WO1990001079A1 - Procede de coloration par adsorption de surfaces generees par anodisation - Google Patents

Procede de coloration par adsorption de surfaces generees par anodisation Download PDF

Info

Publication number
WO1990001079A1
WO1990001079A1 PCT/EP1989/000835 EP8900835W WO9001079A1 WO 1990001079 A1 WO1990001079 A1 WO 1990001079A1 EP 8900835 W EP8900835 W EP 8900835W WO 9001079 A1 WO9001079 A1 WO 9001079A1
Authority
WO
WIPO (PCT)
Prior art keywords
dyes
dyebath
erda
imeta
soluble
Prior art date
Application number
PCT/EP1989/000835
Other languages
German (de)
English (en)
Inventor
Loert De Riese Meyer
Dieter Brodalla
Willi Buchmeier
Christine Schröder
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to KR1019900700624A priority Critical patent/KR900702086A/ko
Publication of WO1990001079A1 publication Critical patent/WO1990001079A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/243Chemical after-treatment using organic dyestuffs
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • C25D11/22Electrolytic after-treatment for colouring layers

Definitions

  • the invention relates to a process for the adsorptive coloring of anodically produced surfaces of aluminum and / or aluminumium alloys with organic, anionic dyes in aqueous solution.
  • the surface of aluminum and / or aluminum alloys is usually provided with an approximately 20 ⁇ m thick porous oxide layer by anodic oxidation, which can be colored in various ways in order to achieve decorative effects.
  • Adsorptive dyeing processes usually include dyeing techniques in which organic dyes or inorganic pigments penetrate into the pores of the anodically produced oxide layer by simple or multiple dipping into aqueous or non-aqueous dyeing solutions, or are formed therein by chemical reaction.
  • organic adsorptive dyes can be used to produce colorful and black oxide layers in a simple manner.
  • a large number of the known dyes are not sufficiently lightfast, so that they are only of limited suitability for outdoor use.
  • the preceding anodization ie the build-up of the anodically produced oxide layer, generally takes place according to the so-called GS method.
  • an aluminum workpiece is anodized in a solution containing 150-200 g / 1 sulfuric acid at a temperature of 18 - 20 ° C and a DC voltage of about 15 to 18 V.
  • the anodizing times are about 3 min / ⁇ m layer build-up.
  • air is usually used in an amount of 8 m 3 / m 2 h for circulation and cooling.
  • the actual coloring is then carried out by immersing the anodized workpiece in a corresponding dye solution at mostly elevated temperatures.
  • the anodically produced oxide layers are then usually compacted in aqueous solution at temperatures in the range from 95 to 100.degree.
  • ER S ATZBLATT Electrolyte is generated and sulfate ions get into the dye solution by diffusion during the subsequent coloring. This results in competitive adsorption between sulfate ions and anionic dye molecules when the dyebaths are left standing for a longer period of time, whereby the dyeing behavior of the bath is constantly deteriorating.
  • the object of the present invention is to provide an improved method for the adsorptive coloring of anodically produced surfaces of aluminum and aluminum alloys with organic anioinic dyes in aqueous solution, in particular with an intermediate step between the adsorptive coloring and the compression process can be dispensed with.
  • Another object of the present invention is to extend the life of the dye baths used for adsorptive dyeing.
  • the alkaline earth metal metals which form in the adsorptive dyeing according to the invention do not have a negative effect on the adsorptive dyeing. Even a high concentration of water-soluble Erda I ka I imeta I I sa I z or Erda I ka I imeta I I su I fatante i I in the dye bath in no way disturbs the uniformity of the adsorptive coloring.
  • the detection of free Erda I ka I imeta I I ions in the dyebath is done according to the usual known methods, preferably under precipitation as Erda I ka I imeta I I su I fat.
  • the concentration of free sulfate ion is of course also less than 0.1 g / l.
  • a resharpening of the dyebath with water-soluble Erda I ka I imeta I I i i zen usually takes place when free Erda I ka I imeta I I on in the dyebath can no longer be detected.
  • the process according to the invention also gains particular importance in the case of continuous spray processes for adsorptive coloring with organic, anionic dyes in aqueous solution, since the dye baths are continuously recycled and new sulfate is always introduced.
  • a particular embodiment of the invention consists in the use of the Erda Ika ima 1 salts of the organic, anionic dyes, generally the exclusive use of Erda Ika ima II salts of the organic, anionic ⁇ dyes not sufficient to adjust the concentration of sulfate ions to less than or equal to 0.1 g / 1. In many cases, however, to re-sharpen the dyebaths, it is sufficient to use the barium salts of the dyes directly without the need for further addition of water-soluble Erda Ika I imeta I lsa Izen.
  • the process is characterized in that the organic anionic dyes and / or their alkaline earth metal salts are mono-, bis-, polyazo dyes, meta II complex azo dyes, phtha 1 ocyanine dyes, Quinophthalone dyes, azine dyes, xanthene dyes, nitro, nitro dyes, di-, triphenylimethane dyes, indigo dyes, methine dyes, anthraquinone dyes or mixtures thereof.
  • the organic anionic dyes and / or their alkaline earth metal salts are mono-, bis-, polyazo dyes, meta II complex azo dyes, phtha 1 ocyanine dyes, Quinophthalone dyes, azine dyes, xanthene dyes, nitro, nitro dyes, di-, triphenylimethane dyes, indigo dyes, methine dyes, anthraquinone dyes or mixtures thereof.
  • xanthene dyes show a strong sensitivity to the presence of sulfate ions in the dyebath.
  • the limit values for the su-fat sensitivity in the dyes are in the order of 0.1 g / l. According to the invention, this means that at concentrations of more than 0.1 g / l there is insufficient coloring of the anodically produced surface for industrial use. It is believed that this sensitivity to sulfate has hitherto hindered the widespread use of adsorptive staining with xanthene dyes.
  • xanthene dyes are selected from fluorescein, eosin, 2, 7-di ch I orf I uoresce in, eosin scarlet, 4, 5, 6, 7-tetrach I orf I uoresce in, cyanosine, calcein, 4-aminofluoresce in,, 5-di iodofluoresce in,, 5-dibromofluorescein, 5-aminofluorescein, methyleosin and / or erythrosin or their Erda I ka l imeta II also.
  • a dye In order for a dye to be suitable as a dye for coloring aluminum oxide layers, it must meet the following criteria: a) good absorption of the dye into the surface of the aluminum b) high coloring capacity for anodically produced aluminum, c) high Penetration depth into the pores of the oxide layer and d) good light resistance to ultraviolet radiation.
  • ERSA TZBLATT Although principally all the Erda I a I imeta II sa I ze of the above-mentioned dyes can be used, it is usually necessary to use additional Erda I ka I imeta I 1 sa I ze which have a particularly low solubility t product during the training of Erda Ika I imeta II suI faten.
  • the process for adsorptive dyeing is characterized by adding water-soluble calcium, strontium and / or barium salts to the dye bath or adding the dyes in the form of their calcium, strontium and / or barium salts together with other water-soluble Erda I ka I imeta II sa I zen.
  • the use of the corresponding calcium salts is less preferred if the dyes to be used have been found to be extraordinarily high in sulfate sensitivity.
  • the use of water-soluble barium salts is particularly preferred due to the solubility product of barium sulfate.
  • a further embodiment of the present invention is characterized in that Ca I c ium-Sa Ize is added to the dyebath. These are used in particular for less sulfate-sensitive dyes.
  • the amount of barium salts to be used can be set extremely low if necessary. However, the minimum amount is to be set so that the concentration of free sulphations in the dyebath is less than 0.1 g / l.
  • the upper limit of the Erda I ka I imeta I l sa I ze is practically determined by the solubility of these salts in the dyebath. For the purposes of the present invention, it is less preferred that the Erda Ika I imeta I I salt in concentrations
  • E R SA TZBL be used in which the Erda I ka I imeta II sa I ze do not go into solution. Rather, within the scope of the present invention, it is entirely possible to also blend the Erda I ka I imeta II sa Ize of the organic, anionic dyes with the corresponding organic anion dyes in such a way that the object according to the invention is achieved.
  • a depot effect is achieved by an excess of free Erda I ka I imeta I I ions in the dyebath. Larger amounts of free Erda I ka I imeta I I ones do not interfere with the dyeing process any more than the failed Erda I ka I imeta I I su I fate.
  • the organic anionic dyes and / or their Erda I ka I imeta I I sa I ze are used in an amount of 0.05 to 20 g / 1 in the dyebath.
  • the pH of the adsorptive coloring is not critical. However, in order to keep the dyes as salts in solution, it is preferred according to a preferred embodiment of the present invention to adjust the pH in the range from 1 to 8. In a preferred embodiment of the present invention, a pH in the range from 3 to 8 is set. In a preferred embodiment, the temperature during the coloring is in the range from room temperature to the boiling point, preferably in the range from 40 to 70 ° C. set according to
  • the oxide layers are subjected to the generally known compression process.
  • anhydrous Al_0_ turns into hydrate, which takes up a larger volume and closes the pores.
  • the subsequent compression essentially prevents the paint from leaching out, at the same time improves the lightfastness and also generally increases the corrosion resistance of the layer.
  • a preferred embodiment of the present invention consists in that the colored surfaces of aluminum and / or aluminum are compressed.
  • a combination of electrolytic and adsorptive dyeing is also included in the scope of the present invention.
  • the oxide layer is first pre-colored in a light to dark bronze tone and then directly over-colored with the organic, anionic dyes and / or their Erda Ika I imetaI I sa 1 ze in a second bath.
  • E RS ATZBLATT lie on top of each other in the layer and do not interfere with each other.
  • the layers are as hard as the color of the e Iektro Iyt i see.
  • the dyeings are carried out by methods known per se, for example by dipping or spraying.
  • the name of the aluminum alloy is given in accordance with DIN 3315, material no. 3; AIMg- was used.
  • the metal sheets were degreased in an aqueous solution consisting of 5% P_-Almeco 18 (alkaline cleaner, containing borates, carbonates, phosphates and not surfactants) at a temperature of 70 ° C. It was then pickled in a long-term pickle using 112 g / 1 of dissolved aluminum and 80 g / 1 NaOH using P -Almeco 46 (pickling agent containing alkali i, alcohols and salts of inorganic acids). P, -Almeco 46 was dosed in a ratio of 1: 6 to NaOH. At 65 ° C was about 15 min. stained.
  • P_-Almeco 18 alkaline cleaner, containing borates, carbonates, phosphates and not surfactants
  • E R S ATZ B LATT Bath composition 200 g / l sulfuric acid, 10 g / l aluminum; Air intake 8 m 3 / m 2 h; Temperature: 20 ° C; DC voltage: 15 V.
  • the anode duration was about 3 min per ⁇ m layer structure; ie the total anodizing times for the oxide layers of approximately 20 ⁇ m given in the examples below were approximately 45 to 70 minutes.
  • the colored surfaces were compacted in a water bath at temperatures of about 96 to 98 ° C.
  • Example 1 shows the influence of sulfate sensitivity when using fluorescence-sodium.
  • sulfate sensitivity In the order of magnitude of 0.1 g / l of sulfate ions, no disruptive influence is noticeable. Beyond that, however, a clearer coloration is obtained.
  • Example 2 The comparison of Example 2 with Comparative Examples 2a, 2b and 2c confirms the sulfate sensitivity when stained with eosin yellow; a concentration of less than 0.1 g / l is regarded as the limit for the maximum amount of sulfate ions in the dyebath. It was also proven that barium ions do not negatively influence the color.
  • example 3 The comparison of example 3 with the comparative examples 3a, 3b and 3c gives a limit value for the maximum sulfate ion concentration of less than 0.1 g / l of sulfate ions.
  • barium salts do not have a negative effect on the color.
  • Examples 4, 4a and 4b and comparative example 4 show in particular the depot effect of a large Erda I - ka l imeta I I ion concentration. I can also see that one
  • a red coloration of an anodized aluminum sheet was produced using the dyebath according to Example 5 with further use of 5.0 g / l ammonium sulfate under the conditions mentioned above.
  • the examples and comparative examples 5 show in an impressive manner the dependence of the quality of the color coating on the sulfate ion concentration. While in example 5c the sulfate ion concentration is sufficient to influence the competitive adsorption of sulfate ions and dye molecule accordingly, an excellent coloration can again be observed by adding alkaline earth metal salt according to example 5d.
  • Sanodal blue G anthraquinone dye, not metal lized
  • 12.1 g / l barium nitrate and 6.1 g / l (NH) _SO y was at a pH of 5.5 over a period of 15 min at a temperature of 60 ° C produces a blue coloration of an anodized aluminum sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coloring (AREA)

Abstract

Un procédé permet de colorer par adsorption, avec des pigments anioniques organiques dans une solution aqueuse, des surfaces en aluminium et/ou en alliages d'aluminium générées par anodisation. On ajoute au bain colorant des sels solubles dans l'eau de métaux alcalino-terreux en quantité appropriée pour réduire la concentration d'ions sulfatés dissous dans le bain colorant à moins de 0,1 g/l. Dans une variante, on ajoute au bain colorant des pigments anioniques organiques sous forme de leurs sels de métaux alcalino-terreux. Ce procédé réduit la sensibilité aux sulfates de la coloration par adsorption avec des pigments anioniques organiques.
PCT/EP1989/000835 1988-07-25 1989-07-17 Procede de coloration par adsorption de surfaces generees par anodisation WO1990001079A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900700624A KR900702086A (ko) 1988-07-25 1989-07-17 양극 산출 표면의 흡착 착색 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3825213.9 1988-07-25
DE3825213A DE3825213A1 (de) 1988-07-25 1988-07-25 Verfahren zur adsorptiven faerbung von anodisch erzeugten oberflaechen

Publications (1)

Publication Number Publication Date
WO1990001079A1 true WO1990001079A1 (fr) 1990-02-08

Family

ID=6359490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000835 WO1990001079A1 (fr) 1988-07-25 1989-07-17 Procede de coloration par adsorption de surfaces generees par anodisation

Country Status (5)

Country Link
EP (1) EP0355390A1 (fr)
KR (1) KR900702086A (fr)
AU (1) AU3976389A (fr)
DE (1) DE3825213A1 (fr)
WO (1) WO1990001079A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835774A (zh) * 2018-08-17 2020-02-25 苹果公司 用于阳极氧化层中降低的染料吸收的染料溶液替代物
CN114703527A (zh) * 2022-03-11 2022-07-05 广东长盈精密技术有限公司 阳极氧化染色工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58907236D1 (de) * 1988-12-16 1994-04-21 Alusuisse Lonza Services Ag Anodisch oxidierte Oberfläche eines Gegenstandes mit Lumineszenzeigenschaften und Verfahren zur Herstellung der Oberfläche.
DE4227023C1 (en) * 1992-08-14 1993-09-09 Julius & August Erbsloeh Gmbh & Co, 5620 Velbert, De Colouring anodised coatings on aluminium@ objects - using 1st soln. contg. organic colouring agent and 2nd soln. contg. metal salt in which electrolytic treatment is carried out
CN1056199C (zh) * 1994-04-27 2000-09-06 江南机器厂 阳极化铝合金的有机染料单色染色方法
DE102009043762A1 (de) 2009-09-30 2011-03-31 Clariant International Ltd. Verfahren zum Färben von anodisch oxidierten Aluminiumoberflächen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927872A (en) * 1957-12-19 1960-03-08 Samuel L Cohn Dyeing of aluminum oxide coatings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927872A (en) * 1957-12-19 1960-03-08 Samuel L Cohn Dyeing of aluminum oxide coatings

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Galvanotechnik, Band 77, Nr. 12, 1987 (Saulgau, DE) G. TSCHEULIN: "Einfarbung van Aluminium-Oxidschichten", seiten 3549-3553 (in der anmeldung erwahnt) *
S. WERNICK und R. PINNER: "The Surface Treatment and Finishing of Aluminium and its Alloys" 4. Ausgabe, Band 2, 1972 Robert Draper Ltd (Teddington, GB) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835774A (zh) * 2018-08-17 2020-02-25 苹果公司 用于阳极氧化层中降低的染料吸收的染料溶液替代物
US11795564B2 (en) 2018-08-17 2023-10-24 Apple Inc. Dye solution alternatives for reduced dye uptake in anodized layers
CN114703527A (zh) * 2022-03-11 2022-07-05 广东长盈精密技术有限公司 阳极氧化染色工艺
CN114703527B (zh) * 2022-03-11 2024-06-11 广东长盈精密技术有限公司 阳极氧化染色工艺

Also Published As

Publication number Publication date
DE3825213A1 (de) 1990-02-08
KR900702086A (ko) 1990-12-05
EP0355390A1 (fr) 1990-02-28
AU3976389A (en) 1990-02-19

Similar Documents

Publication Publication Date Title
DE2715292C2 (fr)
DE3213384C2 (fr)
EP0186897A1 (fr) Agent et procédé pour la fabrication de couches de densification incolores sur des surfaces anodisées d'aluminium
DE2556146A1 (de) Aluminiumgegenstand mit einem poroesen anodischen oxidueberzugsfilm
DE2701031C3 (de) Verfahren zum Nachdichten von eloxiertem Aluminium
DE2609146B2 (de) Verfahren zum elektrolytischen Färben von anodischen Oxidschichten auf Aluminium und Aluminiumlegierungen
DE10149928C1 (de) Verfahren zum Glänzen von Aluminium und dessen Verwendung
EP0036689A1 (fr) Procédé pour l'application de revêtements phosphatés
WO1990001079A1 (fr) Procede de coloration par adsorption de surfaces generees par anodisation
CH636131A5 (de) Verfahren zur behandlung von aluminiumoberflaechen durch oxidation mit einer nachfolgenden verdichtung.
DE3334628A1 (de) Oberflaechenbehandlung fuer aluminium oder aluminiumlegierungen
EP0293774B1 (fr) Procédé de coloration électrolytique de l'aluminium anodisé
EP0857227B1 (fr) Colmatage a chaud, de courte duree, de surfaces metalliques anodisees
DE2440540A1 (de) Verfahren zum elektrolytischen faerben von anodisch erzeugten oxidschichten auf werkstoffen aus aluminium oder dessen legierungen
DE2239255A1 (de) Verfahren zur erzeugung eines oxidueberzugs auf aluminium und dessen legierungen
DE2609552B2 (de) Verfahren zum elektrolytischen Färben von anodischen Oxidschichten auf Aluminium oder Aluminiumlegierungen
CH660883A5 (de) Thallium enthaltendes mittel zum abloesen von palladium.
DE3411678A1 (de) Verfahren zur nachverdichtung von aluminium und aluminiumlegierungen im anschluss an die eloxierung und bad zur durchfuehrung des verfahrens
DE2844406C2 (de) Nachverdichtungsbad und Verfahren zur Verhinderung von Belägen bei der Nachverdichtung anodisch oxidierter * Aluminiumoberflächen
EP0127774B1 (fr) Procédé de protection de l'aluminium anodisé
DE2805658B2 (de) Verfahren zur elektrolytischen Färbung des nicht anodisierten Aluminiums und seiner nicht anodisierten Legierungen
DE2500075C3 (de) Verfahren zur Ausbildung von farblosen Überzügen auf Aluminiumoberflächen und Lösung zur Durchführung des Verfahrens
DE3522117C2 (fr)
DE622821C (de) Verfahren zum Faerben von Aluminiumoxydueberzuegen
CH682240A5 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE