WO1989002524A1 - Fuel dosing process and device for diesel engines - Google Patents

Fuel dosing process and device for diesel engines Download PDF

Info

Publication number
WO1989002524A1
WO1989002524A1 PCT/DE1988/000467 DE8800467W WO8902524A1 WO 1989002524 A1 WO1989002524 A1 WO 1989002524A1 DE 8800467 W DE8800467 W DE 8800467W WO 8902524 A1 WO8902524 A1 WO 8902524A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
control
lambda
internal combustion
combustion engine
Prior art date
Application number
PCT/DE1988/000467
Other languages
English (en)
French (fr)
Inventor
Ernst-Ulrich Joachim
Herman Kull
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE8888907093T priority Critical patent/DE3875488D1/de
Publication of WO1989002524A1 publication Critical patent/WO1989002524A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine

Definitions

  • the invention is based on a method for fuel metering according to the preamble of claim 1.
  • the amount of fuel required for the respective operating state of a diesel internal combustion engine is generally dependent on the speed of the machine and on the accelerator pedal position - possibly also depending on other variables - determined. Since there is excess air, the amount of fresh air drawn in plays only a minor role. However, demands for a reduction in harmful exhaust gases and the lowest possible particle emissions in internal combustion engines led to the amount of fresh air drawn in also being included in the determination of the amount of fuel in diesel engines.
  • DE-OS 28 03 750 a method and a device are known which take into account the amount of fresh air drawn in when determining the amount of fuel.
  • the accelerator pedal position which signals a fuel quantity request
  • the air quantity and fuel quantity are precontrolled.
  • the exact values are taken from multi-dimensional maps.
  • the air and fuel quantities are then regulated to these exact values.
  • the amount of fuel is limited by the limits stored in the maps.
  • the air to fuel ratio (lambda) particularly affects these limitations with regard to particle emissions.
  • Corresponding lambda values are stored in the maps.
  • the object of the invention is to provide a method and a device with which an age-related increased particle emission is avoided. This object is achieved with a method with the characterizing features of the main claim.
  • the method with the features of the main claim has the advantage over the prior art that the actual Lamba value is measured directly and used in full-load operation to regulate the maximum permissible fuel quantity.
  • Another advantage lies in the simple way of replacing conventional lambda control of the fuel quantity through a minimum value selection.
  • the influence of system-related dead times is reduced by fast control up to a "trap curve" and subsequent slow lambda control. Further advantages and refinements of the invention result from the measures specified in the subclaims.
  • Figure 1 shows a block diagram in which the essential elements for fuel quantity control and for fuel quantity regulation are contained
  • Figure 2 the essential elements required for regulating the maximum permissible fuel quantity are shown
  • Figure 3a shows the time course of different fuel quantity signals
  • Figure 3b shows the time course of the Lambda probe signals
  • Figure 3c shows the time course of the start signal for the ramp
  • Figure 4 illustrates the dependence of the ramp slope on the speed of the internal combustion engine.
  • a diesel engine is identified by 100 in FIG. Fresh air is supplied to this engine via an intake pipe labeled 101. The exhaust gases are discharged via the exhaust line 102.
  • a fuel pump is identified by 110. The fuel pump is connected to an actuator 111.
  • 112 is a sensor that either measures the control path of a control rod attached to the pump 110 or the closing time of a solenoid valve. The output signal of the sensor 112 is fed to the sum point in 111.
  • a further input signal of the control controller 111 is the output signal of the pump characteristic map identified by 113.
  • At 120 is a Lambda probe attached in the exhaust pipe of the internal combustion engine.
  • the output signal of the lambda probe is fed to an evaluation circuit 121, the output signal of which is fed to a lambda controller 122 as an actual value.
  • the setpoint is taken from a lambda limitation, designated 123, which depends on several operating parameters, generally designated 124.
  • the minimum value selection levels are marked with 125, 134 and 138.
  • 130 denotes an idle controller which is driven by a signal labeled 131.
  • 132 is a driving behavior map in which the amount of fuel to be supplied to the internal combustion engine is determined as a function of input variables 133.
  • 140 denotes a block which, after initialization, emits a ramp-shaped output signal by means of a signal 142. The slope of the ramp depends more than 141 on the speed of the internal combustion engine.
  • the output signal of block 140 is fed to a summation point 137, to which the output signal of a torque precontrol labeled 135 is fed as a further variable. Via 136, the torque pre-control depends
  • the device described works as follows: In the operating states start, idling and partial load, the amount of fuel to be fed to the internal combustion engine remains unaffected by the lambda control. Depending on the operating state, the internal combustion engine becomes a quantity of fuel that is determined either by the idle speed control 130, by the torque precontrol 135, or by the driving behavior map 132. Which of the possible fuel quantities will ultimately be fed to the machine depends on the minimum value selection stages 125, 134 and 138. The output signal of the minimum value selection 138 is fed to a pump map 113. In the pump map, the fuel quantity signal is supplied with a control signal for the control controller 111 which is dependent on operating parameters arranges. The control controller 111 regulates the amount of fuel corresponding to the signal from the pump map 113.
  • the elements pump 110, sensor 112 and actuator 111 form a closed control loop.
  • the full load limitation with the aid of the lambda control is illustrated in FIGS. 2 and 3 explained.
  • FIG. 2 shows a block diagram in which only the elements required for the lambda control are contained.
  • the same reference numerals designate the same elements.
  • the torque precontrol 135 outputs a fuel quantity signal denoted by M.
  • the ramp 140 emits an additional signal marked M whenever it is switched on.
  • the signals M 1 and M are added, and together they give the signal M 2 .
  • the two signals M 2 and M lambda are present at the minimum value selection 125.
  • Signal M 2 to the output of minimum selection 125.
  • This signal is marked with M R.
  • Signals M R and M X reach the minimum value selection 138, at the output of which the signal M 3 is available.
  • M X is the output signal of the minimum value selection 134 and comes from either the idle controller 131 or the driving behavior map 132.
  • the minimum value selections 125 and 138 could also be summarized, but the drawing shown is clearer.
  • FIG. 3a shows the time course of the signals M 1 , M 2 ,
  • the ramp is activated by the additional signal M from block 140.
  • fuel quantity M 3 is equal to fuel quantity M 1 .
  • the fuel quantity M starting from zero, is added to the fuel quantity M 1 .
  • the actual lambda signal drops due to the increase in fuel (cf. FIG. 3b).
  • FIG. 3b shows that the actual lambda value is now equal to the desired lambda value.
  • the minimum value selections 125, 134 and 138 found a very simple detachment mechanism for the various control signals influencing the fuel quantity. Despite the specific dead times that occur in the control loop (filling dead times in the engine), the present method does not lead to any significant loss in dynamics. This is caused by the fact that the slope of the ramp depends on the one hand on the speed and on the other hand on the specific dead times. This fact is to be illustrated by Figure 4. The additional quantity M is plotted there as a function of time. The dependency on other parameters is indicated by dashed lines.
  • Block diagrams were chosen for the description of the exemplary embodiment, since the method can be represented well using block diagrams. However, the same method steps can also be partial programs of a program stored in a microcomputer. It is at the discretion of the person skilled in the art to use the solution corresponding to the respective state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Verfahren und Einrichtung zur Kraftstoffzumessung bei einer Diesel-Brennkraftmaschine
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Kraftstoffzumessung nach der Gattung des Oberbegriffes des Anspruchs 1. Die für den jeweiligen Betriebszustand einer Diesel-Brennkrftmaschine erforderliche Kraftstoffmenge wird im allgemeinen abhängig von der Drehzahl der Maschine und von der Fahrpedalstellung - gegebenenfalls auch abhängig von anderen Größen - ermittelt. Da mit Luftüberschuß gefahren wird, spielt die Menge der angesaugten Frischluft nur eine untergeordnete Rolle. Forderungen nach einer Verminderung schädlicher Abgase und möglichst geringem Partikelausstoß bei Brennkraftmaschinen führten jedoch dazu, auch bei Dieselmotoren die Menge der angesaugten Frischluft mit in die Bestimmung der Kraftstoffmenge einzubeziehen.
Aus der DE-OS 28 03 750 sind ein Verfahren und eine Einrichtung bekannt, die die angesaugte Frischluftmenge bei der Bestimmung der Kraftstoffmenge berücksichtigen. Ausgehend von der Fahrpedalstellung, die einen Kraftstoffmengenwunsch signalisiert, werden Luftmenge und Kraftstoffmenge vorgesteuert. Daran anschließend werden die exakten Werte mehrdimensionalen Kennfeldern entnommen. Luft- und Kraftstoffmenge werden dann auf diese exakten Werte geregelt. Die Kraftstoffmenge wird durch in den Kennfeldern abgelegte Begrenzungen begrenzt. Das Verhältnis von Luft zu Kraftstoff (Lambda) beeinflußt diese Begrenzungen besonders, hinsichtlich des Partikelausstoßes. Entsprechende Lambda-Werte sind in den Kennfeldern abgelegt.
Eine Messung des Lambda-Wertes ist nicht vorgesehen, so daß es bei Alterung der Brennkraftmaschine zu einer Abweichung zwischen den in den Kennfeldern gespeicherten Daten und den tatsächlichen Verhältnissen des Motors kommen kann. Infolge einer solchen Abweichung ergibt sich im Vollastbetrieb häufig ein erhöhter Partikelausstoß. Aufgabe der Erfindung ist es, ein Verfahren und eine Einrichtung zu schaffen, mit welchem ein alterungsbedingter erhöhter Partikelausstoß vermieden wird. Diese Aufgabe wird gelöst mit..einem Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruches.
Vorteile der Erfindung
Das Verfahren mit den Merkmalen des Hauptanspruches hat gegenüber dem Stand der Technik den Vorteil, daß der tatsächliche Lamba-Wert direkt gemessen und im Vollastbetrieb zur Regelung der höchst zulässigen Kraftstoffmenge herangezogen wird. Ein weiterer Vorteil liegt in der einfachen Art der Ablösung von konventioneller Lambda-Regelung der Kraftstoff menge durch eine Minimalwertauswahl . Der Einfluß systembedingter Totzeiten wird durch eine schnelle Steuerung bis zu einer "Abfangkurve" und anschließender langsamer Lambda-Regelung vermindert. Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der in den unteransprüchen angegebenen Maßnahmen.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt ein Blockschaltbild, in dem die wesentlichen Elemente zur Kraftstoffmengensteuerung und zur Kraftstoffmengenregelung enthalten sind, in Figur 2 sind die wesentlichen, zur Regelung der höchstzulässigen Kraftstoffmenge erforderlichen Elemente dargestellt, Figur 3a zeigt den zeitlichen Verlauf verschiedener Kraftstoffmengensignale, Figur 3b den zeitlichen Verlauf des Lambda-Sondensignales, Figur 3c den zeitlichen Verlauf des Startsignales für die Rampe, Figur 4 verdeutlicht die Abhängigkeit der Rampensteigung von der Drehzahl der Brennkraftmaschine.
Beschreibung des Ausführungsbeispieles
In Figur 1 ist mit 100 ein Dieselmotor gekennzeichnet. Diesem Motor wird über ein mit 101 gekennzeichnetes Ansaugrohr Frischluft zugeführt. Die Abgase werden über die Abgasleitung 102 abgeführt. Mit 110 ist eine Kraftstoffpumpe gekennzeichnet. Die Kraftstoffpumpe ist mit einem Stellregler 111 verbunden. Mit 112 ist ein Sensor bezeichnet, der entweder den Regelweg einer an der Pumpe 110 angebrachten Regelstange oder aber die Schließzeit eines Magnetventiles mißt. Das Ausgangssignal des Sensors 112 wird dem Summenpunkt in 111 zugeführt. Ein weiteres Eingangssignal des Stellreglers 111 ist das Ausgangssignal des mit 113 gekennzeichneten Pumpenkennfeldes. Mit 120 ist eine in der Abgasleitung der Brennkraftmaschine angebrachte Lambda-Sonde bezeichnet. Das Ausgangssignal der Lambda-Sonde wird einer Auswerteschaltung 121 zugeführt, deren Ausgangssignal als Istwert einem Lambda-Regler 122 zugeführt wird. Der Sollwert wird einer mit 123 bezeichneten Lambda-Begrenzung entnommen, die von mehreren, pauschal mit 124 bezeichneten Betriebskenngrößen abhängt. Mit 125, 134 und 138 sind Minimalwertauswahlstufen gekennzeichnet. 130 kennzeichnet einen Leerlaufregler, der von einem mit 131 gekennzeichneten Signal angesteuert wird. Bei 132 handelt es sich um ein Fahrverhalten-Kennfeld, in dem die der Brennkraftmaschine zuzuführende Kraftstoffmenge abhängig von Eingangsgrößen 133 ermittelt wird. Mit 140 ist ein Block gekennzeichnet, der nach Initialisierung durch ein Signal 142 ein rampenförmiges Ausgangssignal abgibt. Die Steigung der Rampe hängt über 141 von der Drehzahl der Brennkraftmaschine ab. Das Ausgangssignal des Blockes 140 wird einem Summationspunkt 137 zugeführt, dem als weitere Größe das Ausgangssignal einer mit 135 gekennzeichneten Drehmomenten-Vorsteuerung zugeführt wird. Über 136 hängt die Drehmomentenvorsteuerung von der Drehzahl der Brennkraftmaschine ab.
Die beschriebene Einrichtung arbeitet wie folgt: In den Betriebszuständen Start, Leerlauf und Teillast bleibt die der Brennkraftmaschine zuzuführende Kraftstoffmenge von der Lambda-Regelung unbeeinflußt. Abhängig vom Betriebszustand wird der Brennkraftmaschine eine Kraftstoffmenge, die entweder durch den Leerlaufregier 130, durch die Drehmomenten-Vorsteuerung 135, oder durch das Fahrverhalten-Kennfeld 132 bestimmt ist. Welche der möglichen Kraftstoffmengen letzten Endes der Maschine zugeführt wird, hängt von den Mininimalwertauswahlstufen 125, 134 und 138 ab. Das Ausgangssignal der Minimalwertauswahl 138 wird einem Pumpenkennfeld 113 zugeführt. Im Pumpenkennfeld wird dem Kraftstoffmengensignal ein von Betriebsparametern abhängiges Ansteuersignal für den Stellregler 111 zuge ordnet. Der Stellregler 111 regelt auf die dem Signal des Pumpenkennfeldes 113 entsprechende Kraftstoffmenge. Die Elemente Pumpe 110, Sensor 112 und Stellregler 111 bilden dabei einen geschlossenen Regelkreis. Die bisher betrachteten Betriebszustände schließen ein Wirksamwerden der Lambda-Regelung aus, da das Ausgangssignal des Lambda-Reglers 122 im Teillastbereich stets größer ist als das Ausgangssignal der Drehmoment-Vorsteuerung 135. Die Vollastbegrenzung mit Hilfe der Lambda-Regelung wird anhand der Figuren 2 und 3 erläutert.
Figur 2 zeigt ein Blockschaltbild, in dem nur die für die Lambda-Regelung erforderlichen Elemente enthalten sind. Gleiche Bezugszeichen bezeichnen gleiche Elemente. Die Drehmoment-Vorsteuerung 135 gibt ein mit M bezeichnetes Kraftstoffmengensignal ab. Die Rampe 140 gibt immer dann, wenn sie eingeschaltet ist, ein mit M gekennzeichnetes Zusatzsignal ab. Im Punkt 137 werden die Signale M1 und M addiert, und ergeben zusammen das Signal M2. An der Minimalwertauswahl 125 stehen die beiden Signale M2 und MLambda an.
Da im Teillastbereich MLambda größer als M2 ist, gelangt das
Signal M2 an den Ausgang der Minimalauswähl 125. Dieses Signal mit mit MR gekennzeichnet. Signale MR und MX gelangen an die Minimalwertauswahl 138, an deren Ausgang das Signal M3 zur Verfügung steht. MX ist das Ausgangssignal der Minimalwertauswahl 134, und entstammt entweder dem Leerlaufregler 131 oder dem Fahrverhalten-Kennfeld 132. Grundsätzlich könnte man die Minimalwertauswahlen 125 und 138 auch zusammenfassen, doch ist die dargestellte Zeichnung übersichtlicher.
Figur 3a zeigt den zeitlichen Verlauf der Signale M1, M2,
MLambda, MR, MX und M. In dem darunterliegenden Diagramm 3b sind der zeitliche Verlauf des Lambda-Istwertes und des Lambda-Sollwertes aufgetragen. Im Diagramm 3c ist der Zeitbereich gekennzeichnet, in dem die Rampe, die das Zusatzsignal M erzeugt, aktiviert ist. Die durchgezogene Linie in Figur 3a kennzeichnet das Kraftstoffmengensignal M3. Bis zum Zeitpunkt 310 wird die Kraftstoffmenge
M3 durch Mx bestimmt, da die Beziehung Mx M1 MLambda en, was durch Betätigen des Fußfahrgebers signalisiert wird. Die aus dem Fahrverhalten-Kennfeld 132 entnommene Kraftstoffmenge Mx (strichpunktierte Linie) steigt jetzt auf die maximal mögliche Menge an. Für Zeiten nach dem Zeitpunkt 310 gilt dann:
MR Mx
und M1 MLambda Mx
und M2 = M1 + M (t)
Beim Vorliegen der zuletzt genannten Bedingung wird von Block 140 die Rampe mit dem Zusatzsignal M aktiviert. Zum Zeitpunkt 311 ist die Kraftstoffmenge M3 gleich der Kraftstoffmenge M1. Ab dem Zeitpunkt 310 wird zur Kraftstoffmenge M1 die Kraftstoffmenge M, beginnend von Null, hinzuaddiert. Durch die Kraftstoffzunahme sinkt das Lambda-Istsignal (vgl. Figur 3b) . Im Punkt 312 werden die Signale M2 und MLambda gleich. Von diesem Zeitpunkt an wird die Vollastbegrenzung mit Hilfe der Lambda-Regelung vorgenommen. Es gilt, M3 = MR = MLambda. Figur 3b zeigt, daß der Lambda-Istwert jetzt gleich dem Lambda-Sollwert ist.
Zum Zeitpunkt 320 nimmt der Fahrer das Fahrpedal zurück. Die strichpunktierte Linie, die die Menge Mx kennzeichnet, sinkt unter den Wert M1. Die Minimalauswahl 138 bewirkt, daß die der Maschine zu geführte Menge M3 gleich der Menge Mx ist. Damit ist die Kraftstoffversorgung von der Lambda-Regelung abgekoppelt und wird auf die übliche Weise vorgenommen. Es sei noch erwähnt, daß zum Zeitpunkt 320 die Startbedingung für die Rampe 140 wegfällt, und somit zusätzliche Menge M zurückgesetzt wird.
Durch die Minimalwertauswahlen 125, 134 und 138 wurde ein sehr einfacher Ablösemechanismus für die verschiedenen, die Kraftstoffmenge beeinflussenden Steuersignale gefunden. Trotz der im Regelkreis auftretenden spezifischen Totzeiten (Füllungstotzeiten im Motor) führt das vorliegende Verfahren zu keiner erheblichen Einbuße an Dynamik. Dies wird dadurch bewirkt, daß die Steigung der Rampe einerseits von der Drehzahl, andererseits von den spezifischen Totzeiten abhängig ist. Dieser Sacherverhalt soll durch Figur 4 verdeutlicht werden. Dort ist die zusätzliche Menge M in Abhängigkeit von der Zeit aufgetragen. Die Abhängigkeit von anderen Parametern ist gestrichelt gekennzeichnet.
Zur Beschreibung des Ausführungsbeispieles wurden Blockschaltbilder gewählt, da sich das Verfahren anhand von Blockschaltbildern gut darstellen läßt. Dieselben Verfahrensschritte können jedoch auch Teilprogramme eines in einem Mikrorechner abgespeicherten Programmes sein. Es liegt im Ermessen des Fachmannes, die dem jeweiligen Stand der Technik entsprechende Lösung zu benutzen.

Claims

Ansprüche
1. Verfahren zur Kraftstoffzumessung einer Diesel-Brennkraftmaschine, bei welchem die der Maschine zuzuführende Kraftstoffmenge abhängig vom Betriebszustand (Start, Leerlauf, Vollast, Teillast) und von Betriebskenngrößen der Brennkraftmaschine ermittelt und über einen Stellregler einer Kraftstoffpumpe zugeführt wird, dadurch gekennzeichnet, daß zur Begrenzung der höchstzulässigen Kraftstoffmenge mit Hilfe einer im Abgasröhr angebrachten Lambda-Sonde auf einen wenigstens von der Drehzahl der Maschine abhängigen Lambda-Wert geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Vollastbetrieb die wenigstens von Betriebskenngrößen Drehzahl und Fahrpedalstellung anhängige Steuerung der Kraftstoffmenge durch eine Regelung mittels Lambda-Sonde abgelöst wird.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Ablösung durch eine Minimalwertauswahl erfolgt.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die der Brennkraftmaschine zuzuführende Kraftstoffmenge Kennfeldern entnommen wird.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kraftstoffmenge abhängig vom gewünschten Drehmoment der Maschine vorgesteuert wird.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß auf Vollast dann erkannt wird, wenn der dem Kennfeld entnommene Kraftstoffmengenwert größer als der drehmomentabhängige Vorteuerwert ist.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß bei Vollast zu dem drehmomentabhangigen Kraftstoffmengensignal ein zeitlich varianiies Zusatzsignal hinzuaddiert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Zusatzsignal linear mit der Zeit anwächst (Rampe).
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Steigung der Rampe von der Drehzahl der Brennkraftmaschine abhängt.
10. Verfahren nach den Ansprüchen 8 und 9, dadurch gekennzeichnet, daß die Steigung der Rampe von der Totzeit der Lambda-Regelung abhängt.
11. Einrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 10, mit Sensoren zur Erfassung von Betriebskenngrößen der Brennkraftmaschine, mit einer Steuereinrichtung, die ein von Betriebskenngrößen und vom Betriebszustand der Brennkraftmaschine abhängiges Kraftstoffmengensignal erzeugt, welches zur Ansteuerung eines eine Einspritzpumpe beeinflussenden Stellregelkreises dient, dadurch gekennzeichnet, daß der Stellregelkreis im Vollastbetrieb vom Ausgangssignal eines Lambda-Reglers ist angesteuert wird.
PCT/DE1988/000467 1987-09-05 1988-07-28 Fuel dosing process and device for diesel engines WO1989002524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8888907093T DE3875488D1 (de) 1987-09-05 1988-07-28 Verfahren und einrichtung zur kraftstoffzumessung bei einer diesel-brennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873729771 DE3729771A1 (de) 1987-09-05 1987-09-05 Verfahren und einrichtung zur kraftstoffzumessung bei einer diesel-brennkraftmaschine
DEP3729771.6 1987-09-05

Publications (1)

Publication Number Publication Date
WO1989002524A1 true WO1989002524A1 (en) 1989-03-23

Family

ID=6335318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000467 WO1989002524A1 (en) 1987-09-05 1988-07-28 Fuel dosing process and device for diesel engines

Country Status (5)

Country Link
US (1) US5067461A (de)
EP (1) EP0377596B1 (de)
JP (1) JP2695217B2 (de)
DE (2) DE3729771A1 (de)
WO (1) WO1989002524A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612453A1 (de) * 1996-03-28 1997-10-02 Siemens Ag Verfahren zum Bestimmen der in das Saugrohr oder in den Zylinder einer Brennkraftmaschine einzubringenden Kraftstoffmasse

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925877C2 (de) * 1989-08-04 1998-10-08 Bosch Gmbh Robert Verfahren und Einrichtung zur Steuerung der Kraftstoffzumessung bei einer Dieselbrennkraftmaschine
DE3928875A1 (de) * 1989-08-31 1991-03-07 Audi Ag Kraftstoff-einspritzvorrichtung fuer eine luftverdichtende brennkraftmaschine
JPH0571431A (ja) * 1991-03-19 1993-03-23 Honda Motor Co Ltd 内燃エンジンの蒸発燃料制御装置
JPH04358750A (ja) * 1991-06-05 1992-12-11 Honda Motor Co Ltd 内燃エンジンの蒸発燃料制御装置
DE4141481C2 (de) * 1991-12-16 2002-04-11 Oskar Schatz Verfahren zur Regelung des Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors, insbesondere eines Verbrennungsmotors der Kolbenbauart
JPH05263687A (ja) * 1992-03-23 1993-10-12 Zexel Corp 内燃機関の回転速度制御方法
DE4332103A1 (de) * 1993-09-22 1995-03-23 Bayerische Motoren Werke Ag Verfahren zur Kraftstoffzumessung einer Diesel-Brennkraftmaschine
DE19535056C2 (de) * 1995-09-21 2000-09-14 Daimler Chrysler Ag Verfahren zur Steuerung der Kraftstoffeinspritzung bei einem Dieselmotor
AUPO095296A0 (en) * 1996-07-10 1996-08-01 Orbital Engine Company (Australia) Proprietary Limited Engine warm-up offsets
DE19637395C1 (de) * 1996-09-13 1998-04-16 Siemens Ag Verfahren und Einrichtung zur Steuerung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
US6062197A (en) * 1998-06-15 2000-05-16 Cummins Engine Company, Inc. Hybrid power governor
US6202629B1 (en) 1999-06-01 2001-03-20 Cummins Engine Co Inc Engine speed governor having improved low idle speed stability
DE10004001A1 (de) * 2000-01-29 2001-08-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6493627B1 (en) * 2000-09-25 2002-12-10 General Electric Company Variable fuel limit for diesel engine
DE10249138A1 (de) * 2002-10-22 2004-05-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US7010417B2 (en) * 2002-12-03 2006-03-07 Cummins, Inc. System and method for determining maximum available engine torque
DE10302263B3 (de) * 2003-01-22 2004-03-18 Mtu Friedrichshafen Gmbh Verfahren zur Drehzahl-Regelung einer Brennkraftmaschine
US8499752B2 (en) * 2009-09-28 2013-08-06 Robert Bosch Gmbh Method to adapt the O2 signal of an O2 sensor during overrun

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369422A1 (fr) * 1976-11-02 1978-05-26 Bosch Gmbh Robert Procede et dispositif pour limiter le debit ma
DE2803750A1 (de) * 1978-01-28 1979-08-02 Bosch Gmbh Robert Verfahren und einrichtung zur kraftstoffzumessung bei brennkraftmaschinen
DE3149096A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur lambda-regelung bei einer brennkraftmaschine sowie entsprechendes regelsystem
DE3204804A1 (de) * 1982-02-11 1983-08-18 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer eine dieseleinspritzanlage einer brennkraftmaschine
EP0148107A2 (de) * 1983-12-27 1985-07-10 Ail Corporation Methode und Gerät für die Drehmomentsteuerung einer Brennkraftmaschine in Abhängigkeit des Abgasrauchpegels

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475632A1 (fr) * 1980-02-08 1981-08-14 Lucas Industries Ltd Systeme regulateur pour pompe a carburant de moteur a combustion interne
DE3114836A1 (de) * 1981-04-11 1982-11-04 Robert Bosch Gmbh, 7000 Stuttgart Steuersystem fuer eine brennkraftmaschine
DE3149095A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer die kraftstoffmenge einer brennkraftmaschine mit selbstzuendung
JPS5965524A (ja) * 1982-10-07 1984-04-13 Nippon Denso Co Ltd デイ−ゼル機関用燃料噴射量制御装置
JPS59211730A (ja) * 1983-05-16 1984-11-30 Nippon Denso Co Ltd デイ−ゼル機関用燃料噴射量制御装置
DE3405495A1 (de) * 1984-02-16 1985-08-22 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer die kraftstoffeinspritzung bei einer dieselbrennkraftmaschine
JPS60190641A (ja) * 1984-03-12 1985-09-28 Diesel Kiki Co Ltd 内燃機関用電子式ガバナ
DE3436338A1 (de) * 1984-10-04 1986-04-10 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur steuerung und/oder regelung der kraftstoffzumessung in eine brennkraftmaschine
JPS61138851A (ja) * 1984-12-07 1986-06-26 Toyota Motor Corp デイ−ゼル機関の燃料噴射量制御方法
JPS61294139A (ja) * 1985-06-21 1986-12-24 Diesel Kiki Co Ltd 内燃機関用燃料噴射装置
JPS62189343A (ja) * 1986-02-14 1987-08-19 Diesel Kiki Co Ltd 燃料噴射制御装置
CH672528A5 (de) * 1987-03-19 1989-11-30 Sulzer Ag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369422A1 (fr) * 1976-11-02 1978-05-26 Bosch Gmbh Robert Procede et dispositif pour limiter le debit ma
DE2803750A1 (de) * 1978-01-28 1979-08-02 Bosch Gmbh Robert Verfahren und einrichtung zur kraftstoffzumessung bei brennkraftmaschinen
DE3149096A1 (de) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur lambda-regelung bei einer brennkraftmaschine sowie entsprechendes regelsystem
DE3204804A1 (de) * 1982-02-11 1983-08-18 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches steuersystem fuer eine dieseleinspritzanlage einer brennkraftmaschine
EP0148107A2 (de) * 1983-12-27 1985-07-10 Ail Corporation Methode und Gerät für die Drehmomentsteuerung einer Brennkraftmaschine in Abhängigkeit des Abgasrauchpegels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612453A1 (de) * 1996-03-28 1997-10-02 Siemens Ag Verfahren zum Bestimmen der in das Saugrohr oder in den Zylinder einer Brennkraftmaschine einzubringenden Kraftstoffmasse
US5878732A (en) * 1996-03-28 1999-03-09 Siemens Aktiengesellschaft Method of determining the mass of fuel to be introduced into the suction pipe into the cylinder of an internal combustion engine
DE19612453C2 (de) * 1996-03-28 1999-11-04 Siemens Ag Verfahren zum Bestimmen der in das Saugrohr oder in den Zylinder einer Brennkraftmaschine einzubringenden Kraftstoffmasse

Also Published As

Publication number Publication date
EP0377596B1 (de) 1992-10-21
DE3729771A1 (de) 1989-03-16
EP0377596A1 (de) 1990-07-18
DE3875488D1 (de) 1992-11-26
US5067461A (en) 1991-11-26
JPH03500193A (ja) 1991-01-17
JP2695217B2 (ja) 1997-12-24

Similar Documents

Publication Publication Date Title
EP0377596B1 (de) Verfahren und einrichtung zur kraftstoffzumessung bei einer diesel-brennkraftmaschine
DE2413227C3 (de) Regeleinrichtung für das Luft-Brennstoff-Mischungsverhältnis einer Brennkraftmaschine
DE3020493C3 (de) Verfahren zum steuern des ansaugluftdurchsatzes bei einem brennkraftmotor
DE2633617C2 (de) Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate
DE2949151C2 (de) Vorrichtung zum Regeln der Leerlaufdrehzahl für einen Verbrennungsmotor in Abhängigkeit von den Betriebsparametern
DE3929746A1 (de) Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine
WO1989010472A1 (en) Process and device for adjusting a fuel tank ventilator valve
EP1250525B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE3901109A1 (de) Adaptive regeleinrichtung fuer das luft-kraftstoff-verhaeltnis einer brennkraftmaschine
DE19623642C2 (de) Vorrichtung zum Steuern der Drehzahl eines Motors
DE4207541A1 (de) System zur steuerung einer brennkraftmaschine
DE4120062C2 (de) Vorrichtung zum Erkennen von schwer verdampfbarem Kraftstoff
DE19530274B4 (de) Verfahren zur Steuerung einer Kolbenbrennkraftmaschine
DE19945396B4 (de) Brennkraftmaschinen-Steuervorrichtung mit Interpolationssteuereinrichtung
DE3919108C2 (de) Verfahren zur Steuerung eines Betriebsparameters eines Kraftfahrzeugs bei dynamischen Betriebszuständen
DE3528232A1 (de) Verfahren und vorrichtung zur steuerung der leerlaufdrehzahl einer brennkraftmaschine
DE3248745A1 (de) Regelsystem fuer eine brennkraftmaschine
DE69701285T2 (de) Dieselmotorsteuerung
DE3826573C2 (de) Vorrichtung zum Überwachen des Luft-/Brennstoff-Verhältnisses einer Brennkraftmaschine mit innerer Verbrennung
DE69200664T2 (de) Verfahren und vorrichtung für die kreissteuerung der kraft einer brennkraftmaschine, die ein fahrzeug treibt.
DE19935901B4 (de) Verfahren und Vorrichtung zur Regelung einer Brennkraftmaschine
DE3828265C2 (de) Vorrichtung zum Überwachen des Luft/Kraftstoff-Verhältnisses in einer Brennkraftmaschine mit innerer Verbrennung
WO2002020961A1 (de) Verfahren zur bestimmung des kraftstoffgehaltes des regeneriergases bei einem verbrennungsmotor mit benzindirekteinspritzung im schichtbetrieb
DE4105161C2 (de) Einrichtung zur Regelung der Leerlaufdrehzahl eines Motors eines Kraftfahrzeugs
DE3926096A1 (de) Gemischsteuersystem fuer eine brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988907093

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988907093

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988907093

Country of ref document: EP