WO1987001197A1 - Transducer for magnetic induction flowmeters - Google Patents

Transducer for magnetic induction flowmeters Download PDF

Info

Publication number
WO1987001197A1
WO1987001197A1 PCT/EP1986/000487 EP8600487W WO8701197A1 WO 1987001197 A1 WO1987001197 A1 WO 1987001197A1 EP 8600487 W EP8600487 W EP 8600487W WO 8701197 A1 WO8701197 A1 WO 8701197A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
measuring
transducer
measuring tube
metal
Prior art date
Application number
PCT/EP1986/000487
Other languages
English (en)
French (fr)
Inventor
Helmut Engelhardt
Franz Bittner
Original Assignee
Rheometron Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheometron Ag filed Critical Rheometron Ag
Priority to JP61504831A priority Critical patent/JPH0648207B2/ja
Publication of WO1987001197A1 publication Critical patent/WO1987001197A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/584Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of electrodes, accessories therefor

Definitions

  • the invention relates to a transducer for electromagnetic flowmeters, which consists of an electrically insulating ceramic measuring tube with sintered-in metallic measuring electrodes.
  • Magnetic-inductive flowmeters are assigned to a tubular measuring sensor, which is attached between the connecting flanges of a pipeline and through which a conductive liquid flows transversely to the direction of a magnetic field.
  • the voltage which is proportional to the flow velocity, is tapped at two measuring electrodes and fed to a measured value converter via current conductors.
  • the measuring tube of the transducer consists either of a metal tube provided on the inner jacket with an insulating layer or of a plastic tube or of a ceramic tube which is used because of its suitability for high temperatures and its resistance to aggressive liquids. In applications where the measuring electrodes with the flowing If the medium comes into direct contact (contact electrodes), the electrode is inserted radially into the jacket of the measuring tube, special sealing measures being taken.
  • the object of the invention is to equip a measuring transducer of the generic type with capacitive surface electrodes which are an integral part of the measuring tube and the ceramic mass between the electrode surfaces and the medium flowing through is as thin as possible.
  • each measuring electrode consists of a metal network which is embedded coaxially in the ceramic mass of the measuring tube shell and is sintered in tightly.
  • Metal nets are an integral part of the measuring tube, so that the mounting of the sensor is considerably simplified.
  • Fig. 1 is equipped with two metallic surface electrodes ceramic measuring tube and
  • FIG. 2 shows the object of FIG. 1 in a side view and partially cut open to show a surface electrode.
  • the ceramic measuring tube 1 shown in FIGS. 1 and 2 is part of a transducer for a magnetic-inductive flow meter.
  • the ceramic measuring tube 1 consists of a ceramic material with essentially electrically insulating properties.
  • the ceramic material is selected so that the measuring tube 1 has a high resistance to temperature changes, strength, abrasion resistance and corrosion resistance.
  • These materials also referred to as hard ceramics, include, for example, the material group referred to as oxide ceramics, but also silicon nitride or the like.
  • Two metal nets 2 constructed from wires 3 and 4 are provided as measuring electrodes; the wires 3 and 4 are preferably made of platinum or platinum alloys. However, other metals that can be sintered into the ceramic mass without losing their metallic, current-conducting property are also suitable.
  • the network can be of any design, but the distance between the wires should be so large that sufficient ceramic mass remains between them.
  • the metal networks 2 are included one connecting wire 5, preferably also made of platinum.
  • the wires 3 and 4 can be fastened to one another by spot welding, and the connecting wire 5 can be welded to the metal net 2.
  • the pulverulent ceramic raw material is filled into a press mold, the two metal nets 2 being inserted in the predetermined position.
  • the green body is then compacted with the help of stamp presses or by isostatic pressing and fired or sintered in a ceramic-tight manner depending on the type of raw material.
  • stamp presses or by isostatic pressing and fired or sintered in a ceramic-tight manner depending on the type of raw material.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

Meßwertaufnehmer für magnetisch-induktive Durchflußmeßqeräte
Die Erfindung betrifft einen Meßwertaufnehmer für magnetisch-induktive Durchflußmeßgeräte, der aus einem elektrisch isolierenden keramischen Meßrohr mit eingesinterten metallischen Meßelektroden besteht.
Magnetisch-induktiven Durchflußmeßgeräten ist ein rohr- förmiger Meßwertaufnehmer zugeordnet, der zwischen den Anschlußflanschen einer Rohrleitung befestigt wird und durch den eine leitfähige Flüssigkeit quer zur Richtung eines Magnetfeldes strömt. Die der Strömungs¬ geschwindigkeit proportionale Spannung wird an zwei Meßelektroden abgegriffen und über Stromleiter einem Meßwertumformer zugeführt. Das Meßrohr des Meßwert¬ aufnehmers besteht entweder aus einem am Innenmantel mit einer Isolierschicht versehenen Metallrohr oder aus einem Kunststoffrohr oder aus einem keramischen Rohr, welches wegen seiner Eignung für hohe Tempera¬ turen und seiner Widerstandsfähigkeit gegen aggressive Flüssigkeiten Verwendung findet. In den Anwendungs- fällen, wo die Meßelektroden mit dem durchströmenden Medium in unmittelbare Berührung kommen (Kontaktelektro¬ den), ist die Elektrode radial in den Mantel des Meßrohres eingesetzt, wobei besondere Abdichtungsvorkehrungen zu treffen sind. Zur Abdichtung solcher Kontaktelektroden in einem keramischen Meßrohr ist es aus der EP-Veröffent¬ lichung 0080535 bekannt, die Elektrodenschäfte in den dichtgebrannten keramischen Werkstoff dicht einzusintern. Anderseits sind für verschiedene Anwendungsbereiche kapa¬ zitive Meßelektroden bekannt, die mit dem durchströmenden Medium nicht in Berührung kommen und welche in der Regel als Flächenelektroden ausgebildet sind. Diese Verwendung solcher kapazitiver Flächenelektroden ist beispielsweise aus der DE-AS 15 48 918 für ein Meßrohr aus Kunststoff bekannt, wobei die als Netzwerk oder Metallfolie ausge- bildeten Flächenelektroden zwischen zwei ineinanderge¬ schobenen Kunststoffröhren angeordnet sind. Bei einem keramischen Meßrohr ist eine solche Meßelektrodenanord¬ nung nicht möglich. Anderseits ist auf dem Markt ein keramisches Meßrohr mit kapazitiven Flächenelektroden in Form von Metallfolien bekannt geworden, die in Aus¬ nehmungen am Außenmantel des Keramikrohres eingelegt sind. Diese Ausführung hat jedoch den Nachteil, daß die keramische Rohrschale zwischen den Elektrodenflächen und dem durchströmenden Medium aus Festigkeitsgründen relativ dick sein muß unddaher die Meßsignale sehr schwach sind. Auch bereitet die genaue Fixierung der Flächenelektroden in den Ausnehmungen erhebliche Schwierigkeiten.
Demgegenüber liegt der Erfindung die Aufgabe zugrunde, einen Meßwertaufnehmer der gattungsgemäßen Art mit kapa¬ zitiven Flächenelektroden auszurüsten, die integrierter Bestandteil des Meßrohres sind und wobei die keramische Masse zwischen den Elektrodenflächen und dem durchströ¬ menden Medium möglichst dünn ist.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß jede Meßelektrode aus einem Metallnetz besteht, welches koaxial verlaufend in der Keramikmasse des Meßrohrmantels eingebettet und dicht eingesintert ist.
Durch die Verwendung eines Metallnetzes wird ein dich¬ tes Einsintern in die Keramikmasse ermöglicht, wie es mit einer Metallfolie nicht möglich wäre. Die Metall¬ netze mit den zugehörigen Anschlußdrähten werden vor¬ zugsweise beim Formen der keramischen Rohstoffmasse, z. B. Pressen, isostatisches Pressen o. dgl. in diese Rohstoffmasse eingebettet und beim keramischen Brennen dicht eingesintert. Es ist aber auch möglich, in den aus der Rohstoffmasse gepreßten Formung radiale Aus¬ nehmungen einzuarbeiten, in diese die mit dem zugehöri- gen Anschlußdraht versehenen Metallnetze einzulegen, die Ausnehmung mit Rohstoffmasse zu füllen und den Formung anschließend keramisch zu brennen. Die eingesinterten Metallnetze schließen die Entstehung von Rissen oder das Abplatzen von Keramikmasse im keramischen Meßrohr infolge unterschiedlicher Wärmeausdehnung zwischen dem metallischen Elektrodenwerkstoff und dem keramischen Werkstoff aus. Die die Innenfläche der Metallnetze be¬ deckende Keramikmasse kann daher zur Erzielung einer hohen Meßgenauigkeit sehr dünn, beispielsweise 1 bis 5 mm dick sein. Weiterhin sind die eingesinterten
Metallnetze fester Bestandteil des Meßrohres, so daß die Montage des Meßwertaufnehmers wesentlich verein¬ facht ist.
Die Anschlüsse der Metallnetze können verschieden aus¬ gebildet sein. Vorzugsweise ist das Metallnetz mit einem radial aus dem Meßrohrmantel herausragenden Anschlußdraht versehen, der ebenfalls in die Keramikmasse dicht einge¬ sintert ist. Das Metallnetz besteht in der Regel aus Platindraht, der sich bei einer entsprechend hohen Brenntemperatur mit der Keramikmasse verbindet. Ein Ausführungsbeispiel ist in der Zeichnung dargestellt; es zeigt:
Fig. 1 ein mit zwei metallischen Flächenelektroden ausgerüstetes keramisches Meβrohr und
Fig. 2 den Gegenstand der Fig. 1 in einer Seiten¬ ansicht und zur Darstellung einer Flächen¬ elektrode teilweise aufgeschnitten.
Das in den Fig. 1 und 2 dargestellte keramische Meßrohr 1 ist ein Teil eines Meßwertaufnehmers für ein magnetisch¬ induktives Durchflußmeßgerät. Die dem Meßwertaufnehmer zugehörigen sonstigen Teile, wie Magnetspulen, Gehäuse u. dgl. sind nicht dargestellt.
Das keramische Meßrohr 1 besteht aus einem keramischen Werkstoff mit im wesentlichen elektrisch isolierenden Eigenschaften. Außerdem ist der keramische Werkstoff so ausgewählt, daß das Meßrohr 1 eine hohe Temperatur¬ wechselbeständigkeit, Festigkeit, Abriebsfestigkeit und Korrosionsbeständigkeit aufweist. Zu diesen, auch als Hartkeramik bezeichneten Werkstoffen, gehört bei¬ spielsweise die als Oxidkeramik bezeichnete Werkstoff- gruppe, aber auch Siliciu nitrid o. dgl.
Als Meßelektroden sind zwei aus Drähten 3 und 4 aufge¬ baute Metallnetze 2 vorgesehen; vorzugsweise bestehen die Drähte 3 und 4 aus Platin oder Platinlegierungen. In Betracht kommen aber auch andere Metalle, die sich in die Keramikmasse einsintern lassen, ohne ihre metal¬ lische, stromleitende Eigenschaft zu verlieren. Das Netzwerk kann beliebig ausgebildet sein, doch soll der Abstand zwischen den Drähten so groß sein, daß dazwi- sehen ausreichend Keramikmasse verbleibt. Für den An¬ schluß der Signalleitungen sind die Metallnetze 2 mit je einem Anschlußdraht 5, vorzugsweise ebenfalls aus Platin, versehen. Die Drähte 3 und 4 können durch Punkt- schweißung aneinander befestigt sein, und der Anschlu߬ draht 5 an das Metallnetz 2 angeschweißt sein.
Zur Herstellung des keramischen Meßrohres 1 wird der pulverförmige keramische Rohstoff in eine Preßform ein¬ gefüllt, wobei die beiden Metallnetze 2 in der vorgege¬ benen Lage eingelegt werden. Anschließend wird der Grün- ling mit Hilfe von Stempelpressen oder durch isostati¬ sches Pressen verdichtet und in Abhängigkeit von der Rohstoffart keramisch dicht gebrannt bzw. gesintert. Alternativ ist es aber auch möglich, in den aus der Rohstoffmasse gepreßten Formung radiale Ausnehmungen einzuarbeiten, in diese die mit dem zugehörigen An¬ schlußdraht versehenen Metallnetze einzulegen, die Aus¬ nehmung mit Rohstoffmasse zu füllen und den Formung anschließend keramisch zu brennen.

Claims

Patentansprüche
1. Meßwertaufnehmer für magnetisch-induktive Durchflu߬ meßgeräte, bestehend aus einem elektrisch isolieren¬ den keramischen Meßrohr mit eingesinterten metalli¬ schen Meßelektroden, dadurch gekennzeichnet, daß jede Meßelektrode aus einem Metallnetz (2) besteht, welches koaxial verlaufend in der Keramikmasse des Meßrohrmantels eingebettet und dicht eingesintert ist.
2. Meßwertaufnehmer nach Anspruch 1, dadurch gekenn¬ zeichnet, daß das Metallnetz (2) mit einem radial aus dem Meßrohrmantel herausragenden und in der Keramikmasse dicht eingesinterten Anschlußdraht (5) versehen ist.
3. Meßwertaufnehmer nach Anspruch 1 oder 2, dadurch ge¬ kennzeichnet, daß die Keramikmasse auf der Innen¬ fläche des Metallnetzes (2) etwa 1 bis 5 mm dick ist,
4. Meßwertaufnehmer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Metallnetz (2) aus Platin oder Platinlegierungen besteht.
PCT/EP1986/000487 1985-08-23 1986-08-19 Transducer for magnetic induction flowmeters WO1987001197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61504831A JPH0648207B2 (ja) 1985-08-23 1986-08-19 磁気−誘導形流量計用測定値検出器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3530133.3 1985-08-23
DE3530133 1985-08-23

Publications (1)

Publication Number Publication Date
WO1987001197A1 true WO1987001197A1 (en) 1987-02-26

Family

ID=6279173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1986/000487 WO1987001197A1 (en) 1985-08-23 1986-08-19 Transducer for magnetic induction flowmeters

Country Status (4)

Country Link
EP (1) EP0235222A1 (de)
JP (1) JPH0648207B2 (de)
AU (1) AU6337286A (de)
WO (1) WO1987001197A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289725A (en) * 1991-07-31 1994-03-01 The Foxboro Company Monolithic flow tube with improved dielectric properties for use with a magnetic flowmeter
EP1089060A1 (de) * 1999-09-22 2001-04-04 Weihong Liu Elektrodynamischer Durchflussmesser
WO2024068162A1 (en) * 2022-09-27 2024-04-04 Siemens Aktiengesellschaft Method for manufacturing a measuring tube, flowmeter, computer program product and use of a flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286522A (en) * 1963-08-13 1966-11-22 Vincent J Cushing Magnetoelectric flowmeter apparatus
FR2368018A1 (fr) * 1976-10-14 1978-05-12 Otic Fischer & Porter Debitmetre electromagnetique de precision
DE2950039A1 (de) * 1979-12-13 1981-07-02 Krohne Meßtechnik GmbH & Co KG, 4100 Duisburg Elektroden fuer elektromagnetische durchflussmesser
JPS58196419A (ja) * 1982-05-12 1983-11-15 Yokogawa Hokushin Electric Corp 電磁流量計の測定管の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286522A (en) * 1963-08-13 1966-11-22 Vincent J Cushing Magnetoelectric flowmeter apparatus
FR2368018A1 (fr) * 1976-10-14 1978-05-12 Otic Fischer & Porter Debitmetre electromagnetique de precision
DE2950039A1 (de) * 1979-12-13 1981-07-02 Krohne Meßtechnik GmbH & Co KG, 4100 Duisburg Elektroden fuer elektromagnetische durchflussmesser
JPS58196419A (ja) * 1982-05-12 1983-11-15 Yokogawa Hokushin Electric Corp 電磁流量計の測定管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Vol. 8, No. 45, (P-257) (1482) 28 February 1984, & JP, A, 58196419 (Yokagawa Denki Seisakusho K.K.) 15 November 1983 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289725A (en) * 1991-07-31 1994-03-01 The Foxboro Company Monolithic flow tube with improved dielectric properties for use with a magnetic flowmeter
US5337607A (en) * 1991-07-31 1994-08-16 The Foxboro Company Monolithic flow tube with improved dielectric properties for use with a magnetic flowmeter
US5544532A (en) * 1991-07-31 1996-08-13 The Foxboro Company Magnetic flowmeter with improved accuracy
EP1089060A1 (de) * 1999-09-22 2001-04-04 Weihong Liu Elektrodynamischer Durchflussmesser
WO2024068162A1 (en) * 2022-09-27 2024-04-04 Siemens Aktiengesellschaft Method for manufacturing a measuring tube, flowmeter, computer program product and use of a flowmeter

Also Published As

Publication number Publication date
EP0235222A1 (de) 1987-09-09
AU6337286A (en) 1987-03-10
JPH0648207B2 (ja) 1994-06-22
JPS63501033A (ja) 1988-04-14

Similar Documents

Publication Publication Date Title
EP0080535B1 (de) Messwertaufnehmer für magnetisch-induktive Durchflussmessgeräte
EP0113928B1 (de) Messwertaufnehmer für magnetisch-induktive Durchflussmessgeräte
DE10212908B4 (de) Temperatursensor und Herstellungsverfahren dafür
EP0810425B1 (de) Elektrischer Widerstands-Temperaturfühler
EP2217888B1 (de) Elektrode für ein magnetisch-induktives durchflussmessgerät
DE69900480T2 (de) Vorrichtung und Verfahren zur kontinuierlichen Messung der Wandabnutzung eines metallischen Behälters
DE3206903A1 (de) Gassensor, insbesondere fuer abgase von brennkraftmaschinen
DE2950039C2 (de) Elektroden für elektromagnetische Durchflußmesser
WO2010063682A1 (de) Temperaturfühler, insbesondere für turbolader
DE3627993C2 (de) Meßrohr für einen elektromagnetischen Durchflußmesser und Verfahren zu dessen Herstellung
EP0498386B1 (de) Temperaturfühler und Verfahren zu seiner Herstellung
DE3344679A1 (de) Verfahren zum einsintern stiftfoermiger elektroden oder elektrodenschaefte aus metallischem werkstoff in ein keramisches messrohr fuer magnetisch-induktive durchflussmessgeraete
DE102012110822A1 (de) Temperatursensorsystem und Verfahren zur Herstellung eines Temperatursensorsystems
EP2591318B1 (de) Messaufnehmer eines thermischen durchflussmessgeräts zur ermittlung des durchflusses eines mediums durch ein messrohr und verfahren zu dessen herstellung
EP0142048B1 (de) Induktiver Durchflussmesser
EP0763190B1 (de) Wärmeübergangskontroll- und/oder -messgerät
WO1987001197A1 (en) Transducer for magnetic induction flowmeters
DE3237824A1 (de) Dauerhafter titanoxid-abgassensor
EP0179109B1 (de) Messwertaufnehmer für magnetisch-induktive durchflussmessgeräte
EP3777473A1 (de) Keramischer heizwiderstand, elektrisches heizelement sowie vorrichtung zur erwärmung eines fluides
DE2505427C3 (de) Flächige Meß- und Schirmelektrode mit kapazitivem Signalabgriff für induktive Durchflußmesser
DE8524172U1 (de) Meßwertaufnehmer für magnetisch-induktive Durchflußmeßgeräte
DE102017220409A1 (de) Dichtungselement für ein Sensorelement eines Sensors zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum und Verfahren zu seiner Herstellung
DE3720160C2 (de)
EP2732254A2 (de) Hochtemperaturmesssensoranordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE