WO1990000815A1 - Josephson-tunnelelement mit metalloxidischem supraleitermaterial und verfahren zur herstellung des elementes - Google Patents

Josephson-tunnelelement mit metalloxidischem supraleitermaterial und verfahren zur herstellung des elementes Download PDF

Info

Publication number
WO1990000815A1
WO1990000815A1 PCT/EP1989/000760 EP8900760W WO9000815A1 WO 1990000815 A1 WO1990000815 A1 WO 1990000815A1 EP 8900760 W EP8900760 W EP 8900760W WO 9000815 A1 WO9000815 A1 WO 9000815A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
tunnel element
crystal structure
layer
oxide
Prior art date
Application number
PCT/EP1989/000760
Other languages
English (en)
French (fr)
Inventor
Gabriel Daalmans
Bernhard Roas
Hans Eckhardt Hoenig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1990000815A1 publication Critical patent/WO1990000815A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • H10N60/0941Manufacture or treatment of Josephson-effect devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials

Definitions

  • the invention relates to a Josephson tunnel element with a sandwich-like layer structure on a flat side of a substrate, which element
  • a layer made of a metal oxide superconductor material with a predetermined crystal structure serving as a base electrode in a first plane a layer made of the superconductor material serving as a counter electrode with the predetermined crystal structure in a further plane parallel to the first plane and
  • the invention contains a barrier layer arranged between the electrode layers and acting as a tunnel barrier and consisting of a metal oxide, non-superconducting material with a crystal structure adapted to the crystal structure of the superconducting material.
  • the invention further relates to a method for producing such a Josephso ⁇ tunnel element.
  • a corresponding element with the features mentioned and a method for its production are known from US Pat. No. 4,316,785.
  • Josephson tunnel elements with a sandwich-like structure represent a special type of Josephson element. They generally contain a layered base electrode made of superconducting material, on which a thin barrier layer made of an insulating, semiconducting or normally conducting material is applied. This barrier layer forms a tunnel barrier between the base electrode and one on the barrier layer 2 deposited counter electrode, which is also made of superconducting material.
  • the tunnel barrier layer represents a so-called "weak link", ie a zone of weak coupling between the electrode layers (cf., for example, "Proc. IEEE", Vol. 61, No. 1, Jan. 1973, pages 36 to 45) .
  • the Josephson tunnel element which can be gathered from the above-mentioned US PS, also has a corresponding structure.
  • the material of the two electrodes of this element serves su ⁇ pra technicallyde material BaPb 1 _ ⁇ ⁇ 0 3 Bi (having 0.05 - ⁇ x ⁇ 0.3) with perovskite crystal structure and a critical temperature T of about 13 K.
  • the tunnel barrier layer thereby made of a non-superconducting material which also has a corresponding perovskite-like crystal structure. Mechanical stresses during temperature changes are thus to be prevented in the element.
  • a known material system for this metal oxide compound is of the Mel-Me2-Cu-0 type, the components Mel at least containing a rare earth metal or Y and Me2 containing an alkaline earth metal. Films or thin layers of these metal oxide compounds are often produced using special vapor deposition or sputtering processes.
  • a polycrystalline or amorphous precursor with the components of the selected material system is generally deposited on a suitable substrate, the oxygen content and thus the desired superconducting high-T phase not yet being set exactly. This preliminary product is then subjected to heat and oxygen treatment. tion converted into the material with the desired superconducting phase.
  • the superconducting so to be obtained metal oxide whose crystal structures may be similar to a Perowskites have, in the case of YBa 2 CU j 0. 7 (with 0 ⁇ _. 'X' 0,5) is a orthorhombic structure (see. Eg " Europhysics Letters ", Vol. 3, No. 12, June 15, 1987, pages 1301 to 1307). Their junction temperature T is around 90 K. Since the materials having these superconducting phases are to be classed as oxide ceramics, the high-voltage superconductor is often also referred to as oxide-ceramic superconductor
  • a Josephson tunnel element using such an oxide ceramic high-T superconductor material is published in the publication "Japanese Journal of Applied Physics", vol. 26, no. September 9, 1987, Part 2 - Letters, pages L1443 to L1444.
  • This element contains a base electrode layer made of the same material on a sintered substrate of the Y-Ba-Cu-0 material system.
  • An Nb layer applied to the tunnel barrier layer serves as the counter electrode. It turns out, however, that this known Josephson tunnel element at 77 K cannot meet the requirements to be raised for use in active electronic circuits with regard to sufficient critical current density and low magnetic flux noise.
  • Films made of oxide-ceramic high-T superconductor material with high critical current densities are known per se. For this purpose, these films must have at least a textured structure. They show a strongly anisotropic behavior of their critical current density (current carrying capacity) depending on the position the crystal axes.
  • the production of corresponding YBa 2 Cu, 0 7 films on a single-crystalline SrTiO, substrate is described, for example, in "Physical Review Letters", Vol. 58, No. 25, June 22, 1987, pages 2684 to 2686.
  • an annealing treatment at a high temperature of about 900 ° C. is required.
  • Correspondingly produced films can have critical current densities of more than 10 A / cm 2 perpendicular to the c-axes of their crystals at 77 K, while parallel to the c-axes the critical current density is at least one 10-fold lower.
  • a target material of the corresponding material system is first evaporated by means of a laser and deposited on a single-crystal SrTiO ⁇ substrate.
  • the laser to be used can be a KrF excimer laser, the wavelength of which is in the UV spectral range and enables an energy density on the target material of approximately 2 J / cm 2 at a pulse frequency of 3 to 6 Hz.
  • the substrate should be heated to 450 ° C (see also "Appl.Phys.Lett.”, Vol. 51, No. 8, August 24, 1987, pages 619 to 621).
  • a final heat treatment at about 900 ° C. in an oxygen atmosphere and subsequent slow cooling are necessary.
  • the object of the present invention is therefore a
  • the Josephson tunnel element in which these problems are at least largely avoided.
  • the element should be able to be produced using a method with which critical current densities in the superconducting layers of at least 10 A / cm 2 can be formed in a reproducible manner.
  • the electrode layers each consist of an oxide-ceramic superconductor material with a high transition temperature and with an ordered crystal structure, so that the electrode layers have a high critical current density in the direction of the planes point, and that a substrate is provided which has a texture adapted to the crystal structure dimensions of the superconducting phase of the oxide-ceramic superconductor material.
  • the invention therefore takes into account the special crystal structure of the superconducting oxide-ceramic high-T phase to form a Josephson tunnel element.
  • This crystal structure can advantageously be obtained on a correspondingly textured substrate. Accordingly, the two electrode layers of high critical current density are spaced apart by a thin barrier layer, which represents a tunnel barrier that only weakly couples these layers.
  • the predetermined crystal structure of this tunnel barrier facilitates the formation of the counter electrode layer with a high critical current density.
  • Such a Josephson tunnel element can thus vor ⁇ geous meet the desired requirements in terms of critical current density * and low noise.
  • the Josephson tunnel element according to the invention can be produced particularly advantageously by first applying a shadow mask with the hole structure adapted to the tunnel element to be produced in a lithography process on the substrate, and then, in the case of uninterrupted vacuum conditions, the layers of the tunnel element by oblique vapor deposition with simultaneous heat treatment and oxygen treatment, the desired superconducting phase of the superconductor material being formed.
  • a target material made of an oxide ceramic of this material is advantageously vaporized by means of a pulsed laser, the wavelength of which lies in the ultraviolet spectral range.
  • the desired superconducting phase can be crystallized virtually “in situ” and therefore no subsequent formation of this phase by means of a special annealing step at very high temperatures .
  • Higher substrate temperatures and activated oxygen on the substrate are required for the in situ crystallization according to the invention.
  • a laser with a relatively high pulse energy can advantageously be used to activate the oxygen.
  • the molecular oxygen of the intended atmosphere is then activated by interaction with the UV laser radiation directly on the heated substrate with each laser pulse.
  • the amount of oxygen radicals generated in the process and the higher substrate temperature are sufficient to epitaxially grow an approximately 1 nm thick layer with each pulse.
  • the high growth rates that can be achieved at conventional pulse frequencies ensure a short evaporation time and a low contamination of the layers.
  • FIG. 1 schematically illustrates the manufacture of a Josepshon tunnel element.
  • Figure 2 shows schematically an apparatus for performing this method. Corresponding parts in the figures are provided with the same reference numerals.
  • the Josephson tunnel element according to the invention is to be formed from a certain superconducting high-T material on a predetermined substrate.
  • a material from the material system Mel-Me2-Cu-0 is selected as an exemplary embodiment.
  • Mel and Me2 can in particular be an element from the group of rare earth metals such as Y or an element from the group of alkaline earth metals such as Be Ba.
  • materials suitable for Mel and Me2 are generally known.
  • Mel and Me2 are also alloys or compounds or other compositions of these metals with substitution materials; i.e. at least one of the elements mentioned can be partially substituted by another element in a known manner.
  • the Cu or the 0 can also be exchanged at least partially for other elements.
  • the Josephson tunnel element according to the invention and the method for its production are not only limited to the material system mentioned; i.e., other oxide-ceramic, metallic components and oxygen-containing high-T superconductor materials that are not part of the system mentioned are equally suitable.
  • Corresponding materials are e.g. from "Superconductivity News", Vol. 1, No. 9, March 19, 1988, pages 1 to 5 and 13 to 16 are known. The one from the particular
  • High-T superconductor electrode layers to be manufactured of the Josephson tunnel element should enable a high current carrying capacity (critical current density) of the order of magnitude of at least 10 A / cm 2 in the vicinity of the transition temperature T of the material. Also particularly advantageous are those materials whose transition temperature is significantly above the vaporization temperature of the liquid nitrogen of about 77 K.
  • Materials to be selected for the substrate are advantageously those which have a structure with dimensions of their unit cells, which make up at least approximately one or more times the corresponding dimensions of the axes of the structures of the superconducting high-T material grown on them.
  • a single-crystal or at least textured SrTiO, or (Ba, Sr) TiO, substrate is particularly advantageous in the case of YBa 2 Cu, 0y_.
  • other materials such as MgO, A1 2 0- ,, Y-stabilized Zr0 2 or Ta 2 0 c are also suitable.
  • the Josephson tunnel element according to the invention is not necessarily limited to such textured substrates.
  • polycrystalline substrates such as polycrystalline SrTiO applied on a suitable support can also be provided.
  • the formation according to the invention of at least one Josephson tunnel element with a superconducting material of the known composition YBa 2 Cu, 0 7 with an orthorhombic structure on a textured SrTiO ⁇ substrate is used as a basis.
  • a structure is provided, which is illustrated schematically in FIG. 1 as a cross section.
  • a special shadow mask technique which is referred to as a floating mask technique, is advantageously used to produce the at least one Josephson tunnel element.
  • Such Levitation mask technology is generally known (cf., for example, DE-PS 31 28 982 or the publication "SQUID '80 - Supercon ⁇ dueting Quantum Interference Devices and their Applications", Berlin 1980, pages 399 to 415).
  • a floating mask 3 which is matched to the desired Josephson tunnel element structure is first applied to the substrate 2, the texture of which is to be indicated by dashed lines 2a.
  • This floating mask which consists of SiO, for example, has a self-supporting film bridge 3a which hovers above the substrate at a height h of a few micrometers and has a span w of approximately 1 ⁇ m.
  • the uncovered parts of the substrate surface 5 are now freed of all residues, for example by ion bombardment at suitable angles.
  • the substrate, including the floating mask 3 applied to it, is then "in situ", ie without interrupting the vacuum conditions to be provided for the ion bombardment, in oxygen.
  • the layers serving as electrodes must ensure a high critical current density in the direction of their layer planes. Because of the anisotropy of the known high-T superconductor materials, it is necessary for this that the superconducting electrode layers are textured in such a way that the c-axes of their crystal structures are perpendicular to the substrate surface 5. In this direction the critical current density is much smaller than perpendicular to it.
  • the c-axes are indicated in the figure by individual arrowed lines 6.
  • a special laser evaporation technique can be used. Accordingly, a first layer 7 made of the superconductor material is evaporated obliquely onto the heated substrate 2.
  • a pulsed excimer laser is advantageously used, which enables a sufficient energy density and pulse energy.
  • the steam jet 9 is intended to impinge at an evaporation angle c ⁇ which is inclined by approximately 45 ° with respect to the plane of the substrate surface 5. In this way, the area of the substrate surface 5 lying under the floating bridge 3a is also coated.
  • the layer thickness d of the layer 7 lying in a first plane E 1 can, for example, be of the order of magnitude of approximately 100 nm.
  • the first layer obtained in this way represents the base electrode BE of the Josephson tunnel element to be produced, to which a very thin barrier layer 10 is now applied in situ.
  • This layer which acts as a tunnel barrier and has a layer thickness c of a few nm, which is typical for a weak coupling, is advantageously to be produced from a non-superconducting material whose crystal structure is matched to that of the superconducting material.
  • a suitable material is, for example, a Pr-Ba-Cu oxide ceramic.
  • This oxide ceramic is vapor-deposited using the same technique as the superconducting material of layer 7 from the opposite direction at an evaporation angle (180-3).
  • the corresponding steam jet is designated 11 in the figure.
  • a slightly flatter vapor deposition angle is expediently chosen; ie, the following applies: [ ⁇ C
  • an area of the base electrode BE remains free for later contacting; on the other hand clean flank 7 'of the base electrode is also achieved.
  • a second layer 12 made of the superconductor material and serving as counterelectrode GE is then also applied to this structure obtained with the base electrode BE and the barrier layer 10 and reaching up to a parallel plane E2, likewise by epitaxial laser deposition.
  • a vapor deposition angle (180 - oi,) is expediently provided for the corresponding steam jet 13.
  • the thickness D of the second layer 12 should be significantly (at least 1.5 times) greater than the thickness d of the first layer 7. In this way, the required high critical current density can also be ensured in the area of the flank 7 1 via the step of the layer 12 thus formed.
  • the electrodes of the Josephson tunnel element produced in this way, generally designated 15, must be contacted with connecting conductors.
  • the high critical current densities required must also be guaranteed in the contact area.
  • an epitaxial deposition is also provided for the connection conductors, as for the superconducting layers of the electrodes of the Josephson tunnel element 15.
  • parts of the connecting conductors 16 and 17 are formed simultaneously with the electrodes owing to the selected dimensions of the floating mask and the selected vapor deposition angle.
  • FIG. 2 This figure schematically shows a cross section through a corresponding, generally 20 illustrated deposition device illustrated at the time of formation of the layer of the base electrode.
  • the separating device contains a vacuum chamber 21 which is to be evacuated at a pump nozzle 22 by means of a corresponding pump to a final pressure which is, for example, below 10 " bar.
  • a laser beam 25 enters the quartz window 24 of the vacuum chamber 21 Chamber and arrives there at an angle of, for example, about 45 "on a first target 26 made of the desired high-T superconductor material.
  • the target attached to a holder 27 is located in the center of the chamber. It can be exchanged with the aid of a rotatable linkage 28 against a correspondingly held target 26 "made of the non-superconducting material of the tunnel barrier. If necessary, the target exposed to the laser beam can also be moved in order not only to strike the beam
  • the vaporized material is emitted perpendicularly to the target surface as a steam jet 9 from the target 26. It strikes the substrate 2, which is located opposite the target 1, but is not shown in detail in Figure 2.
  • the substrate can advantageously be kept at an elevated temperature level during the vapor deposition process the inclination of the substrate carrier 30 and thus of the substrate relative to the axis of the steam jet 9 adjustable by means of a correspondingly designed linkage, so as to obtain the various evaporation angles.
  • the linkage 31 enables the distance a between the target 26 and the substrate 2 to be varied set a distance a between 20 mm and 45 mm. If necessary, the linkage 31 can also be designed to be rotatable. Adjust any oxygen partial pressure p (0 2 ) via a gas inlet 32.
  • a pulsed laser with a wavelength X of its radiation 25, which lies in the UV spectral range is advantageously provided.
  • the wavelength range of interest extends from approximately 110 nm to 400 nm.
  • the laser must be able to produce an energy density on the material of the target 26 which is above 3 J / cm 2 .
  • the pulse energy of the laser should be at least 1.5 J / pulse.
  • the structure obtained in this way is subjected to an additional oxygen treatment in order to carry out a fine adjustment (loading) of oxygen in the crystal structure of the superconducting layers.
  • the oxygen can be supplied as a gas or ion stream. This treatment can be used advantageously with relatively low temperatures, especially below 600 ° C. If necessary, special heating can even be dispensed with.
  • the layers of the Josephson tunnel element according to the invention are produced by means of an evaporation step using a laser, the heat treatment and the oxygen treatment to form the desired superconducting metal oxide phase taking place simultaneously.
  • a method can be regarded as particularly advantageous. If necessary, however, other methods can also be used which enable the individual layers to be made in-sir, without requiring too high temperature treatments, which lead to an undesired interaction of the materials to be provided for the mask with the lead selected superconductor material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Das Josephson-Tunnelelement (15) mit sandwichartigem Aufbau auf einem Substrat (2) enthält eine als Basiselektrode (BE) dienende Schicht (7), eine als Gegenelektrode (GE) dienende Schicht (12) sowie zwischen den Elektrodenschichten eine als Tunnelbarriere wirkende Schicht (10). Die Elektrodenschichten (7, 12) sollen jeweils aus einem oxidkeramischen Supraleitermaterial mit hoher Sprungtemperatur und mit geordneter Kristallstruktur bestehen, so daß die Elektrodenschichten (7, 12) ein hohe kritische Stromdichte in Richtung der Schichtebenen (E1, E2) aufweisen. Sowohl die Tunnelbarrierenschicht (10) als auch das Substrat (2) sollen eine an die Kristallstrukturabmessungen der supraleitenden Phase des Supraleitermaterials angepaßte Textur (2a) aufweisen. Ein entsprechendes Josephson-Tunnelelement läßt sich vorteilhaft mit einer Lochmasken-Technik durch schräges Aufdampfen bei gleichzeitiger Wärmebehandlung und Sauerstoffbehandlung herstellen.

Description

Josephson-Tunnelelement mit metalloxidischem Supraleitermate¬ rial und Verfahren zur Herstellung des Elementes
Die Erfindung bezieht sich auf ein Josephson-Tunnelelement mit sandwichartigem Schichtaufbau auf einer Flachseite eines Sub- satrates, welches Element
- eine als Basiselektrode dienende Schicht aus einem metall- oxidischen Supraleitermaterial mit vorbestimmter Kristall¬ struktur in einer ersten Ebene, - eine als Gegenelektrode dienende Schicht aus dem Supraleiter¬ material mit der vorbestimmten Kristallstruktur in einer weiteren, zu der ersten Ebene parallelen Ebene sowie
- eine zwischen den Elektrodenschichten angeordnete, als Tunnelbarriere wirkende Sperrschicht, die aus einem etall- oxidischen, nicht-supraleitenden Material mit einer an die Kristallstruktur des Supraleitermaterials angepaßten Kri¬ stallstruktur besteht, enthält. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Josephsoπ-Tunnelelementes. Ein entsprechendes Element mit den genannten Merkmalen sowie ein Verfahren zu dessen Herstellung sind aus der US-PS 4 316 785 bekannt.
Josephson-Tunnelele ente mit sandwichartigem Aufbau stellen einen besonderen Typ von Josephson-Elementen dar. Sie ent¬ halten im allgemeinen eine schichtförmige Basiselektrode aus supraleitendem Material, auf der eine dünne Sperrschicht aus einem isolierenden, halbleitenden oder normalleitenden Material aufgebracht ist. Diese Sperrschicht bildet eine Tunnelbarriere zwischen der Basiselektrode und einer auf der Sperrschicht 2 abgeschiedenen Gegenelektrode, die ebenfalls aus supraleitendem Material besteht. Die Tunnelbarrierenschicht stellt dabei in bekannter Weise ein sogenanntes "Weak Link", d.h. eine Zone schwacher Kopplung zwischen den Elektrodenschichten dar (vgl. z.B. "Proc. IEEE", Vol. 61, No. 1, Jan. 1973, Seiten 36 bis 45).
Einen entsprechenden Aufbau weist auch das aus der eingangs ge¬ nannten US-PS zu entnehmende Josephson-Tunnelelement auf. Als Material der beiden Elektroden dieses Elementes dient das su¬ praleitende Material BaPb1_χBiχ03 (mit 0,05 -≤ x ≤ 0,3) mit perowskitartiger Kristallstruktur und einer Sprungtemperatur T von etwa 13 K. Die Tunnelbarrierenschicht besteht dabei aus einem nicht-supraleitenden Material, das ebenfalls eine ent- sprechende perowskitartige Kristallstruktur aufweist. Damit sind in dem Element mechanische Spannungen bei Temperaturwech¬ seln zu unterbinden.
Seit supraleitende Metalloxidverbindungen mit hohen Sprung- temperaturen T von insbesondere über 80 K bekannt sind, die deshalb mit flüssigem Stickstoff gekühlt werden können, ist man bestrebt, Josephson-Tunnelele ente aus entsprechenden Metall¬ oxidverbindungen herzustellen. Ein bekanntes Stoffsystem für diese Metalloxidverbindung ist vom Typ Mel-Me2-Cu-0, wobei die Komponenten Mel ein Seltenes Erdmetall oder Y und Me2 ein Erd¬ alkalimetall zumindest enthalten. Filme bzw. dünne Schichten aus diesen Metalloxidverbindungen werden vielfach mit speziellen Bedampfungs- oder Sputterprozessen hergestellt. Da¬ bei wird im allgemeinen auf einem geeigneten Substrat zunächst ein polykristallines oder amorphes Vorprodukt mit den Kompo¬ nenten des gewählten Sto fsyste s abgeschieden, wobei der Sauerstoffgehalt und damit die gewünschte supraleitende Hoch- T -Phase noch nicht exakt eingestellt sind. Dieses Vorprodukt wird anschließend mittels einer Wärme- und Sauerstoffbehand- lung in das Material mit der gewünschten supraleitenden Phase überführt.
Die so zu erhaltenden supraleitenden Metalloxidphasen, deren Kristallstrukturen ähnlich der eines Perowskites sein können, haben im Falle von YBa2CUj0.7 (mit 0 <_.' X '0,5) eine ortho- rhombische Struktur (vgl. z.B. "Europhysics Letters", Vol. 3, No. 12, 15.6.1987, Seiten 1301 bis 1307). Ihre Spruπgtempera- tur T liegt bei etwa 90 K. Da die diese supraleitenden Phasen aufweisenden Materialien den Oxidkeramiken zuzurechnen sind, wweerrddeenn ddiiee eennttsspprreecchheennddeenn HHoocchh--TT --SSuuppraleiter vielfach auch als oxidkeramische Supraleiter bezeichnet
Ein Josephson-Tunnelelement unter Verwendung eines solchen oxidkeramischen Hoch-T -Supraleitermaterials geht aus der Ver- öffentlichung "Japanese Journal of Applied Physics", Vol. 26, No. 9, September 1987, Part 2 - Letters, Seiten L1443 bis L1444 hervor. Dieses Element enthält auf einem gesinterten Substrat des Stoffsystems Y-Ba-Cu-0 eine Basiselektrodenschicht aus dem- selben Material. Auf dieser Schicht ist eine als Tunnelbarriere wirkende Schicht aus A120, ausgebildet, die von der Basiselek¬ trodenschicht durch eine wenige nm dicke Au-Schicht getrennt ist. Als Gegenelektrode dient eine auf die Tunnelbarrieren¬ schicht aufgebrachte Nb-Schicht. Es zeigt sich jedoch, daß dieses bekannte Josephson-Tunnelelement bei 77 K die für einen Einsatz in aktiven elektronischen Schaltungen zu erhebenden Forderungen hinsichtlich ausreichender kritischer Stromdichte und geringem magnetischen Flußrauschen nicht erfüllen kann.
Filme aus oxidkeramischem Hoch-T -Supraleitermaterial mit hohen kritischen Stromdichten sind an sich bekannt. Diese Filme müssen hierzu zumindest ein texturiertes Gefüge aufweisen. Sie zeigen nämlich ein stark anisotropes Verhalten ihrer kritischen Stromdichte (Stromtragfähigkeit) in Abhängigkeit von der Lage der Kristallachsen. Die Herstellung entsprechender YBa2Cu,07 - Filme auf einem einkristallinen SrTiO,-Substrat ist z.B. in "Physical Review Letters", Vol. 58, No. 25, 22.6.1987, Seiten 2684 bis 2686 beschrieben. Um dabei texturierte Schichten mit orientierten Kristallen der gewünschten supraleitenden Hoch- T -Phase zu erhalten, ist jedoch eine Glühbehandlung bei hoher Temperatur von etwa 900βC erforderlich. Entsprechend herge¬ stellte Filme können senkrecht zu den c-Achsen ihrer Kristalle bei 77 K kritische Stromdichten von über 10 A/cm2 haben, während parallel zu den c-Achsen die kritische Stromdichte mindestens eine lOer-Potenz kleiner ist.
Ein weiteres Verfahren zur Herstellung von einkristallinen yBa2Cu-,0-7_ -Filmen mittels Epitaxie ist aus der Veröffent- lichung "Applied Physics Letters", Vol. 51, No. 11, 14.9.1987, Seiten 861 bis 863 bekannt. Hierzu wird zunächst ein Target¬ material des entsprechenden Stoffsystems mittels eines Lasers verdampft und auf einem einkristallinen SrTiO^-Substrat abge¬ schieden. Der zu verwendende Laser kann ein KrF-Excimer-Laser sein, dessen Wellenlänge im UV-Spektralbereich liegt und eine Energiedichte am Targetmaterial von etwa 2 J/cm2 bei einer Pulsfrequenz von 3 bis 6 Hz ermöglicht. Das Substrat soll hier¬ bei auf 450°C erhitzt sein (vgl. auch "Appl.Phys.Lett." , Vol. 51, No. 8, 24.8.1987, Seiten 619 bis 621). Auch hier ist eine abschließende Wärmebehandlung bei etwa 900°C in einer Sauer¬ stoffatmosphäre und anschließende langsame Abkühlung erfor¬ derlich.
Bei diesem bekannten Verfahren werden die die gewünschte Kri- stallisation erst gewährleistenden Nachbehandlungsschritte als notwendige Voraussetzung zur Erreichung der angestrebten hohen kritischen Stromdichten angesehen. Der Aufwand zur Her¬ stellung entsprechender Schichten ist jedoch erheblich. Außer¬ dem ist die bei einem entsprechenden Hochtemperaturprozeß ab- laufende Kristallisation schwierig zu kontrollieren. Insbeson¬ dere ist eine Interdiffusion zwischen dem Filmmaterial und dem Substrat in vielen Fällen nicht zu vermeiden.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein
Josephson-Tunnelelement anzugeben, bei dem diese Probleme zu¬ mindest weitgehend vermieden sind. Insbesondere soll das Element mit einem Verfahren herstellbar sein, mit dem kritische Stromdichten in den supraleitenden Schichten von mindestens 10 A/cm2 reproduzierbar auszubilden sind.
Diese Aufgabe wird für das Josephson-Tunnelelement mit den eingangs genannten Merkmalen erfindungsgemäß dadurch gelöst, daß die Elektrodenschichten jeweils aus einem oxidkeramischen Supraleitermaterial mit hoher Sprungtemperatur und mit geord¬ neter Kristallstruktur bestehen, so daß die Elektrodenschichten eine hohe kritische Stromdichte in Richtung der Ebenen auf¬ weisen, und daß ein Substrat vorgesehen ist, welches eine an die Kristallstrukturabmessungeπ der supraleitenden Phase des oxidkeramischen Supraleitermaterials angepaßte Textur aufweist.
Bei der Erfindung wird also die besondere Kristallstruktur der supraleitenden oxidkeramischen Hoch-T -Phase zur Ausbildung eines Josephson-Tunnelelementes berücksichtigt. Diese Kristall- Struktur kann dabei vorteilhaft auf einem entsprechend texturierten Substrat erhalten werden. Demgemäß sind die beiden Elektrodenschichten hoher kritischer Stromdichte durch eine dünne Sperrschicht beabstandet, die eine diese Schichten nur schwach koppelnde Tunnelbarriere darstellt. Die vorbestimmte Kristallstruktur dieser Tunnelbarriere erleichtert dabei die Ausbildung der Gegenelektrodenschicht hoher kritischer Strom- dichte. Ein derartiges Josephson-Tunnelelement kann somit vor¬ teilhaft die angestrebten Forderungen hinsichtlich kritischer* Stromdichte und Rauscharmut erfüllen. Besonders vorteilhaft läßt sich das erfindungsgemäße Josephson- Tunnelelement dadurch herstellen, daß zunächst in einem Litho¬ graphieprozeß auf dem Substrat eine Lochmaske mit dem zu er¬ zeugenden Tunnelelement angepaßter Lochstruktur aufgebracht wird und daß anschließend bei ununterbrochenen Unterdruckver¬ hältnissen die Schichten des Tunnelelementes durch schräges Aufdampfen bei gleichzeitiger Wärmebehandlung und Sauerstoffbe¬ handlung abgeschieden werden, wobei die gewünschte supralei¬ tende Phase des Supraleitermaterials ausgebildet wird. Zum Auf- dampfen des Supraleitermaterials wird vorteilhaft ein Target¬ material aus einer Oxidkeramik dieses Materials mittels eines gepulsten Lasers verdampft, dessen Wellelänge im Ultraviolett- Spektralbereich liegt.
Die mit diesen Verfahrensschritten verbundenen Vorteile sind insbesondere darin zu sehen, daß quasi "in situ" eine Kri¬ stallisation der gewünschten supraleitenden Phase zu erreichen ist und deshalb auf eine nachträgliche Ausbildung dieser Phase mittels eines besonderen Glühschrittes bei sehr hohen Tempera- turen verzichtet werden kann. Dabei sind für die erfiπdungsge- mäße In-situ-Kristallisation höhere Substrattemperaturen und aktivierter Sauerstoff am Substrat notwendig. Zur Aktivierung des Sauerstoffs kann vorteilhaft ein Laser mit einer ver¬ hältnismäßig hohen Pulsenergie eingesetzt werden. Der moleku- lare Sauerstoff der vorgesehenen Atmosphäre wird dann durch Wechselwirkung mit der UV-Laserstrahlung direkt an dem ge¬ heizten Substrat mit jedem Lase-rpuls aktiviert. Die dabei er¬ zeugte Menge an Sauerstoffradikalen und die höhere Substrat¬ temperatur reichen aus, um bei jedem Puls eine etwa 1 nm dicke Schicht epitaktisch aufwachsen zu lassen. Die bei üblichen Pulsfrequenzen so erreichbaren hohen Aufwachsraten gewähr¬ leisten eine geringe Bedampfungsdauer und eine geringe Ver¬ unreinigung der Schichten. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Josephson- Tunnelelementes sowie des Verfahrens zu seiner Herstellung gehen aus den jeweils abhängigen Ansprüchen hervor.
Zur weiteren Erläuterung der Erfindung wird nachfolgend auf die Zeichnung bezug genommen, in deren Figur 1 schematisch die Her¬ stellung eines Josepshon-Tunnelelementes veranschaulicht ist. Figur 2 zeigt schematisch eine Vorrichtung zur Durchführung dieses Verfahrens. Dabei sind in den Figuren übereinstimmende Teile mit denselben Bezugszeichen versehen.
Das erfindungsgemäße Josephson-Tunnelelement soll aus einem be¬ stimmten supraleitenden Hoch-T -Material auf einem vorbe¬ stimmten Substrat ausgebildet sein. Als Ausführungsbeispiel sei ein Material aus dem Stoffεystem Mel-Me2-Cu-0 ausgewählt. Dabei können Mel und Me2 insbesondere ein Element aus der Gruppe der Seltenen Erdmetalle wie z.B. Y bzw. ein Element aus der Gruppe der Erdalkalimetalle wie z.B. Ba sein. Neben Y und Ba für Mel bzw. Me2 geeignete Materialien sind allgemein bekannt. Ge- gebenenfalls sind Mel und Me2 auch Legierungen oder Verbin¬ dungen oder sonstige Zusammensetzungen dieser Metalle mit Sub¬ stitutionsmaterialien; d.h., mindestens eines der genannten Elemente kann in bekannter Weise partiell durch ein anderes Element substituiert sein. Auch das Cu oder das 0 können zu- mindest partiell gegen andere Elemente ausgetauscht werden. Das erfindungsgemäße Josephson-Tunnelelement und das Verfahren zu seiner Herstellung sind jedoch nicht nur auf das genannte Stoff¬ system beschränkt; d.h., es sind ebensogut auch andere oxidkera¬ mische, metallische Komponenten und Sauerstoff enthaltende Hoch-T -Supraleitermaterialien geeignet, die dem genannten System nicht zuzurechnen sind. Entsprechende Materialien sind z.B. aus "Superconductivity News", Vol. 1, No. 9, 19.3.1988, Seiten 1 bis 5 und 13 bis 16 bekannt. Die aus dem bestimmten
Hoch-T -Supraleiter aterial herzustellenden Elektrodenschichten des Josephson-Tunnelelementes sollen dabei eine hohe Stromtrag¬ fähigkeit (kritische Stromdichte) in der Größenordnung von mindestens 10 A/cm2 in der Nähe der Sprungtemperatur T des Materials ermöglichen. Vorteilhaft sind außerdem insbeson- dere solche Materialien, deren Sprungtemperatur deutlich über der Verdampfungstemperatur des flüssigen Stickstoffs von etwa 77 K liegen.
Für das Substrat zu wählende Materialien sind vorteilhaft solche, die eine Struktur mit Abmessungen ihrer Einheitszellen haben, die zumindest in etwa das Ein- oder Mehrfache der ent¬ sprechenden Abmessungen der Achsen der auf ihnen aufgewachsenen Strukturen des supraleitenden Hoch-T -Materials ausmachen. Aus diesem Grunde ist im Falle von YBa2Cu,0y_ ein einkristallines oder zumindest texturiertes SrTiO,- oder (Ba,Sr)TiO-,-Substrat besonders vorteilhaft. Daneben sind ebenso auch andere Werk¬ stoffe wie z.B. MgO, A120-,, Y-stabilisiertes Zr02 oder Ta20c geeignet. Das erfindungsgemäße Josephson-Tunnelelement ist jedoch nicht unbedingt auf derartige texturierte Substrate beschränkt. So können gegebenenfalls auch polykristalline Substrate wie z.B. polykristallines, auf einem geeigneten Träger aufgebrachtes SrTiO, vorgesehen werden.
Als ein konkretes Ausführungsbeispiel sei nachfolgend die er- findungsgemäße Ausbildung mindestens eines Josephson-Tunnel¬ elementes mit einem supraleitenden Material der bekannten Zu¬ sammensetzung YBa2Cu,07 mit orthorhombischer Struktur auf einem texturierten SrTiO^-Substrat zugrundegelegt. Hierzu ist ein Aufbau vorgesehen, der in Figur 1 schematisch als Quer- schnitt veranschaulicht ist.
Zur Herstellung des mindestens einen Josephson-Tunnelelementes wird vorteilhaft eine spezielle Lochmasken-Technik angewandt, die als Schwebemasken-Technik bezeichnet wird. Eine derartige Schwebemasken-Technik ist allgemein bekannt (vgl. z.B. DE-PS 31 28 982 oder die Veröffentlichung "SQUID '80 - Supercon¬ dueting Quantum Interference Devices and their Applications", Berlin 1980, Seiten 399 bis 415). Gemäß dieser bekannten Tech- nik wird auf dem Substrat 2, dessen Textur durch gestrichelte Linien 2a angedeutet sein soll, zunächst eine der angestrebten Josephson-Tunnelelementstruktur angepaßte Schwebemaske 3 auf¬ gebracht. Diese Schwebemaske, die z.B. aus SiO besteht, weist eine freitragende Filmbrücke 3a auf, die in einer Höhe h von wenigen Mikrometern über dem Substrat schwebt und eine Spann¬ weite w von etwa 1 μm hat. Zur Schaffung einer epitaxiefähigen Substratfläche 5, insbesondere auch im Bereich unter der Schwebebrücke 3a, werden nun die unbedeckten Teile der Sub¬ stratfläche 5 z.B. durch Ionenbeschuß unter geeigneten Winkeln von allen Rückständen befreit. Das Substrat einschließlich der auf ihm aufgebrachten Schwebemaske 3 wird dann noch "in situ", d.h. ohne Unterbrechung der für den Ionenbeschuß vorzusehenden Vakuumbedingungen, in Sauerstoff geglüht.
Um die geforderten Eigenschaften des nun herzustellenden Jo¬ sephson-Tunnelelementes zu ermöglichen, müssen die als Elek¬ troden dienenden Schichten eine hohe kritische Stromdichte in Richtung ihrer Schichtebenen gewährleisten. Wegen der Aniso¬ tropie der bekannten Hoch-T -Supraleitermaterialien ist es hierzu erforderlich, daß die supraleitenden Elektrodenschich¬ ten so texturiert ausgebildet werden, daß die c-Achsen ihrer Kristallstrukturen senkrecht auf der Substratfläche 5 stehen. In dieser Richtung ist die kritische Stromdichte wesentlich kleiner als senkrecht dazu. Die c-Achsen sind in der Figur durch einzelne gepfeilte Linien 6 angedeutet.
Um eine entsprechende epitaktische bzw. texturierte Deposition des für das Ausführungsbeispiel ausgewählten oxidkeramischen Hoch-T -Supraleitermaterials zu ermöglichen, kann insbesondere eine spezielle Laser-Verdampfungstechnik angewandt werden. Dementsprechend wird auf das erhitzte Substrat 2 eine erste Schicht 7 aus dem Supraleitermaterial schräg aufgedampft. Zur Erzeugung eines entsprechenden Dampfstrahles 9 wird vorteilhaft ein gepulster Excimer-Laser eingesetzt, der eine hinreichende Energiedichte und Pulsenergie ermöglicht. Der Dampfstrahl 9 soll dabei unter einem Aufdampfwinkel c\ auftreffen, der um etwa 45° gegenüber der Ebene der Substratfläche 5 geneigt ist. Auf diese Weise wird auch der unter der Schwebebrücke 3a lie- gende Bereich der Substratfläche 5 beschichtet. Die Schicht¬ dicke d der in einer ersten Ebene El liegenden Schicht 7 kann z.B. in der Größenordnung von etwa 100 nm liegen.
Die so erhaltene erste Schicht stellt die Basiselektrode BE des herzustellenden Josephson-Tunnelelementes dar, auf die nun in situ eine sehr dünne Sperrschicht 10 aufgebracht wird. Diese als Tunnelbarriere wirkende Schicht mit einer für eine schwache Kopplung typischen Schichtdicke c von wenigen nm soll vor¬ teilhaft aus einem nicht-supraleitenden Material erstellt wer- den, dessen Kristallstruktur an die des Supraleitermaterials angepaßt ist. So kommen im Fall des gewählten Ausführungsbei¬ spieles mit YBa^u-zOy als Supraleitermaterial Sperrschichten 10 insbesondere aus nicht-supraleitenden Oxidkeramiken in Frage, bei denen das Element Y des genannten Stoffsystems des Supraleitermaterials gegen ein anderes Seltenes Erdmetall aus¬ getauscht ist. Ein entsprechendes Material ist z.B. eine Pr-Ba-Cu-Oxidkeramik. Diese Oxidkeramik wird mit derselben Technik wie das supraleitende Material der Schicht 7 aus der Gegenrichtung unter einem Aufdampfwinkel (180-/3 ) aufge- dampft. Der entsprechende Dampfstrahl ist in der Figur mit 11 bezeichnet. Hierbei wird jedoch zweckmäßig ein geringfügig fla¬ cherer Aufdampfwinkel gewählt; d.h., es gilt: [σC | > j ß \ . Auf diese Weise bleibt einerseits ein Bereich der Basiselek¬ trode BE für eine spätere Kontaktierung frei; andererseits wird auch eine saubere Abdeckung der Flanke 7' der Basiselek¬ trode erreicht.
Auf diesen so erhaltenen, bis zu einer parallelen Ebene E2 her- anreichenden Aufbau mit der Basiselektrode BE und der Sperr¬ schicht 10 wird anschließend eine als Gegenelektrode GE dienen¬ de zweite Schicht 12 aus dem Supraleitermaterial ebenfalls durch epitaktische Laser-Deposition aufgebracht. Hierbei wird zweckmäßig ein Aufdampfwinkel (180 - oi, ) für den entsprechenden Dampfstrahl 13 vorgesehen. Die Dicke D der zweiten Schicht 12 sollte dabei deutlich (mindestens 1,5 mal) größer als die Dicke d der ersten Schicht 7 sein. Auf diese Weise ist auch im Be¬ reich der Flanke 71 über die somit ausgebildete Stufe der Schicht 12 die geforderte hohe kritische Stromdichte zu gewähr- leisten.
Die Elektroden des so hergestellten, allgemein mit 15 bezeich¬ neten Josephson-Tunnelelementes müssen mit Anschlußleitern koπtaktiert sein. Hierbei müssen auch im Kontaktbereich die geforderten hohen kritischen Stromdichten gewährleistet sein. Aus diesem Grunde wird auch für die Aπschlußleiter eine epitaktische Abscheidung wie für die supraleitenden Schichten der Elektroden des Josephson-Tunnelelementes 15 vorgesehen. Gemäß dem in der Figur dargestellten Ausführungsbeispiel wer- den aufgrund der gewählten Abmessungen der Schwebemaske und der gewählten Aufdampfwinkel Teile der Anschlußleiter 16 und 17 gleichzeitig mit den Elektroden 'ausgebildet.
Um die gewünschte Epitaxie der einzelnen Schichten des Josephson-Tunnelelementes auf der jeweils darunterliegenden Fläche zu ermöglichen, wird vorteilhaft das erwähnte Laser-Ver- dampfen eingesetzt, das nachfolgend anhand von Figur 2 prin¬ zipiell erläutert wird. In dieser Figur ist schematisch ein Querschnitt durch eine entsprechende, allgemein mit 20 be- zeichnete Abscheidevorrichtung zum Zeitpunkt der Ausbildung der Schicht der Basiselektrode veranschaulicht. Die Abscheidevor¬ richtung enthält eine Vakuumkammer 21, die an einem Pump¬ stutzen 22 mittels einer entsprechenden Pumpe auf einen End- druck zu evakuieren ist, der z.B. unter 10" bar liegt. Durch ein Quarzfenster 24 der Vakuumkammer 21 tritt ein Laserstrahl 25 in die Kammer ein und trifft dort unter einem Winkel von beispielsweise von etwa 45" auf ein erstes Target 26 aus dem gewünschten Hoch-T -Supraleitermaterial. Das an einem Halter 27 befestigte Target befindet sich dabei im Zentrum der Kammer. Es kann mit Hilfe eines drehbaren Gestänges 28 gegen ein entspre¬ chend gehaltertes Target 26" aus dem nicht-supraleitenden Mate¬ rial der Tunnelbarriere ausgetauscht werden. Gegebenenfalls kann das jeweils dem Laserstrahl ausgesetzte Target zusätzlich noch bewegt werden, um so den Strahl nicht nur auf einen einzi¬ gen Fleck des Targets auftreffen zu lassen. Aus dem Target 26 wird das verdampfte Material als Dampfstrahl 9 senkrecht zur Targetoberfläche emittiert. Es trifft auf das Substrat 2, das sich dem Target gegenüber befindet. Das Substrat 2 soll dabei mit einer Schwebemaske gemäß Figur 1 versehen sein, ist jedoch in Figur 2 nicht näher ausgeführt. Es ist an einem Substrat- träger 30 befestigt, der heizbar ausgebildet ist. Auf diese Weise läßt sich das Substrat während des Bedampfungsprozesses vorteilhaft auf einem erhöhten Temperaturniveau halten. Außer- dem ist die Neigung des Substratträgers 30 und damit des Sub¬ strates gegenüber der Achse des Dampfstrahles 9 mittels eines entsprechend ausgebildeten Gestänges einstellbar, um so die verschiedenen Aufdampfwinkel zu erhalten. Gemäß der Darstellung der Figur 2 ist das Substrat um etwa 45" = 90 - <__(. geneigt angeordnet. Darüber hinaus ermöglicht das Gestänge 31 eine Variation des Abstandes a zwischen dem Target 26 und dem Sub¬ strat 2. Es läßt sich so z.B. ein Abstand a zwischen 20 mm und 45 mm einstellen. Gegebenenfalls ist auch das Gestänge 31 drehbar ausgestaltet. Ferner läßt sich in der Kammer 21 ein be- liebiger Sauerstoff-Partialdruck p(02) über einen Gaseinlaß 32 einregulieren.
Um während des Aufdampfschrittes in situ die gewünschte supra- leitende Hoch-T -Phase aus dem oxidkeramischen Material zu er¬ zeugen, wird vorteilhaft ein gepulster Laser mit einer Wellen¬ länge X seiner Strahlung 25 vorgesehen, die im UV-Spektralbe¬ reich liegt. Der dabei interessierende Wellenlängenbereich er¬ streckt sich von etwa 110 nm bis 400 nm. Außerdem muß der Laser eine Energiedichte am Material des Targets 26 hervorrufen können, die über 3 J/cm2 liegt. Darüber hinaus sollte die Puls¬ energie des Lasers mindestens 1,5 J/Puls betragen. Die genann¬ ten Forderungen können insbesondere mit einem an sich bekannten XeCl-Excimer-Laser erfüllt werden, dessen Strahlung 25 eine Wellenlänge = 308 nm hat (vgl. z.B. "Proc. of SPIE", Vol. 735, 1987, Seiten 50 bis 54). Seine Wiederholungsfrequenz kann beispielsweise bei 5 Hz liegen. Durch eine Fokussierungsoptik, von der in Figur 2 lediglich eine Quarzlinse 33 veranschaulicht ist, kann von einem derartigen Laser am Target 26 oder 26* eine Energiedichte erzeugt werden, die maximal 7,5 J/cm2 beträgt. Im allgemeinen sind Energiedichten von 4 bis 5 J/cm2 ausreichend. Während des Aufdampfprozesses muß das Substrat 2 auf einer Temperatur zwischen 600°C und 800βC gehalten werden, wobei in der Kammer eine Sauerstoffatmosphäre zwischen 0,02 mbar und 1 mbar eingestellt ist. Ein Sauerstoff-Partialdruck p(02) zwi¬ schen 0,05 mbar und 0,5 mbar hat sich als besonders günstig er¬ wiesen.
Vielfach ist es noch vorteilhaft, wenn man den so gewonnenen Aufbau einer zusätzlichen Sauerstoff-Behandlung unterzieht, um hiermit eine Sauerstoff-Feineinstellung (-beladung) in dem Kri- stallgefüge der supraleitenden Schichten vorzunehmen. Dabei kann der Sauerstoff als Gas- oder Ionenstrom zugeführt werden. Diese Behandlung kann man vorteilhaft bei verhältnismäßig nied- rigen Temperaturen, insbesondere unterhalb von 600°C durchfüh¬ ren. Gegebenenfalls kann auf eine besondere Erwärmung sogar verzichtet werden.
Gemäß dem Ausführungsbeispiel wurde davon ausgegangen, daß die Herstellung der Schichten des erfindungsgemäßen Josephson- Tunnelelementes mittels eines Verdampfungsschrittes unter Ein¬ satz eines Lasers durchgeführt wird, wobei die Wärmebehandlung und die Sauerstoffbehandlung zur Ausbildung der gewünschten supraleitenden Metalloxidphase gleichzeitig erfolgen. Ein der¬ artiges Verfahren ist als besonders vorteilhaft anzusehen. Ge¬ gebenenfalls können jedoch auch andere Verfahren zum Einsatz kommen, die eine In-sir,u-Herstellung der einzelnen Schichten ermöglichen, ohne daß dabei zu hohe Temperaturbehandlungen er- forderlich wären, die zu einer unerwünschten Wechselwirkung der für die Maske vorzusehenden Materialien mit dem gewählten Supraleitermaterial führen.

Claims

Patentansprüche
1. Josephson-Tunnelelement mit sandwichartigem Aufbau auf einer Flachseite eines Substrates, welches Element - eine als Basiselektrode dienende Schicht aus einem rnetall- oxidischen Supraleitermaterial mit vorbestimmter Kristall¬ struktur in einer ersten Ebene,
- eine als Gegenelektrode dienende Schicht aus dem Supraleiter¬ material mit der vorbestimmten Kristallstruktur in einer wei- teren, zu der ersten Ebene parallelen Ebene sowie
- eine zwischen den Elektrodenschichten angeordnete, als Tunnelbarriere wirkende Schicht, die aus einem metalloxidi- schen, nicht-supraleitenden Material mit einer an die Kri- stallεtruktur des Supraleitermaterials angepaßten Kristall¬ struktur besteht, enthält, d a d u r c h g e k e n n z e i c h n e t ,
- daß die Elektrodenschichten (7, 12) jeweils aus einem oxid¬ keramischen Supraleitermaterial mit hoher Sprungtemperatur und mit geordneter Kristallstruktur bestehen, so daß die
Elektrodenschichten (7, 12) eine hohe kritische Stromdichte in Richtung der Ebenen (El, E2) aufweisen, und
- daß ein Substrat (2) vorgesehen ist, welches eine an die Kristallstrukturabmessungen der supraleitenden Phase des oxidkeramischen Supraleitermaterials angepaßte Textur (2a) aufweist.
2. Josephson-Tunnelelement nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Schicht (12) der Gegen¬ elektrode (GE) die Schicht (7) der Basiselektrode (BE) unter Ausbildung einer Stufe überlappt und zumindest im Bereich der Stufe eine Dicke (D) hat, die größer als die Dicke (d) der Basiselektrodenschicht (7) ist.
3. Josephson-Tunnelelement nach Anspruch 1 oder 2, d a- d u r c h g e k e n n z e i c h n e t , daß die Elektro¬ denschichten (7, 12) mit Anschlußleitern (16, 17) aus dem oxid¬ keramischen Supraleitermaterial verbunden sind.
4. Josephson-Tunnelelement nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß die Anschlußleiter (16, 17) eine den Elektrodenschichten (7, 12) entsprechend geordnete Kristallstruktur haben.
5. Josephson-Tunnelelement nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß für das Sub¬ strat (2) ein Material aus der Gruppe SrTiO,, A1203, Zr02 und MgO vorgesehen ist.
6. Josephson-Tunnelelement nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß ein oxid¬ keramisches Supraleitermaterial auf der Basis des Stoffsystems Mel-Me2-Cu-0 vorgesehen ist, wobei die metallischen Kompo- nenten Mel und Me2 ein Seltenes Erdmetall oder Yttrium bzw. ein Erdalkalimetall zumindest enthalten.
7. Verfahren zur Herstellung mindestens eines Josephson-Tunnel¬ elementes nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß zunächst in einem Litho¬ graphieprozeß auf dem Substrat (2) eine Lochmaske (3) mit dem zu erzeugenden Tunnelelement (15) angepaßter Lochstruktur auf¬ gebracht wird und daß anschließend bei ununterbrochenen Unter¬ druckverhältnissen die Schichten (7, 10, 12) des Tunnelelemen- tes (15) durch schräges Aufdampfen bei gleichzeitiger Wärmebe¬ handlung und Sauerstoffbehandlung abgeschieden werden, wobei die gewünschte supraleitende Phase des Supraleitermaterials ausgebildet wird.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n¬ z e i c h n e t , daß zumindest das Material eines Targets (26) aus einer Oxidkeramik des Supraleitersmaterials mittels eines gepulsten Lasers, dessen Wellenlänge ( ) im Ultra- violett-Bereich liegt, verdampft wird.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n¬ z e i c h n e t , daß
- eine Energiedichte der Laserεtrahlung (25) am Target (26) von über 3 J/cm ,
- eine Pulsenergie des Lasers von mindestens 1,5 J/Puls,
- eine Aufheizung des Substrates (2) auf eine Temperatur zwi¬ schen 600βC und 800βC sowie - eine Atmosphäre mit einem Sauerstoff-Partialdruck (p(02)) zwischen 0,02 mbar und 1 mbar vorgesehen werden.
10. Verfahren nach Anspruch 8 oder 9, d a d u r c h 9 e- k e n n z e i c h n e t , daß ein XeCl-Excimer-Laser vor¬ gesehen wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, d a- d u r c h g e k e n n z e i c h n e t , daß eine Energie- dichte der Laserstrahlung (25) am Target (26) zwischen 4 und 5 J/cm2 vorgesehen wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, d a- d u r c h g e k e n n z e i c h n e t , daß eine Sauer- Stoffatmosphäre mit einem Sauerstoff-Partialdruck (p(02)) zwischen 0,05 mbar und 0,5 mbar vorgesehen wird.
13. Verfahren nach einem der Ansprüche 8 bis 12, d a- d u r c h g e k e n n z e i c h n e t , daß nach dem Ver- dampfungsschritt eine zusätzliche Sauerstoffbehandlung bei einer Temperatur unterhalb von 600βC vorgenommen wird.
PCT/EP1989/000760 1988-07-06 1989-07-03 Josephson-tunnelelement mit metalloxidischem supraleitermaterial und verfahren zur herstellung des elementes WO1990000815A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3822905.6 1988-07-06
DE3822905A DE3822905A1 (de) 1988-07-06 1988-07-06 Josephson-tunnelelement mi metalloxidischem supraleitermaterial und verfahren zur herstellung des elements

Publications (1)

Publication Number Publication Date
WO1990000815A1 true WO1990000815A1 (de) 1990-01-25

Family

ID=6358100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000760 WO1990000815A1 (de) 1988-07-06 1989-07-03 Josephson-tunnelelement mit metalloxidischem supraleitermaterial und verfahren zur herstellung des elementes

Country Status (3)

Country Link
EP (1) EP0424422A1 (de)
DE (1) DE3822905A1 (de)
WO (1) WO1990000815A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180267A1 (en) * 2018-03-23 2019-09-26 University Of Copenhagen Method and substrate for patterned growth on nanoscale structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59203408D1 (de) * 1991-01-21 1995-10-05 Siemens Ag Verfahren zur Herstellung eines strukturierten Aufbaus mit Hochtemperatursupraleitermaterial.
DE4124773C2 (de) * 1991-07-26 1996-10-10 Forschungszentrum Juelich Gmbh Josephson-Element aus supraleitender Keramik mit perowskitähnlicher Struktur und Verfahren zu seiner Herstellung
DE4302769C2 (de) * 1993-02-01 1995-11-02 Daimler Benz Ag Verfahren zur Herstellung von Josephson- und Tunnelkontakten aus Hochtemperatur-Supraleitern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316785A (en) * 1979-11-05 1982-02-23 Nippon Telegraph & Telephone Public Corporation Oxide superconductor Josephson junction and fabrication method therefor
DE3128982A1 (de) * 1981-07-22 1983-02-10 Siemens AG, 1000 Berlin und 8000 München "verfahren zur herstellung mindestens eines josephson-tunnelelementes"
EP0329507A1 (de) * 1988-02-02 1989-08-23 Thomson-Csf Dünnschichtanordnung aus supraleitendem Material und Verfahren zu ihrer Herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002311B1 (ko) * 1987-02-27 1991-04-11 가부시기가이샤 히다찌세이사꾸쇼 초전도 디바이스
EP0342039B1 (de) * 1988-05-11 1994-08-31 Canon Kabushiki Kaisha Josephson-Einrichtung und Verfahren zu ihrer Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316785A (en) * 1979-11-05 1982-02-23 Nippon Telegraph & Telephone Public Corporation Oxide superconductor Josephson junction and fabrication method therefor
DE3128982A1 (de) * 1981-07-22 1983-02-10 Siemens AG, 1000 Berlin und 8000 München "verfahren zur herstellung mindestens eines josephson-tunnelelementes"
EP0329507A1 (de) * 1988-02-02 1989-08-23 Thomson-Csf Dünnschichtanordnung aus supraleitendem Material und Verfahren zu ihrer Herstellung

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters, Band 51, Nr. 11, September 1987 American Institute of Physics (US) B. OH et al.: "Critical Current Densities and Transport in Superconducting YBa2Cu307-Delta Films made by Electron Beam Coevaporation", seiten 852-854 *
Applied Physics Letters, Band 51, Nr. 22, 30. November 1987 American Institute of Physics (US) J. NARAYAN et al.: "Formation of Thin Superconducting Films by the Laser Processing Method", seiten 1845-1847 *
Applied Physics Letters, Band 51, Nr. 26, 28. Dezember 1987 American Institute of Physics (US) H. ADACHI et al.: "Low-Temperature Process for the Preparation of High Tc Superconducting Thin Films", seiten 2263-2265 *
Applied Physics Letters, Band 51, Nr. 8, 24. August 1987 American Institute of Physics (US) D. DIJKKAMP et al.: "Preparation of Y-Ba-Cu Oxide Superconductor Thin Films using Pulsed Laser Evaporation from High Tc Bulk Material", seiten 619-621 *
Applied Physics Letters, Band 52, Nr. 13, 28. Marz 1988 American Institute of Physics (US) H.C. LI et al.: "In Situ Preparation of Y-Ba-Cu-O Superconducting Thin Films by Magnetron Sputtering", seiten 1098-1100 *
Journal of Physics D: Applied Physics, Band 20, Nr. 10, 14. Oktober 1987 IOP Publishing Ltd (Bristol, GB) M.G. BLAMIRE et al.: "Fabrication and Properties of Superconducting Device Structures in YBa2Cu307-x Thin Films", seiten 1330-1335 *
Physical Review Letters, Band 58, nr. 25, 22. Juni 1987, A.P.S. (New York, US) P. CHAUDHARI et al.: "Critical-Current Measurements in Epitaxial Films of YBa2Cu307-x Compound", seiten 2684-2686 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180267A1 (en) * 2018-03-23 2019-09-26 University Of Copenhagen Method and substrate for patterned growth on nanoscale structures
US11950516B2 (en) 2018-03-23 2024-04-02 University Of Copenhagen Method and substrate for patterned growth on nanoscale structures

Also Published As

Publication number Publication date
DE3822905C2 (de) 1992-12-17
EP0424422A1 (de) 1991-05-02
DE3822905A1 (de) 1990-01-11

Similar Documents

Publication Publication Date Title
EP0341520B1 (de) Verfahren zur Herstellung einer Schicht aus einem metalloxidischen Supraleitermaterial mittels Laser-Verdampfens
DE69324633T2 (de) Verfahren zur Herstellung eines einkristallinen Dünnfilmes
DE68924630T2 (de) Hochfrequenz-Substrat-Material für Dünnschichtlagen perovskitischer Supraleiter.
EP0302354B1 (de) Verfahren zur Herstellung eines schichtartigen Aufbaus aus einem oxidkeramischen Supraleitermaterial
DE60319470T2 (de) Herstellungsverfahren für einen polykristallinen Dünnfilm und Herstellungsverfahren für ein Oxidsupraleiter-Bauelement
DE69115209T2 (de) Verfahren zur Herstellung eines Supraleitungsbauelements mit reduzierter Dicke der supraleitenden Oxidschicht und dadurch hergestelltes Supraleitungsbauelement.
DE69115957T2 (de) Verfahren zum Herstellen hochtemperatursupraleitender Dünnschichten
DE69017112T2 (de) Supraleitende Dünnschicht aus Oxid und Verfahren zu deren Herstellung.
DE60031784T2 (de) Verbesserte hochtemperatursupraleiter-beschichtete elemente
DE68917779T2 (de) Josephson-Einrichtung und Verfahren zu ihrer Herstellung.
DE69117378T2 (de) Supraleitende Einrichtung mit geschichteter Struktur, zusammengesetzt aus oxidischem Supraleiter und Isolatordünnschicht und deren Herstellungsmethode
DE3822905C2 (de)
DE69218735T2 (de) Verfahren zum Herstellen eines künstlichen Josephson-Korngrenzen-Übergangselementes
DE3822904C2 (de)
DE3886429T2 (de) Verfahren zum Herstellen einer supraleitenden Dünnschicht.
DE68918746T2 (de) Halbleitersubstrat mit dünner Supraleiterschicht.
DE3834964A1 (de) Verfahren zur herstellung mindestens einer schicht aus einem metalloxidischen supraleitermaterial mit hoher sprungtemperatur
DE69328537T2 (de) Verfahren zur Herstellung einer supraleitenden Dünnschicht aus hoch-temperatur-supraleitenden-Oxid
DE4120258A1 (de) Verfahren zur herstellung einer schicht aus einem hochtemperatursupraleiter-material auf einem silizium-substrat
DE19932444C1 (de) Verfahren zur Herstellung einer texturierten Schicht aus oxidischem Material auf einem Substrat und Verwendung des Verfahrens
DE69113010T2 (de) Artikel mit supraleiter/isolator Lagenstruktur und Verfahren zur Herstellung des Artikels.
EP0330899B1 (de) Verfahren zur Herstellung einer Schicht aus einem metalloxidischen Supraleitermaterial mit hoher Sprungtemperatur und Vorrichtung zur Durchführung des Verfahrens
DE69210523T2 (de) Verfahren zur Herstellung von supraleitenden Schichten aus supraleitendem Oxyd in denen nicht-supraleitende Gebiete vorkommen und Verfahren zur Herstellung eines Bauelements welches solche Schichten enthält
DE4104592A1 (de) Verfahren zur herstellung einer hochtemperatursupraleiter-schicht auf einem silizium-substrat
DE4210613C2 (de) Einrichtung zur Beschichtung eines Substrates mit einem metalloxidischen Hoch-T¶c¶-Supraleitermaterial

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989907697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989907697

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989907697

Country of ref document: EP