at the end of the thin strip is formed.
  • the distance between the ribbons increased due to the insulation of the magnetic core cooling medium such as air, oil-absorbing oil, and fluorine-based inert liquid interposed at the end of the ribbon. It can be compensated between the ends of the ribbon. If necessary, increasing the thickness of the electrically insulating material is more effective for insulating properties.
  • the material of the magnetic material ribbon in the present invention is not particularly limited as long as it is formed as a magnetic core by being laminated or wound with an electrically insulating material.
  • iron-based amorphous alloys, cobalt-based amorphous alloys, or iron-based amorphous alloys or iron-based amorphous alloys are crystallized to precipitate fine crystal grains.
  • Magnetic alloys are preferred because they have excellent magnetic properties.
  • X is one or more elements selected from the Si, B, P, C and Ge forces
  • iron represented by Base amorphous alloys are preferred because they provide a high saturation magnetic flux density.
  • the amount of Si is preferably 7 to: L 4 at%, and the amount of B is preferably 11 to 15 at%.
  • a part of Fe is replaced by one or two elements of Co or Ni, a general formula:
  • the iron-based amorphous alloy represented by the formula (1) has a high saturation magnetic flux density and a high squareness ratio. Especially preferred.
  • elements such as Ti, Ta, V, Cr, Mn, Cu, Mo, Nb, W and the like are added in an amount of 5 at% or less. As a result, it is possible to further improve the magnetic characteristics.
  • a cobalt-based amorphous alloy represented by the following formula is particularly preferred because of its high squareness ratio and low iron loss.
  • T i, T a, V, C r, M n is particularly preferred because of its high squareness ratio and low iron loss.
  • fine crystals are formed by crystallizing an iron-based amorphous alloy.
  • Iron-based magnetic alloy with grains precipitated for example, the following general formula
  • M is one or two selected from Co or Ni force, and M— is Nb, W, Ta, Zr, Hf, Ti and One or two or more elements selected from Mo, and M_— is V, Cr, Mn, A1, a platinum group element, Sc, Y, a rare earth element, Au , Zn, Sn, and Re force, one or more elements selected from X, C, Ge, P, Ga, Sb, In, B e and at least one element selected from the group consisting of As and / or As.
  • the structure is composed of fine crystal grains, and when the crystal grains are measured at their maximum size, the crystal size is 50 OA or less. Preference is given to Fe-based soft magnetic alloys with a grain size.
  • the amorphous alloy ribbons having the above-described compositions can be easily manufactured by applying, for example, a molten metal quenching method to an alloy having a predetermined composition. It is possible . Further, the thickness of the magnetic material ribbon using these materials is not particularly limited, but for example, a thickness of 3 to 40 m is preferable. For these, 6 to 28 ⁇ is preferred.
  • the material of the electric insulating material is not particularly limited, it is preferable because the polystyrene tenolene is inexpensive, and it is also preferable to use the polyimide medium. Since the film has excellent heat resistance and can be heat-treated integrally with the magnetic material ribbon, for example, after winding or laminating the magnetic material ribbon and the polyimide film alternately, A heat treatment can be performed and is preferred.
  • the thickness of the electrically insulating material is not particularly limited, but is preferably 1.5 to 50 m in consideration of the insulating property, and more preferably 1 to 50 m. 5 to 30111 is preferred.
  • the magnetic core according to the present invention can be obtained by the following manufacturing method.
  • a magnetic material ribbon having a predetermined composition and shape and an electrical insulating material are alternately wound by a normal method, or a magnetic material ribbon having a predetermined composition is formed into a predetermined shape by a normal method. It is manufactured by alternately laminating the stamped material and the electric insulating material and subjecting it to a heat treatment as needed. In this heat treatment, particularly by performing the heat treatment in a direct flow or an alternating magnetic field, it is possible to improve the magnetic properties such as the squareness ratio of the obtained magnetic core. .
  • a cobalt-based amorphous alloy is used as the magnetic material ribbon. When used, there is a composition that can achieve a relatively high squareness ratio after quenching the molten metal, so that it can be used without heat treatment.
  • the heat treatment is obtained in the same manner as when the magnetic core is heat-treated in a magnetic field.
  • the squareness ratio of the magnetic core is improved.
  • the magnitude of the magnetic field at this time is preferably about 5 to 110 Oe, and more preferably about 5 to 200 e.
  • the combination of the magnetic material ribbon and the electric insulating material can be appropriately selected depending on the required characteristics. For example, in applications where electrical insulation is required, use two or more layers of electrical insulating material.For applications where magnetic properties are required, use a magnetic material ribbon. It can be more than two layers.
  • the magnetic core of the present invention is not limited as long as it generates heat when used in a magnetic core obtained by alternately laminating or winding a magnetic material ribbon and an electric insulating material. However, it is particularly effective when used in magnetic cores used with high power, such as pulse generators and transformers used in lasers and particle accelerators, etc. .
  • Amorphous alloy ribbons and electrical insulating materials having the composition and shape shown in Table 1 were used and wound alternately to form an outer diameter of 20 mm.
  • a core with a diameter of 10 mm and an inner diameter of 10 nm was formed.
  • the obtained core was subjected to a heat treatment at 420 for 30 minutes, and then to a constant temperature of 200 ° C and a constant magnetic field of 10 e for 1 hour.
  • Example 4 Using an amorphous alloy ribbon and an electrically insulating material having the composition and shape shown in Table 1, the core is wound alternately and has an outer diameter of 230 and an inner diameter of 100 rain. Was molded. The obtained core was subjected to a heat treatment at 420 for 30 minutes and then to 200. The heat treatment was performed for 1 hour in a constant DC constant magnetic field of 10 e at C constant temperature.
  • Example 4 and Comparative Example 4
  • Amorphous alloy ribbons having the composition and shape shown in Table 1 were alternately wound to form a wound core having an outer diameter of 200 na and an inner diameter of 100 mm.
  • the obtained core was heat-treated for 2 hours at a constant temperature of 400 ° C and a constant DC magnetic field of 10 Oe. —
  • amorphous alloy ribbon having the composition and shape shown in Table 1 was wound to form a wound core having an outer diameter of 180 mm and an inner diameter of 100 mm.
  • the band was heat-treated for 2 hours in a constant DC field of 320 e at a constant temperature of 320C.
  • the obtained amorphous alloy ribbon and the electrical insulating material shown in Table 1 were alternately wound again to form a wound core having an outer diameter of 180 mm and an inner diameter of 100 thighs.
  • Amorphous alloy ribbon with the composition and shape shown in Table 1 A winding core having an outer diameter of 240 mm and an inner diameter of 100 mm was formed by winding alternately using an electrically insulating material. Resulting et a wound magnetic core with 5 5 0 e C constant temperature, 1 0 e DC constant in magnetic field have contact to crystallize by Ri amorphous alloy 1 hour heat treatment in rows Cormorant This fine focusing Crystal grains were precipitated.
  • An amorphous alloy ribbon having the composition and thickness shown in Table 1 was punched out into an annular shape with an outer diameter of 60 mm and an inner diameter of 30 mm, and an outer diameter of 59.5 mm and an inner diameter of 3 mm.
  • 0.5 mm annular electric insulating materials were alternately laminated to form a laminated core of Example 7 having a height of 40 mm.
  • an amorphous alloy ribbon having the composition and thickness shown in Table 1 was punched out into an annular shape with an outer diameter of 60 and an inner diameter of 30 mm, and an outer diameter of An annular electrical insulating material having a diameter of 61 mm and an inner diameter of 29 ran was alternately laminated to form a laminated core of Comparative Example 7 having a height of 40 ram.
  • the repetition frequency was 1 kHz in Examples 1 and 3 and Comparative Examples 1 and 3, and was 1 kHz in Examples 4, 5, and 6, and Comparative Examples 4, 5, and 6. In this case, it is 0.2 kHz.
  • the magnetic core of the present invention in which the width of the electrically insulating material is smaller than the width of the magnetic material ribbon is the same as that of the conventional magnetic core in which the width of the electrically insulating material is greater than the width of the magnetic material ribbon.
  • the temperature rise of the magnetic core during use is smaller than that of the magnetic core of the present invention, and even when the magnetic core is used for a high-output pulse core, it has an excellent cooling effect.
  • FIG. 5 shows the results when the amorphous alloy and the electrical insulating material were the same as in Example 1, and FIG. 6 shows the results when the same as in Example 5 was used.
  • the ratio of the width of the electrically insulating material (w 1N ) to the width of the amorphous alloy (w AM ) (w 1N /
  • a magnetic core having a large ratio of the thickness of the magnetic material ribbon to the thickness of the electric insulating material has a greater effect on the cooling characteristics due to the difference in the width of the material.
  • the cooling characteristics are better as the width of the electrical insulating material is closer to the width of the magnetic material. This can be understood.
  • the temperature rise of the magnetic core in the case of the W 1N ZW AM rather than 0.5 that have come large the heat that by the short circuit between the amorphous alloy ribbon Ru is considered to Ru original Indea .
  • heat generation in the case of w 1N zw AM ⁇ i is considered to be caused by a decrease in the heat dissipation of the magnetic core due to the electrically insulating material protruding from the amorphous alloy thin film.
  • the temperature rise of the magnetic core increases when the edge in the width direction of the electrical insulating material coincides with or protrudes from the one edge in the width direction of the magnetic material ribbon. It will be better.
  • both ends of the electrically insulating material do not protrude from the magnetic material ribbon from the viewpoint of the contact area of the magnetic material ribbon with the cooling medium.
  • the magnetic core of the present invention has a small temperature rise during use and a large cooling effect, so that the magnetic core used for high power, such as a magnetic core for a high-output pulse, is used. It is valid .
  • Table 1 Magnetic materials Thin ribbon electrical insulation materials
  • Comparative example 1 ⁇ ⁇ ⁇ 54 70 Sticky example 2 ⁇ 11 16 ⁇ 7 6 25 Comparative ⁇ 2 ⁇ ⁇ 15 80 Example 3 50 15 Polyimide film 48 7.5 10

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Description

明 4柳an
磁 、 技 術 分 野
本発明 は、 パルス発生装置、 変圧器な どに用 い ら れ る 磁心に関す る も の であ り 、 さ ら に詳 し く は高出力パ ル ス 用磁心な ど大電力で用 い ら れ る 磁心に関す る 。
背 景 技 術
レ ー ザー や粒子加速器な どに用 い ら れ る パ ル ス 電源装 置 に は、 高出力でかつパ ル ス 幅 の短いパ ル ス を発生 さ せ る の に適 し た磁気パ ル ス圧縮回路が用 い ら れて い る 。 こ の磁気パ ル ス圧縮回路 は、 コ ン デ ン サ の電荷を次段の コ ン デ ン ザ に移行す る と き に、 可飽和磁心の飽和特性を利 用 し て電流パ ル ス幅を圧縮す る も ので あ る 。
ま た、 線形加速器の誘導磁心は本質的に 1 : 1 ト ラ ン ス と し て動作 し 、 二次側ギ ャ ッ プ に発生す る 電圧 に よ り 磁心中央部を通 る 荷電粒子 ビー ム を加速す る も の で あ る 従来よ り 、 こ れ ら の高出力パ ル ス用磁心 と し て は、 高 飽和磁束密度、 磁化曲線の高角形比お よ び低鉄損の特性 を有す る 鉄基非晶質合金薄帯あ る い は コ バ ル ト 基非晶質 台金薄帯な どの磁性材料薄帯 と ポ リ エ ス テル フ ィ ル ム ぁ る い は ポ リ イ ミ ド フ ィ ル ム な どの高分子 フ ィ ル ム 力、 ら な る 電気絶緣材料 と が交互に巻回 さ れてな る 磁心が用 い ら れて い る 。
そ し て、 こ の よ う な磁心に お い て は磁心が高出力パル ス用 を対象 と し てい る た め に磁性材料薄帯間の絶縁性が 重要 と な る 。 そ の た め従来にお い ては磁性材料薄帯端部 間 にお け る 層間絶縁を確保す る た め に、 電気絶縁材料の 幅を磁性材料薄帯の幅よ り 広 く 設定す る こ と が行われて い る
し か し 、 上記の よ う な磁性材料薄帯間の層間絶縁を確 保す る た め に電気絶縁材料の幅を磁性材料薄帯の幅よ り 広 く 設定 し た磁心にお い て は、 下記の よ う な 問題点が生 じ て い る こ と を本発明者 ら は初めて知見 し た。
すな わ ち 、 従来の磁心の断面図の模式図であ る 第 2 図 に示すよ う に 、 磁性材料薄帯 1 の端部よ り 電気絶縁材料 2 の端部 は突出 し てお り 、 さ ら に一般に こ の電気絶縁材 料 2 は熱伝導性が低い た め に、 こ の電気絶緣材料 2 の突 出 し た部分の 間の空間が熱的な絶縁層 3 と な っ て し ま う のであ る 。 こ の た め、 使用時にお け る 磁心の発熱、 言い 換えれば磁性材料薄帯の発熱に対す る 冷却効果が低下 し 、 磁心の温度が上昇 し て し ま う 。 一般に磁心は、 空気、 絶 縁油、 フ ッ 素系不活性液体な どの冷却媒体に よ り 冷却 さ れて い る も の の、 こ の磁心の温度上昇に起因 し て磁心の 磁束量の低下お よ び特性の経時変化の加速化が生 じ て し ま い 、 所定の機能が得 ら れな い と い う 問題が不可避的 に 発生す る の で あ る 。 本発明 は上記問題点を解決 し 、 優れた冷却特性を有す る 磁心を提供す る こ と を 目 的 と す る 。
発 明 の 開 示
本発明 の磁心は、 磁性材料薄帯 と 電気絶縁材料が積層 ま た は巻回 さ れて な る 磁心に お い て、 磁性材料薄帯の幅 を a 、 電気絶縁材料の幅を b と し た場合 に、 0 . 5 a b く a な る 関係を有す る こ と を特徴 と す る 。
図面の簡単な説明
第 1 図 は本発明 の磁心の断面を示す概略図、
第 2 図 は従来の磁心の断面を示す概略図、
第 3 図お よ び第 4 図 は K r F エキ シ マ レ ー ザ一装置の 等価回路を示す回路図、
第 5 図お よ び第 6 図は電気絶縁材料の幅 ( W j N) と 非 晶質合金の幅 (wA") の比 ( W iNzwAM) を種々 変化 さ せた磁心の温度上昇を示すグラ フ 、
第 7 図 は非晶質合金 と 電気絶縁材の配置関係を示す外 観図、
第 8 図 は第 7 図 に お け る 距離 C と 磁心の温度上昇 と の 関係を示す グ ラ フ で あ る 。
発明 を実施す る た め の最良の形態 本発明 に お い て は、 第 1 図に示すよ う に電気絶縁材料 2 の幅を磁性材料薄帯 1 の幅未満 と す る こ と に よ り 、 磁 性合金薄帯を突出 さ せ、 磁性合金薄蒂 1 の冷却媒体への 接触面積を増大 さ せ、 使用時に お け る 磁心の発熱、 すな わ ち磁性材料薄帯の発熱に対す る 放熱性を向上す る も の の る。
し たが っ て、 磁性材料薄帯の空気、 絶縁油、 フ ッ 素系 不活性液体な どの冷却媒体への接触面積を向上す る た め に は電気絶縁材料の幅 b は磁性材料薄帯の幅 a 未満 と し な ければな ら な いが、 あ ま り そ の幅が狭い と 磁性材料薄 帯の板厚が薄い こ と に よ る た わみ な どに よ り 層間の間隔 が狭 く な り 、 高電圧を付加 し た際に短絡を発生 し易 く な る た め に、 そ の短絡防止の観点か ら電気絶緣材料の幅 b は、 磁性材料薄帯の幅 a に対 し 0 . 5 a 以上 a 未満 と し た。 好ま し く は 0 . 9 a 以上 a 未満であ る 。 さ ら に好ま し く は 0 . 9 5 以上 a 未満であ る。 こ れ ら磁性材料薄帯 と 電気絶縁材料の幅に よ る 冷却特性は磁性材料薄帯 と電 気絶緣材料の厚 さ の比が大であ る ほ どそ の幅の差に よ る 効果が大 と な る 。
更 に本発明 に おい て は、 第 1 図 に示すよ う に、 磁性材 料薄帯 1 の幅方向 に お け る 両端部双方 と も電気絶縁材料 2 の幅方向 に お け る両端部よ り 突出 し てい る こ と が好ま し い o
こ こ で、 磁性材料薄帯 と 電気絶縁材料が積層 さ れた磁 心の場合 に お け る 磁性材料薄帯お よ び電気絶縁材料の幅 と は、 各材料に お け る 外径 と 内径の差の 1 / 2 であ る 。
ま た、 本発明 に お いて電気絶縁材料の幅が磁性合金薄 蒂の幅以下 と な っ た こ と に よ る 薄帯端部 に お け る 層間絶 縁性の低下分は薄帯端部に介在す る 空気、 絶緣油、 フ ッ 素系不活性液体な ど磁心冷却用媒体の絶縁性に よ り 薄帯 間の距離が大 き く な る た め薄帯端部間の捕償可能であ る 。 さ ら に必要であれば、 電気絶縁材料の厚 さ を厚 く す る こ と に よ り 絶縁性に対 し さ ら に有効 と な る。
本発明 に お け る 磁性材料薄帯の材質は電気絶縁材料 と 積層 ま た は巻回 さ れて、 磁心 と し て構成 さ れる も の であ れば特 に 限定 さ れ る も のでは な いが、 そ の中で も鉄基非 晶質合金、 コ バル ト 基非晶質合金あ る い は鉄基非晶質合 金を結晶化 さ せ微細な結晶粒を析出 さ せた鉄基磁性合金 が優れた磁気特性を有 し てお り 好 ま し い も の であ る 。
上記各磁性材料を さ ら に細述す る と 、 ま ず鉄基非晶質 合金に関 し て は、 一般式 :
F e 100-y X y C a * %
1 4 ≤ y ≤ 2 1
( こ こ で、 X は S i , B , P , C お よ び G e 力、 ら選ばれ る いずれ力、 1 種ま た は 2種以上の元素であ る 。 ) で表 さ れ る 鉄基非晶質合金が、 高飽和磁束密度が得 ら れ好ま し い も の であ る 。 こ こ で Xの 中で も S i お よ び B を用 い た 場合の S i 量は 7 〜 : L 4 a t %、 B量は 1 1 〜 1 5 a t %が好 ま し い 、 さ ら に鉄基非晶質合金の中で も 特に F e の一部を C o ま た は N i の いずれ力、 1 種 ま た は 2 種の元 素で置換 し た、 一般式 :
( F e 1-x M x ) 100-y X y a ' % 0 < x ≤ 0 . 4 1 4 ≤ y ≤ 2 1
( こ こ で、 M は C o ま た は N i 力、 ら選ばれる いずれ力、 1 種ま た は 2 種の元素であ り 、 X は S i , B , P , C お よ び G e か ら選ばれる いずれ力、 1 種ま た は 2 種以上の元素 であ る 。 ) で表さ れ る 鉄基非晶質合金が、 高飽和磁束密 度でかつ高角形比が得 られる た め特に好ま し い。 上記組 成の鉄基非晶質合金におい て、 さ ら に T i , T a , V , C r , M n , C u , M o , N b , Wな どの元素を 5 a t %以下添加す る こ と に よ り 、 さ ら に磁気特性の向上を図 る こ とが可能であ る 。
ま た コ バル ト 基非晶質合金につ い ては、 一般式 :
( C ° 1-x F e X } 100-z ( S 1 1-y B y } z
0 . 0 2 ≤ x ≤ 0 . 1
0 . 3 ≤ y ≤ 0 . 9
2 0 ≤ z ≤ 3 0
で表 さ れ る コ バル ト 基非晶質合金が高角形比お よ び低鉄 損であ り 、 と く に好ま し い。 上記組成の コ バル ト 基非晶 質合金におい て、 さ ら に T i , T a , V , C r , M n ,
C u , M o , N b , Wな どの元素を 8 a t %以下添加す る こ と に よ り 、 さ ら に磁気特性の 向上を図 る こ と が可能 であ り 、 そ の 中で も 低鉄損を考慮す る と 特に M n , N i ,
M o , N b が好ま し い。
ま た、 さ ら に鉄基非晶質合金を結晶化 さ せ微細 な結晶 粒を析出 さ せた鉄基磁性合金、 例え ば下記一般式
(F e M ) ,ηΛ „ C u S B M M n X
1-a a 100-x-y-z-ii-i-r x y z a β J
0 ≤ a 0 . 5
0 1 ≤ x 3
0 ≤ y 3 0
0 ≤ z 2 5 0 y + z ≤ 3 5
0 . 1 ≤ a ≤ 3 0 0 ≤ β ≤ 1 0 0 ≤ r ≤ 1 0
( こ こ で、 M は C o ま た は N i 力、 ら 選ばれ る 1 種 ま た は 2 種、 M— は N b , W , T a , Z r , H f , T i お よ び M o か ら選ばれ る いずれ力、 1 種 ま た は 2 種以上の元素、 M _—は V , C r , M n , A 1 , 白金族元素, S c , Y , 希土類元素, A u , Z n , S n お よ び R e 力、 ら 選ばれ る いずれ力、 1 種ま た は 2 種以上の元素、 X は C , G e , P , G a , S b , I n , B e お よ び A s 力、 ら 選ばれ る いずれ か 1 種ま た は 2 種以上の元素であ る 。 )
に よ り 表 さ れ る 組成を有 し 、 組織の少な く と も 5 0 %が 微細 な結晶粒か ら な り 、 結晶粒がそ の最大寸法で測定 し た場合、 5 0 O A 以下の結晶粒径を有す る F e 基軟磁性 合金が好 ま し い。
上記、 各組成を有す る 非晶質合金薄帯 は、 所定組成の 合金 に例え ば溶湯急冷法な どを適用 し て容易 に 作製す る こ と が可能であ る 。 ま た、 こ れ ら の材料を用 い た磁性材 料薄帯の厚 さ は格別限定 さ れ る も の で はな いが、 例え ば 3 〜 4 0 m の厚 さ が好ま し く 、 さ ら に は 6 〜 2 8 ίί πι が好ま し い。
一方、 電気絶縁材料の材質に お い て も特に限定 さ れ る も ので は な いが、 ポ リ エス テノレ フ ィ ノレム は安価であ る た め好ま し く 、 ま た ポ リ イ ミ ドフ ィ ルム は耐熱性に優れて お り 、 磁性材料薄帯 と 一体に熱処理が可能であ る た め、 例え ば磁性材料薄帯 と ポ リ イ ミ ドフ ィ ルム を交互に巻回 ま た は積層後に熱処理を行 う こ と が可能であ り 、 好ま し い も の であ る 。 こ の電気絶縁材料の厚 さ も格別限定 さ れ る も の ではな いが、 絶縁性を考慮す る と 1 . 5 〜 5 0 mであ る こ と が好ま し く 、 さ ら に は 1 . 5 〜 3 0 111が 好ま し い。
本発明 に お け る 磁心は、 下記の製造方法に よ り 得 る こ と が可能で あ る 。
すな わ ち 、 所定の組成、 形状の磁性材料薄帯 と電気絶 縁材料を常法 に よ り 交互に巻回 し ま た は所定の組成の磁 性材料薄帯を所定の形状に常法に よ り 打ち抜い た も の と 電気絶縁材料 と を交互に積層 し 、 必要に応 じ て熱処理を 施す こ と に よ り 製造 さ れ る 。 こ の熱処理におい て特に 直 流あ る い は交流磁場中で熱処理を行 う こ と に よ り 、 得 ら れた磁心の角形比な どの磁気特性の 向上を図 る こ と が可 能 と な る 。 磁性材料薄帯 と し て コ バル ト 基非晶質合金を 用 い た場合に は溶湯急冷後の状態で比較的高角形比が実 現で き る 組成が存在す る た め、 熱処理を施 さ ず用 い る こ と が可能であ る 。
ま た 、 磁心の成形に先立 ち 、 薄帯を直流あ る い は交流 磁場中で熱処理を行 う と 、 磁心成形体に対 し 磁場中で熱 処理を行 つ た場合 と 同様に得 ら れた磁心の角形比が向上 す る 。 こ の 際の磁場の大 き さ と し て は ◦ . 5 〜 1 1 0 O e 程度であ る こ と 力 好ま し く 、 さ ら に は 5 〜 2 0 0 e 程度が好ま し い。
ま た、 磁性材料薄帯 と 電気絶縁材料の組合せ は、 要求 さ れ る 特性に よ り 適宜選択す る こ と が可能であ る 。 例え ば特 に電気絶縁性が要求 さ れ る 用途の場合に は電気絶縁 材料を 2 層以上の も の と し た り 、 特に磁気特性が要求 さ れ る 用途の場合 に は磁性材料薄帯を 2 層以上の も の と し た り す る こ と 力 で き る 。
本発明 の磁心は、 磁性材料薄帯 と 電気絶緣材料を交互 に積層 ま た は巻回 し た磁心に お い て使用時に発熱を生 じ る も のであれば何 ら 限定 さ れ る も ので はな いが、 レ ー ザ — や粒子加速器な どに用 い ら れ る パルス発生装置や変圧 器 な ど大電力で用 い ら れ る 磁心に用 い ら れ る 場合 に特 に 有効であ る 。
実施例 1 , 2 お よ び比較例 1 , 2
第 1 表 に示す組成お よ び形状を有す る 非晶質合金薄帯 お よ び電気絶縁材料を用 い、 交互 に卷回 し て外径 2 0 〇 mm、 内径 1 0 O nmの卷磁心を成形 し た。 得 ら れた巻磁心 を 4 2 0 で、 3 0 分間の熱処理を行 っ た後、 2 0 0 °C恒 温、 1 0 e の 直流定磁場中で 1 時間熱処理を行 っ た。 実施例 3 お よ び比較例 3
第 1 表に示す組成お よ び形状を有す る 非晶質合金薄帯 お よ び電気絶緣材料を用 い、 交互に巻回 し て外径 2 3 0 , 内径 1 0 0 rainの巻磁心を成形 し た。 得 られた巻磁心 を 4 2 0 で、 3 0 分間の熱処理を行 っ た後、 2 0 0 。C恒 温、 1 0 e の直流定磁場中で 1 時間熱処理を行 っ た。 実施例 4 お よ び比較例 4
第 1 表に示す組成お よ び形状を有す る 非.晶質合金薄帯 を交互に巻回 し て外径 2 0 0 na、 内径 1 0 0 mmの巻磁心 を成形 し た。 得 ら れた巻磁心を 4 0 0 °C恒温、 1 0 O e の直流定磁場中 にお い て 2 時間熱処理を行 っ た。—
実施例 5 お よ び比較例 5
第 1 表に示す組成お よ び形状を有す る 非晶質合金薄帯 の み を巻回 し て外径 1 8 0 mm 内径 1 0 0 mmの巻磁心を 成形 し 、 非晶質合金薄帯に対 し、 3 2 0 C恒温、 3 0 0 e の直流定磁場中 に おいて 2 時間熱処理を行 っ た。 得 られた非晶質合金薄帯お よ び第 1 表に示す電気絶縁材料 を用 い交互に再び巻回 し て外径 1 8 0 mm、 内径 1 0 0 腿 の巻磁心を成形 し た。
実施例 6 お よ び比較例 6
第 1 表に示す組成お よ び形状を有す る 非晶質合金薄帯 お よ び電気絶縁材料を用 い交互に卷回 し て外径 2 4 0 删 、 内径 1 0 0 mmの卷磁心を成形 し た。 得 ら れた巻磁心を 5 5 0 eC恒温、 1 0 e の 直流定磁場中 に お い て 1 時間熱 処理を行 う こ と に よ り 非晶質合金を結晶化 さ せ微細な結 晶粒を析出 さ せた。
実施例 7 お よ び比較例 7
第 1 表に示す組成お よ び扳厚を有す る 非晶質合金薄帯 を外径 6 0 mm、 内径 3 0 mmの環状に打ち抜い た も の と 外 径 5 9 . 5 mm . 内径 3 0 . 5 mmの環状の電気絶縁材料を 交互 に積層 し 、 高 さ 4 0 mmの実施例 7 の積層磁心を成形 し た。
ま た比較例 と し て第 1 表に示す組成お よ び扳厚を有す る 非晶質合金薄帯を外径 6 0 、 内径 3 0 mmの環状 に打 ち抜い た も の と 外径 6 1 mm、 内径 2 9 ranの環状の電気絶 縁材料を交互に積層 し 、 高 さ 4 0 ramの比較例 7 の積層磁 心を成形 し た。
上記得 ら れた磁心にお い て、 実施例 1 , 4 〜 6 お よ び 比較例 2 , 4 〜 6 の磁心を第 3 図の等価回路を有す る K r F エキ シ マ レ ー ザ装置 に使用 し た 際の磁心の温度上 昇を測定 し た。 こ の場合 L Siに磁心 5 個を用 い た油冷構 造 と し た。 な お、 C u = 2 0 n F 、 C = 1 6 n F 、
C 31 - 1 4 n F 、 V 0 - 3 0 k V 出或。 こ の 際の繰返 し 周波数 は、 実施例 1 、 3 お よ び比較例 1 、 3 の場合 に は 1 k H z 、 実施例 4 、 5 、 6 お よ び比較例 4 、 5 、 6 の 場合 に は 0 . 2 k H z であ る 。
そ の結果を第 1 表に示す。
ま た、 実施例 2、 7 お よ び比較例 2、 7 の磁心の第 4 図の等価回路を有す る K r F エキ シマ レ ー ザ装置 に使用 し た 際の磁心の温度上昇を測定 し た。 こ の場合 L s 2に磁 心 6 個を用 い フ ッ 素系不活性液体に よ る 冷却構造 と し た。 な お、 C 12= 2 0 n F 、 C 22= 1 6 n F、 V Q = 2 0 k V 、 繰返 し周波数 1 k H z であ る 。 そ の結果を併せて第 1 表に示す。
下記第 1 表よ り 明 ら かな よ う に、 電気絶縁材料の幅を 磁性材料薄帯の幅未満 と し た本発明の磁心は、 電気絶縁 材料の幅が磁性材料薄帯の幅以上の従来の磁心に比べ、 使用時に お け る磁心の温度上昇が小 さ く 、 高出力パル ス 用磁心に用 い た場合 に おい て も 、 優れた冷却効果を有 し て い る 。
ま た、 電気絶縁材料の幅 ( Wェ N) と 非晶質合金の幅 ( w AM) の比 (w1NzwAM) を種々 変化 さ せて磁心を作 成 し 、 第 3 図の等価回路を有す る K r F エキ シマ レ 一 ザ 装置 に使用 し た 際の磁心の温度上昇を測定 し た。 非晶質 合金お よ び電気絶縁材料が実施例 1 と 同様の場合の結果 を第 5 図 に 、 ま た、 実施例 5 と 同様の場合を第 6 図 に示 し た。
こ の場合 L sェに磁心 5 個を用 い た油冷構造 と し た。 な お、 0 ^ = 2 0 11 ?、 C = 1 6 n F 、 C = 1 4 n F 、 V 0 = 3 0 k V , 繰返 し周波数 1 k H z であ る 。
第 5 図お よ び第 6 図よ り 明 ら かな よ う に、 電気絶縁材 料の幅 (w1N) と 非晶質合金の幅 (wAM) の比 (w1N/
W Α") 力 < 0 . 5 < W i NZ W▲„く 1 の も の は、 冷却効果力 大 き く 温度上昇力 小 さ い の で好ま し い。 こ れ ら第 5 図お よ び第 6 図よ り 明 ら かな よ う に、 厚 さ 1 6 ^ mの非晶質 合金薄帯 と 厚 さ 6 の電気絶縁材料に よ り 構成 さ れた 磁心を用 い た第 5 図 に比較 し 、 厚 さ 1 5 mの非晶質合 金薄帯 と 厚 さ 2 m の電気絶縁材料に よ り 構成 さ れた磁 心を用 い た第 6 図、 すな わ ち磁性材料薄帯 と 電気絶緣材 料の厚 さ の比が大 き い磁心の方が材料の幅の差に よ る 冷 却特性への影響が大 き い。 第 6 図 よ り 磁性薄帯 と 電気絶 縁材料の厚 さ の比が大 き い磁心の場合 は、 電気絶縁材料 の幅が磁性材料薄蒂の幅 に近い ほ ど冷却特性が優れて い る こ と が理解で き る 。
こ こ で、 W 1NZ WAMく 0 . 5 の場合の磁心の温度上昇 が大 き い の は、 非晶質合金薄帯間の短絡に よ る 発熱が原 因であ る と 考え ら れ る 。 ま た w1NzwAM≥ iの場合の発 熱は、 非晶質合金薄膜よ り 突出 し た電気絶縁材料 に よ る 磁心の放熱性の低下が原因 と 考え ら れ る 。
次 に、 実施例 3 に用 い た非晶質合金お よ び電気絶縁材 料 に お い て、 非晶質合金の幅方向 の 中心線 と 電気絶縁材 料の幅方向 の 中心線 と の距離 C (第 7 図参照) を種 々 変 化 さ せ た磁心を作成 し 、 第 3 図の等価回路を有す る K r F エキ シマ レ ー ザ装置 に使用 し た 際の磁心の温度上昇を 測定 し 、 そ の結果を第 8 図 に示 し た。
な お、 前述の各実施例お よ び比較例 につ いて は、 磁性 材料薄帯の 中心線 と 電気絶縁材料の中心線は一致 し てい る
こ の場合、 第 3 図の L s }に磁心 5個を用 い油冷構造 と し た。 な お、 C u= 2 0 n F、 C 21= 1 6 n F、 C g: = 1 4 n F、 V 0 = 3 0 k V、 繰返 し周波数 1 k H z であ る o
第 8 図 よ り 明 ら かな よ う に、 電気絶緣材料の幅方向の —端縁が磁性材料薄帯の幅方向の一端縁 と一致す る かま た は突出す る と磁心の温度上昇が大 き く な る 。
し たが っ て、 電気絶縁材料の両端緣と も に磁性材料薄 帯よ り 突出 し てい な い方が、 磁性材料薄帯の冷却媒体へ の接触面積 と い う 観点か ら 好ま し い。
産業上の利用可能性
本発明 の磁心は、 使用時に お け る 磁心の温度上昇が小 さ く 、 冷却効果が大き い た め、 高出力パ ル ス用 の磁心な ど大電力 に用 い ら れ る 磁心な ど に有効であ る 。 第 1 表 磁 性 材 料 薄 帯 電 気 絶 縁 材 料
厚さ さ 組 成 (at%) 材 料 幅 厚
(mm) (/im) (画) ( ) 実施例 1 50 16 ポリエステルフィルム 49 6 18
(C o0.94F e 0.06) 70N i3 Nbl S lB15
比蛟例 1 〃 〃 〃 54 70 突施例 2 〃 11 16 〃 7 6 25 比删 2 〃 〃 15 80 例 3 50 15 ポリイミ ドフィルム 48 7.5 10
(C o0.94F e 0.06) 72Nbl S i 14B13
比較例 3 〃 〃 〃 〃 53 45 雄例 4 25 20 〃 24.5 7.5 25
F eUS i 9 B13
比綱 4 〃 〃 25 77
1¾ E 第 1 表 (統き) 磁 性 材 料 薄 帯 電 気 絶 縁 材 料 温度
_J昇 組 成 (at%) 幅 厚さ
材 料 幅
(mm) ( ) (mm) ( ) 簾列 5 (F eQ 79^o0 21) 85S 11 D[i 25 15 ポリエステルフィルム 24 2 30 比較例 5 〃 〃 〃 // 25 2 50 実施例 6 F e73.5C ul Nb3 S i 13.5B9 25 18 ポリイミ ドフィルム 22 12 23 比較例 6 〃 〃 〃 〃 27 〃 65 実施例 7 ポリエステルフィルム
(C o0.94F e 0.06) 72Nbl S ! 14613 15 17 14.5 4 15 比蛟例 7 〃 16 メ / 52

Claims

求 の 範 囲
1 . 磁性材料薄帯 と 電気絶縁材料が積層 ま た は卷回 さ れてな る 磁心であ っ て、 磁性材料薄帯の幅を a 、 電気 絶縁材料の幅を b と し た場合 に、 0 . 5 a ≤ b < a な る 関係を有す る 磁心。
2 . 前記磁性材料薄帯の幅 a 、 と 電気絶縁材料の幅 b と の関係が 0 . 9 a ≤ b く a な る 関係を有す る 、 請求 項 1 に記載の磁心。
3 . 前記磁性材料薄帯の幅 a 、 と 電気絶縁材料の幅 b と の関係力 0 . 9 5 a ≤ b < a な る 関係を有す る 、 請 求項 1 に記載の磁心。
4 . 前記磁性材料薄帯の幅方向 に お け る 両端部が双 方 と も前記電気絶縁材料の幅方向 に お け る 両端部 よ り も 突出す る よ う に配置 さ れて い る 、 請求項 1 に記載の磁心(
5 . 前記磁性材料薄帯の 中心線 と 前記電気絶縁材料 の 中心線がほぼ一致す る よ う に配置 さ れて い る 、 請求項 1 に 記載の磁心。
6 . 前記磁性材料薄帯が下記一般式 :
F e 100-y Λ y
1 4 ≤ y ≤ 2 1 [ a t % ]
( こ こ で、 X は S i , B , P , C お よ び G e 力、 ら選ば れ る いずれ力、 1 種 ま た は 2 種以上の元素であ る ) で表 さ れ る 非晶質合金か ら な る 、 請求項 1 に 記載の磁心。
7 . 前記磁性材料薄帯が下記一般式 :
( F e 1-x M x ) 100-y X y
0 ≤ x ≤ 0 . 4
1 4 ≤ y ≤ 2 1 [ a t % ]
( こ こ で、 M は C o ま た は N i 力、 ら選ばれ る いずれ力、
1 種ま た は 2 種以上の元素であ り 、 X は S i , B ,
C , お よ び G e 力、 ら選ばれる 1 種ま た は 2 種以上の 元素であ る )
で表 さ れ る 非晶質合金か ら な る 、 請求項 1 に記載の磁心。
8 . 請求項 7 の非晶質合金に さ ら に T i , T a , V , C r , M n , C u , M o , N b , Wか ら選ばれ る いずれ 力、 1 種ま た は 2 種以上の元素を 5 a t %以上添加 し た非 晶質合金か ら な る 、 請求項 7 に記載の磁心。
9 . 前記磁性材料薄帯が下記一般式 :
( C o 1 - X F e X ) 100-x ( S 1 1-y B y > x 0 . 0 2 ≤ x ≤ 0 . 1
0 . 3 ≤ y ≤ 0 . 9
2 0 ≤ z ≤ 3 0 [ a t % ]
で表 さ れ る 非晶質合金か ら な る 、 請求項 1 に記載の磁心。
1 0 . 請求項 7 の非晶質合金に さ ら に T i , T a , V , C r , M n , C u , M o , N b , W力、 ら 選ばれ る い ずれか 1 種ま た は 2 種以上の元素を 5 a t %以上添加 し た非晶質合金か ら な る 、 請求項 9 に記載の磁心。 一 前記磁性材料薄帯が下記一般式
Figure imgf000021_0001
0 a ≤ 0 5
0 1 ≤ x ≤ 3
0 ≤ y ≤ 3 0
0 ≤ z ≤ 2 5
0 ≤ y + z ≤ 3 5
0 1 ≤ a ≤ 3 0
0 ≤ β ≤ 1 0
0 ≤ γ ≤ 1
こ で M は C o ま た は N i 力、 ら選ばれ る 1 種 ま た は 2 種、 M _ は N b , W , T a , Z r , H f , T i およ び M o 力、 ら 選ばれ る いずれ力、 1 種ま た は 2 種以上の元素、 M一—は V, C r , M n , A 1 , 白金族元素, S c , Y, 希土類元素, Α ιι , 2 n , S n お よ び R e 力、 ら選ばれ る いずれ力、 1 種ま た は 2 種以上の元素、 X は C , G e , P , G a , S b , I n , B e お よ び A s 力、 ら選ばれ る いずれ か 1 種ま た は 2 種以上の元素であ る 。 )
で表 さ れ、 組織の少な く と も 5 ◦ %が微細な結晶粒か ら な り 、 かつ結晶粒がそ の最大寸法で 5 ◦ 0 A以下の結晶 粒径を有す る F e 基軟磁性合金か ら な る 、 請求項 1 に記 載の磁心。
1 2. 前記磁心は大電力で用 い ら れ る も のであ る 、 請求項 1 に記載の磁心。
1 3 . 前記磁心はパル ス発生装置に用 い ら れ る も の であ る 、 請求項 1 2 に記載の磁心。
1 4 . 前記磁心は変圧器に用 い ら れ る も のであ る 、 請求項 1 2 に記載の磁心。
PCT/JP1991/001294 1990-09-28 1991-09-27 Noyau magnetique WO1992006480A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP91916787A EP0503081B1 (en) 1990-09-28 1991-09-27 Magnetic core
DE69120248T DE69120248T2 (de) 1990-09-28 1991-09-27 Magnetkern
KR1019920701209A KR970000872B1 (ko) 1990-09-28 1991-09-27 자심과 이를 이용한 펄스발생장치 및 변압기
JP51529891A JP3156850B2 (ja) 1990-09-28 1991-09-27 磁心およびこれを用いたパルス発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/256966 1990-09-28
JP25696690 1990-09-28

Publications (1)

Publication Number Publication Date
WO1992006480A1 true WO1992006480A1 (fr) 1992-04-16

Family

ID=17299848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001294 WO1992006480A1 (fr) 1990-09-28 1991-09-27 Noyau magnetique

Country Status (5)

Country Link
EP (1) EP0503081B1 (ja)
JP (1) JP3156850B2 (ja)
KR (1) KR970000872B1 (ja)
DE (1) DE69120248T2 (ja)
WO (1) WO1992006480A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916743A1 (en) * 2020-05-29 2021-12-01 ABB Power Grids Switzerland AG Hybrid transformer core and method of manufacturing a transformer core

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868123A (en) * 1995-10-05 1999-02-09 Alliedsignal Inc. Magnetic core-coil assembly for spark ignition systems
US7057489B2 (en) 1997-08-21 2006-06-06 Metglas, Inc. Segmented transformer core
US7056595B2 (en) * 2003-01-30 2006-06-06 Metglas, Inc. Magnetic implement using magnetic metal ribbon coated with insulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482027A (en) * 1977-12-12 1979-06-29 Mitsubishi Electric Corp Divided magnetic core
JPH01290746A (ja) 1988-05-17 1989-11-22 Toshiba Corp 軟磁性合金
JPH0277555A (ja) * 1988-06-13 1990-03-16 Toshiba Corp Fe基軟磁性合金
DE4002999A1 (de) 1989-02-02 1990-08-16 Hitachi Metals Ltd Gewickelter magnetkern
JPH03124008A (ja) * 1989-10-07 1991-05-27 Tdk Corp コイル装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2103523A1 (de) * 1971-01-26 1972-08-17 Pfister, Karl Ingolf, 3504 Kaufungen Blechpaket für dynamo-elektrische Einrichtungen wie z.B. elektrische Maschinen, Transformatoren oder dergleichen
JPS58139408A (ja) * 1982-02-15 1983-08-18 Hitachi Metals Ltd 巻鉄心の製造方法
JPH01208822A (ja) * 1988-02-17 1989-08-22 Toshiba Corp 巻鉄心の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482027A (en) * 1977-12-12 1979-06-29 Mitsubishi Electric Corp Divided magnetic core
JPH01290746A (ja) 1988-05-17 1989-11-22 Toshiba Corp 軟磁性合金
JPH0277555A (ja) * 1988-06-13 1990-03-16 Toshiba Corp Fe基軟磁性合金
DE4002999A1 (de) 1989-02-02 1990-08-16 Hitachi Metals Ltd Gewickelter magnetkern
JPH03124008A (ja) * 1989-10-07 1991-05-27 Tdk Corp コイル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0503081A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916743A1 (en) * 2020-05-29 2021-12-01 ABB Power Grids Switzerland AG Hybrid transformer core and method of manufacturing a transformer core
WO2021239832A1 (en) * 2020-05-29 2021-12-02 Abb Power Grids Switzerland Ag Hybrid transformer core and method of manufacturing a transformer core

Also Published As

Publication number Publication date
DE69120248D1 (de) 1996-07-18
DE69120248T2 (de) 1996-12-05
EP0503081B1 (en) 1996-06-12
EP0503081A4 (en) 1993-07-28
KR970000872B1 (ko) 1997-01-20
JP3156850B2 (ja) 2001-04-16
EP0503081A1 (en) 1992-09-16
KR920702535A (ko) 1992-09-04

Similar Documents

Publication Publication Date Title
US5815060A (en) Inductance element
JP3233313B2 (ja) パルス減衰特性に優れたナノ結晶合金の製造方法
EP0299498B1 (en) Magnetic core and method of producing same
US4871925A (en) High-voltage pulse generating apparatus
TW201817896A (zh) 軟磁性合金及磁性部件
KR100514955B1 (ko) 가포화리액터용자기코어,자기증폭기형다출력스위칭레귤레이터및자기증폭기형다출력스위칭레귤레이터를구비한컴퓨터
JPH1055916A (ja) 薄型磁気素子およびトランス
US5639566A (en) Magnetic core
TWI689599B (zh) 軟磁性合金和磁性部件
JP2909349B2 (ja) 絶縁膜が形成されたナノ結晶軟磁性合金薄帯および磁心ならびにパルス発生装置、レーザ装置、加速器
US4558297A (en) Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same
WO1992006480A1 (fr) Noyau magnetique
GB2227372A (en) Magnetic device
JP2008141012A (ja) リアクトル
CN110576656B (zh) 用于铁芯的层叠体
JP2835127B2 (ja) 磁心およびその製造方法
JP2760561B2 (ja) 磁 心
JP2719978B2 (ja) 高周波磁心用非晶質合金
JP3121641B2 (ja) スイッチング電源
JPH0693390A (ja) 短パルス特性に優れたナノ結晶軟磁性合金および磁心
JP2561573B2 (ja) 非晶質薄帯可飽和磁心
JPH07106115A (ja) 積層磁心
JPS60165705A (ja) 巻磁心
JP2005104008A (ja) 磁性基材およびその積層体ならびに用途
CA2136684C (en) Inductance element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991916787

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991916787

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991916787

Country of ref document: EP