WO1983004150A1 - Method and device for separating position of fault in light transmission line - Google Patents

Method and device for separating position of fault in light transmission line Download PDF

Info

Publication number
WO1983004150A1
WO1983004150A1 PCT/JP1983/000136 JP8300136W WO8304150A1 WO 1983004150 A1 WO1983004150 A1 WO 1983004150A1 JP 8300136 W JP8300136 W JP 8300136W WO 8304150 A1 WO8304150 A1 WO 8304150A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmission line
optical transmission
filter
under test
Prior art date
Application number
PCT/JP1983/000136
Other languages
English (en)
French (fr)
Inventor
Kenji Okada
Junichiro Minowa
Kenichi Sato
Original Assignee
Nippon Telegraph And Telephone Public Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP57075619A external-priority patent/JPS58191948A/ja
Priority claimed from JP58071089A external-priority patent/JPS59196438A/ja
Application filed by Nippon Telegraph And Telephone Public Corporation filed Critical Nippon Telegraph And Telephone Public Corporation
Priority to DE8383901394T priority Critical patent/DE3380681D1/de
Publication of WO1983004150A1 publication Critical patent/WO1983004150A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present invention provides a method for isolating a fault in an optical transmission line used for optical fiber communication.
  • the present invention relates to a method and an apparatus for performing division with high accuracy.
  • the present invention relates to a method and an apparatus for performing division with high accuracy.
  • the fault location of the optical transmission line of the subscriber system is tested from the center (station side) and turned off.
  • the present invention relates to a method and apparatus for isolating a fault location suitable as a separating method.
  • the public telecommunications network consists of subscriber transmission systems, exchanges, relay transmission systems, etc.
  • Obstacle is a subscriber
  • the fault location will be the optical transmission line.
  • a reversal test must be performed. This is the case when testing from the center.
  • the light for transmission is constantly reflected by the semiconductor laser.
  • FIG. 1 shows a state in which optical communication is performed in a normal state.
  • 1 is an optical transmission circuit
  • 2 is an optical transmission line
  • 3 is an optical receiving circuit
  • 4 is a control signal transmitting circuit
  • 5 is a control signal receiving circuit
  • 6 is a reflecting mirror controlled by the control signal receiving circuit 5.
  • an optical signal is transmitted from the optical transmitting circuit 1 to the optical receiving circuit 3 via the optical transmission line 2.
  • Fig. 2 shows the case where the fault isolation test was set to the test state by the method of calculating the reflectance and the distance to the reflection point.
  • 7 is an optical pulse transmitting circuit
  • 8 is an optical directional coupler
  • 9 is an optical pulse receiving circuit.
  • a return command is issued from the control signal transmitting circuit 4 on the transmitting side, and this is received by the control signal receiving circuit 5, and the reflecting mirror 6 is connected to the optical transmission line 2, and the optical transmitting circuit 1
  • the optical pulse transmission circuit 7, the optical directional coupler 8, and the optical pulse reception circuit 9 are connected to the optical transmission line 2.
  • the optical pulse from the optical pulse transmission circuit 7 enters the optical transmission line 2 via the optical directional coupler 8.
  • the incident optical pulse propagates through the optical transmission line 2, is reflected by the reflector 6 on the receiving side, propagates through the optical transmission line 2 again, passes through the optical directional coupler 8, and receives the optical pulse. It is received by the speech circuit 9. At this time, the time from when the light pulse is transmitted to when the light pulse is reflected by the reflector 6 and received by the light pulse receiving circuit 9 and the reflectance of the reflected light are measured. The result shown in FIG. That is, at a position corresponding to the round trip time of the optical transmission line 2, reflected light having a reflectance close to 100% is observed.
  • the optical transmission line 2 is cut in the middle, reflection occurs at the cut point, but reflection at the cut surface is Fresnel reflection caused by the difference in refractive index between glass and air.
  • the cutting surface is flat and the light transmission path Even under the best conditions for perpendicularity to the axis, its reflectivity is about 4%, and in general failure failure the reflectivity is always lower. Therefore, by measuring the amount of reflection, it is possible to distinguish whether or not the reflection by the reflecting mirror 6 is a reflection on the broken surface in the middle of the transmission path. Turns out to be normal.
  • FIG. 4 shows an example of this measurement system.
  • reference numeral 7 denotes an optical pulse transmitting circuit for outputting a high-output optical pulse
  • 8 denotes an optical directional coupler
  • 9 denotes a high-sensitivity optical pulse receiving circuit.
  • a high-output optical pulse is transmitted from the optical pulse transmission circuit 7 through the optical directional coupler 8
  • Rayleigh scattering occurs uniformly in the optical fiber.
  • the Rayleigh scattered light that returns to the transmitting side is called backscattered light, and this backscattered light passes through the optical transmission line 2 in the opposite direction, passes through the optical directional coupler 8, and receives an optical pulse receiving circuit.
  • FIG. 5 shows that no backward scattered light arrives from a point farther than point A, indicating that the optical fiber is normal up to point A.
  • the round trip time can be determined from the speed of light in the optical fiber, but the speed V of light in the optical fiber is
  • the constant C is measured with a sufficiently precise value, but the constant e differs depending on the individual optical fiber, and it is difficult to perform this measurement precisely.
  • the measurement accuracy is at most 0.1%. In other words, when calculating the distance from the round trip time to point A, the above accuracy is doubled, and an error of about 0.2% appears.
  • the time corresponding to the half width of the light pulse for measuring the backscattered light is inevitably ambiguous. For example, if the pulse width is l OOn Sec, the distance corresponding to this half width is about 10 m. As a result, in the 3000m optical transmission line,
  • An object of the present invention is to provide a method and an apparatus for isolating a failure which is simple in the equipment, has high reliability, and is suitable for a subscriber optical transmission line.
  • a filter is constantly inserted at the far end (for example, the subscriber ⁇ ) of the optical transmission line under test.
  • This filter separates the light of the wavelength used for signal transmission on the optical transmission line under test from the wavelength for monitoring other than this wavelength, and the light of the wavelength used for signal transmission is guided to the original signal path and monitored.
  • the light of the wave S for use is formed to be reflected on the optical transmission line under test. From the near side (for example, a test center) of the optical transmission line under test,
  • OMPI A characteristic feature is that light of a monitoring wavelength is incident on the test optical transmission line, and the amount of reflected light that returns to the optical transmission line under test is detected.
  • the method of detecting the amount of reflected light is as follows: from the near end of the optical transmission path under test, in addition to the light of the wavelength used for monitoring, the light of the wavelength used for signal transmission is transmitted to the optical transmission path under test, It is preferable to take a method of comparing the amounts of reflected light of the two lights.
  • the light having the wavelength used for monitoring and the light having the wavelength used for signal transmission may be distinguished by being transmitted in time series to the optical transmission line under test.
  • the light of the wavelength used for monitoring and the light of the wavelength used for signal transmission may be simultaneously transmitted to the optical transmission line under test, and a filter may be installed at the near end to distinguish between them.
  • a plurality of far ends with different distances are set in the middle, and a filter is set for each of the plurality of far ends. It is possible to perform regular input and cut.
  • a plurality of different wavelengths of light may be set as the light of the wavelength used for monitoring, and a plurality of far-end filters may be configured to separate the plurality of different wavelengths of light.
  • a second invention is an apparatus using the above method, wherein the far end of the optical transmission line under test is used for monitoring light from a wavelength arriving at the optical transmission line under test and light of a wavelength used for signal transmission.
  • the filter is desirably formed so as to be non-reflective to light having a wavelength for signal transmission.
  • Figure 1 shows the configuration of the conventional system.
  • Fig. 2 shows the configuration of the conventional system.
  • FIG. 3 is an explanatory diagram of measurement data according to a conventional method.
  • Fig. 4 is a block diagram of the conventional system.
  • FIG. 5 is an explanatory diagram of measurement data according to the conventional example.
  • FIG. 6 is a configuration diagram of the system according to the embodiment of the present invention.
  • Fig. 7 is a block diagram of the method of the present invention.
  • FIG. 8 is a block diagram of the method of the present invention.
  • FIG. 9 is a diagram showing a configuration example of a filter and a reflecting mirror.
  • Fig. 10 shows an example of filter characteristics.
  • Fig. 11 is a diagram showing the structure of a filter and a reflector.
  • FIG. 12 is a configuration diagram of a main part of the present embodiment.
  • FIG. 13 is a characteristic diagram of the filter 16.
  • FIG. M is a characteristic diagram of the filter 17.
  • FIG. 15 is a characteristic diagram of the filter 18.
  • Fig. 16 is a characteristic diagram of the filter 19.
  • FIG. 17 is a characteristic diagram of the filter 20.
  • FIG. 18 is a characteristic diagram of the filter 21.
  • Fig. 19 is a key diagram of the main part of the present embodiment.
  • FIG. 20 is a characteristic diagram of the filter 30.
  • FIG. 21 is an explanatory diagram of measurement data according to the embodiment of the present invention.
  • FIG. 22 is a block diagram of the system of the embodiment of the present invention.
  • FIG. 23 is an explanatory diagram of measurement data according to the embodiment of the present invention.
  • FIG. 24 is a characteristic diagram of the filter 31.
  • Fig. 25 is a schematic diagram of the method of the present embodiment.
  • the drawing symbols are: 1 ... optical transmission circuit (for signal transmission), 2 ... optical transmission path under test, 3 ... optical receiving circuit (original signal transmission path), 7 ... optical pulse transmission circuit (for monitoring), 8 ... optical directional coupler, 9 '... optical pulse receiving circuit (for monitoring), 10 ". Filter, 11'" reflector, 12 ... filter.
  • FIG. 6 and 7 are configuration diagrams showing a basic configuration of the system according to the embodiment of the present invention.
  • a filter 10 for separating light having a wavelength for signal transmission and light having a wavelength for monitoring is provided at the far end (subscriber ⁇ ) of the optical transmission line 2.
  • This filter 10 is constantly inserted not only in the monitoring state but also in the normal communication.
  • the filter 10 guides only the separated light of the monitoring wavelength to the reflecting mirror 11, and reflects the light at a high reflectance.
  • the optical signal In normal signal transmission, when an optical signal is transmitted from the optical transmission circuit 1 for signal transmission from the near end (center), the optical signal reaches the filter 10 via the optical transmission line 2.
  • the filter 10 the light having the wavelength for signal transmission is separated and guided to the optical receiving circuit 3, which is the original communication signal path, to be received.
  • Fig. 7 shows the configuration during the fault isolation test.
  • an optical pulse transmission circuit 7 that outputs light of a monitoring wavelength is connected instead of the optical transmission circuit 1 at the near end.
  • the optical pulse transmitted from the optical pulse transmitting / receiving circuit 7 enters the optical transmission path 2 under test via the optical directional coupler 8 and reaches the filter 10 located at a distance.
  • the filter 10 located at a distance.
  • the light of the monitoring wave ⁇ ′ is separated, reflected by the reflecting mirror 1, and again enters the optical transmission path 2 under test.
  • Received by circuit 9. At this time, measuring the time from the reception of the optical pulse of the monitoring wavelength to the reception of the reflected light and the amount of reflection yields the results shown in Fig. 3.
  • the reflectance of the reflecting mirror 11 in the filter 10 is extremely high, for example, is set to be close to 100%, the reflection corresponding to the reflectance close to 100% at the position corresponding to the round trip time of the optical transmission line 2 See the amount.
  • the reflection at the cut surface is Fresnel reflection caused by the difference in the refractive index between glass and air, and the cut surface is flat and the light transmission Even under the best conditions perpendicular to the road's axis of abuse, the reflection is about 4%. Generally, the reflection amount is smaller. Therefore, by measuring the amount of reflection, it is possible to distinguish whether the light transmitted through the filter 10 is reflected by the reflecting mirror 11 or is reflected by a broken surface in the middle.
  • the method of the present invention does not require a control signal line. In addition, there are no local moving parts far away. Therefore, it is possible to perform fault isolation of reliability.
  • FIG. 8 shows the composition of another embodiment of the present invention.
  • a filter 12 for separating and coupling the light of the signal transmission wave and the light of the monitoring wave is provided at the near end of the optical transmission line 2.
  • the optical signal from the optical transmission circuit 1 for signal transmission is coupled to the optical transmission line 2 by the filter 12, enters the optical transmission line 2, and propagates through the optical transmission line 2. This is separated by the filter 10 at the far end and received by the optical receiving circuit 3.
  • light of a monitoring wavelength is output from the optical pulse transmission circuit 7 at the near end, and the transmitted optical pulse is transmitted to the optical transmission line 2 by the filter 12 via the optical directional coupler 8. Combined and incident.
  • the light of this monitoring wavelength propagates through the optical transmission line 2, is selected by the filter 10 at the far end, is reflected by the reflecting mirror 11, and propagates again through the optical transmission line 2 in the opposite direction.
  • This is separated at the near end by a filter 12 as a monitoring wavelength, and received by an optical pulse receiving circuit 9 via an optical directional coupler 8.
  • According to this embodiment, there is an advantage that fault monitoring and isolation can be performed at the same time even at the time of transmitting a symbol.
  • FIG. 9 shows an example of the configuration of the filter 10 and the reflector 11.
  • reference numeral 12 denotes a multilayer interference film filter, which reflects light 13 having a wavelength for signal transmission and transmits light 14 having a wavelength for monitoring.
  • the light 13 of the wavelength for signal transmission is reflected by the multilayer interference film filter 12, and the light 14 of the wavelength for monitoring is transmitted through the multilayer interference film filter 12, reflected by the reflecting mirror 11, and again.
  • the light passes through the multilayer filter 12 and returns to the incident optical path.
  • FIG. 10 shows an example of the characteristics of the multilayer interference film filter 12.
  • the horizontal axis represents the wavelength and the vertical axis represents the reflectance or transmittance of light.
  • the wavelength is selected for monitoring and the wavelength ⁇ 2 is selected for signal transmission.
  • the transmittance of wave 2 for signal transmission is 2 and the reflectivity of wave 2 at reflecting mirror 11 is ⁇ 2
  • the light of wave 2 is a wavelength separation fiber.
  • the ratio R 2 that passes through the filter 12 and is reflected by the reflection ⁇ 11 and returns to the original optical transmission line 2 again is
  • R 2 ⁇ 2 X ⁇ 2 X 2
  • the reflection is prevented by applying a non-reflective coating or the like to further attenuate the light.
  • the rate at which the light of wavelength 2 for signal transmission transmitted through the optical transmission line 2 returns to the optical transmission line 2 is only the amount represented by the above equation ( 2 ).
  • FIG. 11 shows a diffraction grating having a different reflection angle depending on the wavelength.
  • the signal transmission light 13 enters the diffraction grating 15, it is diffracted at an angle ⁇ 1 shown in FIG.
  • the incident light 14 of the wave ⁇ for monitoring the 1M diffraction grating 15 diffracted by another angle 3 2, which is reflected by the reflecting mirror 11, the incident light path is Men'ori by the diffraction grating 15 again Go back.
  • the optical transmitting circuit 1 and the optical receiving circuit 3 are switched in the configuration of FIG. S or FIG. 8, the present investigation can be performed.
  • the direction of the light 13 having the wavelength for signal transmission is reversed. Even at this time, the light 13 for signal transmission does not flow from the wavelength separation filter 12 or the image forming grating toward the optical transmission circuit 1 having the light source.
  • one-way transmission has been taken as an example, but two or more wavelengths used for signal transmission are selected from 0.8 ⁇ m to 1.5 m, and one-way wave multiplex transmission or two-way wave transmission is selected. Apply the present invention to the optical transmission system of multiplex transmission
  • FIG. 12 shows an example in which the present study was performed on an optical transmission system of four-wavelength thorn directional WDM transmission.
  • Select four wavelengths for signal transmission m, 0.89, "m, 1.2 xm, 1.3 m, and select 0.76 / i rn for monitoring wavelengths
  • quartz-based optical fibers are: The optical loss is small at wavelengths from 0.8 m to 1.6 ⁇ m, and large at wavelengths longer and lower than 0.8 m to 1.6 ⁇ m.
  • the signal-to-noise ratio can be improved by narrowing the dying range or performing averaging, so that wavelengths with large optical loss can be used as monitoring wavelengths.
  • 0.81 m, 0.89, "m. 1.2 ⁇ , 1.3 were selected as the wavelengths for signal transmission, and the wavelength 0.76 U m with larger optical loss than these wavelengths was selected for monitoring.
  • reference numeral 16 denotes a dry film filter that reflects wavelengths of 1 m or more and transmits wavelengths of 1 m or less.
  • FIG. 13 shows the characteristics of the interference film filter actually used as the filter 16.
  • Reference numeral 17 denotes an interference film filter that transmits one or more waves and reflects a wave of 1 m or less.
  • FIG. 14 shows the characteristics of the filter 17 actually used.
  • Reference numeral 18 denotes a thin film filter that transmits wavelengths around 1.2 ⁇ m and reflects other wavelengths.
  • the characteristics of the interference film filter actually used as the filter 18 are shown in FIG.
  • Reference numeral 19 denotes a thin film filter that transmits wavelengths near 1.3 m and reflects other wavelengths.
  • FIG. 16 shows the characteristics of the dry film filter actually used as the filter 19.
  • Reference numeral 20 denotes an interference film filter that transmits a wavelength near 0.89 m and reflects other wavelengths.
  • FIG. 17 shows the characteristics of the interference film filter actually used as the filter 20.
  • Reference numeral 21 denotes an interference film filter that transmits wavelengths near 0.81 m and reflects other wavelengths.
  • Fig. 18 shows the characteristics of the dry film filter actually used as the filter 21.
  • Figures 13 to 18 show the characteristics of each membrane.
  • Each filter was composed of a deposited film of titanium oxide silicon oxide.
  • 22 is a signal light having a wavelength of 1.2 ⁇ m
  • 23 is a signal light having a wavelength of 1.3 m
  • 24 is a signal light having a wavelength of 0.89 m
  • 25 is a signal light having a wavelength of 0.81j "m
  • 26 is a signal light having a wavelength of 0.81j" m
  • Monitoring light with a wavelength of 0.76 ⁇ m 27 is a lens for converting light from an optical fiber into parallel light or collecting parallel light into an optical fiber
  • Reference numeral 29 denotes a glass fiber having a refractive index approximating that of FIG.
  • the signal light 22 having a wavelength of 1.2 m passes through the interference filter 18, is reflected by the dredger filter 16, and enters the optical transmission line 2.
  • the signal light 25 having a wavelength of 0.81 m passes through the interference film filter 21 and is reflected by the interference film filters 20 and 17, passes through the interference film filter 16 and enters the optical transmission line 2.
  • the signal light having a wavelength of 1.3 Um transmitted through the optical transmission line 2 is reflected by the thin film filters 16 and 18 and passes through the interference film filter 19 to transmit the signal light.
  • the signal light having a wavelength of 0.89 ⁇ m transmitted through the optical transmission line 2 passes through the interference filter 16, is reflected by the interference filter 17, passes through the interference filter 20, and is transmitted through the interference filter 20.
  • the monitoring light of the wavelength m transmitted through the optical transmission line 2 passes through the interference film filters 16 and is reflected by the interference film filters 17, 20, and 21, respectively. The light is further reflected by the reflecting mirror 11 as the monitoring light 26, and then enters the optical transmission path 2 again via the reverse path.
  • FIG. 19 shows another configuration example in which the present invention is applied to 4-wavelength bidirectional wavelength multiplexing. It is a filter that reflects light with wavelengths of 0.89 ⁇ m and 0.81m and transmits other wavelengths. Other features are the same as the example described in FIG. Fig. 20 shows the characteristics of the filter 30.
  • the signal transmission wavelengths are in, 0.89 / m, 1.2 m,
  • the signal light 22 having a wavelength of 1.2 ⁇ m is transmitted through the dry film filter 18 and
  • the light is reflected by the filter 16 and enters the optical transmission line 2.
  • the signal light 25 having a wavelength of 0.81 passes through the interference film filter 21 and is reflected by the thousand film filters 20 and 30, then passes through the interference film filter 17 and enters the optical transmission line 2. I do.
  • the signal light having a wavelength of 1.3 ⁇ m that has propagated through the optical transmission line 2 is reflected by the interference film filters 16 and 18, passes through the interference film filter 19, and passes through the signal light.
  • the signal light having a wavelength of 0.89 ⁇ m transmitted through the optical transmission line 2 passes through the interference film filter 16, is reflected by the interference film filter 30, and is then reflected by the interference film filter 30.
  • the light passes through 20 and is received as signal light 24.
  • the monitoring light 26 of the wavelength m transmitted through the optical transmission line 2 passes through the interference film filters 16 and 30 and is reflected by the reflecting mirror 11 to reverse the original path. The light travels and enters the optical transmission path 2 again.
  • FIGS. 12 and 19 The configurations shown in FIGS. 12 and 19 described above are merely examples, and combinations of filters, reflectors, etc., and optical path designs can be made in various ways. Similarly, the present invention can be implemented.
  • the amount of reflected light of a monitoring wavelength is compared with the reflected light of light having a wavelength for signal transmission. Its configuration is the same as in FIG.
  • the reflectance from the break point does not depend on the wavelength in principle.
  • the light having the wavelength for monitoring which is separated by the filter 10 in FIG. 8 and reflected by the reflecting mirror 11, is incident on the optical transmission line 2 from the near end and the amount of reflection is measured.
  • Light having a wavelength that does not reach the reflecting mirror 11, for example, light for signal transmission is made to enter the optical transmission path 2 toward the filter 10, and the amount of reflection is measured.
  • Fig. 21 shows the reflectance at this time. In Fig. 21, wave it is for monitoring, wave 2 is
  • the filter 10 or the reflecting mirror 11 transmits the signal for signal transmission. Since there is no reflection for light having the wavelength of, the difference between the reflectances of the two wavelengths becomes even more remarkable, and failure detection of the optical transmission line becomes easy.
  • non-reflective coating is applied to the exit of the light of the signal transmission wavelength of the filter 10 or if the exit is an optical fiber, the non-reflection is applied to the exit end face of the optical fiber. Apply coating or perform processing to make the exit end face oblique to the optical axis.
  • the reflectance at the wavelength for signal transmission was compared with the reflectance at the wavelength for monitoring.
  • the wavelength is not limited to the wavelength for signal transmission, and may be any wavelength as long as the reflectance of the filter 10 and the reflecting mirror 11 is lower than the reflectance of the monitoring wavelength.
  • the reflectance can be obtained by adding the round trip propagation loss (in dB) of the optical transmission line 2 at that wavelength to the amount of reflection (in dBm).
  • the reflected light is measured over time, but the reflected light does not necessarily need to be measured over time, and can be observed by calculating the total amount of reflected light. That is, as described above, when there is no obstacle in the optical transmission line up to a distance, the reflected light returns with a large reflectance from a distance, and when there is an obstacle in the optical transmission line, the reflected light returns with a small reflectance. Therefore, by observing the amount of reflected light, it is possible to identify the presence or absence of an obstacle.
  • this configuration does not require pulse generation and pulse measurement at the near-end device S, the configuration has the advantage of being simple, but when it is determined that a fault has occurred, the approximate configuration up to the fault point is determined. Measuring distance The disadvantage that cannot be avoided is inevitable.
  • wavelengths for monitoring are transmitted through at least the filter 10 and reflected by the reflector ⁇ ⁇ ⁇ and light of wavelength ⁇ ⁇ ⁇ 2 used for signal transmission are transmitted. ⁇ ⁇ ⁇ ⁇ .
  • a filter 31 for reflecting the light is provided, and the wave is formed by the method described above. , Wavelength 1, and Wavelength 2 are calculated. The results at this time are shown in FIG. That is, if the optical transmission line 2 is normal, the wavelength shifts at a point in time corresponding to the position where the filter 31 is provided.
  • the reflectance at wavelength 1 is large, and the reflectance at wavelength 2 is low. If the optical transmission path between the optical pulse transmission circuit 7 and the filter 31 is broken, reflections with almost the same reflectance at wavelengths 0, ⁇ 1, and ⁇ 2 are observed at the time corresponding to the break point. You. On the other hand, if a break occurs in the optical transmission line between the filter 31 and the filter 10, a reflection having a large reflectance at the wavelength ⁇ 0 is observed at a point in time corresponding to the position of the filter 31. There is no reflection in the wave. But filter 31 and filter
  • waves ⁇ i and ⁇ 2 show reflections of similar reflectivity. By doing so, it is possible to finely separate the obstacle zones.
  • many optical transmission lines
  • FIG. 24 shows an example of the characteristics of the interference film filter used for the filter 31.
  • Figure 24 shows the wave.
  • m is selected.
  • FIG. 25 is a diagram showing the configuration of still another embodiment of the present invention.
  • a filter 10 having a characteristic of transmitting a transmission wavelength and reflecting a monitoring wavelength is used as the filter 10, and has a structure in which the monitoring wavelength is directly reflected from the filter. is there. That is, the filter 10 is connected to the optical fiber under test.
  • an optical pulse transmitting circuit 7, an optical directional coupler 8, and an optical pulse receiving circuit 9 for monitoring are connected to the near end as shown in FIG.
  • the light of the monitoring wavelength which is the output light of the optical pulse transmission circuit 7
  • the reflected light is transmitted through the optical fiber under measurement 2 in the reverse direction, separated by the optical directional coupler 8, and received and detected by the monitoring optical pulse receiving circuit 9.
  • the reflected light is reflected by the filter 10
  • the light quantity is large, and if the reflected light is reflected by an obstacle in the middle of the measured light fiber 2, the light quantity is small. The presence or absence of a failure in the measured optical fiber 2 can be clearly identified.
  • a filter 10 As a filter 10, a filter having a characteristic of transmitting a wavelength for a transmission signal and reflecting a wavelength for monitoring is used. The signal and the monitoring optical signal can be transmitted simultaneously.
  • the configuration is such that the filter 10 at the far distance is directly reflected at the wavelength for monitoring, there is a disadvantage that the reflectivity of the filter 10 cannot necessarily be increased to nearly 100%. There is an advantage that the device can be simplified.
  • the present invention it is possible to clearly determine whether there is a failure in a transmission line or a device in accordance with the amount of reflected light. If an optical pulse is used for the test, the location of the fault can also be located based on the propagation time. In the device of the present investigation, it is not necessary to perform an operation at the far end during the test, and the isolation test can be executed by a near operation. In addition, there is no need to provide a mechanical movable part at the far end, and the device is simple and highly reliable. [Industrial applicability]
  • the present invention can be applied to an optical transmission line without distinction between an analog transmission line and a digital transmission line.
  • the method and apparatus of the present invention when used as a method and apparatus for testing the separation of a subscriber transmission line using an optical fiber, do not require any operation at the far end, that is, the subscriber end, and provide a subscriber.
  • Many subscriber systems in the public telecommunications network are able to clearly identify whether the equipment at the end or the optical transmission path is faulty from the near end, that is, the station or center. It is likely to be used very widely in the near future, when it is planned to be formed on optical transmission lines using fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

明 細 害 光伝送路の障害位置切り分け方法および装置
〔技術分野〕
本発明は、 光ファイバ通信に用いられる光伝送路の障害位置切り
分けを精度よ く行う方法および装置に関するものである。 特に、 加
入者系の光伝送路の障害位置をセ ンタ倒 (局側) から試験して切り
分ける方法として適する障害位置切り分け方法および装置に関する
ものである。
〔背景説明〕
公衆電気通信網は加入者伝送系、 交換機、 中継伝送系などから成
り、 運用中に障害が発生した場合には、 障害箇所を速やかに標定す
るため、 障害位置切り分けを行わなければならない。 障害が加入者
伝送系にあることがわかったときには、 センタ側からその障害が線
路にあるのか、 加入者の装置にあるのかを折返し試験によって切り
分ける.ことになる。 加入者線が金属の平衡 2線伝送の場合には、 2
線の直流抵抗測定によって線路が正常か否かを判断することができ
た。
加入者系伝送路に光ファィバが適用されると障害位置が光伝送路
であるか、 加入者装置であるかを切り分けるために、 それぞれの折
返し試験を行う必要がある。 これは.セ ンタから試験を行う場合には
遠端折返し操作になる。 一方半導体レーザを使用する伝送方式では、 その動作性能を維持するために光伝送路等から装置への反射を極力
減らすことが必要であって、 障害位置検索のための反射光および伝
送信号用の光が定常的に半導体レーザに反射することは好ましいこ
とではな 、。
従来の遠端折返し操作として、 障害切り分けを行う ときだけ被試
-BU ETS
O PI 験光伝送路の遠嬙に全反射が起こるように、 被試験伝送路の近端か ら電気信号で遠嬙にある反射率の高い鏡を移動させ、 上記被試験光 伝送路の近端から送出した光をこれに反射させ、 その反射光を検知 する方法が考えられていた。 第 1図および第 2図にその一例を示 す。 第 1図は、 通常時に光通信を行っている状態を示し、 1 は光送 信回路、 2 ば光伝送路、 3 は光受信回路、 4は制御信号送信回路、 5は制御信号受信回路、 6 ば制御信号受信回路 5 によつて制御され る反射鏡である。 通常時は、 光送信回路 1から光伝送路 2を介して 光受信回路 3—へ光信号を伝送する。
第 2図は、 反射率と反射点までの距離を求める方法による障害切 り分け試験伏態に設定したときを示す。 7は光パルス送信回路、 8 は光方向性結合器、 9 は光パルス受信回路である。 障害切り分け試 験時は、 送信側にある制御信号送信回路 4より折り返し指令を出し、 制御信号受信回路 5 でこれを受信し、 反射鏡 6を光伝送路 2に接続 するとともに、 光送信回路 1 に代えて、 光バルス送信回路 7、 光方 向性結合器 8および光パルス受信回路 9を光伝送路 2 に接続する。 光バルス送信回路 7からの光パルスは、 光方向性結合器 8を介して 光伝送路 2 に入射する。 入射された光パルスは光伝送路 2を伝搬し、 受信側にある反射鏡 6で反射され、 再び光伝送路 2を伝 ¾し、 光方 向性結合器 8を介して、 光パルス受 ί言回路 9で受信される。 このと き、 光パルスを送信してから、 その光パルスが反射鏡 6で反射され 光パルス受信回路 9 に受 ί言されるまでの時間と、 その反射光の反射 率を測定すると第 3図に示す結果が得られる。 すなわち、 光伝送路 2 の往復時間に相当する位置で、 100 %の反射率に近い反射光が観 測される。
—方、 光伝送路 2が途中で切断されると、 その切断点で反射が生 じるが、 その切断面での反射ばガラスと空気の屈折率差によって生 じるフ レネル反射であるから、 切靳面が平らでかつ光伝送路の伝锻 軸に直角になる最良の条件になったとしても、 その反射率は約 4 % であり、 一般の破断障害では反射率は必ずそれ以下となる。 従って、 反射量を測定すれば反射鏡 6 による反射が伝送路途中の破断面での 反射であるか否かを区別することができ、 これが反射鏡 6による反 射であれば、 光伝送路 2 は正常であることが分る。
しかし、 この方法では、 被試験光伝送路の遠.端で反射镜を挿朕す る操作が必要である。 これを遠隔操作にするには、 反射鏡を制御す る制御信号線が必要である。 また遠端に機械的な可動部分を設ける ことになるために、 装置の信頼性が悪く なる欠点が—あった。
さらに、 従来知られている他の方法として、 後方散乱光を利用す る障害探索法がある。 この測定系の一例を第 4図に示す。 第 4図に おいて 7 は高出力の光パルスを出力する光パルス送信回路、 8 は光 方向性結合器、 9 は高感度の光パルス受信回路である。 光パルス送 信回路 7から光方向性結合器 8を介して高出力光パルスを送出する と、 光ファイバ内で一様にレイ リ ー散乱が発生する。 このレイ リー 散乱光のうち、 送信側に戻るものを後方散乱光と呼び、 この後方散 乱光は逆方向に光伝送路 2を通り、 光方向性結合器 8を介して光バ ルス受信回路 9で受信される。 このとき、 光バルスを送信してから 後方散乱光を受信するまでの時間と受信された後方散乱光の光量を 測定すると、 第 5図に示すような測定結果が得られる。 第 5図では、 A点より遠方からは後方散 ¾光が到来しないことを示し、 A点まで は光ファイバが正常であることが分る。 ここで、 A点までの距離を 求めるために、 往復時間を光ファイバ中の光の速度から求めること ができるが、 光ファイバ中での光の速度 Vは、
C
V (1) ただし、 C : 真空中での光の速度
s : 光ファ イバの群屈折率
"WIPO となり、 ここで、 定数 Cは十分精密な値が測定されているが、 定数 e については、 個々の光ファィバによつて異なるものでこの測定を それぞれ精密に行う ことは難しい。 一例として、 その測定精度はた かだか 0. 1 %程度である。 言いかえれば、 A点までの往復時間から 距離を求めるとき上記精度を 2倍して、 約 0 . 2 %の誤差が出る。 さ らに、 後方散乱光を測定するための光パルスの半値幅に相当する時 間だけは、 必然的にあいまいさを持っている。 例えば、 l OOn Sec の バルス幅であれば、 この半値幅に相当する距離は約 10 mとなる。 そ の結果 3000mの光伝送路では、 生じる誤差が
3000 X 0 . 002 + 10 = 16 m
となり、 A点までの標定は 16 mの不確定さが出ることになる。 これ は、 後方散乱光測定を利用する限り本質的に癸生するものである。
従って第 4図において、 光受 ί言回路 3の接続されている嬙面から 数 m手前、 例えば宅内配線で破断が生じていても、 その铵断を本来 の光伝送路終端部と区別して測定することができず、 光伝送路が正 常吠慈であるか否かをを確実に判断できない。 従って後方散乱光に よる障害切り分け法は実用上は不完全なものになる。
本癸明は、 これらの欠点を改良するもので、 識別能力の髙ぃ障害 切り分け方法および装置を提供することを目的とする。 本発明は装 置が簡単であり、 信頼性が高く、 加入者系光伝送路に適する障害切 り分け方法および装置を提供することを目的とする。
- 〔究明の開示〕
本発明では、 被試験光伝送路の遠端 (例えば加入者嬙) にフ ィル タを定常的に挿入しておく。 このフィルタで被試験光伝送路の信号 伝送に用いる波長の光と、 この波县以外の監視用の波長の光を分離 し、 信号伝送に用いる波县の光は本来の信号通路に導き、 監視用の 波 Sの光はこの被試験光伝送路に反射させるように搆成する。 被試 験光伝送路の近嬙 (例えば試験センタ) からは遠 ϋに向けてこの被
OMPI 試験光伝送路に監視用の波長の光を入射させ、 その光がこの被試験 光伝送路に戻ってく る反射光の光量を検出するこ とを特徴とする。
この反射光の光量を検出するには、 各反射光の総和を求める方法 と、 時間軸上で反射光を測定する方法とがある。 時間軸上で反射光 を測定すると、 反射点までの距離の概算.を求めることができる。
反射光の光量を検出する方法には、 被試験光伝送路の近端から、 監 視に用いる波長の光の他に信号伝送に用いる波县の光を被試験光伝 送路に送信し、 その二つの光の反射光の光量を比較する方法をとる とよい。 このときには、 監視に用いる波長の光および信号伝送に用 いる波县の光を時系列的に被試験光伝送路に送信することにより区 別してもよい。 あるいは、 監視に用いる波長の光および信号伝送に 用いる波長の光を同時に被試験光伝送路に送信し、 近端にフ ィ ルタ を設置してこれにより区別してもよい。
1本の被試験光伝送路上の終端のみに切り分けのための遠端を設 けるのではなく、 その途中に、 距離の異なる複数の遠端を設定し、 その複数の遠端のそれぞれにフィルタを定常的に揷入して切り分け を行う ことができる。 このとき、 監視に用いる波長の光として複数 の異なる波長の光を設定し、 複数の遠端のフィルタがそれぞれこの 複数の異なる波長の光を分離するように構成することができる。
第二の発明は、 上記方法を用いた装置であって、 被試験光伝送路 の遠端には、 この被試験光伝送路に到来する光から信号'伝送に用い る波長の光と監視に用いる波長の光とを分離するフ イルクと、
このフィルタにより分離された信号伝送に用いる波長の光を本来 の光信号通路に導く手段と、
上記フィルタにより分離された監視に用いる波長の光を高い反射 率で反射させて上記被試験光伝送路に逆に伝送させる手段と
が上記被試験光伝送路に定常的に挿入され、
上記被試験光伝送路の近端には、
OMPI
v'-I?o 上記監視に用いる波县の光をその被試験光伝送路に送信する手段 と、
この被試験光伝送路に反射光として戻る上記監視に用いる波县の 光の光量を検出する手段と
を備えたことを特徴とする。
上記フィルタは信号伝送用の波县の光に対して無反射であるよう に搆成することが望ましい。
〔図面の簡単な説明〕
m 1図は従来例方式の構成図。
第 2図ば従来例方式の構成図。
第 3図は従来例方式による測定データの説明図。
第 4図は従来例方式の構成図。
第 5図ば従来例方式による測定データの説明図。
第 6図ば本発明実施例方式の構成図。
第 7図は本癸明実施例方式の構成図。
第 8図は本癸明実施例方式の構成図。
第 9図はフ ィ ルタおよび反射鏡の構成例を示す図。
第 10図はフ ィルタの特性例を示す図。
第 11図はフ ィ ルタおよび反射鏡の搆成钶を示す図。
第 12図は本癸明実施例遠嬙要部構成図。
第 13図はフ ィ ルタ 16の特性図。
第 M図ばフ ィ ルタ 17の特性図。
第 15図はフィルタ 18の特性図。
第 16図はフィ ルタ 19の特性図。
第 17図はフ ィ ルタ 20の特性図。
第 18図はフィルタ 21の特性図。
第 19図は本癸明実施例遠嫱要部搆成図。
第 20図はフ ィ ルタ 30の特性図。 第 21図は本発明実施例方式による測定データの説明図。
第 22図は本発明実施例方式の構成図。
第 23図は本発明実施例方式による測定データの説明図。
第 24図はフ ィ ルタ 31の特性図。
第 25図は本究明実施例方式の搆成図。
図面符号は : 1 …光送信回路 (信号伝送用) 、 2…被試験光伝送 路、 3 ···光受信回路 (本来の信号伝送通路) 、 7…光パルス送信回 路 (監視用) 、 8 …光方向性結合器、 9 '··光パルス受信回路 (監視 用) 、 10 ".フ ィ ルタ、 11 '"反射鏡、 12…フ ィ ルタである。
〔発明を実施するための最良の形慈〕
第 6図および第 7図は、 本発明実施例方式の基本的構成を示す構 成図である。 第 6図において光伝送路 2の遠端 (加入者嬙) に、 信 号伝送用の波長の光と監視用の波長の光とを分離するフ ィ ルタ 10を 設ける。 このフ ィ ルタ 10ば監視伏態のときに限らず、 通常の通信時 にも定常的に挿入しておく 。 このフィルタ 10では分離された監視用 の波县の光についてのみ反射鏡 11に導き、 高い反射率で反射させる。 通常の信号伝送時は、 近端 (セ ンタ) から信号伝送用の光送信回 路 1から光信号を送信すると、 光信号は光伝送路 2を介してフ ィ ル タ 10に達する。 このフ ィ ルタ 10では、 信号伝送用の波長の光は分離 され、 本来の通信信号の通路である光受信回路 3に導かれて受信さ れる。
第 7図は障害切り分け試験時の構成を示す。 障害切り分け試験時 には、 近端では光送信回路 1 に代えて、 監視用の波長の光を出力す る光パルス送信回路 7を接続する。 この光パルス送 ί言回路 7から送 信される光パルスは、 光方向性結合器 8を介して被試験光伝送路 2 に入射し、 遠嬙にあるフィルタ 10に達する。 このフィルタ 10では、 監視用の波县'の光は分離され、 反射鏡 1】で反射して再び被試験光伝 送路 2に入射した後に、 光方向性結合器 8を介して、 光バルス 回路 9で受信される。 このとき、 監視用の波長の光パルスを受信 してから、 その反射光を受信するまでの時間と反射量を測定すると、 第 3図に示すような結果が得られる。 ここで、 フ ィルタ 10における 反射鏡 11の反射率をきわめて高く、 例えば 100 %近く に設定してお く と、 光伝送路 2 の往復時間に当たる位置で、 100 %近くの反射率 に相当する反射量が見られる。 一方、 光伝送路 2が途中で切断さ れている場合を考えると、 切断面での反射はガラスと空気の屈折率 差によって生じるフ レネル反射であり、 切断面が平らで、 かつ光伝 送路の伝毀軸に直角である最良の条件にあつても、 その反射量は約 4 %である。 一般にはその反射量ばさらに小さい。 従って、 反射量 を測定すれば、 フィルタ 10を透過した光の反射鏡 11による反射であ るか、 途中の破断面による反射であるかを区別することができる。
これが反射鏡 11による反射であれば、 この遠端までの光伝送路 2が 正常であることが分る。 破断面による反射であれば、 光の伝毀時間 から破断面までのおおよその距離を標定することができる。
このようにすれば、 加入者宅内の障害切り分けに優れた効果があ る。 すなわち、 加入者宅內の配線伝送線路で障害が癸生した場合を 考えると、 従来のフィルタおよび反射鏡を用いない方法でば、 障害 点から反射する光が、 障害点からのちのであるか伝送路の終端から のものであるかは、 距離により識別するほかはなかった。 しかし、 前述のように距離の識別精度は十数 πι以下を区別することは不可能 であるので、 障害点からの反射であるか伝.送路の終嬙からの反射で あるかを区別することはできなかった。 本癸明の方法では、 終端に は反射量の大きい鏡を設置するので、 終端からの反射は先量が大き く、 伝送路の障害と明確に区別することができることになる。
本発明の方法では制御信号線が不要である。 また遠^に鼷域的な 可動部がない。 従って信頼性の髙ぃ障害切り分けが可能となる。
第 8図は本癸明の別の実施例方式の攆成図を示す。 第 8図の搆成
_OMPI では、 光伝送路 2の近端にも信号伝送用の波县の光と監視用の波县 の光を分離結合するフ ィ ルタ 12を設ける。 信号伝送用の光送 ί言回路 1からの光信号は、 フ ィ ルタ 12によって光伝送路 2に結合されて入 射し、 光伝送路 2を伝搬する。 これは、 遠端のフ ィ ルタ 10によって 分離されて光受信回路 3で受信される。 一方、 近端の光パルス送信 回路 7からは監視用の波長の光を出力し、 送信された光バルスは光 方向性結合器 8を介してフ ィ ルタ 12によ って光伝送路 2 に結合され 入射する。 この監視用の波長の光は光伝送路 2を伝搬し、 遠端では フ ィ ルタ 10により選別され、 反射鏡 11で反射され、 再び光伝送路 2 を逆方向に伝搬する。 これは近端でフ ィ ルタ 12により監視用の波長 として分離され、 光方向性結合器 8を介して光パルス受信回路 9で 受信される。 この実施例^:よれば、 ί言号伝送時でも同時に障害監視 および切り分けを行う ことができるなどの利点がある。
フ ィ ルタ 10および反射镜 11の構成の一例を第 9図に示す。 第 9図 において、 12は多層干渉膜フ ィ ルタで、 信号伝送用の波長の光 13は 反射し、 監視用の波長の光 14は透過させる。 信号伝送用の波县の光 13は、 多層干渉膜フ ィ ルタ 12で反射され、 監視用の波長の光 14は多 層干渉膜フ ィ ルタ 12を透過し、 反射鏡 11で反射され、 再び多層干^ 膜フ ィ ルタ 12を透過して、 入射した光路へ戻って行く 。
多層干渉膜フ ィ ルタ 12の特性例を第 10図に示す。 第 10図において、 横軸は波县、 縦軸は光の反射率あるいは透過率を表わす。 第 9図に より説明した動作を行うために、 波長 を監視用の波長に、 波長 λ 2 を信号伝送用に選択する。 こ こで第 10図において、 信号伝送用 の波县 2 の透過率を 2 、 反射鏡 11における波县 ί 2 の反射率を Τ 2 とすると、 この波县ス 2 の光が、 波長分離フ ィ ルタ 12を通過し て反射镜 11で反射され、 再び元の光伝送路 2に戻る割合 R 2 は、
R 2 = β 2 X Τ 2 X 2
= μ 2 2 X Γ 2 (2) と表わされる。 すなわち、 透過率/ ί 2 を小さ く しておけば、 戻る光 の割合 R 2 は 2 の 2乗で表わされるため、 反射率 r 2 が 1であつ ても、 波县ス 2 の光が光伝送路 2に戻る割合 R 2 は非常に小さ く な る。 さらに、 反射鏡 11を波長選択性の反射とし、 監視用の波長 ^ に対する反射率 を大き く信号伝送用の波县ス 2 に対する反射率 r 2 を小さ くすれば、 監視用の波县ス 1 の光が光伝送路に戻る割合 R 1 を小さ く することなく、 波县 2 の光が伝送路に戻る割合 R 2 は一層小さ く なる。
この結果、 第 9図において、 信号伝送用の波县 2 の光 13が波長 フィルタ 12で反射された後に、 さらにこれを減衰させるために、 無 反射コ一トを施すなどして反射しないようにしておけば、 光伝送路 2を伝敏して来た信号伝送用の波長 2 の光が、 光伝送路 2に戻る 割合は上記 (2)式で表わされる量だけとなる。
フィルタ 10および反射鏡 11の他の構成例を第 11図に示す。 第 11図 で、 15ば波县によって異なる反射角を有する回折格子である。 信号 伝送用の波县の光 13が回折格子 15に入射すると、 第 11図に示す角度 θ 1 で回折される。 一方、 監視用の波县の光 14が 1M折格子 15に入射 すると、 別の角度 3 2 で回折され、 これは反射鏡 11で反射されて、 再び回折格子 15で面折されて入射光路へ戻って行く 。
第 S図あるいは第 8図の構成で、 光送信回路 1 と光受信回路 3が 入れ替わっても、 本究明を実施することができる。 このとき、 第 9 図および第 11図のフィルタの構成では、 信号伝送用の波長の光 13の 方向が逆になる。 このときでも、 波長分離フィルタ 12あるいは画折 格子 から、 光源のある光送信回路 1 の方向に信号伝送用の光 13が 苠ることはない。
これまで、 片方向伝送を例に挙げたが、 信号伝送に用いる波長を 0. 8 μ m 〜1 . 5 m の中から 2以上選び、 片方向波县多重伝送ある いは、 双方向波县多重伝送の光伝送方式にも本発明を適用すること
O FI ができる。
第 12図は、 4波長茨方向波長多重伝送の光伝送方式に本究明を実 施した例である。 信号伝送用の波長には、 m 、 0.89," m 、 1.2 x m 、 1.3 m の 4種類を選び、 監視用の波長には 0.76/i rn を選ぶ 現在、 容易に入手できる石英系の光フアイバは 0.8 m から 1.6 μ m の波長で光損失が小さ く 、 それ以上およびそれ以下の波長では 光損失が大き く なる。 従って、 信号伝送用の波县として、 0.8 〜 1.
6 m を選択する。 一方監視試験では、 蒂域を狭く したりあるいは 平均化処理を施すなどによつて信号対雑音比を改善でき ので、 監 視用の波長としては、 光損失が大きい波長でも十分使用できる。 こ こでは、 信号伝送用の波县として、 0.81 m 、 0.89," m . 1.2 μ , 1.3 を選んだので、 これらの波長より光損失の大きい波县 0.76 U m を監視用に選択した。
第 12図において、 16は干^膜フィルタで、 1 m 以上の波長を反 射し、 1 m 以下の波長を透過する。 このフィルタ 16として実際に 用いた干渉膜フィルタの特性を第 13図に示す。 17は干渉膜フィルタ で、 1 以上の波县を透過し、 1 m 以下の波县を反射させる。
フ ィ ルタ 17として実際に用いたものの特性を第 14図に示す。 18は 1.2 μ m 近傍の波長を透過し、 それ以外の波县は反射する干涉膜フ ィ ル タである。 フ ィ ルタ 18として実際に用いた干渉膜フ ィ ルタの特性を 第 図に示す。 19は 1.3 m 近傍の波長を透過させ、 それ以外の波 長は反射する干 膜フィルタである。 フィルタ 19として実際に用い た干涉膜フィルタの特性を第 16図に示す。 20は 0.89 m 近傍の波县 を透過させ、 それ以外の波長は反射する干渉膜フィルタである。 フ ィ ルタ 20として実際用いた干渉膜フ ィ ルタ の特性を第 17図に示す。
21は 0.81 m 近傍の波長を透過させ、 それ以外の波長は反射する干 渉膜フ ィ ルタである。 フ ィ ルタ 21として実際に用いた干 膜フ ィ ル タの特性を第 18図に示す。 第 13図〜第 18図に特性を示す各干^膜フ
Ο ΡΙ ィ ルタは、 いずれも酸化チタ ンニ酸化硅素の蒸着膜で構成した。
第 12図に戻って、 22は波县 1.2 β m の信号光、 23は波县 1.3 m の信号光、 24は波長 0.89 m の信号光、 25は波長 0.81j" m の信号光、 26は波長 0.76^ m の監視用の光である。 27は光フアイバからの光を 平行光にしたり、 平行光を光ファイバに収光するためのレンズ、 28 および 28' は光フアイバゃレンズの屈折率に近似する屈折率を有す るガラスブロ ック、 29はレ ンズ 27に光を入出力する光ファィバであ る。
第 12図で波县 1.2 m の信号光 22は、 干渉膜フ ィ ル夕 18を透過し、 干浚膜フ ィ ルタ 16で反射され、 光伝送路 2に入射する。 波長 0.81 m の信号光 25は干渉膜フ ィ ルタ 21を透過し、 干渉膜フ ィ ルタ 20、 17で 反射した後に、 干渉膜フィ ルタ 16を透過して光伝送路 2に入射する。
—方、 光伝送路 2を伝锻して来た波長 1.3 U m の信号光は、 干^ 膜フ ィ ルタ 16、 18で反射され、 干渉膜フ ィ ルタ 19を透過して信号光
23として受信される。 さらに、 光伝送路 2 を伝锻して来た波長 0.89 μ m の信号光は、 干渉膜フィルタ 16を透過し、 干渉膜フィルタ 17で 反射した後に、 干渉膜フィ ルタ 20を透過して信号光 24として受信さ れる。 また、 光伝送路 2を伝毀して来た波县 m の監視用の光 は、 干渉膜フ ィ ルタ 16を透過し、 干渉膜フ ィ ルタ 17、 20、 21でそれ ぞれ反射し、 監視用の光 26としてさらに反射鏡 11で反射して、 その 逆の径路を経て再び光伝送路 2に入射する。
第 19図に、 4波县双方向波長多重に本発明を実施した他の構成例 を示す。 30ば 0.89^ m と 0.81 m の波县の光を反射し、 それ以外の 波县の光を透過する干湊膜フィルタである。 その他の搆成は第 12図 で説明した例と同様である。 フ ィ ルタ 30の特性を第 20図に示す。 こ の例は、 信号伝送用の波县には、 in 、 0.89/ m 、 1.2 m 、
1.3 μ m を選び、 監視用の波長に 0.76^ m を選んだものである。
波县 1.2 μ m の信号光 22は、 干 膜フ ィ ルタ 18を透過し、 干湊膜
Ο ΡΙ _ 、 WIPO フ ィルタ 16で反射され、 光伝送路 2 に入射する。 波長 0 . 81 の信 号光 25は干渉膜フ ィ ルタ 2 1を透過し、 千^膜フ ィ ルタ 20、 30で反射 した後に、 干渉膜フィルタ 1 7を透過して光伝送路 2 に入射する。
一方、 光伝送路 2を伝搬して来た波县 1 . 3 μ m の信号光は、 干渉 膜フィルタ 1 6、 1 8で反射され、 干渉膜フ ィルタ 1 9を透過して信号光
23として受信される。 さらに、 光伝送路 2を伝 して来た波县 0 . 89 μ m の信号光ば、 干渉膜フ ィ ルタ 1 6を透過し、 干渉膜フ ィ ルタ 30で 反射した後に、 干渉膜フィ ルタ 20を透過して信号光 24として受信さ れる。 また光伝送路 2を伝餵して来た波長 m の監視用の光 26 は、 干渉膜フ ィルタ 1 6、 30を透過し、 反射鏡 1 1で反射して、 元の経 路を逆に伝わって再び光伝送路 2に入射する。
なお、 ここで説明した第 12図および第 19図の構成はあく までも一 例であり、 フ ィルタ、 反射鏡等の組合わせ、 光路の設計はこのほか にさまざまに行う ことができ、 これらにより同様に本発明を実施す ることができる。
次に、 監視用の波县の反射光の光量を信号伝送用の波長の光の反 射光と比較する実施例について説明する。 その構成は第 8図と同様 である。 光伝送路が破断した場合に、 破断点からの反射率は原則と して波長に依存しない。 そこで、 第 8図のフ ィ ルタ 10で分離され、 反射鏡 11で反射する監視用の波長の光を近端から光伝送路 2に入射 し、 反射量を測定した後に、 フ ィルタ 10により、 反射鏡 11に達しな い波長の光、 例えば、 信号伝送用の光をフ ィルタ 10に向かって光伝 送路 2に入射させてその反射量を測定する。 次に、 両波長での反射 量からそれぞれの反射率を求めると、 反射鏡 11で反射する監視用の 波長では反射率が高く、 信号伝送用の疲長では反射率が低く なれば、 その状態では反射鏡 Πによる反射が観測されたものとして、 光伝送 路 2.はこの遠端までは正常であると判断できる。 このときの反射率 を第 21図に示す。 第 21図において、 波县 i t は監視用、 波县 2
O PI 信号伝送用である。 一方、 両波县での反射率が同程度であれば、 こ れば破断点からの反射であり、 光伝送路 2に破断があると判断でき る。
ここで、 第 8図の構成で信号伝送に用いる波县の光に対して、 無 反射になるような処理をフィルタ 10または反射鏡 11に施せば、 フィ ルタ 10または反射鏡 11では信号伝送用の波長の光に対して無反射と なるため、 両波县の反射率の差が一層顕著となり、 光伝送路の障害 検知が容易になる。 これは例えば、 フ ィルタ 10の ί言号伝送用の波县 の光の出射口に無反射コ一ティ ングを施すとか、 出射口が光ファ ィ バであれば、 光フアイバ出射端面に無反射コ一ティ ングを施すか、 出射端面を光軸に斜めになる処理を施す。 このようにすることによ り信号伝送用の波長に对してはほとんど無反射にすることができる < ここでは、 信号伝送用の波長での反射率を監視用の波長の反射率 と比較したが、 信号伝送用の波县に限らずフィルタ 10および反射鏡 11の反射率が監視用の波县の反射率より低く なる波長であれば、 ど の波县でもよい。
なお、 反射率の求め方は、 反射量 (dBm 表示) にその波县での光 伝送路 2 の往復伝搬損失 (dB表示) を加算すればよい。
上記各例は、 いずれも反射光を時間轴上で測定するものであるが, 反射光は必ずしも時間輸上で測定する必要はなく、 反射光の総量を 求めることにより観測することができる。 すなわち、 上述のように 光伝送路に遠嬙までの障害がない場合には、 遠嬙から大きい反射率 で反射光が戻り、 光伝送路に障害があれば小さい反射率で反射光が 戻る。 したがって、 この反射光の光量を観測すれば、 障害の有無を 識別することができる。
この構成は、 近端の装 Sでばパルス発生およびパルス測定を必要 としないので、 その構成が簡単である利点があるが、 障害があると 判定されたときに、 その障害点までのおおよその距離を測定するこ とができない欠点は免れられない。
次に、 複数の遠嬙を設ける場合の実施例を説明する。 第 22図にお いて、 。 、 は監視用の波長、 λ 2 は信号伝送用の波县である。 光伝送路の途中に、 少なく とも前記フ ィ ルタ 10を透過して反射鏡 Π により反射する波長ス 1 の光および信号伝送に用いる波县 2 の光 は透過させ、 これらの波县以外の一部の波县 。 の光を反射するよ うなフ ィ ルタ 31を設け、 前述した方法で、 波县 。 、 波县 1 、 波 長ス 2 での反射率を求める。 このときの結果を第 23図に示す。 すな わち、 光伝送路 2が正常であると、 フ ィ ルタ 31を設けた位置に相当 する時間の点で波長ス。 の反射率が大き く、 フ ィ ルタ 10の位置に相 当する時間の点では、 波長ス 1 の反射率が大き く、 波長 2 では反 射率が低い。 光パルス送信回路 7 とフィルタ 31の間の光伝送路で破 断すれば、 破断点に相当する時間の点において、 波長 0 、 ^ 1 、 λ 2 でそれぞれの反射率のほとんど等しい反射が観測される。 一方、 フ ィ ルタ 31 とフ ィ ルタ 10の間の光伝送路で破断すれば、 フ ィ ルタ 31 の位置に相当する時間の点では波長 λ 0 で反射率の大きい反射が観 測され、 他の波县では反射がない。 しかし、 フィルタ 31とフィルタ
10の間の破断点の位置に相当する時間では、 波县 i と波县 2 で 同程度の反射率の反射が観測される。 このよ う にすれば、 障害区 間の切り分けを細かくすることができる。 さらに、 多く の光伝送路
2を細分化するフ ィ ルタを光伝送路 2に設置すれば、 切り分けの細 分化が可能になる。 こ こで、 フ ィ ルタ 31に使用する干渉膜フ ィ ルタ の特性例を第 24図に示す。 第 24図は、 波县 。 に m を選んだ 例である。
第 25図は本究明のさらに別の実施例装置構成図である。 この例は、 フ ィ ルタ 10として伝送 ί言号用の波長を透過し監視用の波長を反射す る特性のものを用いて、 監視用の波長をフィルタから直接反射させ る構造とするものである。 すなわち、 フィルタ 10を被測定光フア イ
_ ΟΜΡΙ バ 2の遠端に定常的に挿入しておき、 通常の通信状態では信号光は フィルタ 10を透過して、 本来の信号伝送通路である光受信回路 3に 導かれる。 監視を行うときには、 第 25図に示すように近端に監視用 の光パルス送信回路 7、 光方向性結合器 8および光パルス受信回路 9を接続する。 このときは、 光バルス送信回路 7 の出力光である監 視用の波县の光を被測定光フアイバ 2の中に図の左から右へ伝送さ せ、 これをフィルタ 10で直接反射させて、 その反射光を被測定光フ アイバ 2の中を逆方向に伝送させ、 これを光方向性結合器 8で分離 して、 監視用の光パルス受信回路 9 で受信検出する。 この反射光が フィルタ 10で反射したものであればその光量が大き く、 被測定光フ アイバ 2の途中の障害により反射したものであればその光量が小さ いので、 前述の実施例と同様に、 被測定光ファイバ 2の障害の有無 'を明瞭に識別することができる。
フィルタ 10として伝送信号用の波長を透過し監視用の波長を反射 する特性のものを用いて、 その近嬙の搆成を第 8図で示した 施例 と同様に、 通 ί言用の光信号と監視用の光信号とを同時に伝送させる ように構成するこ ともできる。
このように遠嬙のフィルタ 10を監視用の波長についてば直接反射 させる構成にすれば、 フィルタ 10の反射率を必ずしも 100%近く ま で髙くすることができない不利な点があるが、 遠端の装置を簡単に できる利点がある。
上説明したように、 本発明によれば、 伝送路に障害があるか 装置に障害があるかを、 反射光の光量により明確に切り分けること ができる。 試験に光パルスを用いれば、 その伝锻時間により障害位 置を標定することもできる。 本究明の装置では、 試験に際して遠端 に操作を施す必要がなく、 全て近嬙の操作で切り分け試験を実行す ることができる。 また、 遠端には機械的な可動部分を設ける必要が なく、 装置は簡単であり信頼性が高い。 〔産業上の利用可能性〕
本発明はアナログ伝送路およびディ ジタル伝送路の区別なく光伝 送路に実施することができる。 本発明の方法および装置は、 光ファ ィバを用いた加入者系伝送路の切り分け試験の方法および装置とし て利用すれば、 遠端すなわち加入者端における操作が不要であると ともに、 加入者端の装置に障害があるのか光伝送路に障害があるの かを、 近端すなわち局またはセンタから明瞭に切り分けることがで きるので、 公衆通信網の多数の加入者系が光フ.ァ ィバを用いた光伝 送路で搆成されることが予定されている近い将来に、 きわめて広範 囲に利用される可能性がある。
OMPI
^ ¾

Claims

請求の範囲
1 . 被試験光伝送路の遠嬙にフィルタを定常的に挿入しておき、 上記遠嫱では、 上記被試験光伝送路から到来する光をこのフィル タに導いて信号伝送に用いる波县の光とこの波長とは別の波長の光 で監視に用いる波長の光とを分離し、 信号伝送に用いる波長の光は 本来の光 ί言号通路に導き、 監視に用いる波長の光を高い反射率で反 射させて上記被試験光伝送路に逆方向に伝送させ、
上記被試験光伝送路の近端では、 上記監視に用いる波县の光を上 記被試験光伝送路に上記遠端に向けて送信し、 その光のその被試験 光伝送路の上記遠端の方向からの反射光の光量を検出する方法によ り、 上記被試験光伝送路の上記近 ®から上記遠端までの間の障害の 有無を検出することを特徴とする光伝送路の障害位置切り分け方法 <
2 . 反射光の光量を検出する方法には、
被試験光伝送路の近端から、 監視に用いる波县の光の抱に信号伝 送に用いる波長の光を上記被試験光伝送路に送信し、 その二つの光 の反射光の光量を比較する方法を舍む特許請求の範囲第 1項に記載 の光伝送路の障害位置切り分け方法。
3 . 監視に用いる波長の光と信号伝送に用いる波县の光を時系列的 に被試験光伝送路に送信する特許請求の範囲第 2項に記載の光伝送 路の障害位置切り分け方法。
4 . 監視に用いる波县の光と信号伝送に用いる波長の光を同時に被 試験光伝送路に送信する特許請求の範囲第 2項に記載の光伝送路の 障害位置切り分け方法。
5 . 1本の被試験光伝送路上に距離の異なる複数の遠端を設定し、 その複数の遠端のそれぞれにフィルタを定常的に挿入しておき、 上記各遠端では、 上記被試験光伝送路から到来する光をこのフィ ルタに導いて ί言号伝送に用いる波長の光とこの波县とは別の波县の 光で監視に用いる波長の光とを分離し、 信号伝送に用いる波長の光 は本来の光信号通路に導き、 監視に用いる波县の光を髙ぃ反射率で 反射させて上記被試験光伝送路に逆方向に伝送させた
特許請求の範囲第 1項ないし第 4項のいずれかに記戴の光伝送路 の障害位置切り分け方法。
6 . 監視に用いる波長の光が複数の異なる波長の光であり、 複数の 遠端のフィルタがそれぞれこの複数の異なる波長の光を分離するよ うに構成された特許請求の範囲第 5項に記載の光伝送路の障害位置 切り分け方法。
7 . 被試験光伝送路の遠端には、
この被試験光伝送路に到来する光から信号伝送に用いる波長の光 と監視に用いる波長の光とを分離するフイルクと、
このフィルタにより分離された信号伝送に用いる波長の光を本来 の光信号通路に導く手段と、
上記フ ィルタにより分離された監視に用いる波县の光を髙ぃ反射 率で反射させて上記被試験光伝送路に逆に伝送させる手段と
が上記被試験光伝送路に定常的に挿入され、
上記被試験光伝送路の近端には、
上記監視に用いる波县の光をその被試験光伝送路に送信する手段 この被試験光伝送路に反射光として戻る上記監視に用いる波县の 光の光量を検出する手段と
_OMPI 、 AT を備えたことを特徽とする光伝送路の障害位置切り分け装置。
8 . フィルタが ί言号伝送に用いる波县に対して無反射であるように 構成された特許請求の範囲第 7項に記載の光伝送路の障害位置切り 分け装置。
_ Οϊ.ίΡΙ
PCT/JP1983/000136 1982-05-06 1983-05-04 Method and device for separating position of fault in light transmission line WO1983004150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8383901394T DE3380681D1 (en) 1982-05-06 1983-05-04 Method and device for separating position of fault in light transmission line

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP57/75619 1982-05-06
JP57075619A JPS58191948A (ja) 1982-05-06 1982-05-06 光伝送路の障害探索方式
JP58/71089 1983-04-22
JP58071089A JPS59196438A (ja) 1983-04-22 1983-04-22 光伝送路の障害探索方法

Publications (1)

Publication Number Publication Date
WO1983004150A1 true WO1983004150A1 (en) 1983-11-24

Family

ID=26412215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000136 WO1983004150A1 (en) 1982-05-06 1983-05-04 Method and device for separating position of fault in light transmission line

Country Status (4)

Country Link
EP (1) EP0117868B1 (ja)
CA (1) CA1238705A (ja)
DE (1) DE3380681D1 (ja)
WO (1) WO1983004150A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906937D0 (en) * 1989-03-28 1989-05-10 Plessey Telecomm Testing optical fibre links
US5177354A (en) * 1989-12-11 1993-01-05 Nippon Telegraph And Telephone Corporation Device and a method for distinguishing faults employed in an optical transmission system
FR2738430B1 (fr) * 1990-09-21 1998-03-13 Alsthom Cge Alcatel Procede et dispositif de transmission d'information sur fibre optique avec detection et/ou localisation d'intrusion
GB9025304D0 (en) * 1990-11-21 1991-01-02 Plessey Telecomm Optical transmission monitoring
GB2274753B (en) * 1993-01-29 1997-06-25 Marconi Gec Ltd Optical signal transmission network
GB2315938B (en) * 1996-08-01 2001-02-28 Northern Telecom Ltd Optical transmission system fault analysis
DE19933268A1 (de) * 1999-07-15 2001-01-25 Siemens Ag Schaltungsanordnung und Verfahren zum Erkennen von einer Unterbrechung bei einer Lichtwellenleiterstrecke
CN102156329B (zh) * 2010-02-12 2013-05-22 泰科电子(上海)有限公司 光纤滤波器装置及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183704A (ja) * 1975-01-20 1976-07-22 Fujitsu Ltd
JPS5441001A (en) * 1977-09-07 1979-03-31 Fujitsu Ltd Fault locating system
JPS55140341A (en) * 1979-04-19 1980-11-01 Fujitsu Ltd Supervisory control system
JPS56100538A (en) * 1980-01-16 1981-08-12 Kokusai Denshin Denwa Co Ltd <Kdd> Optical repeater monitoring system
JPS5765930A (en) * 1980-10-13 1982-04-21 Nippon Telegr & Teleph Corp <Ntt> Searching method for fault of optical fiber transmission system
JPS57142044A (en) * 1981-02-27 1982-09-02 Fujitsu Ltd Monitor circuit for optical repeater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1540907A (en) * 1976-12-07 1979-02-21 Standard Telephones Cables Ltd System for obtaining data from a plurality of condition responsive optical devices
JPS5597753A (en) * 1979-01-19 1980-07-25 Matsushita Electric Ind Co Ltd Optical-fiber transmission control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183704A (ja) * 1975-01-20 1976-07-22 Fujitsu Ltd
JPS5441001A (en) * 1977-09-07 1979-03-31 Fujitsu Ltd Fault locating system
JPS55140341A (en) * 1979-04-19 1980-11-01 Fujitsu Ltd Supervisory control system
JPS56100538A (en) * 1980-01-16 1981-08-12 Kokusai Denshin Denwa Co Ltd <Kdd> Optical repeater monitoring system
JPS5765930A (en) * 1980-10-13 1982-04-21 Nippon Telegr & Teleph Corp <Ntt> Searching method for fault of optical fiber transmission system
JPS57142044A (en) * 1981-02-27 1982-09-02 Fujitsu Ltd Monitor circuit for optical repeater

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. 57, Denshi Tsushin Gakkai Zenkoku Taikai Ronbunshu 5. August. 1982 (05.08.82)Denshi Tsushin Gakkai (Tokyo) Ronbun No. 989 *
See also references of EP0117868A4 *

Also Published As

Publication number Publication date
EP0117868B1 (en) 1989-10-04
EP0117868A4 (en) 1987-09-15
EP0117868A1 (en) 1984-09-12
CA1238705A (en) 1988-06-28
DE3380681D1 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
KR0123893B1 (ko) 광전송로의 고장위치를 판별하는 방법 및 이 방법에 사용하는 광필터형 판별기
US5251001A (en) Reflected optical power fiber test system
US6980287B2 (en) System for testing an optical network using optical time-domain reflectometry (OTDR)
EP0868793B1 (en) Fibre-break detection in optical signal transmission networks
US6842586B2 (en) OTDR arrangement for detecting faults in an optical transmission system employing two pairs of unidirectional optical fibers
JP2002323408A (ja) 光ファイバをテストするための装置およびその方法
WO1998015816A1 (en) Side-tone otdr for in-service optical cable monitoring
WO1983004150A1 (en) Method and device for separating position of fault in light transmission line
JPH04214B2 (ja)
JPH06232817A (ja) 光ファイバ伝送装置およびその試験方法
JP3203240B2 (ja) 光伝送システムの故障位置切分け方法
EP0660984B1 (en) Path integrity proving in optical communications systems
JP2008032592A (ja) 光ファイバ路線監視システム
JP3135001B2 (ja) 光伝送システムの故障位置切分けに用いる光フィルタ型切分け器
JP3255214B2 (ja) 光加入者伝送路試験方法および装置
US20240230464A1 (en) Optical monitor device
JP2000354008A (ja) 分岐光線路監視システム及び分岐光線路監視方法
JP2006119079A (ja) 受動分岐型光ファイバ線路の障害点検出システム
JPS6253975B2 (ja)
JPH09152386A (ja) 光リフレクタおよび光リフレクタを用いた光線路監視システム
JPS63269634A (ja) 光海底中継器
JPS58191948A (ja) 光伝送路の障害探索方式
JPH06229713A (ja) 分岐形光線路の試験方法および装置
JPH04346527A (ja) 導波路形光結合器
KR20190095969A (ko) 광학적 시간 영역 반사 측정기를 이용한 광선로 원거리 노드 식별 시스템 및 식별 방법 그리고 식별용 소자

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1983901394

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1983901394

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1983901394

Country of ref document: EP