WO1987000781A1 - Construction elements produced by powder metallurgy - Google Patents

Construction elements produced by powder metallurgy Download PDF

Info

Publication number
WO1987000781A1
WO1987000781A1 PCT/DE1986/000306 DE8600306W WO8700781A1 WO 1987000781 A1 WO1987000781 A1 WO 1987000781A1 DE 8600306 W DE8600306 W DE 8600306W WO 8700781 A1 WO8700781 A1 WO 8700781A1
Authority
WO
WIPO (PCT)
Prior art keywords
preform
furnace
sintering
green body
container
Prior art date
Application number
PCT/DE1986/000306
Other languages
English (en)
French (fr)
Inventor
Gerhard Andrees
Josef Kranzeder
Wilhelm Vogel
Original Assignee
MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH filed Critical MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH
Publication of WO1987000781A1 publication Critical patent/WO1987000781A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to components produced by powder metallurgy, in particular by injection molding or injection molding.
  • components in particular high-temperature-resistant components that are injection-molded or dry-pressed and sintered, or at least capable of being sintered, these are shaped e.g. on plates, laid on or in powder or similar embedded.
  • the sintering usually follows after the binder has been burned out or evaporated and mixed with the metallic alloy as the starting powder.
  • the components have only an extremely low strength during the expulsion of the binder and are very sensitive to any kind of contact, so they must be worn or covered or otherwise protected by the pads / underlays / intermediate layers or embedding material. As a result, the sintering process is hindered, and friction occurs at the contact points, the forces of which counteract the shrinkage forces. Also the risk of chemical reactions on the Contact points or contact areas is at the high
  • the object of the invention is to contribute to the creation of components which are temperature-resistant, true to shape or true to shape, i.e. are true to size and have a smooth surface without cracks.
  • the main advantage of the invention is i.a. to be seen in the fact that even when the binder is expelled after the shaping, a high dimensional stability of the components is already guaranteed. They are easy to handle and have the desired properties, see above.
  • FIG. 1 shows an injection-molded metal sample in its treatment chamber, here: container of an oven
  • Fig. 2 shows an injection molded metal scoop in its treatment chamber, here: container of an oven
  • Fig. 3b sample sintered according to Fig. 2o
  • Fig. 4 sample partially surrounded by current-carrying coil
  • Fig. 10 sample in powder. Sintering in the temperature time program.
  • Fig. 2o sample freely accessible. Sintering in the temperature program.
  • the powder metallurgical starting material in particular a globular powder of a nickel-based alloy, is mixed with a binder such as wax or thermoplastics, in a volume ratio of 40% to 80% metal powder and 20% to 60% binder.
  • a binder such as wax or thermoplastics
  • the material or the mass is brought into the desired shape of the component in an injection molding machine or in a dry press.
  • the components are then sintered without pressure.
  • This sintering process is multi-stage, in particular two-stage, it can be followed by subsequent compression of the molded body. Hot isostatic pressing is preferred for post-compaction.
  • the components are manufactured in such a way that following the known steps: shaping * and burnout, in a first sintering step to approx.
  • the components 1 are attached to a furnace frame 2 or other container made of metal or ceramic, e.g., on rods (3).
  • the attachment is best applied to the sprue, since this area of the molded part is no longer required later.
  • the second sintering that is to say the component is heated in a vacuum or in a protective gas to the necessary temperature, which, depending on the metal alloy used, is in the range between approximately 1150 ° C. and 1300 ° C.
  • the heating rate must be selected so that any cracks in the surface that are still present close during the second heat treatment, e.g. For example, in the case of nickel-based alloys, heating between 20 and 100 K / min for up to about 2 hours and a maximum temperature of 60% to 98% of the solidus temperature of the alloy is selected.
  • the components produced in this way have no contour errors, have shrunk linearly and are therefore hardly smaller, ie practically true to size.
  • the parts can have almost any shape and have a smooth, dense and crack-free surface.
  • the density of the component was 95% to 98% of the theoretical density without post-compression and about 100% by post-compression using hot isostatic pressing.
  • the parts to be sintered can also float (e.g. on a gas cushion made up of a large number of nozzles (6) or in the magnetic field of the coil (5) or with a suction cup (7) in their position in the container ( 2)
  • the container consists of a material which does not react with these parts, such as Al_0- or ZrO «.
  • the geometric shape of the precision parts to be manufactured is practically arbitrary.
  • the injection or pressing process and the necessary injection molding or pressing mold are selected in at least near-net shape.
  • An example of a suitable device is described in DE-OS 30 42 052.
  • the invention is mainly used for ** blades or wheels in turbo mechanical engineering.
  • FIG. 3 A shows a sample with sintering according to the prior art (in powder filling).
  • 3B (right) shows a sample treated according to the invention.
  • FIGS. 3A and 3B show that, according to the prior art, the surface of the sample is contaminated and the sample has deformed.
  • DA * against the sample surface and of sound Geo ⁇ geometry (dimensions and shape retention) is.
  • the invention thus achieves a result with simple means that is impressive.
  • the success of the combination of agents according to the invention was by no means foreseeable and it creates the possibility of further applications of objects which are produced from powdered starting material.
  • Fig. ⁇ o shows the sintering in powder filling according to the prior art, using a temperature-time program.
  • 2o shows the sintering according to the invention with objects freely suspended or floating in the treatment chamber, likewise on the basis of a temperature-time program with the same units as in FIG. 1.
  • the temperature treatment is carried out continuously in such a way that after a ⁇ ° (2nd) increase phase with a new holding phase, at least one temperature decrease with a holding phase follows.
  • the manipulation of the preforms or green compacts is controlled from outside the container 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

Auf pulvermetallurgischem Wege hergestellte
Bauteile
Die Erfindung betrifft pulvermetallurgisch hergestellte Bauteile, insbesondere durch Spritzgießen oder Spritz¬ pressen. Bei der Herstellung von Bauteilen, insbe¬ sondere hochtemperaturbeständigen Bauteilen, die spritz— gegossen oder trockengepreßt sind und gesintert, bzw.. zumindest Sinte fähig sind, werden diese nach der Formgebung z.B. auf Platten, aufgelegt oder in Pulver o.a. eingebettet.
Das Sintern folgt in der Regel nach dem Ausbrennen oder Abdampfen des Bindemittels das mit der metallischen Legierung als Ausgangspulver gemischt war. Die Bauteile haben während dem Austreiben des Bindemittels nur eine äußerst geringe Festigkeit und sind sehr empfindlich gegen jede Art von Berührung, siffmüssen deshalb durch die Auflagen/Unterlagen/Zwischeniagen oder Einbett- material getragen oder abgedeckt oder sonstwie geschützt werden. Dadurch wird der Sintervorgang behindert, außerdem entsteht an den Kontaktstellen Reibung deren Kräfte den Schrumpfungskräften entgegen¬ wirken. Auch die Gefahr chemischer Reaktionen an den Kontaktstellen bzw. Kontaktflächen ist bei den hohen
Sintertemperaturen bis zu etwa 1300°C nicht auszuschließen.
Hierdurch wiederum können Oberflächenrisse, Poren oder Kerben entstehen bzw. vergrößert werden. Wegen ungleich¬ mäßiger Schrumpfungen kann Verzug entstehen.
Die Erfindung hat die Aufgabe zur Schaffung solcher Bau¬ teile beizutragen, die temperaturfest, konturen- bzw. form- treu d.h. maßhaltig sind und eine glatte Oberfläche ohne Risse aufweisen.
Gelöst wird diese Aufgabe durch die im Hauptanspruch ange¬ gebenen Merkmale. Weitere Merkmale sind den anderen An- Sprüchen sowie der Beschreibung und Zeichnung eines Aus¬ führungsbeispiels zu entnehmen.
Der wesentliche Vorteil der Erfindung ist u.a. darin zu sehen, daß auch beim Austreiben des Bindemittels nach der Formgebeung bereits eine hohe Formstabilität der Bauteile gewährleistet ist. Sie sind gut handhabbar und weisen die erwünschten Eigenschaften, s.o., auf.
Ein Ausführungsbeispiel der Erfindung ist in der beige- fügten Zeichnung rein schematisch dargestellt.
Es zeigen die Zeichnungen in:
Fig. 1 eine spritzgegosseneMetallprobe in ihrer Be- handlungskammer, hier: Behälter eines Ofens
Fig. 2 eine spritzgegossene Metallschaufel in ihrer Behandlungskammer, hier: Behälter eines Ofens Fig. 3a Probe fertiggesintert nach Fig 1o
Fig. 3b Probe fertiggesintert nach Fig. 2o
Fig. 4 Probe teilweise von stromdurchflossener Spule umgeben
Fig. 5 Probe von Luftkissen getragen in Sinterposition
Fig. 6 Probe von Saugglocke gehalten in Sinterpositiαn
Fig. 1o Probe in Pulverschüttung. Sintern im Temperaturzeit- programm.
Fig. 2o Probe frei zugänglich. Sintern im Temperatur¬ zeitprogramm.
Das pulvermetallurgische Ausgangsmaterial, insbesondere ein globulares Pulver einer Nickel-Basislegierung wird gemischt mit einem Bindemittel wie Wachs oder Thermoplaste,' im Volumenverhältnis 40% bis 80% Metallpulver und 20% bis 60% Bindemittel. Nach dem innigen Vermischen wird das Material bzw. die Masse in einer Spritzgußmaschine oder in einer Trockenpresse in die gewünschte Form des 3auteils gebracht. Nach dem Ausheizen des 3indemittels werden die Bauteile dann drucklos gesintert. Dieser Sintervorgang ist mehrstufig, insbesondere zweistufig, an ihn kann sich ein Nachverdichten des Formkörpers an¬ schließen. Für das Nachverdichten wird das heißiso- statische Pressen bevorzugt. Die Bauteile werden so hergestellt, daß nach den an sich bekannten Schritten: Formgebung*und Ausbrennen, in einem ersten Sinterschritt auf ca. 900°C bis 1100°C (bei Ni-Basis-Legierungen) bzw. bei 50% bis 70% der absoluten Solidustemperatur je nach verwendeter Metallegierung im Vakuum (10 bis 10 mbar) oder im Schutzgas mit einer Aufheizgeschwindigkeit von 150°C bis 600°C pro Stunde vorgesintert wird, bei einer Dauer von 0,1 Stunden bis 10 Stunden.
Nach dieser Wärmebehandlung sind die Bauteile noch nicht von den Unterlagen oder Ξinbett aterialien geschädigt undzeigen daher keine Reaktion an* der Oberfläche. Die Bauteile sind jetzt gut handhabbar und die Schrumpfung ist gering (zwischen etwa 0% und 3%) .
Danaciα werden die Bauteile 1 an einem Ofengestell 2 oder sonstigen Behälter aus Metall oder Keramik freihängend z.B, an Stangen (3) befestigt. Am besten wird die Be¬ festigung am Anguß angebracht, da dieser Bereich des Spritzteiles später nicht mehr benötigt wird.
Danach erfolgt die zweite Sinterung, d. h. ein Aufheizen des Bauteils im Vakuum oder im Schutzgas auf die not¬ wendige Temperatur, die je nach verwendeter Metallegierung im Bereich zwischen etwa 1150 C und 1300 C liegt. Die Aufheizgeschwindigkeit muß so gewählt werden, daß bei der zweiten Wärmebehandlung etwa noch vorhandene Risse in der Oberfläche sich schließen, z. B. wird bei Nickel- Basis-Legierungen eine Aufheizung zwischen 20 und 100 K/min bis zu etwa 2 Stunden und einer maximalen Tem¬ peratur von 60 % bis 98 % der Solidustemperatur der Legierung gewählt. Die auf diese Weise hergestellten Bauteile haben keine Konturfehler, sind linear geschrumpft und dadurch kaum kleiner, d. h. praktisch maßhaltig. Die Teile können fast beliebige Formen aufweisen und haben eine glatte, dichte und rissfreie Oberfläche. Die erreichte Dichte des Bauteils lag bei 95 % bis 98 % der theoretischen Dichte ohne Nachverdichten und bei etwa 100 % mittels Nachverdichten durch heißisostatisches Pressen.
Abwandlungen der vorbeschriebenen und dargestellten Aus¬ führungsbeispiele können vorgenommen werden, ohne hier¬ durch den Rahmen der Erfindung zu verlassen.
Statt mittels der Ansätze (4) können die zu sinternden Teile auch schwebend (z. B. auf einem Gaskissen aus einer Vielzahl von Düsen (6) oder im Magnetfeld der Spule (5) oder mit Saugglocke (7) in ihrer Position im Behälter (2) gehalten werden. Der Behälter besteht aus mit diesen Teilen nicht reagierendem Werkstoff wie Al_0-. oder ZrO«.
Die geometrische Form der herzustellenden Präzisionsteile ist praktisch beliebig. Je nach gewünschter Endform und Maßhaltigkeit wird das Spritz- oder Pressverfahren und die dazu nötige Spritzgieß- oder Pressform in mindestens Bei- nahe-Endform (near-net-shape) ausgewählt. Ein Beispiel einer geeigneten Vorrichtung ist in der DE-OS 30 42 052 beschrieben.
Verfahrensmöglichkeiten zum Aufbereiten der Masse und dem Spritzgießen sind in der DE-OS 31 20 501 beschrieben. Das Vakuum-Dichtsintern und die Wärmebehandlung pulvermetall¬ urgisch verarbeitbarer Werkstoffe sind "Metals Handbook", Ninth Editon, Vol. 7, pp. 373-375 zu entnehmen. Die Erfindung ist jedoch weder auf diese Stoffe noch auf solche Behandlung beschränkt. Insbesondere können auch andere oder zusätzliche an sich bekannte Behandlungen vor¬ genommen werden, wie Nachverdichten (HIP) , Härten oder Ver¬ güten, Legieren oder Dotieren, überziehen (PVD, CVD) einer Oberfläche, z. B. mit einem bekannten Diffusionsüberzug.
Die Anwendung der Erfindung erfolgt hauptsächlich bei ** Schaufeln oder Rädern des Turbo-Maschinenbaus.
Aus Fig. 3 A (links) ist eine Probe sichtbar mit Sinterung nach dem Stand der Technik (in Pulverschüttung) .
In Fig. 3 B (rechts) ist eine gemäß der Erfindung behandelte Probe ersichtlich.
Der Vergleich der Fig. 3 A und 3 B zeigt, daß nach dem Stand der Technik die Oberfläche der Probe verunreinigt ist und sich die Probe verformt hat. In dem rechten Bild (3b ) da- * gegen ist die Probe von einwandfreier Oberfläche und Geo¬ metrie (Maß- und Formhaltigkeit) .
Die Erfindung trifft also mit einfachen Mitteln ein Er¬ gebnis , daß sich sehen lassen kann. Der Erfolg, der er¬ findungsgemäßen Mittelkombination, war keineswegs voraus¬ zusehen und es schafft die Möglichkeiten weiterer Anwen¬ dungen von Gegenständen, die aus pulverförmigem Ausgangs- material hergestellt werden.
Nachstehend werden, durch Vergleich mit dem Stand der Technik, die Vorteile der Erfindung und die damit er¬ zielten Erfolge verdeutlicht:
In Fig. Λ o ist die Sinterung in Pulverschüttung nach dem Stand der Technik dargestellt, anhand eines Temperatur- zeitprogrammes. In Fig. 2o ist die Sinterung nach der Erfindung mit in der Behandlungskammer freihängenden oder freischwebenden Gegen¬ ständen dargestellt, ebenfalls anhand eines Temperaturzeit- prσgrammes mit gleichen Einheiten, wie in Fig. 1.
Durch Vergleich beider Figuren läßt sich mühelos erkennen, daß im Stand der Technik eine Temperaturbehandlung insbe¬ sondere Hochtemperaturbehandlung auf die Art und Weise durchgeführt wurde, daß diese bis zu einem Höchstwert sich
10 immer mehr steigerte und erst gegen Schluß der Behandlung stetig abnahm.
Bei der Erfindung dagegen, wird die Temperaturbehandlung kontinuierlich in der Weise durchgeführt, daß nach einer ^ ° (2.) Steigerungsphase mit erneuter Haltephase danach wenigstens eine Temperaturabsenkung mit Haltephase folgt.
Als mitentscheidend für den Erfolg der Erfindung wird an¬ gesehen, daß in den Haltephasen Maßnahmen vorgenommen werden,
20 wie sie im vorausgegangenen Text bereits beschrieben sind, insbesondere' bei ununterbrochenem Vakuum, das in der Be¬ handlungskammer aufrechterhalten wird über die gesamte Zeit¬ dauer bis zum Ende der Behandlung.
25
Die Manipulation der Vorform- oder Grünlinge wird dabei von außerhalb des Behälters 2 gesteuert.
30
35

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung von kompliziert geformten Bau¬ teilen, die eine hohe Formtreue und Maßhaltigkeit sowie eine hohe Oberflächengüte aufweisen, aus pulvermetall- urgisch verarbeitbaren Werkstoffen, durch Spritzgießen oder -pressen und anschließendem Sintern,
dadurch gekennzeichnet, daß die zubereitete, pulver¬ metallurgisch verarbeitbare Werkstoffe und Bindemittel enthaltende Masse, in einer Spritzgießeinrichtung oder Presse, wie Trockenpresse, verformt wird, der Vorform- ling oder Grünling nach dem Ausheizen des Bindemittels in einer Form, in einen gasdichten, heizbaren Behälter, insbesondere eines Vakuumofens oder Ofens mit Schutz- gasatmosphäre eingebracht und darin gesintert wird, indem der Vorformling oder Grünling frei der Ofen¬ atmosphäre ausgesetzt, aufgehängt bzw. frei schwebend gehalten ist, so daß wenigstens die Bereiche seiner Oberfläche freiliegen und einer Behandlung zugänglich sind, in denen Rissfreiheit erwünscht ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Vorformling oder Grünling (1) vor dem Sintern zu seiner Halterung im gasdichten Behälter (Behandlungskam¬ mer) eines Ofens mit wieder entfernbaren Ansätzen (4) versehen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet-, daß die Ansätze Kontaktstellen zu Aufhängern, Lagern oder Haltern (3) aufweisen, mit denen der Vorformling oder Grünling im Behälter (2) eines Ofens in Sinterposition gehalten wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Vorformling oder Grünling von einem fluiden Medium ge¬ tragen im Behälter eines Ofens in Sinterpo.sition gehalten wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das fluide Medium ein Schutzgas oder ein Inertgas ist".
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Vorformling oder Grünling durch ein Magnetfeld im Behälter eines Ofens in Sinterposition frei schwebend gehalten wird.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Halter mit dem der Vorformling oder Grünling frei schwebend gehalten wird, ein Saugkopf ist, der gesondert an die Vakuumpumpe des Ofens anschließbar ist.
8. Anwendung eines Verfahrens nach einem der vorhergehenden Ansprüche zur Herstellung von kompliziert geformten Bau¬ teilen, die eine hohe Formtreue und Maßhaltigkeit sowie eine hohe Oberflächengüte aufweisen, aus pulvermetall¬ urgisch verarbeitbaren Werkstoffen, durch Spritzgießen oder -pressen und anschließendem Sintern,
dadurch gekennzeichnet, daß ein den pulvermetall¬ urgischen Werkstoffen zur Erzielung ausreichender Flie߬ fähigkeit zugegebenes Bindemittel nach der Formgebung zunächst bei einer dem Bindemittel angepaßten Ausbrenn¬ temperatur ausgetrieben wird und danach die Bauteile in einem ersten Sinterschritt zwischen 50 % und 70 % _der Solidustemperatur des pulvermetallurgischen Werkstoffs im Vakuum oder unter Schutzgasatmosphäre für eine Dauer von 0,1 bis 10 Stunden, bevorzugt 0,1 bis 2 Stunden, aufgeheizt werden und dann in einem zweiten Sinterschritt in gleicher Atmosphäre auf eine bis zu 400 C höhere Temperatur für eine Zeitdauer aufgeheizt werden, die aus¬ reicht, um alle an der Außenoberfläche vorhandenen Risse zu schließen.
9. Anwendung eines Verfahrens nach Anspruch 8, wobei während des gesamten Ablaufs de? Verfahrens (Temperatur- Zeit-Programm) , wenigstens jedoch während aller Sinter- schritte das Verfahren oder die Sehutzgasatmosphäre im Ofen nicht unterbrochen wird.
10. Anwendung eines Verfahrens nach Anspruch 9, wobei der
Vorformling oder Grünling von außerhalb des gasdichten Be- hälters (Behandlungskammer) manipuliert wird (nach einem der Ansprüche 3-8) .
PCT/DE1986/000306 1985-07-31 1986-07-29 Construction elements produced by powder metallurgy WO1987000781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853527367 DE3527367A1 (de) 1985-07-31 1985-07-31 Auf pulvermetallurgischem wege hergestellte bauteile
DEP3527367.4 1985-07-31

Publications (1)

Publication Number Publication Date
WO1987000781A1 true WO1987000781A1 (en) 1987-02-12

Family

ID=6277232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1986/000306 WO1987000781A1 (en) 1985-07-31 1986-07-29 Construction elements produced by powder metallurgy

Country Status (4)

Country Link
US (1) US4886639A (de)
EP (1) EP0232336A1 (de)
DE (1) DE3527367A1 (de)
WO (1) WO1987000781A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356131A1 (de) * 1988-08-20 1990-02-28 Kawasaki Steel Corporation Gesinterte Werkstücke und Verfahren zu ihrer Herstellung
EP0421084A1 (de) * 1989-09-13 1991-04-10 Asea Brown Boveri Ag Verfahren zur pulvermetallurgischen Herstellung eines Werkstücks
EP0676553A2 (de) * 1994-04-08 1995-10-11 INA Wälzlager Schaeffler KG Wälzlager
WO2005030415A2 (de) * 2003-09-22 2005-04-07 Mtu Aero Engines Gmbh Verfahren zur herstellung von bauteilen und halteeinrichtung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451244A (en) * 1994-04-06 1995-09-19 Special Metals Corporation High strain rate deformation of nickel-base superalloy compact
US5977230A (en) * 1998-01-13 1999-11-02 Planet Polymer Technologies, Inc. Powder and binder systems for use in metal and ceramic powder injection molding
JP3052240B2 (ja) * 1998-02-27 2000-06-12 東京タングステン株式会社 X線管用回転陽極及びその製造方法
US6838046B2 (en) * 2001-05-14 2005-01-04 Honeywell International Inc. Sintering process and tools for use in metal injection molding of large parts
AU2002339840A1 (en) * 2001-05-14 2003-02-17 Honeywell International Inc. Sintering process and tools for use in metal injection molding of large parts
DE10331599A1 (de) * 2003-07-11 2005-02-03 Mtu Aero Engines Gmbh Bauteil für eine Gasturbine sowie Verfahren zur Herstellung desselben
DE10332882A1 (de) * 2003-07-19 2005-02-03 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Bauteilen einer Gasturbine
DE10343781B4 (de) * 2003-09-22 2009-02-12 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Bauteilen
US20060251536A1 (en) * 2005-05-05 2006-11-09 General Electric Company Microwave processing of mim preforms
US20070107216A1 (en) * 2005-10-31 2007-05-17 General Electric Company Mim method for coating turbine shroud
DE102006057912A1 (de) * 2006-12-08 2008-06-12 Mtu Aero Engines Gmbh Leitschaufelkranz sowie Verfahren zum Herstellen desselben
US20080237403A1 (en) * 2007-03-26 2008-10-02 General Electric Company Metal injection molding process for bimetallic applications and airfoil
US20090311124A1 (en) * 2008-06-13 2009-12-17 Baker Hughes Incorporated Methods for sintering bodies of earth-boring tools and structures formed during the same
US20100178194A1 (en) * 2009-01-12 2010-07-15 Accellent, Inc. Powder extrusion of shaped sections
US9903275B2 (en) 2014-02-27 2018-02-27 Pratt & Whitney Canada Corp. Aircraft components with porous portion and methods of making
US9517507B2 (en) 2014-07-17 2016-12-13 Pratt & Whitney Canada Corp. Method of shaping green part and manufacturing method using same
US20160263656A1 (en) 2015-03-12 2016-09-15 Pratt & Whitney Canada Corp. Method of forming a component from a green part
DE102015210770A1 (de) * 2015-06-12 2016-12-15 Rolls-Royce Deutschland Ltd & Co Kg Bauteilkonstruktion, Bauteil für eine Gasturbine und Verfahren zur Herstellung eines Bauteils einer Gasturbine durch Metallpulverspritzgießen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432296A (en) * 1967-07-13 1969-03-11 Commw Scient Ind Res Org Plasma sintering
DE2011924A1 (de) * 1969-03-14 1970-09-24 National-Standard Company, Niles, Mich. (V.St.A.);- Anlage und Verfahren zum Behandeln von schrumpfbarem stranggepreßtem Material
GB2007719A (en) * 1977-11-15 1979-05-23 British Steel Corp Production of sintered steel strip
GB2058039A (en) * 1979-09-11 1981-04-08 Comp Generale Electricite Sintering tubular ceramic parts
EP0065702A2 (de) * 1981-05-22 1982-12-01 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Verfahren und Vorrichtung zur Herstellung von Formteilen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002473A (en) * 1971-11-08 1977-01-11 P. R. Mallory & Co., Inc. Method of making an anode
US4063940A (en) * 1975-05-19 1977-12-20 Richard James Dain Making of articles from metallic powder
GB1562788A (en) * 1976-10-21 1980-03-19 Powdrex Ltd Production of metal articles from tool steel or alloy steel powder
DE3042052C2 (de) * 1980-11-07 1984-08-09 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Vorrichtung zum Spritzgießen von Präzisionsteilen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432296A (en) * 1967-07-13 1969-03-11 Commw Scient Ind Res Org Plasma sintering
DE2011924A1 (de) * 1969-03-14 1970-09-24 National-Standard Company, Niles, Mich. (V.St.A.);- Anlage und Verfahren zum Behandeln von schrumpfbarem stranggepreßtem Material
GB2007719A (en) * 1977-11-15 1979-05-23 British Steel Corp Production of sintered steel strip
GB2058039A (en) * 1979-09-11 1981-04-08 Comp Generale Electricite Sintering tubular ceramic parts
EP0065702A2 (de) * 1981-05-22 1982-12-01 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Verfahren und Vorrichtung zur Herstellung von Formteilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. KLAR: "Metals Handbook", Vol. 7, 9th. edition, June 1984, (Ohio, US), see pages 373-375; page 497, column 2, line 60 - column 3, line 28 (cited in the application) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356131A1 (de) * 1988-08-20 1990-02-28 Kawasaki Steel Corporation Gesinterte Werkstücke und Verfahren zu ihrer Herstellung
EP0421084A1 (de) * 1989-09-13 1991-04-10 Asea Brown Boveri Ag Verfahren zur pulvermetallurgischen Herstellung eines Werkstücks
US5174952A (en) * 1989-09-13 1992-12-29 Asea Brown Boveri Ltd. Process for the powder-metallurgical production of a workpiece
CH681516A5 (de) * 1989-09-13 1993-04-15 Asea Brown Boveri
EP0676553A2 (de) * 1994-04-08 1995-10-11 INA Wälzlager Schaeffler KG Wälzlager
EP0676553A3 (de) * 1994-04-08 1996-04-10 Schaeffler Waelzlager Kg Wälzlager.
WO2005030415A2 (de) * 2003-09-22 2005-04-07 Mtu Aero Engines Gmbh Verfahren zur herstellung von bauteilen und halteeinrichtung
WO2005030415A3 (de) * 2003-09-22 2009-04-16 Mtu Aero Engines Gmbh Verfahren zur herstellung von bauteilen und halteeinrichtung

Also Published As

Publication number Publication date
US4886639A (en) 1989-12-12
DE3527367A1 (de) 1987-02-12
EP0232336A1 (de) 1987-08-19
DE3527367C2 (de) 1991-03-14

Similar Documents

Publication Publication Date Title
WO1987000781A1 (en) Construction elements produced by powder metallurgy
EP1119429B1 (de) Verfahren zur herstellung von bauteilen durch metallpulverspritzguss
EP1021997B2 (de) Verfahren zur Herstellung von Zahnersatz und dentalen Hilfsteilen
EP1764062B1 (de) Formkörper aus einer Dentallegierung zur Herstellung von dentalen Teilen
WO2003101647A2 (de) Verfahren zur endkonturnahen herstellung von hochporösen metallischen formkörpern
DE4338457A1 (de) Bauteil aus Metall oder Keramik mit dichter Außenschale und porösem Kern und Herstellungsverfahren
DE1758845B2 (de) Verfahren zur herstellung von praezisionsgiessformen fuer reaktionsfaehige metalle
EP2123377A1 (de) Verfahren zur Herstellung eines Werkstücks, insbesondere eines Formgebungswerkzeugs oder eines Formgebungswerkzeugteils.
DE4322084A1 (de) Verfahren zur Herstellung eines Setters
EP0525325B1 (de) Verfahren zur Herstellung dichter Sinterwerkstücke
EP0421084B1 (de) Verfahren zur pulvermetallurgischen Herstellung eines Werkstücks
DE2258485A1 (de) Verfahren und vorrichtung zur herstellung von guss- und pressformen
DE2734772B2 (de) Verfahren zur Herstellung eines Siliciumnitridgegenstandes durch Reaktionssintern
DE102014209085B4 (de) Herstellung eines Formkörpers aus einer Dentallegierung
DE4322085A1 (de) Verfahren zur Herstellung eines Formteils aus einem pulverförmigen Material
DE2258305A1 (de) Verfahren und einrichtung zum herstellen von formkoerpern aus hartstoffpulvern
DE19921934B4 (de) Verfahren zur Herstellung eines pulvermetallurgischen Sinterformteils mit hoher Grunddichte und hoher Oberflächendichte
DE3517494C2 (de)
DE19703175C2 (de) Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen mit einer schraubenförmigen Außenkontur
DE1801280A1 (de) Verfahren zum Herstellen eines Werkstuecks aus teilchenfoermigem Stoff
DE4322083A1 (de) Verfahren zur Herstellung eines Formteils aus einem pulverförmigen Material
DE19703177C2 (de) Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen
EP0446673A1 (de) Verfahren zur Herstellung eines Sinterkörpers mit einer dichten Randzone und einer glatten Oberfläche
DE3725755A1 (de) Verfahren zur herstellung individueller formen zum abguss von biokompatiblen teilen aus hochreaktiven werkstoffen
DE19703176C2 (de) Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986904764

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986904764

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1986904764

Country of ref document: EP