WO1987002904A1 - Membrane polymere pour la separation de melanges liquides - Google Patents

Membrane polymere pour la separation de melanges liquides Download PDF

Info

Publication number
WO1987002904A1
WO1987002904A1 PCT/JP1986/000580 JP8600580W WO8702904A1 WO 1987002904 A1 WO1987002904 A1 WO 1987002904A1 JP 8600580 W JP8600580 W JP 8600580W WO 8702904 A1 WO8702904 A1 WO 8702904A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
group
repeating unit
polymer
chain
Prior art date
Application number
PCT/JP1986/000580
Other languages
English (en)
French (fr)
Inventor
Kiyohide Matsui
Yu Nagase
Kazuhiko Ishihara
Shigehiro Mori
Original Assignee
Sagami Chemical Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61197987A external-priority patent/JPS62201605A/ja
Priority claimed from JP22955986A external-priority patent/JPS6386725A/ja
Priority claimed from JP22956086A external-priority patent/JPH0637559B2/ja
Application filed by Sagami Chemical Research Center filed Critical Sagami Chemical Research Center
Publication of WO1987002904A1 publication Critical patent/WO1987002904A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences

Definitions

  • the present invention relates to a polymer membrane used for partitioning a liquid mixture. More specifically, the present invention relates to a separation membrane which is excellent in both permeability and separation ability of a body, and is particularly suitable for separation of a liquid mixture by a pervaporation method (Barbeque variation). is there.
  • a liquid mixture is supplied to one side of a non-porous polymer membrane and the other side is depressurized by applying a vacuum, or a carrier gas such as an inert gas is supplied.
  • This is a method of preferentially separating and controlling components that are easily permeated through the membrane by lowering the vapor pressure.
  • This membrane separation method is effective for the separation of liquid mixtures that were not easy with conventional U.S. distillation methods, for example, for the separation of azeotropic dardar mixtures, near-boiling mixtures, isomers, or liquid mixtures that are easily denatured by heating. .
  • it is effective for separating alcohol from low-concentration aqueous alcohol obtained by fermenting biomass resources.
  • the distillation method is economically disadvantageous, especially when low-concentration substances are extracted from an aqueous solution containing a small amount of arable substances, such as alcohol fermentation in biomass, and pervaporation is considered to be the most desirable method. ing.
  • Examples of the separation membrane using a water-alcohol mixture permeabilization method include cellulose acetate, cellophane, polyamide, N-vinyl vilolidone graft, polypicol pyridine, or a fluorine-based cation exchange membrane (Japanese Unexamined Patent Application Publication No. No. 58-84005) has been proposed.
  • these polymer membranes are membranes that selectively permeate water and are suitable for removing water from a mixture containing a small amount of water, such as an azeotrope. Not suitable for the separation of alcohol from fermentation broths containing only about 15%
  • membranes such as polyethylene, polybrobylene or silicone rubber membrane (JP-A-57-136905) are only slightly known. In addition, film forming properties, transparency, and selectivity are insufficient, and thus have not been put to practical use.
  • a graft copolymer having a main chain composed of polystyrene and a side chain composed of polyfluoroalkyl acrylate can be used as a membrane for selectively separating alcohol from a water-alcohol mixture. It was found (Polyaer Preprints, Japan, 34, ⁇ .7, 1841 (19985)) that there is a young problem in that the permeation rate of low-alcohol aqueous solutions is rather low. In addition, in recent years, it has become possible to synthesize vorini-substituted acetylene.
  • borini-substituted acetylenes other than polytrimethylsilylbrobin ie, poly (2-octin), poly (1-pi-open-1-octin), poly (1-phenylbrobin), poly (1-phenylbrobin), and poly (clotin) It has been reported that a film formed of, for example, acetylene) has excellent film strength, but that water permeates preferentially when permeated with a water-alcohol mixture. (Poller Preprints, Japan, 35, ⁇ .3, 447 (19986))
  • the present invention is intended to solve the above-mentioned drawbacks of the conventional liquid separation membrane by using a polymer having excellent permeability and separation ability of a liquid mixture and excellent mechanical strength. It is an object of the present invention to provide a separation membrane for separating a water-organic liquid mixture among liquid mixtures extremely efficiently.
  • the present inventors have been keen to obtain a novel membrane material having high liquid permeability and high alcohol water selectivity while maintaining the excellent membrane strength of the above-mentioned poly (disubstituted acetylene). investigated.
  • a membrane composed of a borini-substituted acetylene polyorgano-pixane graft copolymer obtained by inserting a polysiloxane chain into a poly-substituted acetylene has excellent membrane strength and high liquid permeability, Is found to have very good alcohol selectivity, unlike poly-substituted acetylene
  • the repetition unit is the general formula CH 2 X
  • A is an alkyl group, a substituted alkyl group, a phenyl group,
  • X or a group represented by Si—R 2 , X is a hydrogen atom or
  • a group represented by one Si- Y- Z- Si- R 7, A and X are puppet-back single
  • R 5 It may be arbitrarily different every 8th position.
  • Y is an oxygen atom or a divalent organic ⁇
  • Z is Helsingborg organosiloxane chain
  • R ' ⁇ R 8 may alkyl group be the same or different dates, substituted alkyl group, phenyl group or substituted Hue - Le group is there.
  • a polyorganosiloxane chain has the general formula
  • R 3 and R ′ may be the same or different and are an alkyl group, a substituted alkyl group, a phenyl group or a substituted phenyl group, and are arbitrarily different for each repeating unit. Is also good.
  • the polydisubstituted acetylene z-polyorganosiloxane graft copolymer comprising a repeating unit represented by the general formula (I) and forming the polymer film of the present invention may be, for example, a compound having a repeating unit of the general formula
  • A is an alkyl group, a substituted alkyl group, a phenyl group, a substituted phenyl
  • Group or a group represented by Si—R 2 which differs arbitrarily for each repeating unit.
  • the reaction can be stopped by adding a triorga / halogenosilane compound represented by the following formula.
  • a triorga / halogenosilane compound represented by the following formula In addition to the above method, after reacting a borini-substituted acetylene comprising a repeating unit represented by the general formula (EI) with a strong base,
  • the compound can also be synthesized by reacting with a one-terminal-reactive polyorganosiloxane represented by the following formula:
  • Examples of the borini-substituted acetylene composed of the repeating unit represented by the general formula (EI) as a raw material include poly (2-hexyne), poly (4-methyl-2-tin), and poly (4-methyl-2-tin).
  • one or two or more kinds of disubstituted acetylene compounds as raw materials are group V or group VI S-transfer metals tantalum, molybdenum, tungsten or niobium halides, for example, Using tantalum pentachloride, niobium pentachloride, molybdenum pentachloride, tungsten hexachloride, tantalum pentabromide, niobium pentabromide, etc. as medium, usually 2 to 3 in an organic solvent at a temperature of 30 to 100 Obtained by polymerizing for 6 hours.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • alicyclic hydrocarbons such as cyclohexane, chloroform, 1,2-dichloroethane, and chlorinated solvents such as carbon tetrachloride.
  • an organic metal compound containing aluminum, silicon, tin, antimony or the like as the second component using the above catalyst as a main catalyst for example, trimethylaluminum, triethylaluminum, hydrosilan derivative
  • the desired polymer can also be obtained by using tetraphenyltin, tetra- n- butyltin, triphenylantimony and the like as a co-catalyst.
  • the borini-substituted acetylene comprising a repeating unit represented by the general formula (IE) is converted to a cycloxane compound represented by the general formula (IV) or a powder represented by the general formula (VI).
  • Strong bases used for the reaction with polyorganosiloxanes include methyllithium, n-butyllithium, and butyllithium.
  • Organic lithium compounds such as aluminum, phenyllithium, lithium diisoproviramide, aluminum metal hydrides such as lithium hydride, sodium hydride, methylmagnesium iodide, methylmagnesium bromide, and bromide Grignard compounds such as e.g. magnesium can be shown, but organolithium compounds are preferred in view of efficiency.
  • These strong bases are usually used in an amount of 0.1 to 4 equivalents based on the recurring unit of the usually raw material polydisubstituted acetylene, and the introduction amount of the polyorganosiloxane component can be controlled by this amount.
  • a solvent that dissolves polydisubstituted acetylene and does not participate in the reaction is used. Anything can be used, for example, organic solvents such as n-pentane, n-hexane, cyclopentane, cyclohexane, tetrahydrofuran (THF), dimethoxetane, toluene, benzene, and xylene can be used. it can.
  • reaction efficiency it is preferable to use THF or an aliphatic hydrocarbon such as n-pentane, n-hexane, cyclopentane or cyclohexane.
  • the reaction temperature is generally 0 to 9 to 9 O'C, and the reaction proceeds suitably.
  • this reaction with a strong base is preferable in that the reaction performed in the presence of a diamine such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylethylenediamine proceeds smoothly.
  • an alkyl group such as a methyl group, an ethyl group and a propyl group, or a hydrogen atom of these Atom, trimethylsilyl group, phenyl group, pentafluorophenyl group, substituted alkyl group substituted by OCF (CF 3 ) 2 etc., and hydrogen atom of phenyl group ⁇ phenyl group substituted by fluorine atom And substituted phenyl groups.
  • Such cyclosiloxane compounds include
  • the cyclohexane compound represented by the general formula (IV) is added to the reaction system.
  • the solvent used in this case is an organic solvent such as tetrahydrofuran, ⁇ -pentane, ⁇ -hexane, cyclopentane, or cyclohexane. I can do it.
  • the reaction when reacting with a cyclosiloxane compound, the reaction usually proceeds favorably at around room temperature, and the reaction time is 2 hours or more, more preferably 10 hours or more, to open the cyclosiloxane compound. Ring polymerization is completed.
  • the substituent R s ⁇ R 8 bets Li organohalogenosilanes compounds I Table the one to be the formula (V) used as a terminating agent in the above manufacturing method, ⁇ ⁇ (: 10 linear or branched A chain or cyclic alkyl group having the following formula:
  • some of the hydrogen atoms of these alkyl groups are a nitrogen atom, a chlorine atom, a trimethylsilyl group, a phenyl group, a phenyl group at the pentafluoroalkyl group, —0CF (CF 3 ) 2 one C00CH 2 (CF 2) 3 - CF 3, substituted substituted alkyl group in one C00CH 2 C 6 H s such as phenyl group, more Ig Tsukagaa alkyl group of which a hydrogen atom of the phenyl group, a fluorine atom And the like.
  • halogen atom of the triolga / halode / silane compound a fluorine atom, a chlorine atom, and a bromine atom are preferable.
  • triorganohalodenosilane compounds include H 3
  • triorganohalodenosilane compounds are commercially available, and can be easily synthesized by known methods. By adding these triorganohalodenosilane compounds to the reaction in excess of 2 to 20 equivalents relative to the strong base used, You stop completely. In that case, the reaction time is preferably longer than 20 minutes.
  • Z is a polyorganosiloxane chain whose repeating unit is represented by the general formula (II), and one example thereof is given below. 6
  • a silanol ethane compound obtained by adding an equimolar amount of n-BuLi to a trisubstituted silanol is used as an initiator, and a cis-tr siloxane compound is used as a living anion. It can be synthesized by polymerizing and terminating the reaction using a halodenosilane compound having a reactive substituent.
  • R ⁇ to R 1 may be the same or different, and include an alkyl group, a substituted alkyl group , 7 enyl group or substituted phenyl group, provided that R 9 , R 1!> May be different for each repeating unit.
  • the above silanolate anion may be used in an equimolar amount of ⁇ , ⁇ -dichloro. It can be synthesized by reacting with polyorganosiloxane. Furthermore the (2) group of pieces powder 3 ⁇ 4 anti 3 ⁇ 4 of port 1 / organosiloxanes above reaction.
  • silane compound having a double bond As the silane compound having a double bond used herein,
  • the desired product can be obtained in good yield by using 0.5 to 3.0 equivalents, preferably 0.9 to 2.0 equivalents, of the Kataue Yasushi reactive boroorganosiloxane represented by the general formula (1) with respect to the strong base.
  • a part of the graft copolymer forming the polymer film of the present invention comprises a bran repeating unit represented by the above general formula (H) and the following general formula:
  • a repeating unit represented by R 4 (in each formula, A is the same as described above, and W is one Si—V
  • R 5 is a group represented.
  • V represents a group having a carbon-carbon double bond.
  • W cycloxane compound represented by the general formula (W)
  • the reaction is carried out by adding a liorganohalodenosilane compound represented by the general formula (V). It can be manufactured by stopping. Having a carbon-carbon double bond represented by V above Examples of the group include a vinyl group, a vinylphenyl group, a aryl group, a P-vinylbenzyl group and the like.
  • the copolymer composed of repeating units represented by the above general formulas ( ⁇ ) and (IX) can be obtained by copolymerizing the corresponding monomers, respectively.
  • a copolymer comprising the repeating units represented by the above general formulas (IE) and (E) can be synthesized.
  • the strong base used here is preferably an organolithium compound such as n-butyllithium, and the reaction is carried out in an organic solvent such as tetrahydrofuran or the like usually at around O'C for about 1 to 2 hours.
  • the copolymer can be synthesized without lowering the molecular weight (Reference Examples and References).
  • the strong groups that can be used include organic lithium such as methyllithium, n-butyllithium, i-butyllithium, phenyllithium, and lithium diisobu ⁇ -bilamide.
  • organic lithium such as methyllithium, n-butyllithium, i-butyllithium, phenyllithium, and lithium diisobu ⁇ -bilamide.
  • Compounds, alkali metal hydrides such as potassium hydride, sodium hydride and the like, and glial compounds such as methylmagnesium iodide, methylmagnesium bromide, and ferromagnesium bromide.
  • lithium compounds are preferred in terms of efficiency.
  • tolerable groups are usually used for groups having a carbon-carbon double bond in the side chain of a copolymer composed of the repeating units represented by the above-mentioned formulas (IB) and (K), which are usually raw materials. Use about 1 to 3 equivalents. In the reaction with these strong bases, it is preferable to use a solvent.
  • any solvent can be used as long as it dissolves polysubstituted acetylene having a group having a carbon-carbon double bond in the side chain and does not participate in the reaction, for example, tetrahydrofuran, dimethoxetane, n Organic solvents such as -pentane, n-hexane, cyclohexane, and benzene can be used.
  • the reaction is preferably carried out in a temperature range of 140 to +30, usually for 20 minutes or more. However, from the viewpoint of preventing a decrease in the molecular weight of the product, it is more preferable to perform the process at 0 or less.
  • the compounds exemplified above can be suitably used, and a mixture of two or more kinds may be used.
  • the desired product can be obtained in good yield by using 0.5 to 50 equivalents of the cyclosiloxane compound represented by the general formula (I) with respect to the strong base.
  • the introduction rate of the polyorganosiloxane component of the graft copolymer formed by so-called increasing the amount of the cyclosiloxane compound added here is reduced. It can be arbitrarily controlled.
  • the cyclosiloxane compound When the cyclosiloxane compound is added to the reaction system, the cyclosiloxane compound is preferably dissolved in a solvent in advance, and in this case, the solvent used is, for example, tetrahydrofuran, II-pentane, n-hexane, cyclopentane, or the like. Organic solvents such as cyclohexane are provided.
  • the reaction temperature at the time of reacting the cyclosiloxane compound may usually be room temperature. By performing the reaction for at least 2 hours, more preferably at least 10 hours, the ring-opening polymerization of the cyclosiloxane compound sufficiently proceeds.
  • the reaction is stopped by adding a triorganohalodenosilane represented by the general formula (V).
  • a triorganohalodenosilane represented by the general formula (V) the addition of the triorganohalodenosilane compound to the reaction system in an excess of 2 to 20 equivalents to the strong base used stops the reaction completely.
  • the time required for stopping is preferably 20 minutes or more.
  • a part of the graft copolymer forming the polymer film of the present invention comprises a copolymer consisting of a repeating unit represented by the aforementioned general formula (IE) and a regulated unit represented by the aforementioned general formula (E).
  • the polymer can also be produced by reacting a polymer (hydrosilylated polyorganosiloxane) represented by the general formula (1) in the presence of a hydrosilylation catalyst.
  • the amount of the medium used is usually about 1 to 100 equivalents per 1 to 100 equivalents of the group having a carbon-carbon double bond.
  • This reaction is preferably carried out in a solvent, and examples of the solvent include hexane, benzene, toluene, acetate, trichloroethylene, tetrahydrofuran, and tetrahydrofuran (THF).
  • the reaction is carried out at a reaction temperature of 40 to 10 O'C, and preferably in an atmosphere of an inert gas such as argon or nitrogen.
  • the reaction is usually completed for at least 2 hours, more preferably at least 10 hours, to complete the reaction.
  • Graph DOO copolymer of the present invention is toluene, benzene, hexane Echirubenzen, aromatic solvents such as xylene, carbon tetrachloride, black hole Holm, halogenated hydrocarbons such as preparative Rikuroroe styrene, hexane n _, cyclohexylene It is soluble in hydrocarbon solvents such as cyclohexene or ether solvents such as tetrahydrofuran, and is insoluble in alcohols or water.
  • the polydisubstituted acetylene polyorganosiloxane graft copolymer composed of the repeating unit represented by the general formula (I) and forming the polymer film of the present invention is mainly composed of a repeating unit of the polydisubstituted acetylene. It is necessary that the molar ratio with the side chain of polyorganosiloxane to the repeating unit is in the range of 99/1 to 5 ⁇ 95.
  • the above molar ratio is preferably in the range of 98/2 to 20/80, and when A is an alkyl group, a substituted alkyl group, a 7-phenyl group or a substituted phenyl group, The molar ratio is preferably in the range of 60Z40 to 5995.
  • the graft copolymer having a molar ratio in the above range can be obtained by the method described in the above-mentioned production method, wherein the amount of the strong base or the amount of the cyclosiloxane compound represented by the formula (1) or the fragment represented by the formula (VI) is used.
  • the copolymer can be obtained by adjusting the amount and chain length of the reactive polyorganosiloxane, and the weight-average molecular weight of the copolymer is desirably large from the viewpoint of film strength.
  • the method for forming the graft copolymer for forming the polymer film of the present invention is not particularly limited, and any known or well-known means can be used.
  • a film can be formed by evaporating a solvent from a casting solution on a metal, a glass plate, a water surface, etc.
  • a porous support is dipped into a solution, lifted up, or lifted up. It is also possible to adopt a method such as coating and drying, etc.
  • aromatic solvents such as toluene, benzene, ethylbenzene, xylene, carbon tetrachloride, chloroform, form, and trichloroethylene are used.
  • Halogenated hydrocarbons such as An ether solvent such as drofuran is preferably used.
  • the membrane of the present invention has a thickness of 0.05 to 100 j "a, particularly 0.1 to 50 #a in order to give a sufficient amount of permeation and have practical strength. It is preferably used together with a support having a thickness of 1 or less, such as a cloth-like support, a non-woven-like support, a microfilter, an ultrafiltration membrane, and the like. Any porous body having sufficient strength to support the membrane can be used.
  • the membrane of the present invention can be used in any shape, such as a flat membrane, a tubular membrane, and a hollow fiber.
  • asymmetric membrane is formed. Can also be created.
  • the above-mentioned separation membrane can be used in the form of a laminated film which is overlapped with another membrane.
  • the membrane thus obtained can be used in any shape, such as a flat membrane, a tubular membrane, and a hollow fiber membrane.
  • the liquid mixture used as the separation target may be any one that does not dissolve the film of the present invention.
  • the following compounds can be exemplified as the component compounds constituting the liquid mixture.
  • alcohols ketones such as acetate and methylethylketone
  • acids such as formic acid, acetic acid, propionic acid, acrylic acid, methacrylic acid, maleic acid, crotonic acid, and esters thereof.
  • Swords, dimethyl ether, getylertel, tetrahidlov Examples include ethers such as orchids and dioxanes, amines such as methylamine, ethylamine, ethylenediamine, aniline, pyridine, and organic liquids such as N, N-dimethylformamide, sulfolane, and dimethylsulfoxide.
  • ethers such as orchids and dioxanes
  • amines such as methylamine, ethylamine, ethylenediamine, aniline, pyridine
  • organic liquids such as N, N-dimethylformamide, sulfolane, and dimethylsulfoxide.
  • the liquid mixture to be separated is a mixture containing two or more liquid compounds as described above.
  • the membrane of the present invention can be used for other than the above, for example, for partitioning a liquid mixture containing an inorganic suspended substance.
  • liquid mixtures in which the separation membrane of the present invention exhibits particularly excellent permeation performance include water-organic liquid mixtures, especially water-alcohol mixtures such as water-methanol and water-ethanol, or water-acetate. And water-ketone mixtures such as water.
  • the membrane of the present invention can be used over a wide temperature range, but preferably
  • a temperature higher than this is not preferable from the viewpoint of the durability of the film, and a temperature lower than this is not preferable because of the problem of reduced permeability and the energy required for cooling.
  • the pressure on the side where the liquid mixture of the separator is lined is preferably atmospheric pressure to 100 atmospheric pressure, more preferably atmospheric pressure and its vicinity. Applying a pressure higher than this does not have a great advantage on the permselectivity of the separation membrane. On the other hand, reduce the pressure on the permeate side or flow an inert gas such as air to keep the chemical potential of the component to be separated lower than the supply side. Is necessary.
  • the separation membrane of the present invention has an extremely high separation ability, or if the desired purity is not attained by only once permeating the liquid mixture, the permeate is subjected to bran-return membrane permeation. It can also be increased to a desired degree.
  • the separation membrane of the present invention has excellent film strength as compared with an unconventional silicone rubber film, so that it can be thinned, and further, has excellent liquid permselectivity. Therefore, the separation or concentration of various liquid mixtures such as a water-alcohol mixture can be performed very efficiently using the membrane of the present invention.
  • Example 1 The poly (1-phenylpropyne) 3.8 s obtained in Reference Example 1 was dissolved in hexane 45 Otil in a dry cycle and heated to 60 under an argon gas flow, and then ⁇ , ⁇ , ⁇ ', ⁇ '- Tetramethylethylenediamine 4.90 al (3 2.7 aaol) and ⁇ -butyllithium hexane solution (1.6 olZl) 20.4 M1 (3 2.7 ⁇ 1) were added, and the mixture was further stirred for 1 hour. However, the reaction solution turned black-red.
  • reaction solution was cooled to room temperature, and a solution of 36.4 g (163.5 aaol) of siloxane dissolved in 250 ml of dry THF was added all at once, and the reaction solution turned from black-red to black-purple. It gradually changed to pale yellow. Further, the mixture was stirred at room temperature for 24 hours, trimethylchlorosilane 18al (l 42 mB> 0 l) was added to stop the reaction, and the mixture was further stirred for 2 hours. Finally, the above reaction solution was poured into methanol 51 to obtain a white polymer.
  • the obtained polymer was dissolved again in toluene 30 ( ⁇ ), reprecipitated in a mixed solvent of methanol and Z-ethyl ether (80/20 vo%) 41, and mixed again by repeating the reprecipitation several times.
  • the polymer was purified except for the polydimethylsiloxane. The yield of the produced polymer was 6.8 s.
  • CM- ' IR spectrum
  • Characteristic absorption 1500 (s), 1440 (s), 1415), 1370 (s), 1260 (s, characteristic absorption of methyl group of side chain polydimethylsiloxane), 1 100 (s, characteristic absorption of siloxane bond), 100 (s, characteristic absorption of siloxane bond), 910 (»), 860 (s), 800 (s), 770 (s ), 695 (s)
  • the generated polymer is a partial force of hydrogen on the methyl group of the raw material poly (1-phenylpropine).
  • Example 2 The procedure of Example 1 was repeated except that the amount of hexamethylcyclotrisiloxane was changed to 54.6 g (245 mmol). 7s got.
  • the resulting polymer was a poly (1-phenylbromobin) Z polydimethylsiloxane copolymer having a structure similar to that of the polymer obtained in Example 1.
  • the molar ratio of the repeating unit of main chain poly (1-phenylbrobin) and the repeating unit of side chain polydimethylsiloxane determined from the proton beak area ratio was 20-80.
  • a uniform, transparent and strong film having a thickness of 25 was prepared from the obtained graft copolymer in the same manner as in Example 1.
  • the permeation characteristics of the water-ethanol mixture of this membrane were measured in the same manner as in Example 1 by changing the composition of the feed solution. Table 2 shows the results.
  • Example 1 the amount of hexamethylcyclotrisiloxane was set to 36.1 (162 toaiol), and the amount of tris (3,3,3-trifluorov mouth building) trimethylcyclotrisiloxane 3 was added thereto. 8.0 8 (80. 9 »! * 01) added Except for the above, the same operation as in Example 1 was performed to obtain 11.5 s of a white polymer.
  • the number average molecular weight and weight average molecular weight determined by GPC were 2.44 ⁇ 10 s and 5.5.23 ⁇ 10 5 in terms of polystyrene.
  • IR spectrum ( ⁇ ; ⁇ —,); 3100 ( ⁇ ), 3070 ( ⁇ ), 3040 ( ⁇ ), 2980 (s), 2920 (M), 1950 (W), 1600 (», main chain (500-it), 140 (a), 140 (a), 130 (a), 1 318 (a), 1 260 (s, Characteristic absorption of methyl group of side-chain polyorganosiloxane), 1 210 (ss Characteristic absorption of CF bond), 1 130 (s), 1 100 (s, characteristic absorption of siloxane compound), 1070 (s) , 1020 (s, characteristic absorption of siloxane bond), 900 (s), 840 (s), 800 (s), 770 (s), 695 (s), 550 (,)
  • the formed polymer is composed of a part of the hydrogen on the metal group of the raw material poly (1-phenylbenzene).
  • Z ' is a volume consisting of ⁇ ⁇ (SiO and SiO
  • the molar ratio of the repeating unit represented by i SiO is 63Z37, and the molar ratio between the repeating unit of the main chain (1-phenylphenyl ⁇ bin and the repeating unit of the polyorganosiloxane of the side chain) is 2 2 / 7 was 8.
  • a uniform, transparent and strong film having a thickness of 22 a was prepared from the obtained graft copolymer in the same manner as in Example 1.
  • the permeation characteristics of the water-ethanol mixture of this membrane were measured in the same manner as in Example 1 by changing the composition of the feed solution.
  • Table 3 shows the results. Liquid composition (Ethanol Z water, wt.%) Ethanol
  • the average degree of polymerization B was about 4.2 based on the proton ratio in NMR.
  • 25.0 g (approximately 0.067 mol) of the polydimethylsiloxane obtained in this manner was dissolved in 5 Oal of dry toluene, and under a stream of argon gas, vinyl methyl chlorosilane 30 (0.22 aol) and platinum chloride as a »medium were used.
  • An acid ethanol solution (0.1 33 «ol / I) 141 was added, and the mixture was heated at 80 for 2 hours.
  • the resulting precipitate was filtered, dissolved in toluene 2001, and poured into methanol 21 to form a precipitate. Thereafter, several surfaces were reprecipitated in the same manner and purified. The resulting precipitate was filtered off and dried. 1.0
  • the formed polymer is partially substituted with hydrogen on the methyl group directly connected to the main-chain double bond of the raw material poly [1- (trimethylsilyl) butyl]. -4.2) It was confirmed that it was a poly (1-trimethylsilylbrobin) / polydimethylsiloxane graft copolymer having a structure substituted by the group represented by the following formula. Further, the molar ratio of the main chain poly (1-trimethylsilylbrobin) monomer unit to the side chain polydimethylsiloxane monomer unit was calculated from the carbon content of the elemental analysis, and was 36Z4.
  • Reference Example 4 (Synthesis of Katamatsu Port Reactive Polysiloxane 2) In Reference Example 3, 7.2 g (0.0798 aol) of trimethyl lanol, n-butyllithium hexane solution 5 Oml (0.08 Oaol) N dimethyl chloride silane 3 0 (0 1 (0.2 7 5 8 ⁇ 0 1) and except were in exactly the same manner as in reference example 2 And the structure is
  • Example 4 in place of Yasushi Katasue obtained in Reference Example 3, methylcyclosilyl polydimethylsiloxane, the powder obtained in Reference Example 4 was replaced with dimethylchlorosilylpolydimethylsiloxane 10 s (about 16 »» ol), except that some of the hydrogens on the methyl groups directly connected to the main-chain double bonds of poly [1- (trimethylsilyl) butyl] were obtained.
  • the elemental analysis values are as follows.
  • Reference Example 3 was the same as Reference Example 3, except that 5.4 g (0.060 mol) of trimethylsilanol, 38 m 0.061 tnol of ⁇ -butyllithium hexane solution, and 20 ⁇ (0.184 mol) of dimethyl chloride were used. The operation is exactly the same as
  • Example 4 20 g ( ⁇ 27 tnmol) of the dimethyldichloromethylsilylboryl dimethylsiloxane obtained in Reference Example 5 instead of the di-methylmethyl ⁇ -rosylylpolydimethylsiloxane obtained in Reference Example 3 was used. The same operation as in Example 4 was carried out except that the hydrogen atom on the methyl group directly connected to the main-chain double bond of poly (1-trimethylsilylbrobin) was changed.
  • Example 5 The IR spectrum was exactly the same as in Example 4, except for 126 OcnT '
  • the absorption intensity of the methyl group on the side chain polydimethylsiloxane and the characteristic absorption of a siloxane bond of 1100 cm 1 ′ were further enhanced as compared with Example 5.
  • the elemental analysis values are as follows.
  • the molar ratio of the main chain poly (1-trimethylsilylbrobin) monomer unit to the side chain polydimethylsiloxane monomer unit was calculated to be 82Z18.
  • the number-average molecular weight and weight-average molecular weight measured by GPC were 5.71 ⁇ 10 S and 1,77 ⁇ 10 s , respectively, in terms of polystyrene.
  • Example 4 20 g (about 20 ol) of dimethyl chlorosilyl polydimethylsiloxane obtained from Reference Example 6 was used in place of Yasushi Katasezu Dimethylk Mouth Silyl Polydimethylsiloxane obtained in Reference Example 3. The same operation as in Example 4 was carried out except that some of the hydrogens on the methyl group directly connected to the main chain double bond of poly (1-trimethylsilicone) were removed.
  • the number-average molecular weight and weight-average molecular weight determined by GPC were 5.05 ⁇ 10 s and 2,18 ⁇ 10 6 , respectively, in terms of polystyrene.
  • the polyorganosiloxane was composed of a repeating unit of CH 3 CH 3 CH 3 CH 2 CH 2 CF 3 .
  • the molar ratio of (SiO) is 63 Z37, and the average degree of polymerization is 23.4.
  • Example 4 instead of the dimethyl cyclosilyl polydimethylsiloxane at one end obtained in Reference Example 3, the dimethyl dimethylside obtained in Reference Example 7 was used. The same operation as in Example 4 was carried out except for using Rolosilylborgyl organo / siloxane 458 (titanium 16tDtool) to obtain methyl directly bonded to the main chain double bond of the poly [1- (trimethylsilyl) pulp bottle].
  • the average polymerization degree is 23.4.
  • the molar ratio of the main chain poly [1- (trimethylsilyl) propyne] monomer unit to the side chain polyorganosiloxane monomer unit was calculated from the carbon content of the elemental analysis, and was found to be 40Z60.
  • the number average molecular weight and weight average molecular weight determined by GPC were 4.83 ⁇ 10 S and 2.1 1 ⁇ 10 6 in terms of polystyrene, respectively.
  • a uniform, transparent and strong film having a thickness of 16.2 was prepared from the obtained graft copolymer in the same manner as in Example 4.
  • the permeation characteristics of the water-ethanol mixture of this membrane were measured in the same manner as in Example 1 by changing the composition of the feed solution. Table 3 shows the results.
  • the poly [1- (trimethylsilinole) propyne] 1.0 s (890 ol) obtained in Reference Example 2 was dissolved in THF 20 Om, and the n-butylethylene hexane solution was dissolved in a stream of argon under 0 at 0 ° C. (1.6. Ora (9.60 ol) was added and stirred for 1 hour, and then hexamethylcyclotrisiloxane 2.1 s (28.3 A solution prepared by dissolving (O) in THF 15 was added, and the mixture was further stirred at 0 for 3 hours.
  • the polymer produced shows that a part of the hydrogen on the methyl group directly connected to the main chain double bond of the raw material (1 -trimethylsilyl ⁇ -bin)
  • the molar ratio of the main chain poly [1- (trimethylsilyl) bu ⁇ bin] monomer unit to the side chain polydimethylsiloxane monomer unit was calculated from the carbon content of the elemental analysis. The result was 34Z6. Was.
  • a uniform, transparent and strong film having a thickness of 12.4 in was formed from the obtained graft copolymer in the same manner as in Example 4.
  • the permeation characteristics of the water-ethanol mixture of this membrane were adjusted to various values by changing the liquid composition.
  • the polymer produced is a repeating unit CH 3
  • Vinyl dimethyl silylated poly obtained in Reference Example 9 (1 -trimethylsilyl lip mouth bottle) 4. Og was dissolved in 500 ml of sufficiently dehydrated tetrahydrofuran, and the mixture was dissolved in a stream of argon gas. After cooling to 0, 10.0 m of n-butyllithium hexane solution (1.6mo ⁇ / i) was added, and stirring was continued for another 1.5 hours. Next, fully add hexamethylcyclotrisiloxane 4 1.2 s. Add a solution of the dehydrated tetrahydrogen ⁇ -furan 30 ⁇ at once and continue stirring at room temperature for 14 hours. Was added to stop the reaction. The reaction solution was poured into methanol 5 to obtain a white polymer. The obtained polymer was dissolved again in 500 m of toluene and purified by repeating reprecipitation several times with ethanol. The yield was 7. l g.
  • IR spectrum (cur 1 ): 298 0 (s), 292 0 (s), 1 565 (s), 1 33 (m), 1370 (m, characteristic absorption of methyl group on main chain polymethyltrisilyl brobin), 1260 (s, characteristic absorption of methyl group on side-chain polydi'methylsiloxane) , 1250 (s, characteristic absorption of trimethylsilyl group on raw-chain poly (trimethylsilylbrobine)), 1180 (a), 1100 (s characteristic absorption of siloxane bond), 1 020 (s) s 9 15 ( a ), 840 (s), 800 (s), 750 (s), 6 8 5), 630 (to)
  • the obtained polymer was a poly (1-trimethylsilylbubin) having a main chain of poly (1-trimethylsilylbrobin) and a side chain of polydimethylsiloxane.
  • the molar ratio between the recurring unit of the main chain poly (1-trimethylsilylbrobin) and the recurring unit of the side-chain polydimethylsiloxane was calculated from the carbon content of the elemental analysis to be 3466. .
  • the softening temperature obtained from the temperature change of the dynamic Young's modulus by thermomechanical analysis was 210. there were.
  • the obtained polymer was a poly (1-trimethylsilylbrobin) Z polydimethylsiloxane graft copolymer having a structure similar to that of Reference Example 10.
  • the molar ratio of the repeating unit of the main-chain poly (1-trimethylsilylbrobin) to the repeating unit of the side-chain polydimethylsiloxane was calculated from the carbon content of the elemental analysis to be 30Z70.
  • the softening temperature was 134.
  • the number average molecular weight and weight average molecular weight determined by GPC were 2.10 ⁇ 10 s and 5.34 ⁇ 10 S , respectively, in terms of polystyrene.
  • IR-spectrum le (cur 1): 3 0 7 0 (s), 3 0 4 0 (s) s 2 9 8 0 (s), 2 9 5 0 (s), 2 9 3 0 (s), 2 8 6 0 (a), 1 9 5 0 (w), 1 8 8 0 (w), 1 8 0 0 (w), 1 6 0 0 (m), 1 4 3 5 (s), 1 4 3 8 (s), 1366 (s), 1250 (ai, characteristic absorption of methyl group on silyl group), 1180 (w), 1155 (w), 10 3 0 (m), 1 0 7 5 (to), 1 0 3 0 (s), 3 0 5 (m), 8 3 8 (s), 8 2 0 (s), 7 7 0 (s). 7 0 0 (s), 6 2 0 (w)
  • IR spectrum (era: 3100 (ta), 3070 (s), 3040 (m), 2980 (s), 2920 (s), 2860 ( M ), 1950 (w), 1890 180 (w), 1600 [s, characteristic absorption of phenyl group of main chain poly (1-phenylbrobin)], 1500 (s) 14 40 (s), 1 15 (m), 1370 (s), 1260 (s, characteristic absorption of methyl group of side-chain polydimethylsiloxane), 1100 (s, characteristic absorption of siloxane bond ), 102 (s, characteristic absorption of siloxane bond), 310 (w), 860 (s), 800 (s), 77.0 (s), 695 (s)
  • the obtained polymer was a poly (1-phenylbrobin) z-polydimethylsiloxane graft copolymer whose raw chains consisted of poly (1-phenylbrobin) and whose side chains consisted of polydimethylsiloxane. It was confirmed.
  • the molar ratio between the repeating unit of the main chain poly (1-phenylbrobin) and the repeating unit of the side-chain polydimethylsiloxane was calculated from the carbon content of the elemental analysis to be 4456.
  • the softening temperature was 135.
  • Synthesis of rough copolymer 2 The same operation as in Reference Example 14 was carried out except that the amount of hexamethylcyclotrisiloxane was changed to 62.4 s in Reference Example 14, to obtain 6.4 s of a white polymer.
  • the obtained polymer was a poly (1-phenylpropine) Z polydimethylsiloxane graft copolymer having a structure similar to that of Reference Example 14.
  • the backbone poly (1-phenylpropine) Z polydimethylsiloxane graft copolymer having a structure similar to that of Reference Example 14.
  • the molar ratio of the repeating unit of (-phenylbrobin) to the repeating unit of side-chain polydimethylsiloxane was calculated to be 29-71.
  • the softening temperature was 115.
  • the graft copolymers obtained in Reference Examples 10, 11, 14, and 15 were dissolved in toluene, then cast on a PTFE plate, and toluene was slowly removed by evaporation.
  • a uniform, transparent and strong membrane with a film thickness of 20-30 «" ⁇ was prepared.
  • the obtained membrane was sandwiched between stainless steel pervaporation cells (pervaporation cells), and the permeation side was 0.5 miB Hg. vacuum to be water -.
  • permeation of organic liquid-mixture was subjected film mixed solution composition was transmitted through the TCD- Gasuku ⁇ Matogurafi - by Ri detected permeation rate P in (g ⁇ m / io 2 ⁇ hr) and selectivity ⁇ was determined by the above equation.
  • Trimethylsilanol 7.2 s (0.15 7 [! 0 1) is dried dry ⁇ 1?
  • the mixture was dissolved in 20 and then added with a ⁇ -butyllithium hexane solution (1.6 rflol) 50. under an argon gas flow. After stirring for 10 minutes, further dried Kisamechi Rushikuro preparative polysiloxane 9 3.4 8 to Ding 11 A solution to 3 ⁇ 4 2 0 was added and stirred 2 hour at room temperature in an argon gas ⁇ flow.
  • This solution Dimethylchlorosilane 30.0 was added as a terminator to the solution to stop the lipopolymerization.
  • the generated salt is filtered off, and heated under a vacuum of 0.1 mmHs or less at 150 for 3 hours to remove unreacted cyclosiloxane and excess terminator. This gave a clear, colorless viscous liquid of 10 2.4 s. IR measurement and NMR measurement were performed on the obtained polymer, and its structure was measured.
  • the average degree of polymerization ii was about 20.8 based on the proton ratio in NMR.
  • IR spectrum (CKT: 2380 (s), 2920 (s), 1565 (s) 1 3 3 ( ⁇ ), 1 3 70 ([fl, characteristic absorption of methyl group on raw-chain polymethylsilylprobin), 1 260 (s, characteristic absorption of methyl group on side-chain polydimethylsiloxane) , 1250 (s, characteristic absorption of trimethylsilyl group on main chain poly (trimethylsilylbrobin)), 1180 (a), 1100 (s, characteristic absorption of cycloxane bond), 1 020 (s), 9 15 (m), 8 40 (s), 800 (s),
  • the number average molecular weight and weight-average molecular weight is respectively 2.3 3 X 1 0 5 in terms of polystyrene was 7.5 2 X 1 0 s.
  • the polymer obtained was a poly (1-trimethylsilylpropyne) whose side chain was composed of poly (1-trimethylsilylbrobin) and a poly (dimethylsiloxane) in the side chain (Z-dimethylsiloxanesiloxane). It was confirmed that they were united.
  • the molar ratio between the repeating unit of the main chain poly (1-trimethylsilylbrobin) and the repeating unit of the side-chain polydimethylsiloxane was calculated from the carbon content of the elemental analysis, and was 43/51.
  • the softening temperature determined from the temperature change of the dynamic Young's modulus in thermomechanical analysis was 23 O'C. I got it.
  • the obtained polymer was a poly (1-trimethylsilylpropyl) Z polydimethylsiloxane extract copolymer having the same structure as that of Reference Example 17. Also, from the carbon content of the elemental analysis, The molar ratio of the repeating unit of the main-chain poly (1-trimethylsilylbropine) to the repeating unit of the side-chain polydimethylsiloxane was calculated to be 34Z66. The softening temperature was 207.
  • Reference Example 16 is completely the same as Reference Example 16 except that trimethylsilanol was changed to 1.8 s, n-butyldimethylhexane solution 13 3 ⁇ , dimethylchloro ⁇ silane 10 m (0.275 mol). Operation, and the structure
  • the obtained polymer had a structure similar to that of Reference Example 17.
  • (1-trimethylsilylpropyne) Z-dimethylsiloxane graft copolymer was confirmed. From the carbon content of the elemental analysis, the molar ratio between the recurring unit of raw-chain poly (1-trimethylsilylbropine) and the recurring unit of side-chain polydimethylsiloxane was calculated. there were. The softening temperature was 18 1.
  • IR spectrum (CIB- '): 3100 (m), 3070 (s), 3040 (m), 2980 (s), 2920 (s), 2860 (m), 1 950 (w), 1890 (w), 1800 (w), 1600 [s, characteristic absorption of phenyl group of live chain poly (1-phenylbrobin)], 1500 (s) , 1440 (s), 1405 (1), 1370 (s), 1260 (s, characteristic absorption of methyl group of side chain polydimethylsiloxane), 1100 (s, siloxane Bond (characteristic absorption), 102 (s, characteristic bond of siloxane bond), 910 (w), 860 (s), 770 (s), 695 (s) f H- NMR spectrum, (CD C1 3, ppm) : 0.
  • the obtained polymer was a poly (1-phenylbutane) Z-polydi'methylsiloxane graft copolymer in which the main chain was composed of poly (1-phenylbrobin) and the side chain was composed of polydimethylsiloxane. Confirmed that there is.
  • the molar ratio of the repeating unit of the raw-chain poly (1-phenylbrobin) to the repeating unit of the side-chain polydimethylsiloxane was calculated from the carbon content of the elemental analysis to be 33/61.
  • the softening temperature was 13 1.
  • Reference Example 17 Dissolve the graft copolymer obtained in 7, 13, 13, 21 and 22 in toluene, cast it onto a PTFE plate, and slowly remove and remove toluene by evaporation. As a result, a uniform, transparent and strong film having a thickness of 20 to 30 mm was formed.
  • the obtained membrane was sandwiched between stainless steel pervaporation cells (par-cell), and the permeation side was decompressed to 0.5 mmHg to permeate the water-ethanol mixture.
  • the composition of the mixture thus obtained was detected by TCD-gas chromatography, and the permeation speed P (g ⁇ m / 2 ⁇ hr) and the selectivity were determined by the above equations.
  • the polymer membrane formed from the graft copolymer of the present invention has excellent ethanol selective permeability even in permeation of a mixed solution of water and ethanol.
  • the polymer membrane for separation of the present invention has excellent membrane strength as compared with a conventional silicone rubber membrane, so that it can be made into a thin film. Further, since it has extremely excellent liquid selective permeability, it can be used in water. -It can be used industrially advantageously for the separation or reduction of various fluid mixtures such as alcohol mixtures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Description

明 細 書
液体混合物分雜用高分子膜
技術分野
本発明は液体混合物の分雜に用いる高分子膜に関するものである。 さ らに詳しくは、 ¾体の透過性およぴ分雜能の両方に優れ、 特に浸透気化 法(バーべ一バレーシヨン)による液体混合物の分雜に好適な分雜膜に関 するものである。
背景技術
' 浸透気化法は、 非多孔質高分子膜を境にして、 その一方側に液体混合 物を供給し、 他方側を真空に引いて滅圧にするか、 または不活性ガス等 のキヤリァガスを流して蒸気圧を低下させることにより、 膜を透過しや すい成分を優先的に分雜、 澳縮する方法である。 この膜分離方法は、 従 米の蒸留法では容易ではなかった液体混合物の分雜例えば共沸縢混合物、 近沸点混合物、 異性体、 あるいは加熱により変性しやすい液体混合物の 分雜などに有効である。 中でも特に、 バイ オマス資源を発酵して得られ る低濃度アルコ一ル水溶硖からのアルコールの分離等に有効である。 非多孔質高分子膜透過を利用した、 浸透気化法による液体混合物の分 雜プロセス研究の歴史は古く、 蒸気では分雜が困難な混合物系を中心に 多くの研究がなされてきた。 例えば、 B i nn i ngによってボリビュルアル コール膜を用いた共沸混合物の分雜(米国特許第 2 9 5 3 5 0 2号)が検 討され、 またスチレン Zァクリル酸共重合体膜等を用いた水-ホルムァ ルデヒド混合液の分觼(米国特許第 4 0 3 5 2 9 1号)が報告されている が、 これらの高分子膜では透過性および分雜能が充分でなくいまだ実用 化には至っていない。 これに対して近年省エネルギー的な立場から、 浸透気化法を従来の蒸 留法を補う、 も しくは代替する分雜プロセスとして利用することが注目 されている。
特にバイォマスにおけるアルコール発酵のように、 少量の有漑物を含 む水溶液から髙濃度の有 «物を取り出した場合、 蒸留法は経済的に不利 であり、 浸透気化法が最も望ましい方法と考えられている。 水-アルコ ール混合物の浸透氕化法を用いる分雜膜としては、 酢酸セルロース、 セ 口ファン、 ポリアミ ド、 N -ビニルビロリ ドングラフ ト体、 ボリピこル ピリジン、 あるいはフッ素系カチオン交換膜(特開昭 5 8 - 8 4005 号)の高分子膜が提案されている。 しかしながら、 これらの高分子膜は 水を選択的に透過する膜であり、 共沸混合物のように少量の水を含む混 合 からの水分の除去には適しているが、 上述の、 アルコールを 8から 1 5%程度しか含まない発酵液からのアルコールの分離には向かない。 —方、 アルコールを選択的に透過する高分子膜としては、 ポリエチレン、 ポリブロビレンあるいはシリコーンゴム膜(特開昭 5 7 - 1 3 6905 号)などの膜がわずかに知られているのみで、 これらの胰も成膜性、 透 過性およぴ選択性が不充分であり実用化に至っていない。 その他にも、 本発明者等は主鎖がボリスチレン、 側鎖がボリ フルォロアルキルアタ リ レートより成るグラフト共重合体が水-アルコール混合物より選択的に アルコールを分雜する膜となり得ることを見出した(Polyaer Preprints, J apan, 3 4 ,Νο.7 , 1 8 4 1 ( 1 98 5 ))が、 低 ¾度のアルコール 水溶液の透遏速度がやや低いという点で若千問題がある。 また、 近年ボ リニ置換アセチレンの合成が可能となりその 1種であるボリ ト リメチル シリルプロビンがシリコーンゴム同様アルコールを優先的に透過する高 分子膜素材となり得ることが見出され、 (Makro«ol,Che»., Rapid, Co aBun., 7_, 43 ( 1 98 6 ))胰強度においてシリコーンゴムをはるかに凌 鴛するという点で注目を集めている。 しかしながら、 ボリ ト リメチルシ リルブ口ビン胰は単位胰厚あたりの液体透 ¾量およぴ選択性がシリコ一 ンゴム胰とほぼ同程度であり、 特に選択性の点で低潘度のアルコールを 澳縮するためには充分とは言えない(比較例参照)。 さらに、 ポリ ト リメ チルシリルブロビン以外のボリニ置換アセチレン、 すなわちポリ( 2 -ォ クチン)、 ポリ( 1 -ク π口- 1 -ォクチン)、 ポリ( 1 -フエ-ルブロビン)、 ボリ(クロ口フエ-ルアセチレン)等から形成される膜ほ、 同様に優れた 膜強度を有しているものの水-アルコール混合物を透過させた場合水を 優先的に透過してしまうことが報告されている。 (Poller Preprint s, Japan, 3 5 ,Νο.3 , 447 ( 1 9 8 6 ))
本発明は上に述べた従来の液体分離膜の欠点を、 液体混合物の透過性 およぴ分雜能にすぐれ、 かつ機械的強度にすぐれた高分子胰により解決 しょうとするものである。 液体混合物のうちとりわけ水-有機液体混合 物を極めて効率的に分雜する分離膜を提供するものである。
発明の開示
本発明者等は、 前述のボリ二置換アセチレンのもつ優れた膜強度を維 持しつつ、 高い液体透過性を有し、 かつアルコールの水に対する選択性 がより高い新規の膜素材を得るべく鋭意検討した。 その結果、 ボリ二置 換アセチレンにポリシロキサン鎖を^入して得られるボリニ置換ァセチ レン ボリオルガノシ πキサングラフト共重合体から成る膜が、 便れた 膜強度および高い液体透過性を有すると共に、 原料のポリニ置換ァセチ レンとは異なり、 非常に優れたアルコール選択性を有することを見出し、 本発明に到達した。 しかして、 本発明によれば、 操り返し単位が一般式 CH2X
ί c=c> ( I )
A
(式中、 Aはアルキル基、 置換アルキル基、 フエニル基、 置換" 7ェニル 1
基、 または一 Si— R2 で表わされる基、 Xは水素原子また
R3
R6
一 Si— Y— Z— Si— R7 で表わされる基であり、 Aおよび Xは操り返し単
R5 8 位ごとに任意に異なってもよい。 ただし、 Yは酸素原子または 2価の有 攒基、 Zはボリオルガノシロキサン鎖、 R' ~ R8は同一あるいは異なつ てもよくアルキル基、 置換アルキル基、 フエニル基または置換フエ-ル 基である。 ) からなり、 生鎖のポリ二置換アセチレンの操り返し単位と側鎖のポリォ ルガノシロキサンの瑷り返し単位とのモル比が 93Z1から 5Z95の 範囲にあり、 分子量が少なく とも 1万以上であるボリニ置換アセチレン ポリオルガノシロキサングラフト共重合体から形成されることを特徴 とする液体混合物分雜用高分子膜が提供される。
上記 Yの定義の中の 2価の有機基としては、 置換も しくは無置換のポ リ メチレン鎖(炭素数 2以上)、 フエ二レンボレ メチレン基又は ξ^ 0-CH2CH2CH2- で示される基等を例示することができる。 また、 Ζの ポリオルガノシロキサン鎖とは、 繰り返し単位が一般式
R3
i Si-O - ( Π)
R10
(式中、 R3,R '。は、 同一あるいは異つてもよく、 アルキル基、 置換ァ ルキル基、 フエ-ル基又は置換フエ-ル基であり、 橾り返し単位ごとに 任意に異つてもよい。 )
からなるボリシロキサン鎖である。
本発明の高分子膜を形成する前記一般式( I )で表わされる繰り返し単 位からなるポリ二置換アセチレン zボリオルガノシロキサングラフ ト共 重合体は、 例えば、 揉り返し単位が一般式
CH3
i c=c (in)
A
(式中、 Aはアルキル基、 置換アルキル基、 フエニル基、 置換フエニル
R1
基または一 Si— R2 で表わされる基であり、 橾返し単位ごとに任意に異
R3
なってもよい。 )
からなるポリニ置換アセチレンを強塩基と反応させた後、一般式
Figure imgf000007_0001
(式中、 R3,R1 ()は前記と同様であり、 toは 3〜 6の整数である。 で表わされるシクロシロキサン化合物と反応させ、 さらに一般式
B-Si-R (V)
(式中、 Bはハロゲン原子、 Rs〜 R8は前記と同様である。 )
で表わされる ト リオルガ /ハロゲノ シラ ン化合物を加えて反応を停止す ることにより合成することができる。 また、 上記の方法以外にも、 前記 一般式(EI)で表される猱返し単位からなるボ リニ置換ァセチレンを強塩 基と反応させた後、 一般式
R6
B-Si-Y-Z-Si-R7 (VI)
Rs R8
(式中、 Bはハロゲン原子、 R<〜 R8、 Yおよび Zは前記と同様である。) で表される片末端反応性ポリオルガノシロキサンと反応させることによ り合成することもできる。
原料となる前記一般式(EI)で表される操返し単位からなるボリニ置換 アセチレンと しては、 ポ リ(2 -へキ.シン)、 ポ リ( 4 -メチル - 2 ンチ ン)、 ボリ( 4 -メチル - 2 -へキシン)、 ボ リ ( 2 -ォクチン)、 ポ リ(5 -メ チル -2-ォクチン)、 ポ リ(2 -テシン)、 ポ リ ( 1 -フエニルブロ ビン)、 ボ リ( 1 -ベンタフルオロ フェニルプロ ビン)、 ボ リ( 1 - ト リ メ チルシ リ ルブロビン)、 ポ リ [ 1 - (ェチルジメチルシ リ ル)ブロ ビン]、 ポ リ L 1 - (プ 口 ビルジメチルシ リ ノレ)ブロビン ]、 ボ リ [ 1 - (ト リ エチルシ リ ル)ブロ ピ ン ]、 ポ リ [ 1 - ( 3, 3 , 3 - ト リ フルォロブ口 ビルジメチルシ リ ル)プロビ ン ]、 ボ リ [ 1 - ( 3, 3, 3 - ト リ フルォロプ D ピルジェチルシ リル)プロ ピ ン ]、 ボ リ [ 1 - ( ト リ メチルシ リ ノレメ チルジメチルシ リ ル)ブロ ビン ]、 ポ リ [ 1 - ( ト リ メチルシ リ ルェチルジメチルシ リ ノレ)ブロ ビン ]、 ポ リ [ 1 - (フエ二ルジメチルシ リ ル)プロ ビン ]、 ボ リ [ 1 - (ベン タフルオロ フェニ ルジメチルシ リル)プロ ビン ]、 ポ リ [ 1 - ( -フエネチルジメ チルシ リル) ブロ ビン ]等を举げることができる。 また、 上記重合体を構成するボリ 二置換アセチレンの揉り返し単位の少なく とも 2種以上の組合せからな る共重合体をも例示することができる。
これらのボリニ置換ァセチレンを得る方法としては、 原料となる 1 ¾ または 2種以上の二置換アセチレン化合物を V族または VI族 S移金属で あるタンタル、 モリブデン、 タングステンあるいはニオブのハロゲン化 物、 たとえば、 五塩化タンタル、 五塩化ニオブ、 五塩化モ リブデン、 六 塩化タングステン、 五臭化タンタル、 五臭化ニオブなどを媒体として、 有憷溶媒中で通常 3 0 〜 1 0 0での温度で 2 ~ 3 6時間重合することに よ り得られる。 溶液としては、 ベンゼン、 ト ルエン、 キシレンなどの芳 香族炭化水素、 シクロへキサンなどの脂環式炭化水素、 クロ口ホルム、 1 , 2 -ジクロロェタン、 四塩化炭素などの塩素系溶剤などを用いること ができる。 また、 上記の胜媒を主触媒とし、 第 2成分としてアルミニゥ ム、 ケィ素、 錫、 アンチモンなどを含む有機金属化合物、 たとえば、 ト リ メ チルアルミ ニウム、 ト リェチルアルミ ニウム、 ヒ ド ロ シラ ン誘導体、 テ ト ラフェニル錫、 テ ト ラ - n -ブチル錫、 ト リ フエニルアンチモンなど- を助触媒として用いて目的とする重合体を得ることもできる。
前記一般式(IE )で表される璨返し単位からなるボリニ置換ァセチレ ン を前記一般式(IV )で表されるシク口キサン化合物または前記一般式(VI ) で表される片末 ¾反応性ポ リ オルガノ シ ロ キサン と反応させる際に用い る強塩基としては、 メチル リ チウム、 n -ブチル リ チウム、 いプチルリ チ ゥム、 フエニルリチウム、 リチウムジイ ソプロビルアミ ド等の有機リ千 ゥム化合物、 水素化力リウム、 水素化ナト リウム等のアル力リ金属水素 化合物、 ヨウ化メチルマグネシウム、 臭化工チルマグネシウム、 臭化フ ェ-ルマグネシウム等のグリニャール化合物等を 示することができる が、 反お効率の点で有機リチウム化合物が好ましい。 これらの強塩基ほ 通常原料のボリ二置換アセチレンの操返し単位に対して通常 0.1 ~ 4 等量用い、 この量によって、 ポリオルガノシロキサン成分の導入率を制 御できる。
前記一般式(BI)で表されるボリニ置換アセチレント強塩基との反応に おいては溶媒を用いることが好ましく、 溶媒としては、 ボリ二置換ァセ チレンを溶解し、 反 に関与しない溶媒であれば何でもよく、 例えば n- ペンタン、 n-へキサン、 シクロペンタン、 シクロへキサン、 テ ト ラヒ ド 口フラン(THF)、 ジメ ト キシェタン、 ト ルエン、 ベンゼン、 キシレン 等の有機溶媒を用いることができる。 ただし、 反応効率の点で THFあ るいは n-ペンタン、 n-へキサン、 シクロペンタン、 シクロへキサン等の 脂肪族炭化水素を用いることが好ましい。 また、 反応温度としては通常 0で〜 9 O'Cの範囲で好適に反応が進行する。 さらに、 この強塩基との 反応を、 Ν,Ν,Ν',Ν'-テトラメチルェチレンジアミ ン等のジァミ ンの 存在下に行なう反応が円滑に進行する点で好ましい。
前記一般式( ΙΠで表されるシク αシ口キサン化合物の置換基 R 3 , R ' ° としては、 メチル基、 ェチル基、 プロピル基等のアルキル基、 又は、 こ れらの水素原子がフッ素原子、 ト リメチルシリル基、 フエニル基、 ペン タンフルオロフェニル基、 OCF(CF3)2等で置換された置換アルキ ル基、 更にはフエ二ル基ゃフエニル基の水素原子がフッ素原子で置換さ れた置換フエ二ル基等を挙げることができる。 このようなシクロシロキ サン化合物としては
Figure imgf000011_0001
Figure imgf000011_0002
;
Figure imgf000011_0003
(ただし、 mは 3 ~ 6の螯数)
等を例示することができる。 また、 これらのシクロシロキサン化合物の 2種以上の混合物を用いてもよい。
前記一般式(IV )で表されるシクロシ αキサン化合物を反応系に加える 際には、 シク αシロキサン化合物をあらかじめ溶媒に溶解させて加える ことが好ましく、 この場合に用いる溶媒としてはテトラヒドロフラン、 η-ペンタン、 η-へキサン、 シクロペンタン、 シクロへキサン等の有機溶 媒が举げられる。 また、 シクロシロキサン化合物と反応させる際に、 反 ¾温度としては通常室温付近で好 に反応が進行し、 反応時間は 2時間 以上、 より好ましくは 10時間以上行うことによりシクロシロキサン化 合物の開環重合が完桔する。
上記の製造方法において停止剤として用いられる前記一被式(V)で表 わされるト リオルガノハロゲノシラン化合物の置換基 Rs〜 R8としては、 ^ ~(:10の直鎖若しくは分岐鎖を有する鎖状又は環状のアルキル基、 更にこれらのアルキル基の水素原子のいくつかが 7ッ素原子、 塩素原子、 ト リ メチルシリル基、 フエニル基、 ペンタフクレオ口フエニル基、 — 0CF(CF3)2、 一 C00CH2(CF2)3— CF3、 一 C00CH2C6Hs等で置換された置換 アルキル基、 フエニル基、 更にはフエニル基の水素原子のいぐつかがァ ルキル基、 フッ素原子等で置換された置換フエ二ル基等を挙げることが できる。
また、 ト リオルガ/ハロデ /シラン化合物のハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原子が好ましい。 このようなト リオルガノ ハロデノシラン化合物としては H3
ClSi(CH3)3 、 ClSi(C2H5)3 、 CI一 Si— CH2CH3
CH3 CH3 CH3
I I 02
■idsi zid -zi ZHD \ i 、 cdOl{ zid >M ZH3 !S13
CH3 CH3
CH3
:idzi ΖΏ !S!3 \ zi ΖΏ !SI3 9ΐ EH3 ·
EH0 CH3 CH0 IDZH3-!S10 cH3-0-iS10
0T CH3 CH0 EH3
cH3c-( ZH3) :H0 CH3
\ I
W ZH3 !SI H3-!SI3
z I
:H3 εΗ3
:H0 :H3
:H3c-( 2H3 !SIO :H3ZH3ZH3-!SJ9
CH3 :H3
T T
S00/98df/l3d W)6Z0/厶 8 O/W
Figure imgf000014_0001
H C o―一ll― ~i
' sc
C
Figure imgf000014_0002
<〇i Brsl
CH
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
CH: 0
II
ClSi— (CH2 -C-0-CH2-fCF2- -CF3
CH3
Figure imgf000015_0004
等を例示することができる。 これらのト リオルガノハロデノシラン化合 物はそのほとんどが市販されており、 また既知の方法により容易に合成 することができる。 これらのト リオルガノハロデノシラン化合物を、 用 いた強塩基に対して 2 ~ 20当量過剰に反 系へ加えることにより、 反 おは完全に停止する。 その場合、 反応時間は 20分間以上行うことが好 ましい。
また、 前記一般式(VI)で表される片末靖反応 ボリオルガノシロキサ ンの一例としては、
c ■ H
(1)
CH- CH3 C2H; ci-$i-o-z-si-CH3 CI-$i-0-Z-Si-C2H.
CH3 CH3 CH3 C2Hs
C2H; C2H.
Cl-Si-0-Z-Si-CH2CH2CF3
C2H5 C2H5
Figure imgf000016_0001
CH3
CI一 Si— 0— Z— Si— CH3
CH3
CHc CH:
CI-Si-0-Z-Si-< (2)
CH3 CH3
Cl-Si-CH2CH2-Z-Si-CH3
CH3 CH3
CH: C2H.
CI一 Si— CH2CH2— Z— Si— C2HS
CH3 C2HS
CH3 CH3
Cl-Si-CH2CH2-Z-Si- 0)
CH3 CH3
Cl CH 3
Figure imgf000017_0001
Cl
Figure imgf000017_0002
Figure imgf000017_0003
等を例示することができる。 ただし、 上記式中 Zは矂返し単位が前記- 般式( II )で表されるボリオルガノシロキサン鎖で、 その一例をあげる 6
Figure imgf000018_0001
2CF3
Figure imgf000018_0002
CH3 CH3
i SiO i SiO
CH2CH2-f CF2) 5CF3 CH2CH2CH2OCF(CF3 ) :
CH3 CH:
i SiO i SiOチ
CH2CH2C-0-CH2CF3
II
0
Figure imgf000018_0003
等を例示することができる。
前記の片末靖反応性ポリオルガノシロキサンのう ち、 第( 1 )群の化合 物は、 例えば、 下記の反応式で示す如く、 三置換シラノールに等モル量 の n-BuLiを加えることによ り得られるシラノレ一 トァニォンを開始劑と して、 シク trシロキサン化合物を リビングァニオン重合し、 反応性置換 基を有するハロデノシラン化合物を用いて反応を停止させることにより 合成することができる。
R
R6 R6
丄- 一 π ~ BuL 1 に Λ , . ,
R7-Si-0H > 7-Si-0-Li +
THF
R -
Figure imgf000019_0001
(式中、 Pは 1以上、 《は 3 ~ 6の整数、 Bおよび は同一あるいは異な るハロゲン原子であり、 R^〜 R1。は同一あるいは異なってもよく、 ァ ルキル基、 置換アルキル基、 7ェニル基または置換フエニル基である。 ただし R9,R1!>は繰返し単位ごとに異なってもよい。 )また、 その他にも 上記のシラノレー ト ァニオンを当モル量の σ,ω -ジクロロポリ オルガノ シロキサンと反応させることによ り合成することができる。 さらに第( 2)群の片末 ¾反¾性ポ 1/オルガノシロキサンは上記の反応 . R4
式中 B— Si— B' で表される化合物の代りに一般式、
R5
R3
Cl-Si-H ( )
(式中 , R '。は上記と同様である。 )
で表されるシラン化合物を用い同様の方法により合成しうる一般式、
Figure imgf000020_0001
(式中 RS~R1(>、 ϋおよび pは上記と同様である。 )
で表される片末靖ヒドロシリル化ボリオルガノシロキサンと、 二重結合 を有するク口ロシラン化合物とのヒドロシリル化反おにより合成するこ とができる。
ここで用いる二重結合を有するク口ロシラン化合物としては、
Figure imgf000020_0002
Cl-Si-CH=CH2 Cl-Si-CH2CH=Cfl2
CH3 CH3
Figure imgf000021_0001
Figure imgf000021_0002
等を例示することができる。
前記一般式( )で表される片末靖反応性ボリオルガノシロキサンを、 強塩基に対して 0.5 - 3.0当量、 好ましくは 0.9 ~ 2.0当量用いる ことにより収率良く 目的物を得ることができる。
また本発明の高分子膜を形成するグラフト共重合体の一部は、 上記一 般式(H)で表わされる糠り返し単位と下記一般式
CH2W
i C = C [β]
A
R4 で表わされる繰返し単位(各式中、 Aは前記と同様であり、 Wは一 Si— Vで
R5 表わされる基である。 Vは炭素-炭素二重結合を有する基を示す。 )より なる共重合体に強塩基を作用させ、 次いで前記一般式(W)で表わされる シクロキサン化合物を反応させ、 さらに前記一般式(V)で表わされる リオルガノハロデノシラン化合物を加えて反応を停止させることにより 製造することができる。 上記 Vで示される炭素-炭素二重結合を有する 基としては、 ビニル基、 ビニルフエニル基、 ァリル基、 P-ビニルベンジ ル基等を例示することができる。
前記一般式(ΠΙ)及び(IX)で表わされる樣り返し単位よ りなる共重合体 は、 各々対応するモノマーを共重合体させることにより得ることもでき るが、 分子量の高い共重合体を得るためには前記一般式(H)よりなるボ リニ置換アセチレンに高分子反応を利用して炭素-炭素二重結合を有す る基を導入する方が好ましい。 すなわち、 前記一般式(ΠΙ)よ りなるボリ 二置換アセチレンを強塩基と反応させた後、 例えば
CH: CH2CH3 CH3
Cl- CH = CH2
Figure imgf000022_0001
CH3 CH3
. Cl-Si-CH2CH = CH2 、 Cl-Si-CH2CH = CH:
CH3
fO] 、
Figure imgf000022_0002
等の炭素-炭素二重結合を有するハロゲン化合物と反応させることによ り、 前記一般式( IE )及び(E)で表わされる繰り返し単位よりなる共重合 体を合成することができる。 ここで用いる強塩基としては n-ブチルリチ ゥム等の有檨リチウム化合物が好ましく、 反応はテト ラヒ ドロフラン等 の有機溶媒中において通常 O'C付近で 1 ~ 2時間程度行うことにより、 目的とする共重合体を分子量低下を伴うことなく合成することができる (参考例及び参照)。 次に本発明に用いるグラフト共重合体の ¾造において、 使用しうる強 堪基としては、 メチルリチウム、 n-ブチルリチウム、 いブチルリチウム、 フエ-ルリチウム、 リチウムジイソブ πビルアミ ド等の有機リチウム化 合物、 水素化カリウム、 水素化ナト リウム等の水素化アルカリ金属化合 物、 ヨウ化メチルマグネシウム、 臭化工チルマグネシウム、 臭化フエ- ルマグネシウム等のグリ -ヤール化合物を例示することができるが、 反 お効率の点で有 «リチウム化合物が好ましい。 これらの強堪基は通常原 料となる前期一被式(IB )及び(K)で表わされる橾返し単位よりなる共重 合体の側鎖の炭素-炭素二重結合を有する基に対して通常 1〜 3当量程 度用いる。 また、 これらの強塩基との反応においては、 溶媒を用いるこ とが好ましい。
溶媒としては、 側鎖に炭素-炭素二重結合を有する基をもつボリ二置 換アセチレンを溶解し、 反応に関与しない溶媒であれば何でもよく、 例 えばテ ト ラヒ ドロフラン、 ジメ ト キシェタン、 n -ペンタン、 n-へキサン、 シクロへキサン、 ベンゼン等の有機溶媒を用いることができる。 また、 反応は一 4 0で〜 + 3 0での温度範囲で通常 2 0分閉以上行うことが好 ましい。 ただし、 生成物の分子量低下を防ぐ点で 0で以下で行うことが より好ましい。
シクロシロキサン化合物としては上で例示した化合物を好適に用いる ことができ、 また 2種以上の混合物を用いてもよい。 なお、 前記一般式 ( I )で表されるシクロシロキサン化合物を強塩基に対して 0 . 5〜 5 0 当量用いることにより収率よく 目的物を得ることができる。
また、 ここで加えるシクロシロキサン化合物の量を謂螯することによ り生成するグラフ ト共重合体のポリオルガノシロキサン成分の導入率を 任意にコント ロールすることが可能である。
シクロシロキサン化合物を反応系に加える際には、 シクロシロキサン 化合物をあらかじめ溶媒に溶解させて加えることが好ましく、 この場合 には用いる溶媒としては例えばテトラヒドロフラン、 II -ペンタン、 n -へ キサン、 シクロペンタン、 シクロへキサン等の有機溶媒が举げられる。 また、 シクロシロキサン化合物を反応させる際の反応温度としては通常 室温でよい。 反 は 2時間以上、 より好ましくは 1 0時間以上行うこと により、 シクロシロキサン化合物の開環重合は充分進行する。
次いで、 前記一般式(V )で表わされるト リオルガノハロデノシランを 加えることにより反応を停止させる。 この場合ト リ オルガノハロデノシ ラン化合物を、 用いた強塩基に対して 2 〜 2 0当量、 過剰に反応系へ加 えることにより、 反おは完全に停止する。 その場合、 反お停止に要する 時間は 2 0分間以上が好ましい。
なお、 これにより製造されるグラフト共重合体の枝末靖基は、
R6
-Si -R7 (式中、 RS〜R8は前記と同じ)となる。
R8
さらに、 本発明の髙分子膜を形成するグラフト共重合体の一部は、 前 記一般式( IE )で表わされる操り返し単位と前記一般式(E)で表わされる 繰り遏し単位よりなる共重合体に、 ヒドロシリル化) ¾媒の存在下、 前記 一般式( )で表わされる片末 ¾ヒドロシリル化ポリオルガノシロキサン を反応させることによつても製造することができる。
本方法においては、 ヒドロシリル化反応と呼ばれる炭素-炭素二重結 合への片末靖ヒ ト *ロシリル化ボリ才ルガノシロキサンのヒ ド シ リル基 の付加により、 シロキサン鎖のグラフト化が達成されるものである。 この反応に当ってはヒドロシリル化触媒の使用が必須であり、 ヒドロ シリル化触媒としては堪化白金酸(H2PtC * 6H20)を用いるのが最も一 般的であるが、 その他にもパラジウムやロジウムを含む金属錯体が使用 可能である。 例えば、 (Ph3P)4Pd、 (Ph3P)2PdCl2、 (PhCN)2PdCl2,
(Ph3P)3RhCU (Ph2PH)2RhCK (Ph3P)2(C0)RhCl、 [(CzH5)3P]2(C0)RhCl などを ft媒として用いることができる。 用いる »媒の量は、 通常戾素- 炭素二重結合を有する基に対して 1Z100〜 1/1000当量程度で 充分である。 この反応は溶媒中で行うのが好ましく、 溶媒としては、 へ キサン、 ベンゼン、 ト ルェン、 アセ ト ン、 ト リ クロロエチレン、 四塩ィ匕 炭素、 テトラヒドロフラン(THF)などを用いることができる。 反応温度 は、 40で〜 1 0 O'Cの温度範囲で行い、 またアルゴンや窒素等の不活 性気体雰囲気下で行うのが望ましい。 また、 反お時間は通常 2時間以上、 より好ましくは 1 0時間以上行うことにより反応は完結する。
本発明のグラフ ト共重合体はト ルエン、 ベンゼン、 ェチルベンゼン、 キシレン等の芳香族系溶媒、 四塩化炭素、 クロ口ホルム、 ト リクロロェ チレン等のハロゲン化炭化水素、 n_へキサン、 シクロへキサン、 シク α へキセン等の炭化水素系溶媒あるいはテト ラヒ ドロフラン等のエーテル 系溶媒に可溶で、 アルコール類または水に対しては不溶性である。
本発明の高分子膜を形成する前記一般式( I )で表わされる操り返し単 位からなるボリ二置換ァセチレン ボリオルガノシロキサングラフ ト共 重合体は、 主頻のポリニ置換アセチレンの揉り返し単位と側鎖のボリォ ルガノシロキサンの繰り返し単位とのモル比が 99/1から 5Ζ9 5の 範囲にあることが必要である。 すなわち、 この範囲よりオルガノシロキ サン単位が少ないと、 得られる膜の液体分維特製が原料のポリニ置換ァ セチレンの場合とほとんど違いがなく、 また多いと、 グラフト共重合体 のガラス転移点が低くな 1)すぎるため成胰性が惠くなり薄胰化し難い傾 z
向がある。 特に一般式( I )における Aがー Si— R2で表わされる基である
R3 場合には、 上記モル比が 9 8 / 2から 2 0 / 8 0の範囲にあることが好 ましく、 また Aがアルキル基、 置換アルキル基、 7ェニル基または置換 フエニル基の場合には、 上記モル比が 6 0 Z 4 0から 5 9 5の範囲に あることが好ましい。 これらモル比の範囲のグラフト共重合体は、 前述 の製造方法において、 強塩基の量あるいは前記一般式(1Πで表されるシ クロシロキサン化合物の量または前記一般式(VI )で表される片末靖反応 性ポリオルガノシロキサンの量および鎖長を調整することにより得るこ とができる。 また、 共重合体の重量平均分子量は膜強度の点から大きいことが望ま しく、 通常 1万以上、 特に好ましくは 5万以上である。 本発明の高分子膜を形成するための該グラフト共重合体の製膜方法と しては、 特に限定されることなく公知あるいは周知の手段を用いること ができる。 例えば、 キャスト溶液から金属上、 ガラス板上、 水面上など で溶媒を蒸発させて製膜することができる。 また、 多孔質の支持体を溶 液に浸滾したのちにひき上げたり、 溶液を塗布、 乾燥させるなどの方法 も採用することができる。 この場合の溶媒としては、 ト ルエン、 ベンゼ ン、 ェチルベンゼン、 キシレン等の芳香族系溶媒、 四塩化炭素、 クロ口 ホルム、 ト リ クロ口エチレン等のハロゲン化炭化水素あるいはテトラヒ ドロフラン等のエーテル系溶媒等が良好に用いられる。
本発明の膜は、 充分な透過量を与えかつ実用的な強度を持っために、 膜の厚さが 0 . 0 5 ~ 1 0 0 j" a、 特に 0 . 1 ~ 5 0 # aのものが好ましく 用いられる。 胰厚が 1 以下の薄胰ではま持体とともにも用いること が好ましい。 支持体としては、 蟓布状支持体、 不織布状支持体、 ミ クロ フィルター、 限外ろ遏膜など膜を支持する充分な強度を有する多孔質体 であれば、 これを用いることができる。
本発明の膜ほ平膜、 管状胰、 中空糸胰など、 いかなる形想においても 用いることができる。 また、 本発明に用いるグラフト共重合体を溶媒に 溶解した後金属上、 ガラス板上、 水面上などに ¾展した後、 ただちにァ ルコールまたは水等の貧溶媒に浸澄すること等により非対称膜を作成す ることもできる。
また、 本発明において、 上記分離膜を他の膜と重ね合わせた積層膜の 形で用いることもできる。 またこのようにして得られる膜は、 平膜、 管 状胰、 中空糸膜などいかなる形状においても用いることができる。 本発明において、 分雜対荥とする液体混合物は、 本発明の膜を溶解さ せないものであればい。 液体混合物を構成する成分化合物としては以下 のものを例示することができる。 すわなち、 水およびメタノール、 エタ ノール、 ブロハ ·ノール、 ブタノール、 ペンタノール、 へキサノール、 シ クロへキサノール、 ァリルアルコール、 エチレングリコール、 グリセリ ン、 2, 2, 2 -ト リ フルォロエタノール等のアルコール等、 アセ ト ン、 メチルェチルケ ト ン等のケ ト ン類、 ギ酸、 酢酸、 プロビオン酸、 ァクリ ル酸、 メタクリ ル酸、 マレ イ ン酸、 クロ ト ン酸等の酸類およびそれらの エステルイ匕物、 ジメチルエーテル、 ジェチルェ一テル、 テ ト ラヒ ドロフ ラン、 ジォキサン等のエーテル類、 メチルァミ ン、 ェチルァミ ン、 ェチ レンジァミ ン、 ァニ リ ン、 ピリ ジン等のアミ ン類、 N,N -ジメチルホル ムアミ ド、 スルホラン、 ジメチルスルホキシドのごとき有機液体を挙げ ることができる。
本発明において分雜の対象とする液体混合物とは上記のごとき液状化 合物を 2種類もしくはそれ以上含む混合物である。
もちろん本発明の膜は上記以外の、 例えば無機けん濁物質を含むよう な液体混合物の分雜等にも用いることができる。 本発明の分雜膜が特に すぐれた選択透過性能を示す液体混合物の例としては、 水-有機液体混 合物、 特に水-メタノール、 水-エタノール等の水-アルコール混合物あ るいは水-ァセト ン等の水-ケト ン混合物などを孝げることができる。 本発明の膜は広く温度範囲で用いることができるが、 好ましくは一 3
0 - 1 5 0での範囲、 より好ましくは 0で~ 1 0 0での範囲で用いるこ とが好ましい。 これ以上の温度は膜の ίί久性の上から好ましくない、 ま たこれ以下の温度は透過性の低下と冷却に必要なエネルギーの問題から 好ましくない。
本発明の膜を用いて液体混合物を分雜、 港縮する場合、 膜を透過する 物質は液体、 蒸気のいずれの状想でも取り出すことができるが、 膜の持 つ分雜能を充分発揮させるためにほ蒸気として取り出すことが好ましい。 この場合、 分雜胰の液体混合物を併袷する側の圧力は大気圧〜 1 0 0気 圧がよく、 より好ましくは大気圧およびその近傍がよい。 これ以上の圧 力を負荷することは分雜膜の選択透過性に対して余り大きなメ リッ ト と はならない。 一方、 透過側は減圧にするか、 または空気等の不活性ガス を流して、 分離したい成分のケミ カルポテンシャルを供耠側より低く保 つことが必要である。
本発明の分雜膜ほ極めて高い分雜能を有しているか、 液体混合物を 1 回透過させただけでは所望の純度に達しない場合は、 透遏物を糠返し膜 透遏させることにより、 所望の銶度まで高めることもできる。
以上のように、 本発明の分雜膜は、 従未のシリコーンゴム膜に比べて 優れた膜強度を有するために薄胰化が可能であり、 さらに非常に優れた 液体選択透過性を有しているため、 本発明の膜を用いて水-アルコール 混合物等、 種々の液体混合物の分雜または濃縮を極めて効率良く行うこ とができる。
以下に、 参考例、 実施例および比較例により本発明をさらに詳しく説 明する。 ただし、 本発明がこれらに限定されるものでないことはもちろ んである。
参考例 1 [ボリ( 1 -フヱニルブロビン)の合成]
1 -フエ二ルブロピン 44.3sをトルエン 5 00»1に溶解し、 五塩化 タンタル 2.7sを加えステンレス製重合管中にて脱気封管後、 80でで 6時間振とう し、 粘稠なゲル状重合体を得た。 この重合体をトルエンで 溶解させ、 多量のメタノール中に数回再沈澱を操り返し、 得られた黄色 糍維状固体を真空下 60でにて乾煉した。 収量は 3 8.2g (収率 8 6.2 %)であった。 得られた重合体について、 IR、 Ή-NHR, 13C— NMR測定お よび元素分析を行い、 目的とするボリ( 1 -フエニルプロピン)であるこ とを確認した。 また、 GPC測定の結果、 数平均分子量および重量平均分 子量はポリスチレン換算値でそれぞれ 2.1 5 X 1 0 s、 5.5 3 X 1 05 であった。
実施例 1 参考例 1で得られたポリ( 1 -フエニルプロピン) 3 · 8 sを乾燥シク口 へキサン 45 Otilに溶解し、 アルゴンガス気流下 60でに加熱した後、 Ν,Ν,Ν',Ν'-テト ラメチルエチレンジァミ ン 4.90 al (3 2.7aaol)およ ぴ π-ブチルリチウムへキサン溶液( 1 · 6»olZl) 20.4M1( 3 2.7Β»Ο1) を加えさらに 1時間攪拌を较けたところ反応溶液が黒赤色を呈した。 次 に反応溶液の温度を室温まで冷却しへキサメチルシク口 ト 、}シロキサン 3 6.4 g( 1 63.5aaol)を乾燥 THF250 alに溶解した溶液を一度に加 えたところ、 反応溶液は黒赤色から黒紫色に変化しその後しだいに淡黄 色へと変化した。 さらに室温にて 24時間 ¾袢を较け、 ト リメチルクロ · ロシラン 1 8al( l 42mB>0l)を加え反おを停止した後さらに 2時間援袢 を较けた。 最後に、 上記の反応溶液をメタノール 51に注ぐことにより 白色ボリマーを得た。 得られたポリマーを再びト ルエン 30 Οιβΐに溶解 しメタノール Zジェチルエーテル混合溶媒( 80/20 voし%) 41に再 沈澱を行い、 さらに同様に数回再沈澱を揉り返すことにより混入してい るボリジメチルシロキサンを除きポリマーを精製した。 生成ポリマーの 収量は 6.8 sであった。
得られたポリマーについて G PC測定を行ったところ、 数平均分子量 および重量平均分子量はボリスチレン換算値でそれぞれ 2.3 7 X 1 0 s、 5.6 1 X 1 05であった。
また、 I Rスペク トル、 'Η— N MRスペク ト ルおよび元素分析の結 杲は次のとおりであった。
IRスペク ト ル(CM-'); 3 1 0 0(»)、 3 0 7 0 (s)、 3 0 4 0 2 9 8 0 (s)、 2 9 2 0 (s), 2 8 6 0 (tn), 1 9 5 0 (αι)、 1 8 9 0 (w) 1 8 0 0 (w)、 1 6 0 0 (s、 主鎖ボリ( 1 - 7'ェニルプロビン)のフエニル基の 特性吸収)、 1 5 00(s)、 1 440(s)、 1 4 1 5 )、 1 3 70(s)、 1 2 60 (s、 側鎖ポリジメチルシ口キサンのメチル基の特性吸収)、 1 1 00(s、 シ πキサン結合の特性吸収)、 1 0 20 (s、 シ口キサン結合 の特性吸収)、 9 1 0(»)、 860(s)、 800(s)、 7 70 (s)、 695 (s)
'H— NHRスぺクトル、 (CDC13、 pp»); 0.1 0 (側鋇ボリジメチルシロキ サンのメチル基のプロ トンビーク)、 1.60 (主鎖ポリ( 1 -フエニルブ ロビン)のメチル基のブロ ト ンピーク)、 6.90 (生鎖ボリ( 1 -フエ:ル ブ πビン)のフエニル基のプロ トンビーク)
元素分析値(%);C:5 7.0 1、 HIT.5 4
以上の結果より、 生成ポリマーは原料のポリ( 1 -フエ-ルプロビン) のメチル基上の水素の一部力
Figure imgf000031_0001
i SiO-)—— Si-CH3 (pは 1以上の整数)
I 3P I
Figure imgf000031_0002
で表される基に置換された構造を有するボリ( 1 -7ェニルプロビン ポリジメチルシロキサングラフト共重合体であることを確認した。 また、 'H— NHRスぺク トルの 0.1 Oppaと 6.3 Oppteのプロ ト ンビーク面積比 より求めたこのグラフト共重合体の主鎖のポリ( 1 -フエニルブロビン) の操り返し単位と側鎖のボリジメチルシロキサンの操返し単位とのモル 比は 3 0/70であった。
このようにして得られたグラフト共重合体をトルェンに溶解した後テ フロン板上に流 ¾し、 トルエンをゆつく り と蒸発除去することにより膜 厚が 2 8 aの均一で透明かつ強度のある膜を作成した。 得られた膜を ステン レス製浸透気化用セル(パーベーパレ一ションセル)にはさみ込み 透過側を 0. 5msHsの滅圧にし水-エタノール混合物の透過を行った。 胶を透過した混合液組成は TCD-ガスク口マトグラフィ—によ り検出し透 過速度 P(s · ίη Ίο2 · hr)および選択性 σを下記式によ り求めた。
透過液重量 X膜厚
Ρ = (s m/ re' hr)
膜面積 X時間
A (透過液中の A成分の重量分率 Z透過液中の B成分の重量分率) a = :
B (供給液中の A成分の重量分率 Z供給液中の B成分の重量分率) 以上のような透過実験を供給液組成を変えて数回行い、 各々の場合の
Pおよびなを測定した。 結果を表 1に示す。
表 1
Figure imgf000032_0001
実施例 2 芙施例 1 において、 へキサメチルシクロ ト リ シロキサンの量を 5 4. 6 g( 2 4 5 mmol)とした以外は芙施例 1 とまったく同様な操作を行い、 白色ボリマ— 8. 7 sを得た。
G P C測定による数平均分子量および重量平均分子量はポリ エステル 換 値でそれぞれ 2. 4 4 X 1 05, 5.6 5 X 1 05であった。 得られたポリマーの IRスぺク ト ルおよび 'H— NMRスぺク トルは実施例 1の結果と同様であり、 元素分析値は以下の通りであった。
元素分析値 (%); C:49.98、 H:7.65
したがって、 生成ポリマーほ実施例 1で得られたボリマーと同様な構 造を有するポリ(1 -フエ-ルブロビン) Zポリジメチルシロキサンダラ フ ト共重合体であり、 'Η— NMRスぺク トルのプロ ト ンビーク面積比より 求めた主鎖のボリ( 1 -フエニルブロビン)の操り返し単位と側鎖のポリ ジメチルシロキサンの揉り返し単位とのモル比は 20Ζ80であった。 得られたグラフト共重合体より実施例 1と同様の方法により厚さ 25 の均一で透明かつ強度のある膜を作成した。 この膜の水-エタノール 混合物の透過特性を供給液組成を種々変化させて実施例 1 と同様の方法 で測定した。 結果を表 2に示す。
表 2 ·
Figure imgf000033_0001
実施例 3
実施例 1において、 へキサメチルシクロ ト リシロキサンの量を 3 6. 1 ( 1 6 2toaiol)とし、 これにト リス( 3, 3, 3 -ト リ フルォロブ口ビル) ト リ メチルシクロ ト リ シロキサン 3 8.08( 8 0. 9»!*01)を加ぇ、 それ 以外は実施例 1 とまったく同様な操作を行い、 白色ポリマー 1 1.5sを 得た。
GPC測定による数平均分子量および重量平均分子量はボリスチレン換 算値でそれぞれ 2.44 X 10 s、 .5.23 X 105であった。
また、 IRスペク トル、 'H— NHRスペク トルおよび元素分析の結果は次 のとおりであった。
IRスペク トル(<;·—,); 3100(·)、 3070(騸)、 3040 (鱅)、 298 0(s)、 2920(M), 1 950(W)、 1 600 (»,主鎖ボリ( 1 -フエ-ル ブロビン)のフエ-ル基の待性吸収)、 1 500(it)、 1 40(a), 1 3 70 (a)、 1 318 (a)、 1 260 (s、 側鎖ポリオルガノシロキサンのメ チル基の特性吸収)、 1 210(ss C-F結合の特性吸収)、 1 1 30(s)、 1 100(s、 シロキサン桔合の特性吸収)、 1 070(s)、 1 020(s、 シロキサン結合の特性吸収)、 900(s), 8 40 (s)、 800 (s)、 77 0(s)、 695 (s)、 550(,)
'Η— NHRスぺクシル、 (CDCI3、 ppa);0.1 0(側鎖ボリ オルガノシロキ サンのメチル基のプロ ト ンビーク)、 0.85 ( 3, 3, 3 -ト リフルォロブ 口ビルシ リル基のシ リル基側メチレン基のプロ ト ンビーク)、 1.60 (主 鎖ポリ( 1 -フエニルプ σビン)のメチル基のブロ ト ンビーク)、 2.1 2(3 , 3, 3 -ト リフルォロブ口ビルシリル基のト リフルォロメチル基側メチ レン基のプロ ト ンピーク)、 6 · 90 (主鎖ポリ( 1 -フエニルブロビン)の フエ-ル基のプロ ト ンピーク)
元素分析値 (%); C: 46.32、 H:5.99
以上の結果より、 生成ボリマーは原料のポリ( 1 -フエニルブ oピン) のメタル基上の水素の一部が CH3
-Z'-Si-CH3
CH3
Figure imgf000035_0001
(式中、 Z'は■( SiO および SiO で表される糅返し単位からなるボリ
uHa レ レ HsCr 3
オルガノシロキサンである。 )
で表される基に置換された構造を有するボリ( 1 -フエニルブロビン) Z ポリオルガ/シロキサングラフト共重合体であることを確認した。 また、 'Η— NMRスペク ト ルの 0.1 0ppa、 0 , 85 ppa、 6.30 pp鶴のプロ ト ン
CH3
ビーク面積比より求めた側鎖ポリ オルガノシロキサンの■( S'IO および
CH3
CH3
i SiO で表される繰返し単位のモル比は 6 3Z37であり、 主鎖 のボリ( 1 -フエニルブ σビンの操返し単位と側鎮のボリ オルガノシロキ サンの橾返し単位とのモル比は 2 2/7 8であった。
得られたグラフ ト共重合体より実施例 1 と同様の方法により厚さ 2 2 aの均一で透明かつ強度のある膜を作成した。 この膜の水-エタノール 混合物の透過特性を供給液組成を種々変化させて実施例 1 と同様の方法 で測定した。 結果を表 3に示す。 液組成(ェタノール Z水、 wt.%) エタノール
u
供耠液 透過液
8.03/91.97 71.57/E8.43 6.34X10— 28,83
11.96/88.04 74.88/25.12 7.02X10— 21.94
26.54/73.46 88.68/11.32 1.67X10-3 21.68
52.49/47.51 92.30/ 7.70 3.26X10一3 10.85
80.95/19.05 95.64/4.36 5.98X10-3 5.16
\
参考例 2 (ポリ( 1 -ト リ メチルシリルブロビン)の合成)
1 -ト リ メチルシリルブロビン 42.6sをトルェン 30 Oalに溶解し、 五塩化タンタルを 2.4s加えステンレス製重合管中にて脱気封管後、 8 0でで 24時間振とう し、 粘稠なデル状重合体を得た。 この重合体をト ルェンに溶解させ、 多量のメ タノール中に数回再沈澱をく り返し、 得ら れた白色練維妆団体を真空下 60でにて乾煉した。 収量は 38.5s (収 量 90.3%)であった。 得られた重合体について、 IR、 Ή-NHR, '3C— 測定および元素分析を行い、 目的とするボリ( 1 -ト リ メチルシ リル プロビン)であることを確認した。 また、 GPC測定の結果、 その数平均分子量および重量平均分子量はボ リスチレン換算値でそれぞれ 5.3 6 X 1 0S、 2.2 6 X 1 0 sであった ( 参考例 3 (片末靖反お性ボリ シ πキサンの合成 1 ) ト リ メチルシラノール 1 4.2 g(0.1 5 7aol)を乾燥 THF20 Oalに 溶解し、 アルゴンガス気流下にて n-ブチルリチウムへキサン溶液( 1.6 iaol/1) 1 00»1(0.1 6»ol)を加えた。 1 0分間攪袢した後、 さらに へキサメチルシクロト リシロキサン 3 5.6 g( 0.47 9 too 1)を乾燥 THF 200alに溶解した溶液を加え、 アルゴン ス気流下で室温にて 2 1時 簡提拌した。 この溶液に停止剤としてジメチルク π πシラン 60»1(0. 5 5 1»0|)を加え、 リビング重合を停止した。 次に減圧下で溶媒を除去 した後生成した塩をろ別し、 0. lBBHg以下の真空下で 1 50でにて 3 時間加熱して未反応のシク口シロキサンおよび過剰の停止剤を除去した ところ、 無色透明な粘性液体 5 1.6gを与えた。 得られたポリマーにつ いて IR測定、 NHR¾定を行い、 その構造が
Figure imgf000037_0001
CHj-Si- OSi-)- ~~ O-Si-H であることを確認した。
Figure imgf000037_0002
また平均重合度 Bは NMRにおけるプロ ト ン比基準で約 4.2であった。 このようにして得られたポリジメチルシロキサン 2 5.0g (約 0.06 7鱅 ol)を乾燥トルェン 5 Oalに溶解し、 アルゴンガス気流下にビニル メチルク口ロシラン 30 (0.2 2 aol)および »媒として塩化白金酸ェ タノール溶液(0.1 33«ol/I) 1 4 1を加え、 80でで 2時間加熱 » 抨した。 この溶液を IR測定したところ原料のポリ ジメタルシ αキサン末 港の Si—H結合に基づく吸収ピーク( 2 1 7 5 cn—')は完全に消失してい た。 この溶液からアルゴン気流中で溶媒および過剰のジメチルクロロシ ランを蒸発除去し、 片末靖ジメチルクロロシ リルボリ ジメチルシロキサ ン約 2 6gを得た。
実施例 4
参考例 2で得られたポリ [ 1 - (ト リメチルシリル)ブロビン] 1.0g( 8. 900»801)を1"11卩200»1に溶解し、 アルゴン気流下 0でにて π-ブチルリ チウムへキサン溶液( 1.6»οΐΖ1)6.0»1(9.6 Onaol)を加え 3時間 攪拌したところ、 反お溶液が赤色を呈した。 さらに参考例 3で得られた 片末 ¾ジメチルシクロロシリルボリジメチルシロキサン 1 4 g(i i 2 4 ol)を加えてさらに 0でにて 1 5分間提抨し、 反応溶液が赤色から無色 透明溶液へと変化したことを確認した後、 反応溶液をメタノール 21に 注ぎ沈濺を生成せしめた。 得られた沈濺をろ别し、 トルエン 200 1に 溶解しメタノール 21に注ぎ沈澱を生成せしめた。 その後、 同様に数面 再沈澱を行い精製した。 得られた沈澱をろ別し、 乾燥したところ 1.0
3 gの白色ボリマーを得た。 このボリマーについて、 GPC測定を行ったと ころ、 数平均分子量および重量平均分子量はボリスチレン換算値でそれ ぞれ 4.2 6 X 1 05 1 3.0 X 1 0 sであった。 また、 IRスペク トルお よぴ元素分析値は次のとおりであった。
IRスペク トル(ca-' S 980(s)、 2 320(s)、 1 5 65 (s)、 1
43 3 (β)、 1 3 70 (M、 主鎖ポリ ト リメチルシリルプロビン上のメチ ル基の特性吸収)、 1 2 60(s、 惻銷ポリ ジメチルシロキサン上のメチ ル基の特性吸収)、 1 2 50 (s、 主鎖ボリ ト リ メチルシリルブロビン上 のト リ メチルシリル基の特性吸収)、 1 1 80 (»)、 1 1 00 (s、 シ口キ サン結合の特性吸収)、 1 020(s)、 3.1 5 («0 8 40(s)、 800 (s)、 7 50 (s)、 68 5 (a)、 630 (»)
元素分析値 (%): C:63.5 3 H:i 0.4 8
以上の結果より、 生成ポリマ—は原料のポリ [ 1 - (ト リメチルシリル)ブ 口ピン]の主鎖二重結合に直結したメチル基上の水素の一部が - 4.2 )
Figure imgf000039_0001
で表わされる基に置換された構造を有するボリ( 1 -ト リメチルシ リルブ ロビン)/ポリジメチルシロキサングラフト共重合体であることを確認 した。 さらに、 元素分析値の炭素含量より主鎖ポリ( 1 -ト リメチルシリ ルブロビン)単量体単位と側鎖ポリジメチルシロキサン単量体単位のモ ル比を算出したところ、 36Z4であった。
3
J- 得られたグラフト共重合体 1 0 Oa 7gを譲-キシレン 2»1に溶解し面積 2 5 c»2のテフ口ン板上に流延し、 溶媒を 40でにて留去した後充分に真 空乾燥して均一、 透明な膜厚 1 2.6 nの膜を得た。 得られた膜の水- エタノール混合物の透遏特性を供給液組成を種々変化させて実施例 1と 同様の方法で測定した。 結果を表 4に示す。 表 4
Figure imgf000039_0002
参考例 4 (片末港反応性ポリシロキサンの合成 2 ) 参考例 3において、 ト リ メチル ラノールを 7.2 g( 0.0798 aol), n-ブチルリチウムへキサン溶液 5 Oml(0.0 8 Oaol)N ジメチルクロ口 シラン 3 0(01( 0.2 7 58<01)とした以外は参考例 2と全く同様な操作を 行い、 その構造が
CH3 CH3 CH3
CHa-Si-f OSi- -0-Si-H (1= 6.2 )
CH3 CH: CH3
であるポリジメチルシロキサンを得た。
さらに、 このポリジメチルシロキサン 2 2.08を参考例 3と同様にビ -ルジメチルクロロシランとヒ ドロシリル化反応を行うことにより、 片 末靖ジメチルクロロシリルポリジメチルシロキサン約 2 4gを得た。 実施例 5
実施例 4において、 参考例 3で得られた片末靖 メチルクロ口シリル ポリ ジメチルシ口キサンの代りに参考例 4で得られた片末 ¾ジメチルク ロロシリルポリジメチルシロキサン 1 0 s (約 1 6»»ol)を用いた以外は 実施例 4とまったく同様な操作を行い、 ポリ [ 1 - (ト リメチルシリル)ブ 口ビン]の主鎖二重結合を直結したメチル基上の水素の一部が
Figure imgf000040_0001
一 SiCH2C! Si(H Si— CH3 (S= 6.2 )
Figure imgf000040_0002
で表わされる基に置換された構造を有するボリ( 1 -ト リメチルシリルブ ロビン) ポリジメチルシロキサングラフト共重合体 1.08gを得た。 I Rスペク ト ルは実施例 1 とまったく同様であつたが、 1 2 60c»_'の側 鎖ボリジメチルシロキサン上のメチル基の吸収強度および 1 1 0 Oca-1 のシロキサン結合の特性吸収がより強くなっていた。
元素分析値は以下の通りである。
元素分析値(%): C:6 1.60、 H:9.69 上記の炭素含量より生鎖ボリ [ 1 - (ト リメチルシリル)プロピン]単量 体単位と側鎖ポリジメチルシロキサンの単量体単位のモル比を算出した ところ、 88Z12であった。 また、 GPCil定による数平均分子量お よび重量平均分子量はポリスチレン換算值でそれぞれ 4.1 3 X 1 05、 1.7 7 1 06であった。 得られたグラフト共重合体は実施例 4と同様の方法により厚さ 1 8. 8 #aの均一で透明かつ強度のある胰を作成した。 この膜の水-エタノー ル混合物の透過特性を供給液組成を種々変化させて実施例 1 と同様の方 法で測定した。 結果を表 5に示す。 さらに、 同じ膜を用いて水-ァセト
s
ン混合物の透過特性を同様な方法により測定し、 その結果を表 6に示す《 表 5 液組成(ェタノール; /水、 P エタノール
a
供給液 透過液 水
7.14/92.86 67.96/32.04 1.44X10-3 27.59
21.07/88.93 76.59/23.41 1.86X10一3 13.81
39.86/60.14 83.52/16348 2.76X10-3 7.65
72.66/27.34 91.32/ 8.68 6.38X10一3 3.96
84.33/15.67 94.04/ 5.96 1.15X10-2 2.93 表 6 液組成(ァセト ン Z水、 、 %) P ァセト ン
供給液 透過液 (g♦ »/ 2♦ hr) な水
8.12/91.88 80.02/19.92 4.82X10-3 45.49
25.60/74.40 92.65/7.35 9.84X10-3 36.63
39.81/60.19 93.04/6.96 1.16X10 -2 20.21 参考例 5 (片末端反 性ポリシ πキサンの合成 3 )
参考例 3において、 ト リ メチルシラノールを 5.4g( 0.0 60mol)、 π-ブチルリチウムへキサン溶液 3 8 m 0.06 1 tnol)、 ジメチルクロ口 シラン 20^(0.1 8 4mol)とした以外は参考例 3とまったく同様な操 作を行い、 その構造が
CH3 CH3 CH3
CH3-Si-( OSi >ffl0-Si-H (m = 8.4)
Figure imgf000042_0001
であるポリジメチルシロキサンを得た。
さらに、 このポリ ジメチルシロキサン 2 4.0gを参考例 3 と同様にビ ニルクロロシランとヒ ドロシリル化反応を行うことによ り、 片末端ジメ チルクロロシリルポリ ジメチルシロキサン条勺 2 5 gを得た。
実施例 6
実施例 4において、 参考例 3で得られた片末缁ジ'メチルク αロシ リル ポリ ジメチルシロキサンの代りに参考例 5で得られた片末 ¾ジメチルク ロロシ リルボリ ジメチルシロキサン 2 0g(^2 7 tnmol)を用いた以外は 実施例 4とまったく同様な操作を行いボリ( 1 -ト リ メチルシリルブロビ ン)の主鎖二重結合に直結したメチル基上の水素の一部が
Figure imgf000042_0002
-SiCH2CH2-( S?0)M , 1 Si-CH3 (5i = 8.4)
I I I
CH3 CH3 CH3
で表わされる基に置換された構造を有す.るポリ( 1 -ト リ メチルシ リルプ 口 ピン)/ポリ ジメチルシロキサングラフ ト共重合体 1.3 3gを得た。
I Rスぺク ト ルは実施例 4とまったく 同様であったが、 1 2 6 OcnT'の 側鎖ボリジメチルシ口キサン上のメチル基の吸収強度がおよび 1 1 0 0 cm一'のシロキサン結合の特性吸収が実施例 5に比べさらに強くなつてい た。 元素分析値は以下の通りである。
元素分析値 (%): C. 6 0.2 3、 H. 1 0.2 7
上記の炭素含量よ り主鎖ボリ( 1 -ト リメチルシリルブロビン)単量体 単位と側鎖ポリジメチルシロキサンの単量体単位のモル比を算出したと ころ、 8 2Z 1 8であった。 また、 GPC測定による数平均分子量およ び重量平均分子量はポリスチレン換算値でそれぞれ 5.7 1 X 1 0 S、 1 , 7 7 X 1 0 sであった。
得られたグラフ ト共重合体より実施例 4と同様の方法により厚さ 1 5 , 4 " mの均一で透明かつ強度のある膜を作成した。 この膜の水一エタ / ―ル混合物の透過特性を供給液組成を種々変化させて実施例 1 と同様の 方法で測定した。 結果を表 7に示す。
表 7
Figure imgf000043_0001
参考例 6 (片末靖反応性ボリ シ Dキサンの合或 4 )
参考例 3において、 ト リ メチルシラノールを 3.6g( 0.0 3 3 Stool), π-ブチルリチウムへキサン溶液 2 5 m (0.0 4 0 mo 1)、 ジメチルクロ口 シラン 1 5 πι 0. 1 3 8 mol)とした以外は参考例 3 とまったく同様な操 作を行い、 その構造が
CH3 CIi3 CH3
CH3-Si-{ OSi >m0-Si-H (in = 11.4)
CH3 CH3 CH3
であるボリジメチルシロキサンを得た。
さらに、 このボリ ジメチルシ口キサン 27.2gを参考例 3 と同様にビ ニルジメチルクロ αランとヒ ドロシリル化反応を行う ことによ り、 片末 缁ジ'メチルクロロシ リルボリジメチルシロキサン約 2 8sを得た。
実施例 7
実施例 4において、 参考例 3で得られた片末靖ジメチルク口口シ リル ボリジメチルシロキサンの代りに参考例 6で得られた片末 ¾ジメチルク ロロシ リルポリジメチルシロキサン 20g (約 20 ol)を用いた以外は 実施例 4とまったく同様な操作を行いポリ( 1 -ト リ メチルシ リ ブ口ビ ン)の主鎖二重結合に直結したメチル基上の水素の一部が
Figure imgf000044_0001
-SiCH2CH2-( SiO)m f Si-CH3 = 1 1.4)
CH3 CH3 CH3
で表わされる基に置換された構造を有するボリ( 1 -ト リメチルシリルプ ロビン) /"ポリ ジメチルシロキサングラフ ト共重合体 1.3 8 gを得た。
I Rスべク トルは実施例 4とまったく同様であつたが、 1 2 6 O CHT'の 側鎖ポリ ジメチルシ口キサン上のメチル基の吸収強度がおよび 1 1 00 co 1のシロキサン結合の特性吸収が実施例 6に比べよ り強くなっていた。 元素分析値は以下の通りである。
元素分析値(%): C. 5 5.2 1、 H. 9.8 5 上記の炭素含量よ り主鎖ボリ( 1 -ト リメチルシ リルブロビン)単量体 単位と側鎖ボリジメチルシロキサンの単量体単位のモル比を算出したと ころ、 63Z37であった。 また、 GPC測定による数平均分子量およ び重量平均分子量はポリスチレン換算値でそれぞれ 5.05 X 10 s、 2 , 1 8 X 106であった。
得られたグラフト共重合体より実施例 4と同様の方法により厚さ 1 4, 8 inの均一で透明かつ強度のある膜を作成した。 この膜の水ーェタノ 一ル混合物の透過特性を供袷液組成を種々変化させて実施例 1 と同様の 方法で測定した。 結果を表 8に示す。
表 8
Figure imgf000045_0001
参考例 7 (片末靖反応性ポリ シ口キサンの合成 5 )
ト リ メチルシラノールを 3.9 0 g( 0.0 4 3 ^^を乾燥丁^! 2 0 に溶解し、 アルゴンガス気流下にて n-プチルリチウムへキサン溶液 ( 1.6toolZ£)、 2 9ι^( 0.0 4 6mol)を加えた。 1 0分間捷拌した後、 へキサメチルシクロ ト リシロキサン 3 6.2g( 0.4 8 8 ωο1)およびト リ ス( 3 , 3, 3 -ト リ フルォロブ口ピル) ト リ メチルシクロ ト リ シロキサン 5 0. 98( 0. 3 2 61001)を¾燥丁1^ ? 1 5 0 に溶解した溶液を加え、 アルゴンガス気流下で室温にて 2 0時間攬抨した。 この溶液に停止剤と してジメチルクロロシラン 40m 0.3 6 7mol)を加え、 リ ビング重合 を停止した。 次に滅圧下で溶媒を除去した後生成した塩をろ別し、 0. ltoiaHg以下の真空下で 1 50でにて 3時間加熱して未反応のシクロシ ロキサンおよび過剰の停止剤を除去したところ、 無色透明な粘性液体 7 8.3sを与えた。 得られたポリマーについて I R測定、 NMR測定を行 い、 その構造が参考例 3とまったく同様な操作を行い、 その構造が
H-Si-O-Z- Si-CH3であり、 Ζが SiO )■ および"( SiO
CH3 CH3 CH3 CH2CH2CF3 の繰返し単位から成るボリオルガノシロキサンであることを確認し 。
CH3
また、 N MRにおけるブ口 ト ン比基準で、 揉返し単位 ■( SiO )■ および
CH3
Cll3
{ SiO )· のモル比は 63 Z3 7であり、 平均重合度は 2 3.4であ
CH2CH2CF3
つた。
さらに、 このボリオルガ/シロキサン 5 0.0 sを参考例 3 と同様にビ ニルジメチルクロロシランとヒドロシリル化反応を行うことによ り、 片 末端ジ'メチルクロロシ リルポリオルガ/シ口キサン約 5 1 sを得た。 実施例 8
実施例 4において、 参考例 3で得られた片末端ジメチルクロ口シリル ポリ ジメチルシロキサンの代りに参考例 7で得られた片末媪ジメチルク ロロシ リルボリ オルガ/シロキサン 4 58(妁 1 6tDtool)を用いた以外は 実施例 4とまったく同様な操作を行い、 ボリ [ 1 - (ト リメチルシリル)プ 口ビン]の主鎖二重結合に直結したメチル基上の水素の一部が
Cn 3 レ H3 υΗα
-SiCH2CH2SiO-Z-Si-CHa
3 3 3
Figure imgf000047_0001
(式中、 Zは ·( SiO )- および "( SiO の糅返し単位から成るポリオル
CH3 CH2CH2CF3
CH3 CH3
ガノシロキサンであり、橾返し単位 ■ SiO および ·( SiO )■ のモル比は
CH3 CH2CH2CF3
6 3 Z3 7であり、 平均重合度は 2 3.4である。)
で表わされる基に置換された構造を有するボリ [ 1 - (ト リメチルシリル) ブロビン]/ポリジメチルシロキサングラフ ト共重合体 1.4 18を得た。 I Rスぺク トルおよび元素分析値は次のとおりであった。
I Rスペク トル(cm—1): 2 9 8 0 (s)、 2 3 2 0 (s)、 1 5 6 5 (s)、 1 4 3 3 (m)、 1 3 7 0 、 主鎖ボリ ト リ メチルシ リルプロビン上のメチル 基の特性吸収)、 1 2 6 0 (s. 側鎖ポリシロキサン上の/チル基の特性 吸収)、 1 2 5 0 (s, 主鎖ポリ ト リメチルシ リルプロビン上のト ' メチ ルシリル基の特性吸収)、 1 2 1 0 (s, ト リフルォロメチル基の特性吸 収)、 1 1 8 0 (M)、 1 1 3 0 (s, ト リフルォロメチル基の特性吸収)、 1 1 0 0 (s、 シロキサン結合の特性吸収)、 1 0 2 0 (s)、 3 1 5 (tn)、 8 4 0 (s)、 8 0 0 (s) s 7 5 0 (s), 7 4 0 (s)、 6 8 5 (to), 6 3 5 (rn) 元素分析値(%): C. 4 4.44、 H. 8.5 2
元素分析値の炭素含量よ り主鎖ボリ [ 1 -(ト リメチルシリル)プロピン ] 単量体単位と側鎖ボリ オルガノシ口キサン単量体単位のモル比を算出し たところ、 40Z 60であった。 また、 G PC測定による数平均分子量 および重量平均分子量はポリスチレン換算値でそれぞれ 4.83 X 10S、 2.1 1 X 106であった。
得られたグラフト共重合体より実施例 4と同様の方法によ 厚さ 1 6. 2 の均一で透明かつ強度のある膜を作成した。 この膜の水-エタノー ル混合物の透遏特性を供給液組成を種々変化させて実施例 1と同様の方 法で測定した。 結果を表 3に示す。
表 S
Figure imgf000048_0001
実施例 9
参考例 2で得られたボリ [ 1 - ( ト リメチルシリノレ)プロピン] 1.0s( 8 90 ol)を THF 2 0 Om に溶解し、 アルゴン気流下 0でにて n-プチ ルリ千ゥ厶へキサン溶液( 1. 6. Ora ( 9.60 ol)を加え 1 時間攪拌した後、 へキサメチルシクロ ト リシロキサン 2.1 s( 2 8.3 隱 ol)を THF 1 5 に溶解した溶液を加えさらに 3時間 0でにて攙袢 を较けた。 次にト リメチルクロロシラン
Figure imgf000049_0001
4 7.6mmol)を加え反 ¾ を停止した後反応溶液をメタノール 2ίに注ぎ沈殿を生成せしめた。 得 られた沈殿をろ別し、 ト ルエン 20 Om こ溶解しメタノール 2 こ注ぎ 沈殿を生成せしめた。 その後、 同様に数回再沈殿を行い精製した。 得ら れた沈殿をろ別し乾燥したところ 1.20gの白色ボリマーを得た。 この ポリマーについて、 G PC測定を行ったところ、 数平均分子量および重 量平均分子量はボリスチレン換算値でそれぞれ 4.42 X 1 0S、 1.7 3 X 1 0 sであった。 また、 I Rスペクトルは実施例 4の場合とほぼ同 様であり、 元素分析値は以下の通りであった。
元素分析値(%): C: 6 3.2 6、 H: 1 0.68 .
以上の結果より、 生成ポリマーは原料のボリ( 1 -ト リメチルシリルプ πビン)の主鎖二重結合に直結したメチル基上の水素の一部が
CH3 CH3
{ SiO >mSi-CH3 ('ϊ=3〜9)
CH3 CH3
で表わされる基に置換された構造を有するボリ [ 1 - (ト リメチルシリル) プロビン ]Zポリ ジメチルシロキサングラフ ト共重合体と確認された。
さらに、 元素分析値の炭素含量よ り主鎖ボリ [ 1 - (ト リメチルシリル) ブ πビン]単量体単位と側鎖ポリジメチルシロキサン単量体単位のモル 比を算出したところ、 3 4Z6であった。
得られたグラフ ト共重合体より実施例 4と同様の方法によ り厚さ 1 2. 4 inの均一で透明かつ強度のある膜を作成した。 この膜の水-エタノ一 ル混合物の透過特性を供袷液組成を種々変化させて実施例 1 と同様の方 3
法で測定した。 結果を表 1 0に示す。
表 1 0
Figure imgf000050_0001
参考例 8 ボリ( 1 -ト リ メチルシリルプロビン)の合成
1 -ト リ メチルシ リルブロピン 2 8.4gを トルェン 200 [^に溶解し、 五塩化タンタルを 1.6g加えステンレス製重合管中にて脱気封管後、 8 0でで 2 4時間振とう し、 粘ちようなゲル状重合体'を得た。 この重合体 をト ルヱンに溶解させ、 多量のメタノール中に数回再沈殿を繰返し、 得 られた白色織維状固体を真空下 60でにて乾燥した。 収量は 2 7.2s (収率 3 5.8%)であった。 得られた重合体について、 赤外吸収( I R)、 Ή-NMR, '3C— NMR測定及び元素分析を行い、 目的とするポリ( 1 -ト リ メチルシリルプロビン)であることを確認した。 また、 ゲルパ一 ミ エーシヨンクロマトグラフィ—(G PC)測定の結果、 その数平均分子量 及び重量平均分子量はポリスチレン換算値でそれぞれ 2.6 2 X 1 05、 7.7 7 X 1 0 sであった。
参考例 3 ビニルジメチルシ リルイ匕ポリ( 1 -ト リ メチルシ リルプロピン) の合成
参考例 1で得られたポリ( 1 -ト リ メチルシ リルブロピン) 2 0. Osを 充分に脱水したテト ラヒ ドロフラン 1.2 £に溶解し、 アルゴンガス気流 下にて 0 'Cに冷却した後、 n-ブチルリチウムへキサン溶液( 1.6mol/£) 50. を加え更に 1時間かくはんを続けたところ反応溶液が赤色を 圼した。
次に、 ビこルジメチルクロロシラン 25 を加え室温にて 30分間か くはんし、 反応溶液が消色するのを確認した後、 反お溶液をメタノール 10 こ注ぎ白色のボリマーを沈殿させた。 得られたボリマーを再びト ルェン 1.0 に溶解しメタノール 1 0 に再沈殿を行い、 更に同様に数 回再沈殿を操返すことによりボリマーを精製した。 得られたポリマーの 収量は 20.6gであった。
G PC測定による数平均分子量及び重量平均分子量はポリスチレン換 算値でそれぞれ 2.1 4 X 1 05、 7.45 X 1 0 sであった。
得られたボリマーの I Rスペク ト ル、 'Η— NMRスぺク ト ル及び元 素分析の結果は次のとおりであった。
I Rスペク トル(CHT'); 2980 (s)、 2920 (s), 1 640 (w:ビニル 基による特性吸収)、 1 5 65 (s), 1 433 (m), 1 370 («>)、 1 25
0 (s:シ リル基上のメチル基の特性吸収)、 1 1 80 (m), 1 030 (m)、
1 006 (m)、 9 1 5 (αι)、 8 40 (s)、 750 (s)、 68 5 (to), 630 (a)
' H— NMRスペク ト ル、 (CD Cl3、 ppm); 0.1 0 (シ リル基上のメ チル基及びメチレン基のプロ ト ンビーク)、 1.70(シリル基上以外の メチル基のプロ ト ンピーク)、 5.60及び5.90(ビニル基のプ口 ト ン ビーク)
元素分析値(%); C: 6 3.49、 H: 1 0.7 3
以上の結果より、 生成ポリマーは操返し単位 CH3
CH2SI-CH = CH2
CH3 CH3
が "( C = C 及び "f C = C 3" からなるボリ( 1 -ト リメチルシ リルプロビ
Si(CH3)3 Si(CH3)3
ン)のビニルジメチルシリル化物であることを確認した。 また、 元素分 析値の炭素含量より前者の橾返し単位と後者の揉返し単位とのモル比を 算出したところ 8 5Z1 5であった。
参考例 1 0 ボリ( 1 -ト リ メチルシリルプロビン)/ポリジメチルシロ キサングラフ ト共重合体の合成
参考例 9で得られたビニルジメチルシ リル化ボリ( 1 -ト リ メチルシ リ レブ口ビン) 4. Ogを充分に脱水したテ ト ラヒ ドロフラン 5 0 0 m に溶 解し、 アルゴンガス気流下にて 0でに冷却した後、 n-ブチルリチウムへ キサン溶液( 1.6mo\/i) 1 0.0 m を加え更に 1時間半かくはんを続け た。 次に、 へキサメチルシクロ ト リシロキサン 4 1.2sを充分に.脱水し たテトラヒド πフラン 3 0 Οίο に溶解した溶液を一度に加え室温にて 1 4時間かくはんを続け、 更にト リメチルクロロシラン 4 を加え反応 を停止した。 この反応溶液をメタノール 5 に注ぐことにより白色ボリ マーを得た。 得られたボリマーを再びトルェン 5 0 0 m に'溶解し、 エタ ノール 5 こ再沈殿を数回繰返すことにより精製した。 収量は 7. l gで あった。
得られたボリマ一の I Rスペク ト ル、 13C— NMRスぺク トル及び元 素分析の結果は次のとおりであった。
I Rスペク ト ル(cur1): 2 9 8 0 (s)、 2 9 2 0 (s), 1 5 6 5 (s)、 1 3 3 (m)、 1 3 70 (m、 主鎖ボリ ト リ メチルシ リルブロビン上のメチル 基の特性吸収)、 1 2 60 (s、 側鎖ポリ ジ'メチルシ πキサン上のメチル 基の特性吸収)、 1 2 50 (s、 生鎖ボリ ト リ メチルシ リルブロビン上の ト リ メチルシリル基の特性吸収)、 1 1 80(a)、 1 1 00 (s シロキサ ン結合の特性吸収)、 1 020 (s)s 9 1 5 (a), 8 40(s)、 800(s)、 7 50 (s)、 6 8 5い)、 630 (to)
13C— NMRスぺク トル(CDC13、 ^ppia): 1.3 (側鎖ボリ ジメチルシ ロキサン上のメチル基の炭素ビーク)、 2.2 (側鎖のポリ ジメチルシロ キサンが結合したメチレン基の炭素ビーク)、 3.2 (生鎖ポリ ト リ メチ ルシリルプロビン上のト リ メチルシリル基の炭素ビーク)、 2 6.5 (主 鎖ボリ ト リ メチルシ リルブ gビン上のメチル基の炭素ビーク)、 1 3 9.
4 (主鎖ボリ ト リメチルシリルプロビンの生鎖骨格の炭素ビーク)、 1 5 1.8 (主鎖ボリ ト リ メチルシリルプロビンの主鎖骨格の炭素ビーク) 元素分析値(%): C: 4 6.2 6、 H:9.5 4
また、 このボリマーについて GPC測定を行ったところ、 数平均分子 量及び重量平均分子量はボリスチレン換算値でそれぞれ 2.5 7 X 1 05
8.20 X 1 0 sであった。
以上の結果から、 得られたポリマーは主鎖がポリ( 1 -ト リ メチルシリ ルブロビン)、 側鎖がポリジメチルシロキサンからなるボリ( 1 -ト リ メ チルシリルブ口ビン) ボリジメチルシロキサングラフ ト共重合体であ ることを確認した。 また、 元素分析値の炭素含量より主鎖ポリ( 1 -ト リ メチルシ リルブロビン)の操返し単位と側鎖ポ リジメチルシ ロ キサンの 揉返し単位とのモル比を算出したところ 3 4 6 6であった。 また熱攒 械分析による動的ヤング率の温度変化よ り求めた軟化温度は 2 1 0でで あった。
参考例 1 1 ボリ( 1 -ト リ メチルシリルプロビン) Zポリ ジメチルシロ キサングラフ ト共重合体の合成
参考例 1 0において、 へキサメチルシクロ ト リシロキサンの量を 5 1. 8gとした以外は参考例 1 0と全く同様な操作を行い、 白色ポリマー 7. 7sを得た。
得られたボリマーの I Rスぺク トル及び13 C-NMRは参考例 10の 結果と同様であり、 また元素分析結果は以下のとおりであった。
元素分析値 (%): C: 44.63、 H:9.55
このボリマーについて GPC測定を行ったところ、 数平均分子量及び 重量平均分子量はボリスチレン換算値でそれぞれ 2.65 X 1 0S、 8. 43 X 1 05であった。
したがって、 得られたボリマーは参考例 1 0と同様な構造を有するポ リ( 1 -ト リ メチルシリルブロビン)Zポリ ジメチルシロキサングラフ ト 共重合体であることが確認された。 また、 元素分析値の炭素含量より主 鎖ポリ( 1 -ト リ メチルシリルブロビン)の緩返し単位と、 側鎖ポリジメ チルシロキサンの揉返し単位とのモル比を算出したところ 30Z70で あった。 また軟化温度は 1 34でであった。
参考例 1 2 ボリ( 1 -フエ-ルブロビン)の合成
1 -フエニルブロビン 44.3 sをト ルエン 40 Οι ^に溶解し、 五塩化 タンタル 2.7sを加えステンレス製重合管中にて脱気封管後、 8 O'Cで 6時間振とう し、 粘ちようなゲル状重合体を得た。 この重合体をト ルェ ンに溶解させ、 多量のメタノール中に数回再沈殿を猱返し、 得られた白 色繊維状固体を真空下 6 O'Cにて乾燥した。 収量は 3 8.2g (収率 8 6. 2 %)であった。 得られた重合体について、 I R、 ' H— N M R、 , 3C - N MR測定及び元素分析を行い、 目的とするボリ( 1 -フエニルプロピン) であることを確認した。 また、 G P C測定の結果、 その数平均分子量及 び重量平均分子量はポリスチレン換算値でそれぞれ、 2. 1 5 X 1 05、 5. 5 3 X 1 0 sであった。
参考例 1 3 ビニルジメチルシリル化ボリ( 1 -フエニルプロビン)の合 成
参考例 9において、 ボリ( 1 -ト リ メチルシリルブロビン)の代りに参 考例 1 2で得られたボリ( 1 -フエ二ルブロビン) 1 0. Ogを用い、 それ 以外は参考例 3と同じ操作を行なったところ白色ポリマー 1 0. 2 sから 得られた。
G P C測定による数平均分子量及び重量平均分子量はボリスチレン換 算値でそれぞれ 2. 1 0 X 1 0 s、 5. 3 4 X 1 0 Sであった。
得られたポリマーの I Rスペク ト ル、 ' H - N M Rスぺク ト ル及び元 素分析の結果は次のとおりであった。
I Rスペク ト ル(cur1 ): 3 0 7 0 (s)、 3 0 4 0 (s)s 2 9 8 0 (s)、 2 9 5 0 (s)、 2 9 3 0 (s), 2 8 6 0 (a), 1 9 5 0 (w)、 1 8 8 0 (w), 1 8 0 0 (w)、 1 6 0 0 (m), 1 4 3 5 (s)、 1 4 3 8 (s)、 1 3 6 6 (s)、 1 2 5 0 (ai、 シ リル基上のメチル基の特性吸収)、 1 1 8 0 (w)、 1 1 5 5 (w)、 1 0 3 0 (m)、 1 0 7 5 (to), 1 0 3 0 (s)、 3 0 5 (m)、 8 3 8 (s)、 8 2 0 (s)、 7 7 0 (s). 7 0 0 (s)、 6 2 0 (w)
' H— N M Rスペク ト ル、 (C D C 13、 ppra);
0. 2 8 (シ リル基上のメチル基及びメチレン基のブ口 ト ンビーク)、 1 . 3 8 (シ リル基上以外のメチル基のプロ ト ンピーク)、 5. 6 0及び 5. 3 0 (ビニル基のブロ ト ンビーク)、 6.9 5 (フエニル基のブロ ト ンピーク) 元素分析値 (%): C: 8 9.8 6、 H:7.1 1
以上の結果より、 生成ボリマ-は揉返し単位が
CH:
{ C = C 及び "(
Figure imgf000056_0001
からなるポリ( 1 -フエニルプロビン)のビニルジメチルシリル化物であ ることを確認した。 また、 元素分析値の炭素含量より前者の操返し単位 と後者の繰返し単位とのモル比を算出したところ 8 7/1 3であった。 参考例 1 4 ポリ( 1 -フエニルプロピン) Zポリ ジメチルシロキサング ラフ ト共重合体の合成 1
参考例 1 3で得られたビエルジメチルシリル化ポリ( 1 -フエ二ルブロ ビン) 3. Ogを充分に脱水したテト ラヒドロフラン 5 0 Ora に溶解し、 アルゴンガス気流下にて 0でに冷却した後、 n-プチルリチウムへキサン 溶液( 1.6ωο1 ^) 1 0. を加え更に 2時間かくはんを铳けた。 次に、 へキサメチルシクロ ト リシロキサン 5 1.8 sを充分に脱水したテト ラヒ ドロフラン 30 Οαώに溶解した溶液を一度に加え室温にて 1 8時間かく はんを较け、 更にト リメチルクロロシラン 4 を加え反おを停止した。 この反応溶液をメタノール 5^に注ぐことにより白色ポリマーを得た。 得られたボリマーを再びト ルエン 5 0 O Hに溶解し、 エタノール 5 ^に 再沈殿を数回揉返すことにより精製した。 収量は 5.3sであった。
得られたボリマーの I Rスペク ト ル、 'H— NMRスべク ト ル及び元 素分析の結果は以下のとおりであった。 I Rスぺク トル(era—リ: 3 1 00 (ta)、 3 0 70(s)、 3 0 40 (m)、 2 9 8 0 (s)、 2 9 20 (s), 2 8 60 (M)、 1 9 5 0 (w), 1 8 90 1 8 00 (w)、 1 600 [s、 主鎖ポリ( 1 -フエニルブロビン)のフエニル基 の特性吸収]、 1 5 00 (s) 1 4 40 (s), 1 1 5 (m), 1 3 7 0 (s)、 1 2 60 (s、 側鎖ポリ ジメチルシロキサンのメチル基の特性吸収)、 1 1 00 (s、 シロキサン結合の特性吸収)、 1 0 2 0 (s、 シロキサン結合 の特性吸収)、 3 1 0 (w)、 8 60 (s)、 8 00 (s)、 7 7.0(s)、 6 9 5 (s)
'H— NMRスペク ト ル、 (CDC13、 ppm); 0.1 0 (側鎖ポリジメチ ルシロキサンのメチル基のプロ ト ンビーク)、 1.60 [主鎖ポリ( 1 -フ ェニルブロビン)のメチル基のプロ ト ンピーク]、 6.90 [主鎖ポリ( 1 - フエニルブロビン)のフエ-ル基のプロ ト ンビーク]
元素分析値 (%): C:6 1.2 7、 H:7.9 1
また、 このポリマーについて GPC測定を行ったところ、 数平均分子 量及び重量平均分子量はボリスチレン換算値でそれぞれ 2.3 1 X 1 05、 5.9 1 X 1 0 sであった。
以上の結果から、 得られたボリマーは生鎖がポリ( 1 -フエ二ルブロビ ン)、 側鎖がボリジメチルシロキサンからなるボリ( 1 -フエニルブロビ ン) zボリジメチルシロキサングラフ ト共重合体であることを確認した。 また、 元素分析値の炭素含量より、 主鎖ポリ( 1 -フエニルブロビン)の 猱返し単位と側鎖ボリジメチルシロキサンの锾返し単位とのモル比を算 出したところ 4 4 5 6であった。 軟化温度は 1 3 5でであった。
参考例 1 5 ポリ( 1 -フエニルブロビン)/ボリ ジメチルシロキサング
ラフ ト共重合体の合成 2 参考例 1 4において、 へキサメチルシクロ ト リ シ口キサンの量を 62. 4sとした以外は参考例 1 4と全く同様な操作を行い、 白色ポリマー 6. 4sを得た。
得られたポリマーの I Rスペク ト ル、 130— 1^1¾111は参考例1 4の結 果と同様であり、 また元素分析の結果は以下のとおりであった。
元素分析値 (%): C: 5 6.48、 H:7.52
このボリマーについて G PC測定を行ったところ、 数平均分子量及び 重量平均分子量はポリスチレン換算値でそれぞれ 2.45 X 1 05、 6. 1 1 X 1 0 sであった。
したがって、 得られたポリマーは参考例 1 4と同様な構造を有するボ リ( 1 -フエニルプロビン) Zポリ ジメチルシロキサングラフ ト共重合体 であることが確認された。 また、 元素分析値の炭素含量よ り主鎖ボリ( 1
-フエニルブロビン)の繰返し単位と側鎖ポリジメチルシ口キサンの操返 し単位とのモル比を算出したところ 29ノ 7 1であった。 軟化温度は 1 1 5でであった。
実施例 1 0〜 1 3 水 Zェタノ—ル透過実験結果
参考例 10、 1 1、 1 4および 1 5で得られたグラフ ト共重合体をト ルェンに溶解した後テフ πン板上に流延し、 ト ルエンをゆっ く り と蒸発 除去することにより膜厚が 20 - 30 «"ΒΙの均一で透明かつ強度のある 膜を作成した。 得られた膜をステンレス製浸透気化法用セル(パーベー パレ—ショ ンセル)に挟み込み透過側を 0.5miBHgの減圧にし水-有機液 体混合物の透過を行った。 膜を透過した混合液組成は TCD—ガスク α マトグラフィ—によ り検出し透過速度 P(g♦ m/io2 · hr)及び選択性 σを 前記式によ り求めた。 以上のような透過実験を供給液組成を変えて数回行い、 各々の場合の P及びなを測定した。 測定結果をそれぞれ下表 1 1〜 1 4に示す。 表 1 1 (参考例 1 0の共重合体より作成した膜) 液組成(ェタ ノール Z水、重量%) P エタノール
供袷液 透過液 (g♦ a/m2 - hr)な水
6.19/93.81 58.05/41.95 1.24X10-3 20.97
15.86/84.14 70.54/29.46 E.43X10"3 12.70
34.04/65.96 83.61/16.39 3.74X10 -3 9.88
54.56/45.44 87.94/12.06 5.06X10-3 6.07
76.07/23.93 92.36/7.64 7.17X10-3 3.80
表 1 2 (参考例 1 1の共重合体より作成した膜) 液組成(ェタノール/水、重量%) P エタノール
供袷液 透過液 E · m/ HI2 ♦ nr) σ水 -
6.68/93.32 60.03/39.97 7.23X10- 20.98
14.47/85.53 76.85/23.15 1.33X10一3 19.62
31.00/69.00 87.02/12.98 3.06X10-3 14.92
51.17/48.83 90.94/9.06 3.65X10-3 9.58
71.10/28.90 93.62/6.38 3.83X10"3 5.96 表 1 3 (参考例 1 4の共重合体より作成した膜)
Figure imgf000060_0001
参考例 1 6 片末端に S i— H結合を有するボリジメチルシ αキサン の合成 1
ト リ メチルシラノール 7.2 s( 0. 1 5 7【!)01)を乾燥丁^1? 2 0 に 溶解し、 アルゴンガス気流下にて π-ブチルリチウムへキサン溶液( 1.6 rflolノ ) 5 0. を加えた。 1 0分間かくはんした後、 更にへキサメチ ルシクロ ト リシロキサン 9 3.48を乾燥丁11 2 0 に溶解した溶液 を加え、 アルゴンガス Λ流下で室温にて 2 1時間かくはんした。 この溶 液に停止剤としてジメチルクロロシラン 3 0.0 を加え、 リ ピン グ重合を停止した。
次に減圧下で溶媒を除去した後生成した塩をろ別し、 0. I mmHs以下 の真空下で 1 5 0でにて 3時間加熱して未反応のシクロシロキサン及び 過剰の停止剤を除去したところ、無色透明な粘性液体 1 0 2.4sを与え た。得られた、 ポリマーについて I R測定、 N MR測定を行い、その構造
Figure imgf000061_0001
力 CH3-S OSi 卜 H であることを確認した。
CH3 CH3 CH3
また平均重合度 iiは NMRにおけるプロ ト ン比基準で約 2 0.8であつ た。
参考例 1 Ί ポリ( 1 -ト リ メチルシ リルプロピン) Zポ リ ジメチルシ口 キサングラフト共重合体の合成 1
参考例 3で得られたビニルジメチルシ リ ル化ボ リ( 1 -ト リ メチルシ リ ルプロビン) 3.0sと、 参考例 1 6で得られた片末端に S i— H結合を有 するポ リ ジメチルシロキサン 3.0sを ト ルエン 3 0 0 ミ リ に溶解し、 ァ ルゴン気流下にて塩化白金酸ィソプロビルアルコ ール溶液(0. l mol/ 6 0 を加え 8 0でにて 1 8時間かくはんを铳けた。 次に、 反応溶液 をメタノール 3^に注ぐことにより白色ポリマーを得た。 得られたポリ マーを再びト ルエン 3 0 0t ^に溶解し、 エタノール 4 に再沈殿を数回 操返すことにより精製を行った。 収量は 4.28であった。 . 得られたボリマーの I Rスぺク ト ル、 l 3C— NMRスぺク ト ル及び元 素分析の結果は次のとおりであった。
I Rスペク ト ル(CKTつ: 2 3 8 0 (s)、 2 9 2 0 (s)、 1 5 6 5 (s) 1 3 3 (ω)、 1 3 70 (【fl、 生鎖ボリ ト リ メチルシリルプロビン上のメチル 基の特性吸収)、 1 2 60 (s、 側鎖ボリジメチルシロキサン上のメチル 基の特性吸収)、 1 2 5 0 (s、 主鎖ボリ ト リメチルシリルブロビン上の ト リメチルシリル基の特性吸収)、 1 1 80 (a), 1 1 00(s、 シ crキサ ン結合の特性吸収)、 1 020(s)、 9 1 5 (m)、 8 40 (s)、 800 (s)、
750 (s)、 68 5 («0、 630(m)
13C— NMRスぺク トル(CD CI 3、 ppm): 1.3 (側鎖ボリジメチルシ ロキサン上のメチル基の炭素ビーク)、 2.2 (側鎖のボリジメチルシ口 キサンが結合したメチレン基の炭素ビーク)、 3.2 (主鎖ボリ ト リ メチ ルシリルブロビン上のト リ メチルシリル基の炭素ピーク)、 2 6.5 (主 鎖ポリ ト リ メチルシリルブロビン上のメチル基の炭素ビーク)、 1 3 9.
4 (ポリ ト リ メチルシリルプロビンの主鎖骨格の炭素ビーク)、 1 5 1.
8 (主鎖ボリ ト リメチルシリルプロビンの主鎖骨格の炭素ピーク) 元素分析値(%): C:5 1.27、 H:9.8 3
またこのポリマーについて GPC測定を行ったところ、 数平均分子量 及び重量平均分子量はポリスチレン換算値でそれぞれ 2.3 3 X 1 05、 7.5 2 X 1 0 sであった。
以上の結果から、 得られたボリマーはま鎖がポリ( 1 -ト リ メチルシ リ ルブロビン)、 側鎖がポリ ジメチルシロキサンからなるボリ( 1 -ト リ メ チルシ リルプロピン) Zボリ ジメチルシロキサングラフ ト共重合体であ ることを確認した。 また、 元素分析値の炭素含量より主鎖ポリ( 1 -ト リ メチルシ リルブロビン)の緩返し単位と側鎖ポリ ジメチルシロキサンの 繰返し単位とのモル比を算出したところ 4 3/5 1であった。 熱機械分 析における動的ヤング率の温度変化より求めた軟化温度は 2 3 O 'Cであ つた。
参考例 1 8 片末端に S i— H結合を有するボリ ジメチルシ口キサンの
合成 2
参考例 1 6において、 ト リ メチルシラノールを 3.7 g、 n-ブチルリチ ゥムへキサン溶液 2 6 a^、 ジメチルクロロシラン 2 0m とした以外は参 考例 1 6と全く同様な操作を行い、 その構造が
Cn 3 CIl3 3
CH3-Si-( OS! >..0-Si-H (ST= 40.8 )
Figure imgf000063_0001
であるボリジメチルシロキサン 97.8gを得た。
参考例 1 9 ポリ( 1 -ト リ メチルシリルプロビン) Zボリジメチルシロ キサングラフ ト共重合体の合成 2
参考例 1 7において、 参考例 1 6で得られたポリ ジメチルシ πキサン の代りに参考例 1 8で得られたボリ ジメチルシロキサン 4.0sを用いた 以外は参考例 1 7 と全く同様な操作を行い白色ポリマー 4.58を得た。
得られたボリマーの I Rスべク ト ル及び13 C— N MRは参考例 1 Ίの 結果と同様であり、 また元素分析結果ほ以下のとおりであった。
元素分析値(%):C: 4 6.3 5、 H: 9.2 8
このボリマーについて G PC測定を行ったところ、 数平均分子量及び 重量平均分子量はボリスチレン換算値でそれぞれ 2.8 3 X 1 05、 7. 7 7 X 1 05であった。
したがって、 得られたポリマーは参考例 1 7 と同様な構造を有するポ リ ( 1 -ト リ メチルシ リルプロ ビン)Zポ リ ジメチルシロ キサングラフ ト 共重合体であることが確認された。 また、 元素分析値の炭素含量よ り、 主鎖ボリ( 1 -ト リ メチルシリルブロピン)の猱返し単位と、 側鎖ポリジ' メチルシロキサンの揉返し単位とのモル比を算出したところ 3 4Z6 6 であった。 軟化温度は 2 0 7でであった。
参考例 2 0 片末靖に S i— H結合を有するポリジメチルシロキサンの
合成 3
参考例 1 6において、 ト リ メチルシラノールを 1.8 s、 n-ブチルリチ ゥムへキサン溶液 1 3ιβί、 ジメチルクロ πシラン 1 0 m (0.2 7 5 mol) とした以外は参考例 1 6と全く同様な操作を行い、 その構造が
Figure imgf000064_0001
CH3-Si-( OSi O-Si-H (ff= 8 2.0 )
CH3 CH3 CH3
であるボリジメチルシロキサン 9 6.4 sを得た。
参考例 2 1 ポリ( 1 -ト リ メチルシリルプロビン)ノポリ ジメチルシロ キサングラフ ト共重合体の合成 3
参考例 1 7において、 参考例 1 6で得られたボリ ジ'メチルシロキサン の代りに参考例 2 0で得られたボリジメチルシロキサン 5.0sを用いた 以外は参考例 1 7と全く同様な操作を行い白色ポリマー 5. 2Sを得た。 得られたボリマーの I Rスぺク トル及び13 C— N MRは参考例 1 Ίの 結果と同様であり、 また元素分析結果は以下のとおりであった。
元素分析値 (%): C:43.49、 H: 9.3 1
このポリマーについて GPC測定を行ったところ、 数平均分子量及び 重量平均分子量はポリスチレン換算値でそれぞれ 3.8 4 X 1 0 s、 8. 0 1 X 1 0 sであった。
したがって、 得られたボリマーは参考例 1 7 と同様な構造を有するポ リ( 1 -ト リ メチルシ リルプロピン) Zボリ ジメチルシロキサングラフ ト 共重合体であることが確認された。 また、 元素分析値の炭素含量より生 鎖ボリ( 1 -ト リメチルシリルブロピン)の操返し単位と、 側鎖ボリジメ チルシ πキサンの揉返し単位とのモル比を算出したところ 2 6 74で あった。 軟化温度は 1 8 1でであった。
参考例 22 ボリ( 1 -フエニルプロピン)/ボリ ジメチルシロキサング ラフト共重合体の合成
参考例 1 3で得られだビニルジメチルシリル化ボリ( 1 -フエニルプロ ビン) 3.0 sと、 参考例 4で得られた片末靖に Si— H結合を有するボリ ジ'メチルシロキサン 4.0sをトルエン 300 m に溶解し、 アルゴン気流 下にて塩化白金酸ィソブ口ビルアルコ ール溶液(0. linolZ_e)60 加え 80にて 1 8時間かくはんを続けた。 次に、 反応溶液をメタノール 3^に注ぐことにより白色ポリマーを得た。 得られたポリマーを再びト ルェン 30 Om に溶解し、 エタノール 4 こ再沈殿を操返すことによ り 精製を行った。 収量は 4.5sであった。
得られたポリマーの I Rスペク ト ル、 'H— NMRスぺク トル及び元 素分析の結果は以下のとおりであった。
I Rスペク ト ル(CIB-'):3 1 00(m)、 3 0 70 (s)、 3040 (m)、 2 9 80 (s)、 2 920 (s), 2 8 60 (m), 1 9 5 0 (w), 1 8 90 (w), 1 8 00 (w)、 1 600 [s、 生鎖ポリ( 1 -フエ二ルブロビン)のフエニル基 の特性吸収]、 1 5 00 (s)、 1 4 40 (s), 1 4 1 5 )、 1 3 7 0 (s)、 1 2 60 (s、 側鎖ポリ ジメチルシ Dキサンのメチル基の特性吸収)、 1 1 0 0 (s、 シロキサン結合の特性吸収)、 1 0 2 0 (s, シ Π7キサン結合 の特性吸収)、 9 1 0(w)、 8 60 (s)、 7 7 0 (s)、 6 9 5 (s) f H— NMRスペク トル、 (CD C13、 ppm): 0. 1 0 (側鎖ポリジ'メチ ルシロキサンのメチル基のプロ ト ンピーク)、 1.6 0 [主鎖ボリ( 1 -フ ェニルブロビン)のメチル基のブロ ト ンビーク]、 6.9 0 [生鎖ボリ( 1 - フエ二ルブロビン)のフエニル基のブロ ト ンビーク]
元素分析値 (%): C: 6 2.7 0、 H:7.7 4
また、 このボリマーについて GPC測定を行ったところ、 数平均分子 量及び重量平均分子量はポリスチレン換算値でそれぞれ 2.4 5 X 1 0 S、 5.8 0 X 1 05であった。
以上の結果から、 得られたポリマーは主鎖がポリ( 1 -フエニルブロビ ン)、 側鎖がポリジメチルシロキサンからなるポリ( 1 -フエ二ルブ口ビ ン) Zポリジ'メチルシロキサングラフト共重合体であることを確認した。 また、 元素分析値の炭素含量より、 生鎖ポリ( 1 -フヱニルブロビン)の 緩返し単位と側鎖ポリジメチルシ πキサンの猱返し単位とのモル比を算 出したところ 3 3/6 1であった。 軟化温度は 1 3 1でであった。
実施例 1 4〜 1 7 水 Zェタ ノ一ル透過実験結果
参考例 1 7、 1 3、 2 1および 2 2で得られたグラフ ト共重合体をト ルヱンに溶解した後テフ πン板上に流延し、 ト ルエンをゆつく り と蒸発 除去することにより膜厚が 2 0 - 3 0 Μの均一で透明かつ強度のある 膜を作成した。 得られた膜をステンレス製浸透気化法用セル(パ一"^ ί一 パレーションセル)に挟み込み透遏側を 0.5 mmHgの滅圧にし水-エタノ 一ル混合物の透過を行った。 膜を透過した混合液組成は T C D -ガスク 口マトグラフィ—により検出し透過速度 P(g · m/ 2 · hr)及び選択性な を前記式により求めた。
以上のような透過実験を供給液組成を変えて数回行い、 各々の場合の P及び αを測定した。 参考例 1 7、 1 9、 2 1および 2- 2で得られたグラフ ト共重合体から 作成した膜を用いた測定結果をそれぞれ実施例 1 4、 1 5、 1 6および 1 7とし下記表 1 5〜: L 8に示す。 表 1 5(実施例 1 4)
Figure imgf000067_0001
表 1 6(実施例 1 5 ) 液組成(ェタノール 水、重量%) Ρ エタ ノール
供袷液 透過液 (g♦ ra/m2 ♦ hr)な水
6.52/93.48 63.84/36.18 2.59X10— 25.31
15.22/84.78 84.37/15.63 6.25X10 30.07
33.99/66.01 91.00/9.00 1.07X10 -3 19.64
55.09/44.91 93.20/6.80 1.50X10-3 11.17
75.51/24.49 95.13/4.87 2.04X10-3 6.34 表 1 7 (実施例 1 6 )
Figure imgf000068_0001
以上のように、 本発明のグラフト共重合体より形成される高分子膜は. 水 エタノ一ル混合液の透過においても優れたェタノ一ル選択透過性を 有していることがわかる。
[比較例]
参考例 2で得られたポリ [ 1 - (ト リメチルシリル)プロビン ]を用いて 実施例 4と同様の方法により厚さ 1 7 . 3 《1の均一で透明かつ強度のあ る膜を作成した。 この膜の水-エタノール混合物の透過特性を供袷液組 成を種々変化させて実施例 1 と同様の方法で測定した。 結果は表 1 3に 示す。
表 1 3
Figure imgf000069_0001
産業上の利用可能性 ·
本発明の分離用高分子膜は、従来のシリコ— ンゴム膜に比べ優れた膜 強度を有するために薄膜化が可能であり、 さらに非常に優れた液体選択 透過性を有しているため、 水-アルコ ール混合物等の種々の流体混合物 の分雜または ¾縮のために産業上有利に使用することができる。

Claims

請 求 の 範 囲
1. 揉り返し単位が一般式
CH2X
i G = C A
(式中、 Aはアルキル基、 置換アルキル基、 フエニル基、 置換フエニル 基または- Si— R2 で表わされる基、 Xは水素原子または
\
R3
R6
-Si-Y-Z-Si-R7 で表わされる基であり、 Aおよび Xは繰り返し単位ごと R5 R8
に任意に異なってもよい。 ただし、 Yは酸素原子または 2価の有機基、 Zはポリオルガノシロキサン鎖、 R1 〜 R3は同一あるいは異なってもよ くアルキル基、 置換アルキル基、 フエニル基または置換フエニル基であ る。 )
からなり、 主鎖のボリニ置換アセチレンの猱1)返し単位と側鎖のボリォ ルガノシ πキサンの操り返し単位とのモル比が 93/1から 5/95の 範囲にあり、 分子量が少なく とも 1万以上であるボリ二置換アセチレン Zボリオルガノシロキサングラフト共重合体から形成されることを特徴 とする液体混合物分雜用高分子膜。
R1
2. Aが- Si— R2 で表わされる基であり、 且つ主鎖のポリ二置換ァセ
\
R3 チレンの操り返し単位と側鎖のポリ オル ノシ口キサンの揉り返し単位 とのモル比が 38Z2から 20Z80の範囲にある請求の範囲第 1項記 載の高分子膜。
3. Aがアルキル基、 置換アルキル基、 フエ-ル基または置換フエ二 ル基であり、 且つ主鎖のポリニ置換アセチレンの揉り返し単位と側鎖の ボリオルガノシロキサンの繰り返し単位とのモル比が 60Z40から 5 / 95の範囲にある請求の範囲第 1項記載の高分子膜。
4. 該共重合体が 5万以上の分子量を有する請求の範囲第 1項記載の 高分子膜。
5. 膜の厚さが 0.05〜 100 mの範囲にある請求の範囲第 1項記 載の高分子膜。
6. Yによって表わされうる 2価の有機基がフエ二レンボリメチレン である請求の範囲第 1項記載の高分子
Figure imgf000071_0001
膜。
7. Zによって表わされるポリオル ノシロキサン鎖が一般式
Figure imgf000071_0002
(式中、 R3及び R '。は同一あるいは異つてもよく、 アルキル基、 置換アルキル基、 フエニル基又は置換フエニル基であり、 繰り返 し単位ごとに任意に異つていてもよい)
で示される操り返し単位からなる請求の範囲第 1項記載の高分子膜。
PCT/JP1986/000580 1985-11-14 1986-11-14 Membrane polymere pour la separation de melanges liquides WO1987002904A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP25369785 1985-11-14
JP60/253697 1985-11-14
JP61/197987 1986-08-26
JP61197987A JPS62201605A (ja) 1985-11-14 1986-08-26 液体混合物分離用高分子膜
JP22955986A JPS6386725A (ja) 1986-09-30 1986-09-30 グラフト共重合体の製造方法
JP61/229559 1986-09-30
JP61/229560 1986-09-30
JP22956086A JPH0637559B2 (ja) 1986-09-30 1986-09-30 グラフト共重合体を製造する方法

Publications (1)

Publication Number Publication Date
WO1987002904A1 true WO1987002904A1 (fr) 1987-05-21

Family

ID=27475887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000580 WO1987002904A1 (fr) 1985-11-14 1986-11-14 Membrane polymere pour la separation de melanges liquides

Country Status (2)

Country Link
EP (1) EP0245516A4 (ja)
WO (1) WO1987002904A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213217C2 (de) * 1992-04-22 1999-11-25 Geesthacht Gkss Forschung Membran auf Basis von Pfropfcopolymeren, Pfropfcopolymene und Verfahren zur Herstellung
CN1293936C (zh) * 2004-01-05 2007-01-10 北京化工大学 一种优先脱醇分离膜的制备方法
JP7045210B2 (ja) * 2018-02-02 2022-03-31 信越ポリマー株式会社 硬化性組成物および帯電防止シリコーン皮膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143815A (ja) * 1983-12-29 1985-07-30 Shin Etsu Chem Co Ltd 気体分離用複合成形体
JPS61220703A (ja) * 1985-03-25 1986-10-01 Agency Of Ind Science & Technol 混合液の分離用膜
JPS61230705A (ja) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol 混合液体分離膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959211A (ja) * 1982-09-29 1984-04-05 Sanyo Chem Ind Ltd 気体分離膜
JPS6075306A (ja) * 1983-09-30 1985-04-27 Toshinobu Higashimura 液体分離膜
JPS60208332A (ja) * 1984-04-02 1985-10-19 Shin Etsu Chem Co Ltd オルガノポリシロキサン変性置換ポリアセチレン化合物の製法
JPS6118421A (ja) * 1984-07-06 1986-01-27 Sanyo Chem Ind Ltd 気体分離膜
JPH066628B2 (ja) * 1985-10-07 1994-01-26 財団法人相模中央化学研究所 ポリ二置換アセチレン/ポリオルガノシロキサングラフト共重合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143815A (ja) * 1983-12-29 1985-07-30 Shin Etsu Chem Co Ltd 気体分離用複合成形体
JPS61220703A (ja) * 1985-03-25 1986-10-01 Agency Of Ind Science & Technol 混合液の分離用膜
JPS61230705A (ja) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol 混合液体分離膜

Also Published As

Publication number Publication date
EP0245516A1 (en) 1987-11-19
EP0245516A4 (en) 1987-12-10

Similar Documents

Publication Publication Date Title
Kawakami et al. Polymers with oligoorganosiloxane side chains as material for oxygen permeable membranes
JPH0292933A (ja) 片方の末端に重合性官能基を有するオルガノポリシロキサンの製造方法
US5741859A (en) Block copolymers of polyisobutylene and polydimethylsiloxane
JPH0521923B2 (ja)
Nagase et al. Chemical modification of poly (substituted‐acetylene): II. Pervaporation of ethanol/water mixture through poly (1‐trimethylsilyl‐1‐propyne)/poly (dimethylsiloxane) graft copolymer membrane
FR2541292A1 (fr) Polymere de 1-alkyldimethylsilyl-1-propyne, son procede de production et son application a la formation d&#39;une membrane selective permeable aux gaz
Nagase et al. Chemical modification of poly (substituted‐acetylene). V. Alkylsilylation of poly (1‐trimethylsilyl‐1‐propyne) and improved liquid separating property at pervaporation
Guseva et al. Polymers based on exo-silicon-substituted norbornenes for membrane gas separation
Kowalewska et al. Novel polymer systems with very bulky organosilicon side chain substituents
WO2020116294A1 (ja) ω末端にポリアルキレンオキシド基を有する片末端メタクリル変性オルガノ(ポリ)シロキサン及びその製造方法。
Borisov et al. Polydimethylsilalkylene-dimethylsiloxanes as advanced membrane materials for thermopervaporative recovery of oxygenates from aqueous reaction media
EP0237581B1 (en) Poly(di-substituted acetylene)/polyorganosiloxane graft copolymer and gas separation membrane
JP2525026B2 (ja) シロキサン含有ポリイミドおよびシロキサン含有ポリアミド酸
WO1987002904A1 (fr) Membrane polymere pour la separation de melanges liquides
WO2001030887A1 (fr) Procede de polymerisation de silalkylenesiloxanes
CN102516433A (zh) 制备气体渗透性高的环烯烃加成聚合物的方法
US20030065117A1 (en) Modified silicone compound, process of producing the same, and cured object obtained therefrom
JP3141958B2 (ja) 気体透過性重合体およびその製造方法
JPS60163887A (ja) シクロシロキサン誘導体
JPH0692483B2 (ja) ポリスルホン系グラフト共重合体
JPS61252214A (ja) グラフト共重合体の製造方法
JPH0637559B2 (ja) グラフト共重合体を製造する方法
JPS6223402A (ja) 液体混合物の分離膜
JPH0546845B2 (ja)
Hu et al. Synthesis and characterization of poly (diphenylacetylenes) containing both hydroxy and halogen/alkyl groups as gas separation membranes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986906928

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986906928

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1986906928

Country of ref document: EP