WO1990001569A1 - Metal oxidation apparatus and method - Google Patents

Metal oxidation apparatus and method Download PDF

Info

Publication number
WO1990001569A1
WO1990001569A1 PCT/JP1989/000793 JP8900793W WO9001569A1 WO 1990001569 A1 WO1990001569 A1 WO 1990001569A1 JP 8900793 W JP8900793 W JP 8900793W WO 9001569 A1 WO9001569 A1 WO 9001569A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal
oxidized
oxidation
oxidizing
Prior art date
Application number
PCT/JP1989/000793
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Kazuhiko Sugiyama
Fumio Nakahara
Satoshi Mizokami
Original Assignee
Osaka Sanso Kogyo Kabushiki-Kaisya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sanso Kogyo Kabushiki-Kaisya filed Critical Osaka Sanso Kogyo Kabushiki-Kaisya
Priority to EP89909048A priority Critical patent/EP0427853B1/en
Priority to DE68919084T priority patent/DE68919084T2/de
Publication of WO1990001569A1 publication Critical patent/WO1990001569A1/ja
Priority to KR1019900700724A priority patent/KR900702070A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Definitions

  • the present invention relates to a metal oxidation treatment apparatus and a metal oxidation treatment method, and more particularly to a metal oxidation treatment apparatus and a metal oxidation treatment apparatus for performing passivation treatment of metal parts used in ultra-clean gas piping systems and ultra-high vacuum equipment. It relates to a metal oxidation treatment method.
  • the dimensions of the elementary element are getting smaller year by year in order to improve the degree of integration of the integrated circuit. .5 R & D is being actively conducted for the practical use of semiconductor devices with dimensions below.
  • the production of such a semiconductor device is repeated by repeating a process of forming a thin film, a process of etching the formed thin film into a predetermined circuit pattern, and the like.
  • a process usually involves placing the silicon wafer in a vacuum chamber and placing it in an ultra-high vacuum state. Usually, it is usually performed in a reduced pressure atmosphere in which a predetermined gas is introduced. If impurities are mixed in these steps, problems such as, for example, deterioration of the thin film or inability to obtain the precision of fine processing occur. This is the reason why ultra-high vacuum and ultra-high clean reduced-pressure atmosphere are required.
  • the flow rate of gas tends to be smaller and smaller in order to realize more accurate processes such as drilling and filling holes with a high aspect ratio, for example, several tens of cc / min or more.
  • the following flow rates are common in the Submicron ULSI process. Therefore, if a flow rate of 10 cc / min is used, Use Rere et al is 1 to good sales of have that device CD - 3 ⁇ 1 0 - 6 ⁇ ⁇ ⁇ ⁇ J2 / sec purity of the extent of the system bets over data Lumpur rie click there Ru and gas 1% ⁇ 10 Ppm, which is far from the high-purity process.
  • ultra-clean gas supply sheet invented the scan te beam, cis Te Ru detection limit der external or these rie click amount current detector beam 1 X 1 0 - 1 1 Torr - It has been successfully reduced to less than / sec. However, it is impossible to reduce the impurity concentration in the decompressed atmosphere due to the leak from the inside of the system, that is, the outgassing component from the surface of the stainless steel described above. I did.
  • Minimum value of the surface emission gas amount present is by Ri obtained surface treatment that put the ultra-high vacuum technology, if the scan Te emissions les scan ill, 1 X 1 0 - 1 1 Torr - J2 / s ec ⁇ Ri Oh in cm 2, even if for example the surface area that is exposed to the interior of the switch ya down server 1 m 2 and was Tsu most small rather than estimates, in the capital over data Lumpur 1 X 1 0 - 7 Torr - jZ
  • the leak rate is / sec, and only gas with a purity of about 1 ppm can be obtained for a gas flow rate of 1 Occ / rain. It goes without saying that reducing the gas flow rate further lowers the purity.
  • Degassing components Ji Ya Nba inner surface or, et al., Preparative chromatography data external rie click amount of mail system and the same 1 X 1 0 - 1 1 Torr - J2 / s ec and the Ru same extent or in the bottom-up is scan Te emission Les scan steel surface or these degassed 1 X 1 0 _ 1 5 Torr . / sec ⁇ cm 2 or less and should you is, therefore, you little Ku the volume discharge gas There has been a strong demand for surface treatment technology for stainless steel.
  • Stainless steel has excellent corrosion resistance in a dry gas atmosphere.
  • the special gas is hydrolyzed to produce hydrofluoric acid hydrochloride, which is highly corrosive, such as trichloride boron (BCJ ⁇ 3 ) or trifluoride.
  • Tsu of boric iodine (BF 3) Hitoshigaa is, the above-mentioned BCJ £ 3 and BF Yo I
  • BF 3 boric iodine
  • Ni-W-P coating clean es coating method
  • Racks and binholes are not only likely to occur, but also because of the method using wet plating, there are problems such as an increase in the amount of water adsorbed on the inner surface and an increase in residual components in the solution.
  • Other methods include corrosion resistance treatment by passivation to form a thin oxide film on the metal surface. In this method, passivation is usually carried out by immersing in a nitric acid solution at room temperature or at a slightly elevated temperature, since sufficient oxidizing agent is passivated by immersion in a stainless steel solution if there is enough oxidizing agent. Is being processed.
  • this method is also a wet method, a large amount of moisture and a residual solution of the processing solution are present on the piping and the inner surface of the chamber.
  • the presence of moisture adsorbed on the inner surface can cause severe damage to stainless steel when chlorine-based or fluorine-based gas is flowed.
  • the chamber and gas supply tea are not damaged by corrosive gas and have a passivated film with less moisture absorption and adsorption. This is very important for ultra-high vacuum technology and semiconductor processes.
  • FIG. 10 shows changes in the amount of moisture contained in the purge gas when the stainless steel pipes having different inner surface treatment conditions were purged at room temperature.
  • Ar gas was flowed at a flow rate of 1.2 ⁇ min through a 3 m 8 stainless steel pipe with a total length of 2 m, and the amount of water contained in the Ar gas at the outlet was determined by APIMS (atmospheric pressure). Ionized mass spectrometer).
  • the types of stainless steel tubes tested were those in which the inner surface of the stainless steel tube was electrolytically polished (A), those which were subjected to a passivation treatment with nitric acid after electrolytic polishing (B), and After electropolishing, a passive film was formed by heating and oxidizing in a clean and dry atmosphere (C) .
  • A the inner surface of the stainless steel tube was electrolytically polished
  • B nitric acid after electrolytic polishing
  • C clean and dry atmosphere
  • the lines are A, B, and C, respectively. It is shown .
  • Each stainless steel pipe was left in a clean room at a relative humidity of 50% and a temperature of 20 ° C for about one week before conducting this experiment.
  • stainless steel pipes with small inner diameters such as 1Z4 ", 3/8" and 1Z2 ", are difficult to flow gas and are likely to stagnate.
  • the inside of the steel pipe was exposed to the atmosphere and contaminated and oxidized, leaving a good passivation film with excellent corrosion resistance and low moisture absorption and absorption.
  • the outer surface of the stainless steel pipe is not directly related to the supply of ultra-high-purity gas, so the outer surface becomes dirty after the oxidation treatment due to the surface roughness and contamination. Let's talk about this Oxidation of the outside of the steel pipe can cause problems such as poor appearance and particle generation when piped in a clean room. It becomes.
  • the passivation of metals to be oxidized is achieved by the technology for mass production of the passivation, which has excellent corrosion resistance on the inner surface, and has a low water absorption and absorption. It has been desired to establish a technique for forming a film and not oxidizing the outer surface thereof.
  • the present invention has been made in view of the above points, and is directed to preventing contamination by impurities such as gas and moisture released from the surface of a metal to be oxidized such as stainless steel pipes in a metal oxidizing apparatus.
  • a metal oxidation treatment device and a metal oxidation treatment method capable of mass-producing ultra-high vacuum, ultra-high clean decompression equipment with excellent corrosion resistance, and stainless steel pipes for gas supply piping, etc. It is intended to provide.
  • the present invention aims to provide a metal oxidation treatment apparatus capable of performing self-cleaning and self-maintenance while addressing the above-mentioned objects. You.
  • an oxidizing furnace a gas inlet for introducing a gas into the oxidizing furnace, an exhaust port for exhausting a gas from the oxidizing furnace, and the oxidizing furnace.
  • the second aspect of the present invention relates to a method for introducing gas into an oxidation furnace.
  • the oxidation furnace is heated to a predetermined temperature by a heater while flowing gas from an inlet to an exhaust port for exhausting gas in the oxidation furnace, and the metal to be oxidized is heated and oxidized in a dry oxidation atmosphere.
  • This is a metal oxidation treatment method that forms a passivation film in an oxidation furnace on the surface of a metal to be oxidized, such as stainless steel, which is characterized by this.
  • a holder which also serves as a connection joint for fixing a tubular metal to be oxidized such as a stainless steel pipe in the oxidation furnace.
  • the inlet is arranged so as to be in contact with one end of the tubular metal to be oxidized
  • the exhaust port is arranged so as to be in contact with the other end of the metal to be oxidized.
  • the present invention is characterized in that the tubular metal to be oxidized is heated and oxidized in a dry oxidizing atmosphere while flowing a gas into the metal to be oxidized.
  • a tubular metal to be oxidized such as a stainless steel pipe is fixed in the oxidation furnace with a holder also serving as a connection joint.
  • a gas is introduced from one end of the tubular metal to be oxidized, exhausted from the other end of the tubular metal to be oxidized, and the gas is introduced into the tubular metal to be oxidized in a dry oxidizing atmosphere while flowing the gas. It exists in a metal oxidation treatment method characterized in that a tubular metal to be oxidized is heated and oxidized.
  • a purge gas is introduced into the oxidation furnace arranged so as not to be in contact with one end of the tubular metal to be oxidized separately from the inlet.
  • a gas is exhausted from the inside of the oxidizing furnace, which is disposed so as not to be in contact with the other end of the tubular metal to be oxidized, which is different from the other inlet for exhausting gas and the exhaust port.
  • an exhaust port for preventing the outside of the tubular metal to be oxidized from being oxidized.
  • the outside of the tubular metal to be oxidized is an inert gas atmosphere
  • the inside is an oxidizing gas atmosphere
  • the outside of the tubular metal to be oxidized is oxidized.
  • the pressure of the inert gas atmosphere outside the tubular metal to be oxidized is increased by controlling the pressure of the oxidizing gas atmosphere inside the tubular metal to be oxidized. It exists in the metal oxidation treatment method characterized in that the pressure is higher than the pressure.
  • the metal to be oxidized or the tubular metal to be oxidized is disposed or fixed in the oxidation furnace.
  • the oxidation furnace is opened from the exhaust port, or the exhaust port and other exhaust ports.
  • a purge gas line for introducing a purge gas is connected, and is exposed to the atmosphere when the metal to be oxidized or the tubular metal to be oxidized is placed or fixed in the oxidation furnace.
  • the metal oxidation treatment apparatus is characterized in that it is prevented from being damaged.
  • the metal to be oxidized or the tubular metal to be oxidized is placed in the oxidation furnace.
  • the present invention resides in a metal oxidation treatment method characterized by preventing the inside of the tubular metal to be oxidized or the outside and the inside of the tubular metal to be oxidized from being exposed to the atmosphere.
  • the gas introduction port can be switched between a purge gas and an oxidation treatment atmosphere gas.
  • a gas line as a system is connected, and a line that does not supply gas to the oxidizing furnace, such as a gas line for purging the gas line and a gas line for the oxidizing atmosphere, is always used.
  • a gas for purging from the gas inlet to the oxidation furnace and an oxidizing gas are provided.
  • the supply of the processing atmosphere gas is performed by a gas line which is a system capable of switching between the gas line for purging and the gas line for the oxidation processing atmosphere, and the gas line for purging of the gas line is used.
  • a line to which no gas is supplied to the oxidizing furnace is constantly exhausted so that the oxidizing atmosphere is kept highly pure and the temperature of the oxidizing furnace is reduced.
  • There is a metal oxidation treatment method characterized by switching between a gas line for purging and a gas line for an oxidation treatment atmosphere without lowering.
  • a heating heater is provided at the oxidizing atmosphere gas line and the purging gas line connected to the inlet or the inlet and the other inlet.
  • a metal oxidation treatment apparatus characterized in that a gas supplied to the oxidation furnace is heated to a temperature of an oxidation treatment atmosphere.
  • the thirteenth aspect of the present invention is the method according to any one of the second, fourth, sixth, seventh, ninth, and eleventh aspects, wherein the inlet, or the inlet and the other port.
  • the temperature of the gas supplied from the inlet is heated to the temperature of the oxidizing atmosphere by a heating heater and supplied.
  • the oxidizing temperature is made uniform and the oxidizing efficiency is improved.
  • the present invention focuses on efficiently removing impurities such as moisture from the inside of the oxidation furnace when the oxidation furnace is closed, and always introduces a new gas into the oxidation furnace. This was achieved by constantly exhausting gas from inside.
  • the most important feature of the present invention is that the gas is desorbed from the metal surface to be oxidized in the oxidation furnace by continuously supplying gas to the oxidation furnace and exhausting the gas on the other side.
  • impurities such as moisture are exhausted outside the oxidation furnace, and the metal to be oxidized is heated and oxidized in a dry oxidation treatment atmosphere.
  • This makes it possible to reduce the moisture concentration in the oxidizing atmosphere to a value below the target value (for example, less than 10 ppb for stainless steel), and the surface of the metal to be oxidized can be reduced. This makes it possible to form a very good passivation film.
  • the gas inlet and exhaust ports are arranged in contact with both ends of the pipe. Then, an oxidizing atmosphere gas is flowed into the tube, and the metal to be oxidized can be heated and oxidized in a dry oxidizing atmosphere. As a result, the moisture concentration in the oxidation atmosphere can be reduced to a target value or less (for example, 10 ppb or less), and a good passivation film can be formed on the surface of the metal to be oxidized. It is possible.
  • an oxidizing treatment is performed by flowing an inert gas to the outside of the tube in the oxidation furnace, so that only the inner surface of the tube is oxidized without oxidizing the outer surface of the tube.
  • a passivation film can be formed.
  • the pressure of the inert gas outside the tube should be higher than the pressure of the oxidizing atmosphere gas inside the tube, thereby allowing the gas to flow from the inside of the tube to the outside of the tube. It is only necessary to suppress the gas flow and prevent the oxidizing atmosphere gas from leaking outside the tube.
  • the gas supply system to be introduced should be able to always supply high-purity gas.
  • the purge gas changes to the oxidizing atmosphere gas.
  • impurities mainly including moisture caused contamination in the system This is due to the fact that while the supplied gas (eg, oxidizing atmosphere gas 0 2 ) is in a stopped state, it is contaminated by gas released from the inner wall of the pipe, mainly water. This was a major cause.
  • the oxidation process the gas that be supplied to the stearyl down less steel pipe section in place of Ri switch to the oxidation treatment atmosphere gas (for example, 0 2) ( Passivation) is started, but if contaminants, mainly water, enter the system when this gas is switched, heat oxidation is eventually performed in an atmosphere containing water. Become. In its This, the temperature of the oxidation furnace once reduced at room temperature until gas instead Ri off the purge gas or found oxidation treatment atmosphere gas (e.g., 0 2), with no progress oxidation reaction in the oxidation furnace After sufficiently purging the oxidizing atmosphere gas to completely remove contaminants, raise the temperature of the oxidation furnace.
  • the oxidation treatment atmosphere gas for example, 0 2
  • Oxidation treatment must be performed. However, since this cooling treatment takes a long time, such as 12 to 24 hours, contamination in the system during the gas switching is minimized in order to shorten the oxidation treatment time. Rere Shi desired and the child to be a child and so can that system 0
  • the supply system that does not supply gas to the oxidation furnace out of the supply system for the atmospheric gas is a system that is constantly exhausted, thereby preventing gas from staying and ensuring ultra-high purity. Supply of natural gas.
  • the ultra-high purity of the supplied gas can be maintained stably and well, the gas can be switched very easily, and the oxidizing furnace has a high temperature at the time of switching. In addition, there is no need to be aware of the contamination and its effects during switching.
  • the moisture concentration in the atmosphere in the oxidation furnace is once lower than the target value (for example, 10 ppb or less), it can be reliably maintained, and the gas after the oxidation furnace temperature is lowered or the oxidation furnace is switched is used.
  • the procedure of purging for a long time, etc. can be changed without any trouble.
  • the temperature of the gas to be introduced is heated to the temperature of the oxidizing atmosphere in the oxidizing furnace, and thus the temperature of the oxidizing atmosphere is reduced.
  • the temperature is kept uniform, the temperature inside the oxidation furnace can be controlled reliably, and the oxidation treatment efficiency can be improved.
  • the surface of the metal to be oxidized has a uniform unevenness.
  • Ultra-high vacuum and ultra-high cleanliness that can provide a dynamic film, reduce impurities due to gas released from the surface, and have excellent corrosion resistance to reactive and corrosive gases
  • a metal oxidation treatment apparatus and a metal oxidation treatment method capable of providing components for a pressure reducing device and a gas supply piping system can be realized.
  • Heating is performed up to the temperature of the oxidizing atmosphere, so that the temperature of the oxidizing atmosphere can be kept uniform, the temperature in the oxidizing furnace can be reliably controlled, and the oxidizing efficiency can be improved.
  • a uniform passivation film can be provided on the surface of the metal to be oxidized, reducing impurities due to gas released from the surface, and having reactivity and corrosiveness. It is possible to realize a metal oxidation treatment apparatus and a metal oxidation treatment method capable of providing components for an ultra-high vacuum, ultra-high clean pressure-reducing device and gas supply piping system having excellent corrosion resistance to gas. Wear.
  • FIG. 1 is a schematic view of an oxidation treatment apparatus showing one embodiment of the present invention
  • FIGS. 2 to 6 are diagrams for explaining operation procedures of the oxidation treatment apparatus of the present invention
  • FIG. 8 is a diagram showing an example of a configuration in which gas is flowed at the time of opening in the oxidation treatment apparatus of the present invention
  • FIG. 8 is a diagram showing an example of piping when the operation method shown in FIG. 6 is improved.
  • Fig. 9 is a graph showing the relationship between the amount of leakage and the impurity concentration in a conventional gas supply piping system.
  • Fig. 10 shows the results of an experiment conducted to examine the degassing characteristics of various stainless steel pipes. It is a Daraf that indicates
  • 101 is a stainless steel pipe
  • 102 is an oxidation furnace
  • 103 and 104 are holders
  • 105 and 106 are flanges
  • 107 is a gas inlet pipe
  • 108 is a gas inlet pipe for purging
  • 109 and 110 are exhaust lines
  • 111 is a float flow meter
  • 112 113 are MCG Vertical hand
  • 1 14 and 1 15 are stop knobs
  • 1 16 and 1 17 are mass flow controllers
  • 1 18 is a gas supply line
  • 1 19 is a gas supply piping line for purging
  • 120 and 121 are exhaust lines
  • 122 heaters, 123 and 124 are heat insulators
  • 125 and 1 26 is heater
  • 12 7, 12 8, 12 9 is support
  • 13 0, 13 1, 13 2, 13 33 is knocking
  • 80 1 is an oxidizing atmosphere gas supply line
  • 802 is a gas supply line for purging
  • 803, 804, 805, 806 is a stop knob
  • 8 03 to 806 are mono block knobs
  • FIG. 1 is a schematic view of an apparatus showing one embodiment of the present invention.
  • reference numeral 101 denotes a stainless steel pipe, which is a metal pipe to be oxidized, which is usually made of SUS316L, an inner surface electropolished pipe, having a diameter of 1/4 ", 3/8", and 1/4 ". 20 to 100 fixed-length products of about 1/2 "and 2 m or 4 m in length are stored. Other diameters other than those listed above are acceptable.
  • Reference numeral 102 denotes an oxidation furnace, which may be a quartz tube.
  • 107 is a purge gas inside each stainless steel pipe.
  • gas e.g. a r, etc.
  • oxidation treatment atmosphere gas e.g., 0 2
  • gas inlet tube for supplying, 1 0 8 of stearyl down Les scan steel pipe outer surface of the scan Te emissions less steel in an inert atmosphere
  • gas inlet pipes for supplying an inert gas (for example, Ar) for preventing the outer surface from being contaminated by being oxidized, and 109 and 110 are stainless steel tubes, respectively.
  • Gas flowing into and out of steel pipe The above gas introduction pipes 107 and 108 and the exhaust lines 109 and 110 are used for internal electrolytic polishing such as 3/8 "and 1/2".
  • the opening from the gas inlet pipe 107 to the inside of the oxidation furnace 102 is the inlet, and the opening from the gas inlet pipe 108 to the inside of the oxidation furnace 102 is the other inlet, exhaust-line.
  • the opening from 109 to the inside of the oxidation furnace 102 is an exhaust port, and the opening from the exhaust line 110 to the inside of the oxidation furnace 102 is another exhaust port.
  • 1 11 is a float type flow meter
  • 1 16 and 1 17 are mass flow controllers, which regulate the flow rate of each gas flowing in the oxidation furnace 102. , 1 16, 1 17 and 1 11 are used to determine the amount of gas flowing to the stainless steel pipe 101.
  • a mass flow controller may be used for 111 and a float flow meter with a needle valve may be used for 116 and 117, but the atmosphere in the oxidation furnace 102 may be used.
  • a mass flow controller for 116.11.17. 1 1 2 and 1 1 3 are joints (: & (metal C ring type)).
  • the gas introduction pipes 107 and 108 and the gas It is a joint for separating the supply pipe from the supply pipe, and it is preferable to use an MCG joint from the standpoint of external leak free and particle free. is be sampled Uz Puno Lube.
  • 1 1 8 gas supply pipe la for supplying the stainless steel tube 1 0 1 of the internal inert gas for purging (e.g. a r) and an oxidation treatment atmosphere gas (for example, 0 2)
  • Gas supply piping lines 1 and 19 are used to make the inside of the oxidation furnace 102 an inert atmosphere (for example, an Ar atmosphere).
  • 1 2 2 heats the oxidation furnace 102
  • a two-piece electric furnace with a vertical wiring is considered as a heater.
  • 12 3 and 12 4 are heat insulating materials that prevent heat from radiating in the vertical direction of the electric furnace and keep the temperature in the oxidation furnace 102 as uniform as possible. is there .
  • 125.126 is a heating heater for heating the gas introduced into the oxidation furnace 102 to the oxidation treatment temperature.
  • 1 2 7, 1 2 8, 1 2 9 are plates that support the stainless steel pipe 101, and include out gas free, particulate free, and heat. Considering expansion, it is desirable to use stainless steel. 13 0, 1 3 1, 1 3 2, 1 3 3 are packings for sealing the oxidizing furnace 10 2 and the flanges 10 5, 10 6. Considering the oxidation temperature, it is desirable to use a material that has elasticity even above 500'C (for example, nickel alloy).
  • FIG. 2 is a state diagram when the oxidation furnace 102 is opened, and shows a preparation state before storing the stainless steel pipe.
  • the cleanliness of the treatment atmosphere has a significant effect on the thickness and quality of the passivation film to be formed, so it should be opened in an atmosphere that is as clean as possible. It is necessary to. For this reason, the state shown in Fig. 2 should be kept as short as possible to minimize the contamination of the oxidizing furnace 102 with atmospheric components.
  • the flange to be released is set to 106 side and the purge gas is set to 105 side from the 105 side. It is most preferable to keep flowing (eg, Ar) and take a method to prevent atmospheric components from being mixed into the oxidation furnace 102. In this case, however, the exhaust lines 12 0 and 12 1 are used to remove the flanges 10 6, similar to the connection fittings 1 1 2 and 1 13 shown in Fig. 1. It is necessary to provide a connection joint.
  • the exhaust lines 12 0 and 12 1 are used to remove the flanges 10 6, similar to the connection fittings 1 1 2 and 1 13 shown in Fig. 1. It is necessary to provide a connection joint.
  • FIG. 3 is a diagram showing a state in which a stainless steel pipe 101 for performing an oxidation treatment is stored in the oxidation furnace 102 after the state of FIG. Insert the stainless steel tube 101 with guides of support 127, 128, and 129 as guides, and fix it in the holder 104. At this time, as in the case of Fig. 2, the mixing of atmospheric components is prevented as much as possible. The operation must be performed as quickly and carefully as possible to prevent the occurrence of particles.
  • Fig. 4 shows that after the condition in Fig. 3, holder 101 and flange 105 were attached to oxidation furnace 102 in which stainless steel tube 101 was set. It is a figure showing a state.
  • FIG. 5 is a view showing a state in which the gas supply pipes 110 and 109 are connected to the gas supply pipes 110 and 108 after the state of FIG.
  • a purge gas for example, Ar
  • Ar is flowed into the stainless steel pipe 101 and the oxidation furnace 102, and the inside of the oxidation furnace 102 is exposed to the air and is contaminated. Replace the atmosphere with an inert gas atmosphere.
  • the flow rate of the purge gas differs not only depending on the number of stainless steel pipes that can be processed at one time and the size of the oxidation furnace 102, but, for example, the flow rate 2 to: I 0 mZ sec Purging with a large amount of gas for about 2 to 4 hours to contaminate mainly the moisture in the oxidation furnace 102 Remove objects. '
  • FIG. 6 shows a state in which heaters 122 are set after the state of FIG.
  • the oxidation furnace 102 and the stainless steel pipe 101 are subjected to baking and purging.
  • the baking is performed at the same temperature as the acid treatment temperature (for example, 400 t: ⁇ 550.C) until the amount of moisture in the gas from the outlet becomes about 5 ppb or less. I got it.
  • the heaters 125 and 126 of the gas introduction pipe are also heated at the same time, and the temperature of the gas introduced into the oxidation furnace 102 becomes the oxidation treatment temperature (for example, 400: to 550).
  • the temperature should be set so as to satisfy C) to prevent the temperature inside the oxidation furnace 102 from dropping due to gas introduction.
  • the temperature of the oxidation reactor 1 0 within 2 once reduced at room temperature until, instead turn off the gas to the purge gas or found oxidation treatment atmosphere gas (for example, 0 2), the oxidation furnace 1 0 within 2 It is desirable that the oxidation reaction atmosphere gas is sufficiently purged in a state where the oxidation reaction does not proceed to completely remove contaminants, and then the temperature of the oxidation furnace 102 is increased to perform the oxidation treatment.
  • gas e.g., 0 2
  • Tei the stopped state Tei
  • a major cause was contamination by the gas emitted from the inner wall of the pipe, mainly water. Therefore, it is desirable that the system be able to constantly purge the oxidizing atmosphere gas and the purging gas, and to minimize contamination in the system when switching the gas.
  • Fig. 8 shows an example of a piping system that prevents contamination in the system at the time of gas switching.
  • Reference numerals 116 and 118 correspond to the mass flow controller '1' and the gas supply pipe shown in FIG. 1, respectively.
  • 8 0 1 supplied la Lee down the oxidation treatment atmosphere gas (for example, 0 2), 8 0 2 scan for supplying La Lee down der is, even Chi Ron oxidation of the purge gas (e.g., A r) Although it depends on the number of stainless steel pipes and the size of the oxidation furnace 102, it is composed of about 3-8 "or 1Z2" inner surface electrolytically polished SUS316L pipe.
  • 803, 804, 805, and 806 are stop knobs, each of which has four knobs integrated to reduce dead space as much as possible. It is. Reference numerals 807 and 808 denote spiral tubes for preventing air components from entering the exhaust port due to reverse diffusion, and 809 and 810 denote float flowmeters with needle pulp. Of course, 809 and 810 may be the one in which a needle valve and a float type flow meter are separated, or the difference in the mass flow controller may be used. No. Reference numerals 811 and 812 denote exhaust lines, which are lines that release respective gases by performing appropriate exhaust treatment. Reference numeral 813 denotes an atmosphere gas supply line, which supplies gas to the oxidation furnace 102 shown in FIG.
  • Ar gas was flowed at a flow rate of 1.2 / min, and the amount of water contained in the Ar gas at the outlet was measured by APIMS (atmospheric pressure ionization mass spectrometer).
  • APIMS atmospheric pressure ionization mass spectrometer
  • the water content of 10 ppb or less which could not be realized by the metal oxidation treatment apparatus and the metal oxidation treatment method generally used in the past, could not be realized.
  • An ultra-clean oxidation atmosphere was realized with low cost and high production efficiency.
  • oxidation furnace 102 is of a horizontal type, but may be of a vertical type.
  • Moisture can be efficiently removed from the oxidizing atmosphere, and the metal to be oxidized, such as stainless steel, is treated with an ultra-high-purity, dry oxidation process with extremely low levels of impurities such as moisture. It is possible to heat and oxidize in an atmosphere, and it is possible to easily and efficiently form a good passivation film with less outgas such as moisture on the surface of the metal to be oxidized.
  • ultra-clean and ultra-high cleanliness can be applied to the inner surface of the metal to be oxidized, such as a thin stainless steel pipe, which has a shape that is difficult for gas to flow inside. It was possible to heat and oxidize in a dry oxidation atmosphere, and it was possible to easily and efficiently form a good passivation film with little outgassing of moisture and the like.
  • the gas temperature By supplying the heated material up to the temperature, the oxidation treatment temperature can be kept uniform, so that the treatment conditions can be controlled reliably and stably, and the oxidation treatment efficiency has been improved.
  • a stainless steel pipe, a stainless steel pipe, and the like having a passivation film having excellent corrosion resistance and extremely low gas emission are provided.
  • the mass production of metal parts can be realized, and the resulting ultra-pure gas can be supplied to process equipment etc. in a short time by using the obtained stainless steel pipe.
  • the system can be provided easily and at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Chemical Vapour Deposition (AREA)

Description

曰月 糸田 »
金属酸化処理装置及び金属酸化処理方法
技術分野
本発明は金属酸化処理装置'及び金属酸化処理方法に係 り 、 特 に超高清浄なガス配管系や超高真空の装置に用い られる金属部 品の不動態化処理を行う金属酸化処理装置及び金属酸化処理方 法に関する。
背景技術
近年、 超高真空を実現する技術や、 あるいは真空チ ャ ンバ内 に所定のガスを小流量流し込み超高清浄な減圧雰囲気をつ く り 出す技術が非常に重要と なっ て き ている。 こ れ ら の技術は、 材 料特性の研究、 各種薄膜の形成、 半導体デバイ スの製造等に広 く 用い られてお り 、 その結果益々高い真空度が実現されている が、 さ ら に、 不純物元素および不純物分子の混入を極限まで減 少さ せ た減圧雰囲気を実現す る こ と が非常に強 く 望ま れてい る。
例えば、 半導体デバイ スを例に と れば、 集積回路の集積度を 向上させる ため、 单位素子の寸法は年々小さ く な つ てお り 、 1 mか らサブミ ク ロ ン、 さ ら に、 0 . 5 以下の寸法を持つ 半導体デバイ スの実用化のために盛んに研究開発が行われてい る。
こ の よ う な半導体デバ イ ス の製造ほ、 薄膜を形成する工程 や、 形成された薄膜を所定の回路パター ン に エ ッ チ ン グするェ 程等を く り 返して行われる。 そ して こ のよ う なプロ セスは、 通 常シ リ コ ン ゥ ヱハを真空チ ャ ンバ内に入れ、 超高真空状態、 あ る いほ所定のガスを導入し た減圧雰囲気で行われる のが普通で ある。 こ れ らの工程に、 も し不純物が混入すれば、 例えば薄膜 の膜霣が劣化 し た り 、 微細加工の精度が得られな く なる な どの 問題を生じ る。 こ れが超高真空、 超高清浄な減圧雰囲気が要求 される理由であ る。
超高真空や、 超高清浄な減圧雰囲気の実現を こ れま で阻んで いた最大の原因の一つ と して、 チ ヤ ンバゃガス配管な ど に広く 用い ら れてい るス テ ン レス鋼の表面か ら放出される ガスがあげ ら れる。 特に、 表面に吸着 していた水分が真空ある いは減圧雾 囲気中において脱離 して く るのが最も大き な汚染源と な っ てい た。 - 第 9 図は、 各種装置におけ るガス配管系および反応チ ヤ ン バ を合わせ た シス テ ム ト ータ ル リ ーク 量 (配管系お よび反応 チ ヤ ンバ内表面か ら の放出ガス量と外部 リ ーク と の和) と ガス の汚染の関係を示 し たグラ フ である。 なお、 も と のガスは全く 不純物を舍ま ないも の と している。 図中の複数の線は、 ガスの 流量をパ ラ メ 一タ と して様々 な値に変化させた場合の結果につ レヽ て示 し て レヽ る 。 当然の こ と なが ら 、 ガス流量が少な く なる 程、 内表面か らの放出ガスの影響が顕在化し、 相対的に不純物 濃度は高く なる。
半導体プロ セス ほ、 ハイ アスペク ト比の穴開け及び穴埋め等 の よ り 精度の高いプロ セスを実現する ためガスの流量を益々 少 な く する傾向に あ り 、 例えば数 1 0 c c/ m i nやそれ以下の流量を 用いる のがサブミ ク ロ ン U L S I のプロ セスでは普通と な っ て レ、 る。 か り に、 1 0 c c / m i nの流量を用いた と する と 、 現在広く 用レヽ ら れてい る装置の よ う に 1 CD - 3〜 1 0 -6 Τ Ο Γ Γ · J2 / sec 程 度の シス テム ト ータ ル リ ーク があ る と ガスの純度は 1 %〜 1 0 P p m に な り 、 高清浄プ ロ セ ス と は程遠レヽ も の に な っ て し ま Ό 。
本究明者は、 超高清浄ガス供給シ ス テ ム を発明 し、 シス テ ム の外部か ら の リ ーク 量を現状の検出器の検出限界であ る 1 X 1 0 -1 1 Torr - / sec 以下に抑え こ む こ と に成功 している。 しか し、 シス テ ム内部か らの リ ーク 、 す なわち、 前述のステ ン レ ス鋼の表面か ら の放出ガス成分のため、 減圧雰囲気の不純物 濃度を下げる こ と がで き な か っ た。 現在の超高真空技術に おけ る表面処理に よ り 得 られている表面放出ガス量の最小値は、 ス テ ン レ ス illの場合、 1 X 1 0 - 1 1 Torr - J2 / s ec♦ cm2 で あ り 、 チ ヤ ン バの内部 に露出 している表面積を例え ば 1 m2 と最も小さ く 見積っ た と して も、 ト ータ ルで は 1 X 1 0 -7Torr - jZ / sec の リ ーク量 と な り 、 ガス流量 1 O cc/rain に対 し 1 p p m程度 の純度の ガス し か得 ら れ ない。 ガス流量を さ ら に小 さ く す る と 、 さ ら に純度が落ち る こ と は言う ま で も ない。
チ ヤ ンバ内表面か ら の脱ガス成分を、 ト ータ ルシステムの外 部 リ ーク量 と 同 じ 1 X 1 0 - 1 1 Torr - J2 / s ec と 同程度ま で下 げ る に は 、 ス テ ン レ ス 鋼の表面か ら の脱ガス を 1 X 1 0 _ 1 5 Torr . / sec · cm2 以下と す る必要があ り 、 そのため、 ガス放 出量を少な く す る ス テ ン レ ス鋼の表面の処理技術が強 く 求め ら れて い た。
ま た 、 半導体製造 プ ロ セ ス で は 、 比較的安定 な一般ガ ス ( 0 2 , N 2 , A r , H 2 , H e ) か ら反応性、 腐食性及び毒 性の強い特殊ガス ま で、 多種多様なガスが使用される。 通常こ れら のガス を扱う配管やチ ャ ンバの材料にほ、 反応性、 耐腐食 性、 高強度、 2 次加工性の容易さ、 溶接の容易さ、 及び内表 面の研磨の施し易さ か ら ス テ ン レ ス鋼が使用される こ と が多 い。
ステ ン レ ス鋼は、 乾燥ガス雰囲気中では耐食性に優れてい る。 しかしながら、 特姝ガスの中に は雰囲気中に水分が存在す る と加水分解して塩酸ゃフ ッ酸を生成し強い腐食性を示す三塩 ィ匕ホ ウ素 ( B C J^ 3 ) や三フ ツ化ホ ウ素 ( B F 3 ) 等があ り 、 上述の B C J£ 3 や B F 3 のよ う な塩素系やフ ッ素系のガス雰囲 気中で氷分が存在する場合にほステン レス鋼は容易に腐食され て しま う 。 こ のため、 ステ ン レス鋼の表面研磨後に は耐腐食性 処理が不可欠と なる。 '
耐腐食性処理方法と してはステン レス鋼に耐食性の強い金属 を被覆する N i 一 W — P コ一テ ィ ング (ク リ ーンエス コーテ ィ ング法) 等があるが、 こ の方法ではク ラ ッ ク、 ビ ンホールが生 じ易いばか り でな く 、 湿式メ ツ キを用いる方法である ために内 表面の水分の吸着量や溶液残留成分が多く なる等の問題を有し ている。 他の方法と しては金属表面に薄い酸化物皮膜を作る不 動態化処理による耐腐食性処理が挙げられる。 ステ ン レス鋼ほ 液中 に十分な酸化剤があれぱ浸漬 しただけで不動態化するの で、 こ の方法では通常は常温あるいは若干温度を上げた状態で 硝酸溶液に浸清し、 不動態化処理を行っ ている。 しか し こ の方 法も湿式の方法である ため、 配管やチ ヤ ンバ内面に水分および· ^理溶液の残留分が多く存在する。 以上の方法において、 特に 内表面に吸着された水分の存在は、 塩素系、 フ ッ 素系ガスを流 し た場合、 ス テ ン レ ス鋼 に痛烈なダメ ー ジを与え る こ と に な る。
従っ て、 腐食性ガス に対してもダメ ージを う ける こ と な く 、 かつ水分の吸蔵や吸着の少ない、 不動態膜を形成したステ ン レ ス に よ り チ ャ ンバやガス供給茶を構成する こ と が、 超高真空技 術や半導体プロセス に非常に重要である。
例えば、 ステ ン レス鋼管の不動態化処理については、 水分の 含有量が 1 0 p p b 以下と いっ た高清浄な雰囲気で加熱酸化処 理を行っ た時に、 脱ガス特性に優れた不動態膜が得 ら れてい る。
第 1 0 図は、 内面処理状態の異なるステ ン レ ス鋼管を常温で パージ した時にパージガス中'に含まれる水分量の変化を示して レヽ る。 実験は、 全長 2 mの 3 ノ 8 " のス テ ン レス鋼管に A r ガ スを 1 . 2 ^ノ m i n の流量で流し、 出口の A r ガス中に含ま れる水分量を A P I M S (大気圧イ オ ン化質量分析装置) で測 疋 し た。
テス 卜 し たステ ン レ ス鋼管の種類は、 ス テ ン レス鋼管の内面 を電解研磨したもの ( A ) 、 電解研磨後、 硝酸に よ る不動態化 処理を行っ たもの ( B ) 、 及び電解研磨後、 高清浄で ド ラ イ な 雰囲気で加熱酸化に よ っ て不動態膜を形成したもの ( C ) の 3 種類であ り 、 第 1 0 図ではそれぞれ A , B , C の線で示されて い る 。 各ス テ ン レ ス鋼管は相対湿度 5 0 %、 温度 2 0 °C の ク リ ーンルーム に約 1 週間放置した後、 本実験を行っ た。
第 1 0 図の A , B か ら明らかなよ う に、 電解研磨管 ( A ) 、 硝酸による不動態化処理を行っ た電解研磨管 ( B ) のいずれも 多量の水分が検出されている こ とが分かる。 約 1 時間通ガス し た後も A では 6 8 p p b 、 B では 3 6 p p b もの水分が検出さ れてお り 、 2 時間後も水分量は A , B それぞれ 4 1 p p b , 2 7 p p b で、 なかなか水分量が減少しない。 こ れ に対し、 高 清浄 ド ラ イ雰囲気で不動態膜を形成した C では、 通ガス後 5分 後に は 7 p p b に落ち、 1 5分以降はノ ッ クグラ ウ ン ドの レべ ル 3 p p b 以下に な っ て し ま っ た。 こ の よ う に 、 C は極めて 優れた吸着ガスの脱ガス特性を持つ ている こ とが分かっ てい る。
と こ ろが、 第 1 0 図の C に示したよ う なステン レス鋼管をつ く る ための水分含有量 1 0 p p b以下の超高清浄な酸化雰國気 を実現する ためには、 高度の条件制御が必要であ り 、 高コス ト で生産効率が悪く 、 量産に適したもの と はいえなかっ た。 すな わち、 従来一般的に使用されていた金属酸化処理装置及び金属 酸化処理方法では、 このよ う な超高清浄の酸化雰囲気を実現す る こ と がで き なか っ た。
ま た、 特に 1 Z 4 " , 3 / 8 " 及び 1 Z 2 " とレヽつ た内径の 小さいス テ ン レ ス鋼管等では、 ガスが流れに く く 滞留しやすい ため、 ス テ ン レ ス鋼管の内部は大気雰囲気に晒されて汚染され たま まの状態で酸化処理が行われて しま っ ていた。 こ れでは耐 腐食性に優れ、 かつ水分の吸蔵、 吸着の少ない良質の不動態膜 を形成する こ と はできない。 ま た、 ス テ ン レ ス鋼管の外側は、 超高純度ガス の供給に ほ直接関係ないため、 表面の荒さ、 汚さ に よ っ て酸化処理後に外表面は汚く なつ て し ま う 。 こ のス テ ン レ ス鋼管の外側が酸化される と レヽ う こ と は、 見た 目 が汚な く 、 ク リ ー ンルーム内に配管 し た場合にパーテ ィ ク ルが発生す る と い っ た問題の原因 と な る。
し たがつ て、 ステ ン レス鋼管等の被酸化処理金属の不動態化 処理の量産化技術に おいて、 その内表面に耐腐食性に優れ、 か つ水分の吸蔵、 吸着の少ない不動態膜を形成す る と と も に、 そ の外面が酸化されない技術を確立する こ と が望ま れていた。
本発明は以上の点に鑑みなされた も のであ り 、 金属酸化処理 装置内でのス テ ン レ ス鋼管等の被酸化処理金属表面か ら の放出 ガスや水分等の不純物に よ る汚染を減少させ、 優れた耐蝕性を 有す る超高真空、 超高清浄な減圧装置及びガス供給系配管用 の ス テ ン レ ス鋼管等を量産で き る金属酸化処理装置及び金属酸化 処理方法を提供する こ と を 目的 と す る。
さ ら に、 本発明は、 上記目 的 に力 Πえ、 セ ル フ ク リ ーニン グ、 セ ル フ メ イ ン テナ ン ス が可能な金属酸化処理装置を提供す る こ と を 目 的 と す る。
発明の開示
本発明の第 1 の要旨は、 酸化炉 と 、 前記酸化炉内にガスを導 入する ためのガスの導入口 と 、 前記酸化炉内か ら ガスを排気す る ための排気口 と 、 前記酸化炉を所定の温度に加熱する加熱器 と を有 し、 前記酸化炉内にガスを流 し なが ら ド ラ イ酸化雰囲気 で被酸化処理金属を加熱酸化する よ う に し た こ と を特徴 と す る ステ ン レス鋼等の被酸化処理金属の表面に不動態膜を形成す る ための金属酸化処理装置に存在す る。
本発明の第 2 の要旨 は、 酸化炉内に ガス を導入す る ため の導 入口か ら前記酸化炉内のガスを排気する ための排気口へガスを 流しながら、 前記酸化炉を加熱器で所定の温度に加熱し、 ド ラ ィ酸化雰囲気で被酸化処理金属を加熱酸化する こ と を特徴とす る ス テ ン レ ス鋼等の被酸化処理金属の表面に酸化炉内で不動態 膜を形成する金属酸化処理方法に存在する。
本発明の第 3 の要旨は、 第 1 の要旨において、 ス テ ン レ ス鋼 管等の管状の被酸化処理金属を前記酸化炉内に固定する接続継 ぎ手を兼ねたホ ルダーを有し、 前記導入口が前記管状の被酸化 処理金属の一端に接する よ う に配置されてお り 、 前記排気口が 前記管状の被酸化処理金属の他端に接する よ う に配置されてお り 、 前記管状の被酸化処理金属の内部にガスを流しながら ド ラ ィ酸化雰囲気で加熱酸化する よ う に し た-こ と を特徴とする金属 酸化処理装置に存在する。 '
本発明の第 4 の要旨は、 第 2 の要旨において、 ス テ ン レ ス鋼 管等の管状の被酸化処理金属を前記酸化炉内に接続継ぎ手を兼 ねたホ ルダ一で固定し、 前記管状の被酸化処理金属の一端から ガスを導入し、 前記管状の被酸化処理金属の他端か ら排気し、 前記管状の被酸化処理金属の内部にガスを流しながら ド ライ酸 化雰囲気で前記管状の被酸化処理金属を加熱酸化する こ と を特 徴 と する金属酸化処理方法に存在する。
本発明の第 5 の要旨ほ、 第 3 の要旨において、 前記導入口 と は別の前記管状の被酸化処理金属の一端に接しないよ う に配置 された前記酸化炉内にパージ用ガスを導入する ための他の導入 口 と、 前記排気口 と は別の前記管状の被酸化処理金属の他端に 接しないよ う に配置された前記酸化炉内からガスを排気するた めの他の排気口 と を有し、 前記管状の被酸化処理金属の外側が 酸化される こ と を防止する よ う に した こ と を特徴 と する金属酸 化処理装置に存在する。
本発明の第 6 の要旨は、 第 4 の要旨において、 前記管状の被 酸化処理金属の外部を不活性ガス雰囲気、 内部を酸化処理ガス 雰囲気 と し、 前記管状の被酸化処理金属の外側が酸化される こ と を防止す る こ と を特徴 と す る金属酸化 理方法に存在す る。 . - 本発明の第 7 の要旨は、 第 6 の要旨において、 前記管状の被 酸化処理金属の外部の不活性ガス雰囲気の圧力を、 前記管状の 被酸化処理金属の内部の酸化処理ガス雰囲気の圧力よ り も高く する こ と を特徴 と する金属酸化処理方法に存在する。
本発明の第 8 の要旨は、 第 1 、 第 3 、 第 5 の要旨のいずれか 1 つ に おいて、 前記被酸化処理金属又は前記管状の被酸化処理 金属を前記酸化炉内に配置又は固定する際に は前記酸化炉を前 記排気口、 又は前記排気口及び他の排気口側か ら開放する構成 と されてお り 、 前記導入口、 又は前記導入口及び他の導入口 に 開放時にパージ用ガスを導入する ためのパージ用ガス ラ イ ンが 接続されてお り 、 前記被酸化処理金属又は前記管状の被酸化処 理金属を前記酸化炉内に配置又は固定する際に大気に晒される こ と を防止する よ う に した こ と を特徴 と する金属酸化処理装置' に存在する。
本発明の第 9 の要旨は、 第 2 、 第 4、 第 6 、 第 7 の要旨のい ずれか 1 つ において、 前記被酸化処理金属又は前記管状の被酸 化処理金属を前記酸化炉内に配置又は固定する際に は前記酸化 炉を前記排気口、 又は前記排気口及び他の排気口側か ら開放 し、 前記酸化炉内及びノ又ほ前記管状の被酸化処理金属内部に パージ用ガスを流し、 前記被酸化処理金属、 前記管状の被酸化 処理金属の内部、 又は前記管状の被酸化処理金属の外部及び内 部が大気に晒される こ と を防止する こ と を特徴と する金属酸化 処理方法に存在する。
本発明の第 1 0 の要旨は、 第 1 、 第 3 、 第 5 、 第 8 の要旨の いずれか 1 つにおいて、 前記ガスの導入口 にパージ用ガス と酸 化処理雰囲気ガス と を切り替えでき る システム と したガス ライ ンが接続されてお り 、 前記ガス ラ イ ンのパージ用ガス ラ イ ン と 酸化処理雰囲気ガスラ イ ンの う ち前記酸化炉にガスを供給して いないラ イ ンを常時排気する手段を有し、 酸化処理雰囲気を高 清浄に保つよ う に した こ とを'特徴とする金属酸化処理装置に存 在する。
本発明の第 1 1 の要旨は、 第 2 、 第 4、 第 6 、 第 7 、 第 9 の 要旨のいずれか 1 つにおいて、 前記ガスの導入口か ら前記酸化 炉へのパージ用ガス と酸化処理雰囲気ガスの供給をパージ用ガ ス ライ ン と酸化処理雰囲気ガス ラ イ ンの切り 替えをでき る シス テム と し たガス ラ イ ンで行い、 前記ガス ラ イ ン の前記パージ用 ガス ラ イ ン と前記酸化処理雰囲気ガス ラ イ ン の う ち前記酸化炉 にガスを供給していないラ イ ンを常時排気し、 酸化処理雰囲気 を高清浄に保つよ う に し、 前記酸化炉の温度を下げる こ と なく パージ用ガス ラ イ ン と酸化処理雰囲気ガス ラ イ ンの切り 替えを 行う こ と を特徴 とする金属酸化処理方法に存在する。 '
本発明の第 1 2 の要旨ほ、 第 1 、 第 3 、 第 5 、 第 8 、 第 1 0 の要旨のいずれか 1 つ において、 前記導入口、 又は前記導入口 及び前記他の導入口 に接続さ れた酸化処理雰囲気ガス ラ イ ン及 びパージ用ガス ラ イ ン に加熱ヒ ータ ーが設け ら れて お り 、 前記 酸化炉内に供給す る ガスの温度を酸化処理雰囲気の温度ま で加 熱する よ う に し た こ と を特徴 と する金属酸化処理装置に存在す る。
本発明の第 1 3 の要旨は、 第 2 、 第 4 、 第 6 、 第 7 、 第 9 、 第 1 1 の要旨のいずれか 1 に おいて、 前記導入口、 又は前記 導入口及び前記他の導入口か ら供給す るガスの温度を酸化処理 雰囲気の温度ま で加熱ヒ ーターで加熱 して供給 し、 酸化処理温 度を均一に し、 酸化処理効率を向上させた こ と を特徴 と する金 属酸化処理方法に存在する。
作用
本発明では、 ま ず酸化炉の閉鎖時に酸化炉内か ら水分等の不 純物を効率的 に排除する こ と に主眼を置き、 酸化炉内に常に新 しいガス を導入 し、 かつ酸化炉内か ら常にガスを排気す る こ と で こ れを実現 し た。
すなわ ち、 本発明の最大の特徴は、 酸化炉に一方か ら'ガス を 導久 しつつ他方で常に排気する こ と に よ り 、 酸化炉内で被酸化 処理金属表面か ら脱離 し た水分等の不純物を酸化炉外 に排気 し、 被酸化処理金属を ド ラ イ な'酸化処理雰囲気中で加熱酸化せ しめ る こ と に ある。 こ れに よ り 、 酸化処理雰囲気中の水分濃度 を 目的 と す る値以下 (例えばス テ ン レス鋼の場合 1 0 p p b 以 下) ま で下げる こ と がで き、 被酸化処理金属の表面に良好な不 動態膜を形成する こ と を可能と する も のであ る。 一
1 2
ま た、 内径の小さいステン レス鋼管等のガスの流れに く い被 酸化処理金属管の内部の酸化処理を行う場合にほ、 ガスの導入 口 と排気口を管の両端に接する形で配置し、 管の内部に酸化処 理雰囲気ガスを流し、 被酸化処理金属を ド ライ な酸化処理雰囲 気中で加熱酸化せしめる こ とが可能と なる。 これによ り 、 酸化 処理雰囲気中の水分濃度を 目 的値以下 (例えば 1 0 p p b 以 下) まで下げる こ と ができ、 被酸化処理金属の表面に良好な不 動態膜を形成する こ と を可能とするものである。
—方、 管の外面の酸化を防止する ためには、 酸化炉内の管の 外部に不活性ガスを流して酸化処理を行い、 よっ て、 管の外面 を酸化せず に管の内面に のみ不動態膜を形成する こ と がで き る。 こ の作用をよ り 確実に得るためには、 管外部の不活性ガス の圧力を管内部の酸化雰囲気'ガスの圧力よ り も高く し、 こ れに よ り 管内部か ら管外部へのガスの流れを抑制し、 管外部に酸化 雰囲気ガスが漏れに く く すればよい。
次に本発明では、 酸化炉の閉鎖前の汚染に着目 し、 酸化炉の 開放時に酸化炉内に水分等の不純物が混入する こ とを防止しよ う と考えた。 酸化炉を開放して酸化炉内に被酸化処理金属を配 置又ほ固定する際に、 酸化炉内部及び被酸化処理金属が不純物 を含む大気に晒される こ と を極力防止するためには、 開放部を 酸化炉の排気口側に設け、 導入口からは常にパージ用ガスを導 入しておき、 酸化炉内か ら開放部へ向かう ガスの流れをつ く る こ と が非常に有効である。 これに よ り 、 大気が開放中の酸化炉 内部に入り に く く するおでき、 先に述べた通ガスで酸化処理:! 图気中の水分濃度を 目的値以下 (例えば 1 0 p p b 以下) まで 下げる こ と に要す る時間を短縮す る こ と がで き る。
ま た、 以上の作用を よ り 効果的なも の と す る ため に は、 導入 さ れる ガスの供給系を高純度なガスを常に供給で き る も の と す る こ と も重要であ る。 特に、 パージ用ガスの ラ イ ン と酸化雰囲 気ガスの ラ イ ンのよ う な 2 つのガス ラ イ ンが導入口 に接続され てい る場合に、 パージ用ガスか ら酸化雰囲気ガスへ、 又は酸化 雰囲気ガスか らパージ用ガスへのガス切 り 替えを行 う と 、 水分 を中心 と する不純物が系内の汚染を生 じていた。 こ れは、 供給 す る ガス ( 例 え ば酸化雰囲気ガス で あ る 0 2 ) が停止状態に な っ ていた間に、 配管内壁か らの水分を中心 と す る放出ガス に よ っ て汚染されて し ま う こ と が大き な原因 と な っ ていた。
金属を酸化処理雰囲気中で加熱酸化す る場合に は、 酸化炉内 に被酸化処理金属を配置又は固定 し たの ち、 ま ず酸化炉及びス テ ン レ ス鋼管のベーキ ング及びパージを行 う 。 ベ一キ ン グは、 酸化処理温度と 同 じ温度で、 排気される ガス中の水分量が充分 に低 く (例えば 1 0 p p b 以下) なる ま で行う 。 こ のパージ用 ガス に よ るべ一キ ン グ及びパージが終了 し た後、 ステ ン レス鋼 管内部 に供給す る ガスを酸化処理雰囲気ガス (例えば 0 2 ) に 切 り 替え て酸化処理 (不動態化処理) を開始する が、 こ のガス の切 り 替えの際に水分を中心 と する汚染物質が系内に混入する と 、 結局水分を含む雰囲気中で加熱酸化を行 う こ と に な る。 そ こ で、 酸化炉内の温度を一度室温ま で低下させ、 ガスをパージ 用ガスか ら酸化処理雰囲気ガス (例えば 0 2 ) に切 り 替えて、 酸化炉内で酸化反応が進ま ない状態で酸化処理雰囲気ガス を十 分パージ し、 汚染物質を完全に除去 し た後、 酸化炉の温度を上 げ酸化処理を行う よ う に しなければなら ない。 と こ ろが、 こ の 降温処理に は 1 2 〜 2 4時間といっ た長時間を要するので、 酸 化処理時間を短縮する上でも、 こ のガス切り替え時の系内の汚 染を極力抑え込む こ と ので き る システム と する こ と が望ま し レヽ 0
そ こで、 不活性ガスの供給系と酸化雰圏気ガスの供給系とを 4つのバルブを一体化したデッ ドスべ一スの極めて少ないモノ ブロ ッ クバルブで切り 換え、 かつ、 不活性ガスの供給系と酸化 雰囲気ガスの供給系の う ち酸化炉にガスを供給していない方の 供給系は常に排気される シス テム と し、 こ れ に よ り ガスの滞留 を防止し、 超高純度なガス の供給を実現した。 本シス テ ム とす る こ と に よ り 、 供給されるガスの超高純度を安定して良好に保 ち、 ガス の切り換えも極めて'容易に行え、 切り 換え時に酸化炉 が高温であっ ても、 切り 換え時の不純物の混入やその影響を心 配する必要がない。 すなわち、 酸化炉内の雰囲気の水分濃度を 一旦目的値以下 (例えば 1 0 p p b以下) とすれば確実に こ れ を維持でき、 酸化炉の温度を下げた り 酸化炉内を切り替え後の ガスで長時間パージす る等の手順をふ まずに切 り 換えができ る。
さ ら に、 ガスの供給系にも ヒータ一を設ける こ と によ っ て、 導入されるガス の温度を酸化炉内の酸化処理雰囲気温度の温度 まで加熱し、 よ っ て酸化処理雰囲気温度を均一に保ち、 酸化炉 内の温度制御を確実に行え、 酸化処理効率を向上させる こ とが でき る。
以上に述べた作用によ り 、 被酸化処理金属の表面に均一な不 動態膜を設ける こ と がで き、 表面か らの放出ガス に よ る不純物 を減少させ、 反応性、 腐食性を有するガス に対しても優れた耐 食性を有する超高真空、 超高清浄な減圧装置及びガス供給配管 系用の部品を提供でき る金属酸化処理装置及び金属酸化処理方 法を実現する こ と がで き る。
酸化処理雰囲気温度の温度ま で加熱し、 よ っ て酸化処理雰囲気 温度を均一に保ち、 酸化炉内の温度制御を確実に行え、 酸化処 理効率を向上させる こ と ができ る。
以上に述べた作用 に よ り 、 被酸化処理金属の表面に均一な不 動態膜を設ける こ と がで き、 表面か らの放出ガス に よ る不純物 を減少させ、 反応性、 腐食性を有するガス に対しても優れた耐 食性を有する超高真空、 超高清浄な減圧装置及びガス供給配管 系用の部品を提供でき る金属酸化処理装置及び金属酸化処理方 法を実現する こ と がで き る。
図面の簡単な説明
第 1 図は本発明の一実施例を示す酸化処理装置の概略図であ り 、 第 2 図乃至第 6 図は本発明の酸化処理装置の操作手順を説 明する図であ り 、 第 7 図は本発明の酸化処理装置で開放時にガ スを流す構成と した例を示す図であ り 、 第 8 図は第 6 図に示す 操作方法を改善する場合の配管例を示す図である。
第 9 図は従来のガス供給配管系の リ ーク量と不純物濃度と の 関係を示すダラ.フであ り 、 第 1 0 図は各種ス テ ン レス鋼管で脱 ガス特性を調べた実験結果を示すダラ フ である。
なお、 図面において 1 0 1 はス テ ン レス鋼管、 1 0 2 は酸化 炉、 1 0 3 , 1 0 4 はホルダー、 1 0 5 , 1 0 6 は フ ラ ン ジ、 1 0 7 はガス導入管、 1 0 8 はパージ用ガス導入管、 1 0 9 , 1 1 0 は排気 ラ イ ン 、 1 1 1 は浮き子式流量計、 1 1 2 , 1 1 3 は M C G縦 ぎ手、 1 1 4 , 1 1 5 はス ト ッ プノ ル ブ、 1 1 6 , 1 1 7 はマ ス フ ロ ー コ ン ト ロ ー ラー、 1 1 8 はガス供 給ラ イ ン 、 1 1 9 はパージ用ガ ス供給配管ラ イ ン 、 1 2 0 , 1 2 1 は排気ラ イ ン 、 1 2 2 ほ加熱器、 1 2 3 , 1 2 4 は断熱 材、 1 2 5 , 1 2 6 は ヒ ー タ ー、 1 2 7 , 1 2 8 , 1 2 9 は サ ポ ー ト 、 1 3 0 , 1 3 1 , 1 3 2 , 1 3 3 はノぺ ッ キ ン グ、 8 0 1 は酸化処理雰圑気ガス供給ラ イ ン、 8 0 2 はパージ用ガ ス供給ラ イ ン 、 8 0 3 , 8 0 4 , 8 0 5 , 8 0 6 は ス ト ッ プ ノ ルブ、 8 0 3 乃至 8 0 6 はモ ノ ブロ ッ ク ノ ルブ、 8 0 7 , 8 0 8 はス ノペ イ ラ ル管、 8 0 9 , 8 1 0 はニー ド ルバルブ付き 浮き子式流量計、 8 1 1 , 8' 1 2 は排気ラ イ ン 、 8 1 3 は雰囲 気ガス供給ラ イ ン 。
(以下余白)
発明を実施する ための最良の形態
以下、 本発明の一実施例を図面を用いて説明する。
第 1 図は本発明の一実施例を示す装置の概略図である。
第 1 図において、 1 0 1 は被酸化処理金属管であるステ ン レ ス鋼管であ り 、 通常内面電解研磨管 S U S 3 1 6 L材で、 直径 1 ノ 4 " , 3 / 8 " , 及び 1 / 2 " 程度で、 長さ 2 m又は 4 m の定尺品が、 2 0 〜 1 0 0 本収納されている。 上記以外の直径 で あ っ て も よ い こ と は レヽ う ま で も ない。 1 0 2 は酸化炉であ り 、 石英管でも よいが、 加熱酸化処理を行っ た と き 、 ステ ン レ ス鋼管 1 0 1 の熱膨張及びガスの気密性等を考慮する と 、 ステ ン レ ス鋼の内面電解研磨、 不動態化処理を施し たス テ ン レ ス 鋼で作る こ と が好ま し い。 1 0 3 , 1 0 4 はス テ ン レス鋼管 1 0 1 に気密性を持たせてガ'スを流すための一種のガスケ ッ 卜 を兼ねたホルダーであ り 、 ステ ン レス鋼管を挿 して加熱した 時に気密性を持たせる ためには、 熱膨張率がス テ ン レス鋼よ り も小さ く 、 内面処理が施し易 く 、 放出ガス等の影響のでき る限 り 少ない材質 (例えばニッ ケル合金等) が望ま しい。 1 0 5 , 1 0 6 は フ ラ ン ジであ り 、 ガスの流れが各ス テ ン レス鋼管に対 し均一になる よ う な形状に してある。 1 0 7 は各ステ ン レ ス鋼 管の内部にパージ用ガス (例えば A r等) 及び酸化処理雰囲気 ガス (例えば 0 2 ) を供給する ためのガス導入管、 1 0 8 はス テ ン レス鋼管の外面を不活性雰囲気と してステ ン レ ス鋼管の外 面が酸化される こ と に よ っ て汚れる こ と を防止する ための不活 性ガス (例えば A r ) を供給するためのガス導入管、 1 0 9 , 1 1 0 はそれぞれステ ン レス鋼管の内部及び外部に.流れるガス の排気ラ イ ン であ り 、 以上のガス導入管 1 0 7 , 1 0 8 、 排気 ラ イ ン 1 0 9 , 1 1 0 は、 3 ノ 8 " , 1 / 2 " 等の内面電解研 磨 S U S 3 1 6 L管で構成されて い る 。 ガス導入管 1 0 7 から 酸化炉 1 0 2 内に至る開口部が導入口、 ガス導入管 1 0 8 か ら 酸化炉 1 0 2 内に至る開口部が他の導入口、 排気-ラ イ ン 1 0 9 か ら酸化炉 1 0 2 内に至る開口部が排気口、 排気ラ イ ン 1 1 0 か ら酸化炉 1 0 2 内に至る開口部が他の排気口である。 1 1 1 は浮き子式流量計、 1 1 6 , 1 1 7 はマ ス フ ロ ー コ ン ト ロ ー ラ一であ り 、 酸化炉 1 0 2内を流れるそれぞれのガスの流量を 調整し、 1 1 6 , 1 1 7 と 1 1 1 からス テ ン レ ス鋼管 1 0 1 に 流れるガス量を箕出する。 もちろん、 1 1 1 にマスフ ロ ー コ ン ト ロ ー ラー、 1 1 6 , 1 1 7 にニー ド ルバルブ付き浮き子式流 量計を用いても構わないが、 酸化炉 1 0 2 内の雰囲気を高清浄 に保つ と い う 立場か ら、 1 1 6 . 1 1 7 は マ ス フ ロ ー コ ン ト ロ ー ラ ーを用い る こ と が望ま しレヽ。 1 1 2 , 1 1 3 は (: & ( メ タ ル C リ ングタ イ プ) 継ぎ手であ り 、 フ ラ ンジ 1 0 5 を取 り 外す場合にガス導入管 1 0 7 , 1 0 8 とガス供給配管と を切 り 離すための継ぎ手であ り 、 外部 リ ーク フ リ ー、 パーテ ィ クル フ リ ーの立場か ら、 M C G継ぎ手を用いる こ と が好ま しい。 1 1 4 , 1 1 5 はス ト ヅ プノ ルブである。 1 1 8 はステン レス 鋼管 1 0 1 の内部にパージ用の不活性ガス (例えば A r ) 及び 酸化処理雰囲気ガス (例えば 0 2 ) を供給するガス供給配管ラ イ ン 、 1 1 9 は酸化炉 1 0 2 内を不活性雰囲気 (例えば A r 雰囲気) に す る た め の ガ ス供給配管ラ イ ン で あ る 。 1 2 0 , 1 2 1 は排気ラ イ ン である。 1 2 2 は酸化炉 1 0 2 を力 Π熱する ための加熱器であ る ヒ ータ ーであ り 、 操作性、 ¾化処理温度の 均一化等を考慮する と 、 2 つ割型の電気炉で、 配線を縦方向に し た も のが好ま しい。 1 2 3 , 1 2 4 は断熱材であ り 、 電気炉 の縦方向への放熱を防止し、 酸化炉 1 0 2 内の温度をで き る だ け均一 に す る た め の保温材で あ る 。 1 2 5 . 1 2 6 は酸化炉 1 0 2 内に導入す るガスを酸化処理温度ま で加熱する ための加 熱ヒ ータ 一で あ る 。 1 2 7 , 1 2 8 , 1 2 9 はス テ ン レ ス鋼管 1 0 1 のサポー ト と なる プ レー ト であ り 、 ア ウ ト ガス フ リ ー、 パーテ ィ ク ル フ リ ー、 熱膨張等を考慮す る と ス テ ン レ ス鋼を用 レヽ る こ と が望 ま し レヽ。 1 3 0 , 1 3 1 , 1 3 2 , 1 3 3 は酸ィ匕 炉 1 0 2 と フ ラ ン ジ 1 0 5 及び 1 0 6 と を シールす る パ ッ キ ン グであ り 、 加熱酸化処理温度を考慮する と 5 0 0 'C を越えても 弾性を有す る材質 (例えばニ ッ ケ ル合金) にする こ と が望ま し い o
次 に 、 こ の 装置 の機能、 操作手順を 図面 を 用 い て 説明す る。
第 2 図は、 酸化炉 1 0 2 を開放 し た と き の状態図であ り 、 ス テ ン レ ス鋼管を収納す る前の準備状態であ る。 不動態化処理技 術に おいて、 その処理雰囲気の清浄度は形成される不動態膜の 膜厚、 膜質に大き な影響を与え る ため、 で き る だ けク リ ー ン な 雰囲気で開放す る こ と が必要であ る。 こ の た め、 第 2 図の状態 はで き る だけ短時間に し、 大気成分が酸化炉 1 0 2 内を汚染す る こ と を極力防止する よ う にする。
こ の大気に よ る汚染を考慮する と 、 第 7 図に示す よ う に、 開 放す る フ ラ ン ジを 1 0 6 側に し、 1 0 5 側か ら はパージ用ガス (例えば A r ) を流し続けていき、 大気成分が酸化炉 1 0 2 内 に混入する こ と を防止する方法を取る こ と が最も好ま しい。 た だ し こ の場合、 排気ラ イ ン 1 2 0 , 1 2 1 に第 1 図に示す接続 継ぎ手 1 1 2 , 1 1 3 と同様の、 フ ラ ン ジ 1 0 6 を取り 外すた めの接続継ぎ手を設ける こ と が必要と なる。
第 3 図は、 第 2 図の状態と した後、 酸化炉 1 0 2 内に酸化処 理を施す ためのス テ ン レ ス鋼管 1 0 1 を収納した状態を示す 図で あ る。 ス テ ン レ ス鋼管 1 0 1 の挿入はサポー ト 1 2 7 , 1 2 8 , 1 2 9 をガイ ド と し、 ホルダー 1 0 4 にほめ込み、 固 定する。 こ の時も前述の第 2 図と同様に、 大気成分の混久を極 力防止す る 。 ま た、 パーテ ィ ク ルの発生を防止する ために、 操作はでき る だけ速やかに、 かつ、 慎重に行わなければな らな レヽ ο '
第 4図は、 第 3 図の状態の後、 ス テ ン レ ス鋼管 1 0 1 をセ ッ 卜 した酸化炉 1 0 2 にホルダ一 1 0 3 及びフ ラ ンジ 1 0 5 を取 り 付けた状態を示す図である。
第 5 図は、 第 4図の状態の後、 ガス導入管 1 0 7 , 1 0 8 に ガス供給配管 1 1 8 , 1 1 9 をそれぞれ接続した状態を示す図 で あ る 。 こ の状態で、 ス テ ン レ ス鋼管 1 0 1 の内部及び酸化炉 1 0 2 内にパージ用ガス (例えば A r ) を流し、 大気に晒され て汚染された酸化炉 1 0 2 内の雰囲気を不活性ガス雰囲気に置 換する。 パージ用ガス の流量は一度に処理でき るステ ン レ ス鋼 管の本数、 酸化炉 1 0 2 の大き さ によ っ ても ち ろん異なるが、 例えば、 流速 2〜 : I 0 m Z s e c といっ た大量のガスで 2 〜 4時 間程度パージを行い、 酸化炉 1 0 2 内の水分を中心と した汚染 物を除去す る。 '
第 6 図は、 第 5 図の状態の後に ヒ ータ ー 1 2 2 をセ ッ ト し た 状態であ る。 こ の状態で、 ま ず、 酸化炉 1 0 2 及びステ ン レス 鋼管 1 0 1 のべ一キ ング及びパージを行 う 。 ベーキ ングは、 酸 ィヒ処理温度 (例えば 4 0 0 t:〜 5 5 0。C ) と 同 じ温度で、 出口 か ら のガス 中の水分量が、 5 p p b 程度以下 に な る ま で行つ た。 こ の と き ガス導入配管の ヒ ーター 1 2 5 , 1 2 6 も同時に 加熱 し、 酸化炉 1 0 2 内に導入す るガスの温度が酸化処理温度 (例えば 4 0 0 :〜 5 5 0。C ) に な る よ う に温度設定を行い、 ガス導入に よ る酸化炉 1 0 2 内の温度低下を防止する。 パージ 用 ガス に よ る べ一キ ン グ、 パ ー ジが終了 し た後、 ス テ ン レ ス 鋼管 1 0 1 内部 に 供給す る ガス を酸化処理雰囲気ガス (例え ば 0 2 ) に切 り 替 え て 、 酸化処理 (不動態化処理) を開始す る。 .
こ のガスの切 り 替えの際に は、 水分を中心 と す る汚染物質が 必ず系内に混入す る。 こ のため、 酸化炉 1 0 2 内の温度を一度 室温ま で低下させ、 ガスをパージ用ガスか ら酸化処理雰囲気ガ ス (例えば 0 2 ) に切 り 替えて、 酸化炉 1 0 2 内で酸化反応が 進ま ない状態で酸化処理雰囲気ガスを十分パージ し、 汚染物質 を完全に除去 し た後、 酸化炉 1 0 2 の温度を上げ酸化処理を行 う こ と が望ま しい。
と こ ろ が、 こ の降温処理に は 1 2〜 2 4 時間 と い っ た長時間 を要す る。 そ こ で酸化処理時間を短縮す る上で は、 ガス切 り 替 え時の茶内の水分を中心 と す る汚染を極力抑え た配管システム に し、 降温処理を無 く し、 酸化炉 1 0 2 が高温の ま ま の状態で ガスの切り 替えを行える よ う に し、 酸化処理時間を短縮する必 要がある。
パージ用ガスか ら酸化雰囲気ガスへ、 又は酸化雰囲気ガスか らパージ用ガスへのガス切り替え時の水分を中心とする系内の 汚染は、 供給するガス (例えば 0 2 ) が停止状態になっ ていた ために配管内壁か らの水分を中心とする放出ガス に よ っ て汚染 されていた こ とが大き な原因と なっ ていた。 したがっ て、 酸化 処理雰囲気ガス及びパージ用ガス を常時パー ジで き る シス テム と し、 こ のガス切り替え時の系内の汚染を極力抑え込むこ とが 望ま しい。
第 8 図は、 こ のガス切 り替え時の系内の汚染を防止する配管 システム の例である。 1 1 6及び 1 1 8 はそれぞれ第 1 図に示 したマスフ ローコ ン 卜 ローラ '一及びガス供給配管に相当する。 8 0 1 は酸化処理雰囲気ガ ス (例えば 0 2 ) の供給ラ イ ン 、 8 0 2 はパージ用ガス (例えば A r ) の供給ラ イ ン であ り 、 も ち ろん酸化処理を行う ス テ ン レ ス鋼管の本数、 酸化炉 1 0 2の 大きさによ っ ても異なるが、 3 ノ 8 " 又は 1 Z 2 " 程度の内面 電解研磨 S U S 3 1 6 L管で構成さ れる。 8 0 3 , 8 0 4 , 8 0 5 , 8 0 6 はス ト ヅ プノ ルブであ り 、 4個のノ ルブを一体 ィ匕し、 デッ ドスペースを極力小さ く したモ ノ ブロ ッ クノ ルブで ある。 8 0 7 , 8 0 8 は排気口か らの大気成分の逆拡散に よる 混入を防止する ためのスパイ ラル管、 8 0 9 , 8 1 0 はニー ド ルパルプ付き浮き子式流量計である。 も ち ろん 8 0 9 , 8 1 0 はニー ド ルバルブ と 浮き子式流量計 と を分離した もの、 又は マ ス フ ロ ー コ ン ト ロ ー ラ 一 の レヽずれを用 レヽ て も構わ な い。 8 1 1 , 8 1 2 は排気ラ イ ン であ り 、 それぞれのガスを適切な 排気 ¾理を行っ て放出する ラ イ ン である。 8 1 3 は雰囲気ガス 供給ラ イ ン であ り 、 第 1 図に示す酸化炉 1 0 2 へガスを供給す る ラ イ ン で あ る 。
次に、 第 8 図の配管シス テ ム の操作について説明する。
ま ず、 酸化炉内の パー ジ を行 う 時 に は、 ノ ル ブ 8 0 3 , 8 0 6 を 閉 じ 、 8 0 4 を開け、 パー ジ用ガス を 8 0 2 か ら 1 1 8 , 1 1 6 を経由 して 8 1 3 に供給する。 こ の時、 バ ル ブ 8 0 5 を開け、 酸化処理雰囲気ガ ス を 8 0 1 か ら 8 0 7 , 8 0 9 を経由 して排気ライ ン 8 1 1 へパ一ジ してお く 。 酸化炉 内のパージが終了 し た ら、 次 にバルブ 8 0 4 , 8 0 5 を閉、 8 0 3 を開に し、 酸化処理雰囲気ガスを雰囲気ガス供給ライ ン 8 1 3 へ供給する。 こ の時、 ノ ルブ 8 0 6 を開に し、 パージ用 ガス を排気ラ イ ン 8 1 2 へパー ジ し て お く 。
ま た、 第 6 図において酸化炉 1 0 2 内に酸化処理雰囲気ガス を供給する時に、 ス テ ン レ ス鋼管 1 0 1 の外部を流れる不活性 ガス (例えばパージ用ガス供給配管ラ イ ン 1 1 9 か ら供給され る A r ) よ り も内部を流れる酸化処理雰囲気ガス (例えばガス 配管ラ イ ン 1 1 8 か ら供給される 0 2 ) の供給圧力を 0 . 1 〜 0 . 3 k g/ c m 2 程度低く して、 ホルダ一 1 0 3 , 1 0 4 か ら外 部へ酸化処理雰囲気ガス が流出 しないよ う に し、 ス テ ン レ ス鋼 管 1 0 1 の外側が酸化される こ と を防止し、 ス テ ン レ ス鋼管の 外部が酸化されて汚く なら ないよ う にする こ とが望ま しい。 た だ し、 ス テ ン レ ス鋼管の外側が酸化されて汚く なっ ても構わな レヽ と考える場合に .は、 こ のス テ ン レ ス鋼管の内部と外部と を流 れるガスの差圧をも たせる こ と ほも ち ろん、 ステン レス鋼管の 外側を不活性雰囲気とする こ と も不要である。
本実施例で、 排気口から排気されるガス中の水分量を測定し た と こ ろ 、 酸化処理中は安定して l O p p b 以下の値を達成し ていた。 特に、 第 7 図の構成と した場合に は 1 0 p p b以下に 達する までの時間を短縮でき、 また、 第 8 図の配管システムを 用いた場合にはガス の切り 替え時に も 1 0 p p b以下の値を保 ち続ける こ とができ た。
さ ら に、 本実施例を用いて得ら れた全長 2 mの 3 ノ 8 " の ス テ ン レ ス鋼管に ついて、 相対湿度 5 0 %、 温度 2 0 C の ク リ ー ン ルー ム に約 1 週間放置し た後、 A r ガスを 1 . 2 / m i n の流量で流し、 出口の A r ガス中に含ま れる水分量を A P I M S (大気圧イ オ ン化質量分析装置) で測定した と こ ろ、 第 1 0 図のグラ フの C に示される よ う に、 通ガス後 5分後 にほ 7 p p b に落ち、 1 5分以降はノ ッ ク グ ラ ウ ン ド の レ ベル 3 P P b 以下と なっ た。 すなわち、 本実施例を用いて得られた ステン レス鋼管ほ極めて優れた吸着ガスの脱ガス特性を持っ て お り 、 こ の結果も、 水分の含有量が 1 0 p p b 以下の超高清浄 な雰囲気で加熱酸化処理が行われた こ と を示している。
以上に述べたよ う に、 本実施例に よ っ て、 従来一般的に使用 されていた金属酸化処理装置及び金属酸化処理方法では実現す る こ とができ なかっ た水分含有量 1 0 p p b 以下の超高清浄な 酸化雰囲気を、 低コ ス ト で生産効率も良く 実現する こ と がで き た。
なお、 以上の実施例ではス テ ン レ ス鋼管の不動態化処理を行 う第 1 図の装置について説明を したが、 こ れはス テ ン レ ス鋼管 の不動態化処理だけでな く 、 その他の材質 ♦ 形状の金属、 例え ば N i , A 等のパイ ブやバルブ等の配管部品、 高清浄な減圧 装置部品等の不動態化^理 に も適用で き る こ と は明 ら かであ る。 ま た、 本実施例の装置は酸化炉 1 0 2 が横型のものを示し たが、 縦型であっ ても よい。
産業上の利用可能性
本発明に よ り 、 以下に示すよ う な効果が得られた。
① (請求項 1 乃至請求項 1 3 )
酸化処理雰囲気中か ら水分を効率的に排除でき、 よ っ てス テ ン レ ス鋼等の被酸化処理金属を、 水分等の不純物の極めて少な い、 超高清诤で ド ラ イ な酸化処理雰囲気で加熱酸化でき、 前記 被酸化処理金属の表面に水分等のガス放出の少ない良好な不動 態膜を容易かつ効率良く 形成する こ と が可能と なっ た。
② (請求項 3 乃至請求項 1 3 )
細いステン レス鋼管等、 内部にガスの流れに く い形状の被酸 化処理金属の内面に対 しても、 上記①の効果と同様に、 水分等 の不純物の極めて少ない、 超高清浄で ド ラ イ な酸化処理雰囲気 で加熱酸化でき 、 水分等のガス放出の少ない良好な不動態膜を 容易かつ効率良く 形成する こ と が可能と なっ た。
③ (請求項 5 乃至請求項 1 3 )
上記①, ②の効果に加え、 ス テ ン レ ス鋼管等、 管状の被酸化 処理金属の内面のみに不動態膜を形成し、 かつ外側が酸化され る こ と を防止する こ と が可能と なっ た。 こ れ に よ り 、 酸化処理 後の外表面が荒 く な つ た り 汚な く な る こ と がな く 、 ク リ ー ン ルーム内に配管した場合にもパーテ ィ ク ルが発生する とレ、つ た 問題を防止でき た。
④ (請求項 7 、 請求項 9 、 請求項 1 1 、 請求項 1 3 )
上記③の効果に加え、 ステ ン レス鋼管等、 管状の被酸化処理 金属の外面が酸化される こ と を、 よ り確実に防止する こ とが可 能と なっ た。
⑤ (請求項 8乃至請求項 1 3 )
上記①乃至④の効果に加え、 被酸化処理金属の酸化炉内への 配置又は固定の際の大気か らの水分等に よ る汚染を効果的に防 止でき、 超高清浄で ド ライ な酸化処理雰囲気に達する ま での時 間を短縮でき、 よ り 効率よ く 良好な不動態膜を形成をする こ と が可能と なっ た。
⑥ (請求項 1 0 乃至請求項 1 ' 3 )
上記①乃至⑤の効果に加え、 パージ用ガスか ら酸化雰囲気ガ スへ、 又は酸化雰囲気ガスか らパージ用ガスへのガス切 り替え 時の水分を中心とする系内の汚染を確実に防止でき、 超高清浄 な雰囲気を常に、 特にガス切り替え時にも、 安定して保つこ と が可能と なっ た。 よ っ て不動態膜をよ り 良好に形成でき るのみ でな く 、 操作も簡単化でき、 さ ら にガス切り 替え時の酸化炉の 降温処理を不要とする こ とが可能と な り 、 これに よ り 、 工程に 要する時間を短縮でき、 かつ、 酸化炉の再加熱を'必要と しない ためエネ ルギーを節約で き、 大幅な低コス ト 化が可能と なつ た。
⑦ (請求項 1 2 、 請求項 1 3 )
上記①乃至⑥の効果に加え、 ガスの温度を酸化処理雰囲気の 温度 ま で加熱 し て供給す る こ と で 、 酸化処理温度を均一 に保 て、 よ っ て、 処理条件の制御が確実に安定 して行え、 酸化処理 効率が向上 し た。
以上、 の乃至⑦に示 し た よ う に、 本発明 に よ り 、 耐腐食性に 優れ、 かつガス放出の極めて少ない不動態膜を有する ス テ ン レ ス鋼ゃス テ ン レ ス鋼管等の金属部品の量産が実現で き、 こ れ に よ り 得 ら れたステ ン レス鋼管等に よ り プロ セス装置等に超高純 度ガス を短時間で供給す る こ と の で き る シス テ ム を容易かつ低 コ ス ト に提供す る こ と が可能 と な っ た。

Claims

請 求 の 範 图
( 1 ) 酸化炉と、 前記酸化炉内にガスを導入する ためのガスの 導入口 と、 前記酸化炉内か らガスを排気するための排気口 と、 前記酸化炉を所定の温度に加熱する加熱器と を有し、 前記酸化 5 炉内にガスを流しながら ド ライ酸化雰囲気で被酸化処理金属を 加熱酸化する よ う に した こ と を特徴とするス テ ン レ ス鋼等の被 酸化処理金属の表面に不動態膜を形成する ための金属酸化処理
( 2 ) 酸化炉内にガスを導入するための導入口か ら前記酸化炉 0 内のガスを排気する ための排気口へガスを流しながら、 前記酸 化炉を加熱器で所定の温度に加熱し、 ド ライ酸化雰囲気で被酸 化処理金属を加熱酸化する こ と を特徴と するステ ン レ ス鋼等の 被酸化処理金属の表面に酸化'炉内で不動態膜を形成する金属酸 化処理方法。
( 3 ) ス テ ン レ ス鋼管等の管状の被酸化処理金属を前記酸化炉 内に固定する接続継ぎ手を兼ねたホルダ一を有し、 前記導入口 が前記管状の被酸化処理金属の一端に接する よ う に配置されて お り 、 前記排気口が前記管状の被酸化処理金属の他端に接する よ う に配置されてお り 、 前記管状の被酸化処理金属の內部にガ スを流しながら ド ライ酸化雰囲気で加熱酸化する よ う に したこ と を特徴とする請求項 1 に記載の金属酸化処理装置。
( 4 ) ス テ ン レ ス鋼管等の管状の被酸化処理金属を前記酸化炉 内に接続継ぎ手を兼ねたホルダーで固定し、 前記管状の被酸化 処理金属の一端からガスを導入し、 前記管状の被酸化処理金属
Figure imgf000030_0001
の他端か ら排気し、 前記管状の被酸化処理金属の内部にガスを 流しなが ら ド ラ イ酸化雰囲気で前記管状の被酸化処理金属を加 熱酸化する こ と を特徴 とする請求項 2 に記載の金属酸化処理方 法。
( 5 ) 前記導入口 と は別の前記管状の被酸化処理金属の一端に 接しないよ う に配置された前記酸化炉内にパージ用ガスを導入 する ための他の導入口 と、 前記排気口 と は別の前記管状の被酸 化処理金属の他端に接しないよ う に配置された前記酸化炉内か らガスを排気する ための他の排気口 と を有し、 前記管状の被酸 化処理金属の外側が酸化される こ と を防止する よ う に した こ と を特徴とする請求項 3 に記載の金属酸化処理装置。
( 6 ) 前記管状の被酸化処理金属の外部を不活性ガス雰囲気、 内部を酸化処理ガス雰囲気と し、 前記管状の被酸化処理金属の 外側が酸化される こ と を防止する こ と を特徴と する請求項 4 に 記載の金属酸化処理方法。
( 7 ) 前記管状の被酸化処理金属の外部の不活性ガス雰囲気の 圧力を、 前記管状の被酸化処理金属の内部の酸化処理ガス雰囲 気の圧力よ り も高く する こ と を特徴と する請求項 6 に記載の金 属酸化処理方法。
( 8 ) 前記被酸化処理金属又は前記管状の被酸化処理金属を前 記酸化炉内に配置又は固定す る 際に は前記酸化炉を前記排気 口、 又は前記排気口及び他の排気口側か ら開放する構成と され てお り 、 前記導入口、 又は前記導入口及び他の導入口 に開放時 に パージ用ガス を導入す る ためのパージ用ガス ラ イ ン が接続さ れてお り 、 前記被酸化処理金属又は前記管状の被酸化処理金属 を前記酸化炉内に配置又は固定する際に大気に晒される こ と を 防止する よ う に したこ と を特徴とする請求項 1 、 請求項 3 、 請 求項 5 のいずれか 1 項に記載の金属酸化処理装置。
( 9 ) 前記被酸化処理金属又は前記管状の被酸化処理金属を前 記酸化炉内に配置又は固定す る際に は前記酸化炉を前記排気 口、 又は前記排気口及び他の排気口側か ら開放し、 前記酸化炉 内及び 又は前記管状の被酸化処理金属内部にパージ用ガスを 流 し、 前記被酸化処理金属、 前記管状の被酸化処理金属の内 部、 又は前記管状の被酸化処理金属の外部及び内部が大気に晒 される こ と を防止する こ と を特徴とする請求項 2 、 請求項 4、 請求項 6 、 請求項 7 のいずれか 1 項に記載の金属酸化処理方 法。
( 1 0 ) 前記ガスの導入口 にパージ用ガス と酸化処理雰囲気ガ ス と を切り 替えでき る システ'ム と したガス ラ イ ンが接続されて お り 、 前記ガス ラ イ ンのパージ用ガス ラ イ ン と酸化処理雰囲気 ガス ライ ンの う ち前記酸化炉にガスを供給していなレヽ ラ イ ンを 常時排気する手段を有し、 酸化処理雰囲気を高清浄に保つよ う に し た こ と を特徴と する請求項 1 、 請求項 3 、 請求項 5 、 請求 項 8 のいずれか 1 項に記載の金属酸化処理装置。
( 1 1 ) 前記ガスの導入口か ら前記酸化炉へのパージ用ガス と 酸化処理雰囲気ガスの供給をパージ用ガス ライ ン と酸化処理雰 囲気ガス ラ イ ンの切り 替えをで き る システム と し たガス ラ イ ン で行い、 前記ガス ラ イ ンの前記パージ用ガス ラ イ ン と前記酸化 処理雰囲気ガス ライ ンの う ち前記酸化炉にガスを供給していな いラ イ ンを常時排気し、 酸化処理雰囲気を高清浄に保つよ う に し、 前記酸化炉の温度を下げる こ と な く パージ用ガスラ イ ン と 酸化処理雰囲気ガス ラ イ ン の切り 替えを行う こ と を特徴と する 請求項 2 、 請求項 4 、 請求項 6 、 請求項 7 、 請求項 9 の いずれ か 1 項に記載の金属酸化処理方法。
( 1 2 ) 前記導入口、 又は前記導入口及び前記他の導入口に接 続された酸化処理雰囲気ガスライ ン及びパージ用ガス ライ ン に 加熱ヒーターが設け られてお り 、 前記酸化炉内に供給するガス の温度を酸化処理雰囲気の温度ま で加熱する よ う に した こ と を 特徴 とする請求項 1 、 請求項 3 、 請求項 5 、 請求項 8 、 請求項 1 0 のいずれか 1 項に記載の金属酸化処理装置。
( 1 3 ) 前記導入口、 又は前記導入口及び前記他の導入口か ら 供給するガス の温度を酸化処理雰囲気の温度ま で加熱ヒーター で加熱して供給し、 酸化処理温度を均一に し、 酸化処理効率を 向上させた こ と を特徴 とする請求項 2 、 請求項 4 、 請求項 6 、 請求項 7 、 請求項 9 、 請求項 1 1 のいずれか 1 項に記載の金属 酸化処理方法。
PCT/JP1989/000793 1988-08-04 1989-08-02 Metal oxidation apparatus and method WO1990001569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP89909048A EP0427853B1 (en) 1988-08-04 1989-08-02 Metal oxidation apparatus and method
DE68919084T DE68919084T2 (de) 1988-08-04 1989-08-02 Metalloxydierungsanordnung und verfahren.
KR1019900700724A KR900702070A (ko) 1988-08-04 1990-04-06 금속산화 처리장치 및 금속산화 처리방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63/195185 1988-08-04
JP63195185A JP2768952B2 (ja) 1988-08-04 1988-08-04 金属酸化処理装置及び金属酸化処理方法

Publications (1)

Publication Number Publication Date
WO1990001569A1 true WO1990001569A1 (en) 1990-02-22

Family

ID=16336867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000793 WO1990001569A1 (en) 1988-08-04 1989-08-02 Metal oxidation apparatus and method

Country Status (7)

Country Link
US (1) US5226968A (ja)
EP (1) EP0427853B1 (ja)
JP (1) JP2768952B2 (ja)
KR (1) KR900702070A (ja)
AT (1) ATE113324T1 (ja)
DE (1) DE68919084T2 (ja)
WO (1) WO1990001569A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591267A (en) * 1988-01-11 1997-01-07 Ohmi; Tadahiro Reduced pressure device
US5906688A (en) * 1989-01-11 1999-05-25 Ohmi; Tadahiro Method of forming a passivation film
WO1992014858A1 (fr) * 1991-02-18 1992-09-03 Osaka Sanso Kogyo Kabushiki-Kaisha Procede d'elaboration de film passive
JP3037768B2 (ja) * 1991-02-18 2000-05-08 大阪酸素工業株式会社 不動態化処理装置
JP3017301B2 (ja) * 1991-02-18 2000-03-06 大阪酸素工業株式会社 不動態膜の形成方法
JP3045576B2 (ja) * 1991-05-28 2000-05-29 忠弘 大見 ステンレス鋼の不動態膜形成方法及びステンレス鋼
EP0725160A1 (en) * 1991-11-20 1996-08-07 OHMI, Tadahiro Method of forming passive oxide film based on chromium oxide and stainless steel
JP3379070B2 (ja) * 1992-10-05 2003-02-17 忠弘 大見 クロム酸化物層を表面に有する酸化不動態膜の形成方法
US5569334A (en) * 1992-12-08 1996-10-29 Hitachi Metals, Ltd. Stainless steel member for semiconductor fabrication equipment and surface treatment method therefor
US5551982A (en) * 1994-03-31 1996-09-03 Applied Materials, Inc. Semiconductor wafer process chamber with susceptor back coating
DE4437050A1 (de) * 1994-10-17 1996-04-18 Leybold Ag Vorrichtung zum Behandeln von Oberflächen von Hohlkörpern, insbesondere von Innenflächen von Kraftstofftanks
JP2987754B2 (ja) * 1996-01-17 1999-12-06 岩谷産業株式会社 高純度ガスの配管路での不動態化処理方法
JP4104026B2 (ja) * 1996-06-20 2008-06-18 財団法人国際科学振興財団 酸化不働態膜の形成方法並びに接流体部品及び流体供給・排気システム
JP3020873B2 (ja) * 1996-07-11 2000-03-15 神鋼パンテツク株式会社 有機アミン系薬剤使用機器用材料
TW426753B (en) 1997-06-30 2001-03-21 Sumitomo Metal Ind Method of oxidizing inner surface of ferritic stainless steel pipe
JP4125406B2 (ja) 1997-08-08 2008-07-30 忠弘 大見 フッ化不働態処理が施された溶接部材の溶接方法および再フッ化不働態処理方法ならびに溶接部品
DE19845803C2 (de) * 1998-09-30 2002-10-17 Siemens Ag Verfahren zum Vakuumbeschichten von Metallbauteilen
JP3864585B2 (ja) * 1998-11-04 2007-01-10 住友金属工業株式会社 ステンレス鋼管内面の酸化処理方法
US6777372B1 (en) * 1999-09-27 2004-08-17 Mitsubishi Gas Chemical Company, Inc. Method for producing hydrocyanic acid synthesis catalyst
TW524890B (en) * 2001-02-13 2003-03-21 United Microelectronics Corp Method for preventing corrosion of a furnace and preventing corrodent furnace
JP5001489B2 (ja) * 2001-03-19 2012-08-15 東京エレクトロン株式会社 処理装置
US6488783B1 (en) 2001-03-30 2002-12-03 Babcock & Wilcox Canada, Ltd. High temperature gaseous oxidation for passivation of austenitic alloys
JP3960069B2 (ja) * 2002-02-13 2007-08-15 住友金属工業株式会社 Ni基合金管の熱処理方法
JP5406451B2 (ja) * 2005-09-05 2014-02-05 金子 博之 フラーレン類又はナノチューブ、及び、フラーレン類又はナノチューブの製造方法
US8534591B2 (en) * 2009-08-31 2013-09-17 E I Du Pont De Nemours And Company Apparatus and method for loading a film cassette for gaseous vapor deposition
US8551249B2 (en) * 2009-08-31 2013-10-08 E I Du Pont De Nemours And Company Film cassette for gaseous vapor deposition
US8524003B2 (en) * 2009-08-31 2013-09-03 E I Du Pont De Nemours And Company Loaded film cassette for gaseous vapor deposition
US8529700B2 (en) * 2009-08-31 2013-09-10 E I Du Pont De Nemours And Company Apparatus for gaseous vapor deposition
FR2976349B1 (fr) * 2011-06-09 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un element absorbeur de rayonnements solaires pour centrale solaire thermique a concentration.
CN103806007B (zh) * 2014-02-21 2015-10-28 南京航空航天大学 预防奥氏体不锈钢冷弯开裂及提高耐蚀性能的预处理方法
WO2019053836A1 (ja) * 2017-09-14 2019-03-21 株式会社日立ハイテクノロジーズ プラズマ処理装置およびウェットクリーニング方法
CN107841727A (zh) * 2017-12-15 2018-03-27 北京创昱科技有限公司 一种冷却构件及真空镀膜设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262955A (ja) * 1984-06-06 1985-12-26 レイデイオロジカル アンド ケミカル テクノロジ− インコ−ポレ−テツド ステンレス鋼部材表面の不動態化方法
JPS61281864A (ja) * 1985-06-07 1986-12-12 Nisshin Steel Co Ltd テンパ−カラ−を付与したステンレス鋼帯およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1097818A (fr) * 1954-01-20 1955-07-11 Mepaco Soc Procédé d'isolement par oxydation des alliages cupro-nickel pour résistances électriques
US3164493A (en) * 1962-04-23 1965-01-05 John E Lindberg Method of applying an oxide coating to a metal tube
FR1396405A (fr) * 1964-03-09 1965-04-23 Csf Procédé de formation d'une couche d'oxyde sur une surface d'un dispositif à semiconducteur en germanium
US3647535A (en) * 1969-10-27 1972-03-07 Ncr Co Method of controllably oxidizing a silicon wafer
DE2536446C2 (de) * 1975-08-16 1985-01-10 Uranit GmbH, 5170 Jülich Vorrichtung zur Durchführung eines Verfahrens zur Bildung einer korrosionsverhütenden, oxidischen Schutzschicht auf korrosionsempfindlichen Stählen
SE407081B (sv) * 1977-07-27 1979-03-12 Hultquist Gunnar B Sett att framstella ytskikt med forbettrade korrosionsegenskaper pa foremal av jernkromlegerigar
US4293594A (en) * 1980-08-22 1981-10-06 Westinghouse Electric Corp. Method for forming conductive, transparent coating on a substrate
LU83165A1 (fr) * 1981-02-25 1982-09-10 Liege Usines Cuivre Zinc Tubes pour condenseurs ou echangeurs de chaleur en alliages de cuivre resistant a la corrosion et procede pour leur fabrication
DE3476818D1 (en) * 1983-12-16 1989-03-30 Showa Aluminum Corp Process for producing aluminum material for use in vacuum
JPH0680183B2 (ja) * 1984-09-26 1994-10-12 株式会社東芝 原子炉計測素子用案内管の内面窒化装置
FR2574221B1 (fr) * 1984-12-05 1988-06-24 Montaudon Patrick Procede et dispositif permettant l'attaque chimique d'une seule face d'un substrat
JPS61194168A (ja) * 1985-02-20 1986-08-28 Ishikawajima Harima Heavy Ind Co Ltd ステンレス鋼管の不働態化処理方法
JPS6213563A (ja) * 1985-07-11 1987-01-22 Shinko Fuaudoraa Kk ステンレス鋼の着色処理方法
DE3614444A1 (de) * 1986-04-29 1987-01-02 Reiner Sarnes Verfahren zum oxydieren von sintereisenteilen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262955A (ja) * 1984-06-06 1985-12-26 レイデイオロジカル アンド ケミカル テクノロジ− インコ−ポレ−テツド ステンレス鋼部材表面の不動態化方法
JPS61281864A (ja) * 1985-06-07 1986-12-12 Nisshin Steel Co Ltd テンパ−カラ−を付与したステンレス鋼帯およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0427853A4 *

Also Published As

Publication number Publication date
DE68919084T2 (de) 1995-04-20
ATE113324T1 (de) 1994-11-15
US5226968A (en) 1993-07-13
EP0427853A1 (en) 1991-05-22
KR900702070A (ko) 1990-12-05
JP2768952B2 (ja) 1998-06-25
EP0427853A4 (en) 1991-11-13
EP0427853B1 (en) 1994-10-26
JPH0243353A (ja) 1990-02-13
DE68919084D1 (de) 1994-12-01

Similar Documents

Publication Publication Date Title
WO1990001569A1 (en) Metal oxidation apparatus and method
US5554226A (en) Heat treatment processing apparatus and cleaning method thereof
US6464948B2 (en) Ozone processing apparatus for semiconductor processing system
KR101309930B1 (ko) 반도체 처리 장치와 그 사용 방법, 및 컴퓨터로 판독 가능한 매체
US5088922A (en) Heat-treatment apparatus having exhaust system
JP2010255103A (ja) 処理装置
JP2003027240A (ja) 半導体製造装置及びそのクリーニング方法
US5224998A (en) Apparatus for oxidation treatment of metal
JP2976301B2 (ja) ステンレス鋼及びその製造方法並びに減圧装置
KR20220131828A (ko) 기판 처리 장치, 노구 어셈블리, 기판 처리 방법, 반도체 장치의 제조 방법 및 프로그램
JP3017301B2 (ja) 不動態膜の形成方法
TW403792B (en) Process for passivating treatment of piping system for high-purity gas
JP2976333B2 (ja) ステンレス鋼及びその製造方法並びに減圧装置
CN111383886B (zh) 防刻蚀气体供应管道腐蚀的系统及等离子反应器运行方法
JPH03111552A (ja) 金属管酸化処理装置
WO1993024267A1 (en) Method of forming oxide passivation film at weld portion and process apparatus
US5294280A (en) Gas measuring device and processing apparatus provided with the gas measuring device
EP1146135B1 (en) Stainless steel having passive fluoride film formed thereon and equipment manufactured therefrom
JP5438266B2 (ja) 半導体装置の製造方法、クリーニング方法および基板処理装置
EP0452493A1 (en) Feeder for process gas
JP4342559B2 (ja) 基板処理装置及び半導体装置の形成方法
JP4304354B2 (ja) 半導体装置の処理方法
JPH10298734A (ja) ステンレス鋼及びその製造方法並びに減圧装置
JPH0513345A (ja) 処理装置
JPH05217902A (ja) 熱処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989909048

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989909048

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989909048

Country of ref document: EP