WO1983000510A1 - Process for producing superplastic aluminum alloy plate - Google Patents

Process for producing superplastic aluminum alloy plate Download PDF

Info

Publication number
WO1983000510A1
WO1983000510A1 PCT/JP1982/000292 JP8200292W WO8300510A1 WO 1983000510 A1 WO1983000510 A1 WO 1983000510A1 JP 8200292 W JP8200292 W JP 8200292W WO 8300510 A1 WO8300510 A1 WO 8300510A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
aluminum alloy
weight
annealing
superplastic
Prior art date
Application number
PCT/JP1982/000292
Other languages
English (en)
French (fr)
Inventor
Light Metal Industries Limited Mitsubishi
Original Assignee
Mishima, Ryoji
Miyamoto, Hitoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima, Ryoji, Miyamoto, Hitoshi filed Critical Mishima, Ryoji
Priority to AU87391/82A priority Critical patent/AU8739182A/en
Publication of WO1983000510A1 publication Critical patent/WO1983000510A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/902Superplastic

Definitions

  • the present invention relates to a method for producing a superplastic aluminum alloy sheet. More specifically, the present invention relates to a method for industrially easily producing superplastic aluminum alloy sheets. -
  • the diameter of the micron is less than or equal to the maximum./0
  • the fine crystal grain of the micron has a smooth grain boundary movement or slip, which causes plastic deformation of the material. Is easily performed. Recrystallization ⁇ : In the super-grained superplastic alloy,
  • the present inventors have previously made an aluminum alloy manufactured by continuously rolling an aluminum alloy melt containing magnesium, manganese and chromium.
  • This method is an excellent method for manufacturing superplastic aluminum alloy sheet, but aluminum alloy sheet hardens during cold rolling. At 0 , the higher the rolling ratio, the more difficult the three courts will be.
  • the present invention is directed to a method for removing g i which results in degradation.
  • the gist of the present invention is that the magnetism of V-0.0 to 6.0 (contribution), 0, burb ⁇ ! , S, weight), 0,0S ⁇ 0, ( ⁇ I) chromium and aluminum.
  • Aluminum alloy containing silicon The molten metal is forbiddenly rolled into a broom-shaped plate with a thickness of 3 to I, which is annealed at a temperature of ⁇ 20 to S30C, and then cold-rolled in the first stage.
  • a method of manufacturing a superplastic aluminum alloy sheet in which it is recommended to perform an intermediate sintering and an intermediate sintering, and then to perform a subsequent cold rolling until the rolls pass through more than 0 rolling rooms. Therefore, the obtained aluminum alloy sheet is the best form for carrying out the superplasticity at a temperature of JC or more ⁇ K ⁇ 00 C or more.
  • the aluminum association used in this kibiki is 0
  • Magnesium as described above, is an element that is effective in causing recrystallization and recovery. Magnesium is more effective as more it is D, and at least ⁇ 0 is indispensable.
  • transition elements that can make Ogogo shallower, such as Zirconium may be added.
  • Titanium and boron may be added in trace amounts to make the crystal ⁇ : oxidized.
  • iron, ⁇ , etc. contained in aluminum alloys are considered as i? G, i.e. iron,
  • silicon imparts fluidity to the molten metal at the time of forming the cypress, prevents the segregation of components that tend to occur in the center of the lumps, and has a stabilizing superplasticity. Since the content of O silicon in ordinary primary aluminum ingot is 0.2 S or less, in order to achieve the above effects, silicon must be added positively. Is preferred. However, if the content of silicon is too high, segregation of the components will occur on the surface of the cymbals, so the upper limit must be less than 0 ⁇ . The unfavorable content of silicon O is .25 to 0 J-.
  • the aluminum alloy melt having the above composition is intermittently forged and rolled to directly have a thickness of J ⁇ -2 ⁇ , preferably ⁇ ⁇ / ⁇ .
  • OMPI A nozzle is arranged between the molds, and the molten alloy is introduced into the mold through the nozzles, cooled by the mold, and simultaneously rolled while the mold is formed. .
  • the amount of solid solution of manganese and gum is increased at the time of manufacturing. Almost no intermetallic compounds, including manganese and chromium, are crystallized, and when combined with the subsequent & process, recrystallization miniaturization can be remarkably improved.
  • the mirror making speed ( ⁇ ⁇ plate progress speed) of continuous forging and rolling is. ⁇ / MZ min, and the melt temperature is S-. 3C is appropriate.
  • the strip obtained in this way is sintered at a temperature between ⁇ 10 and S30C.
  • the dull time is ⁇ ⁇ 2 ber times are appropriate.
  • Prolonging the time when the temperature is low and shortening the time when the temperature is high is similar to one-shot heat treatment. It is possible to uniformly dissolve the magnesium crystallized during the manufacturing process and increase the amount of magnesium that affects the dynamic recrystallization. You.
  • manganese and chromium dissolved in supersaturation can be precipitated as uniform fine precipitates that are effective in preventing the movement of recrystallized grain boundaries. If the annealing power is as low as 2 C, magnesium can be sufficiently dissolved and manganese and chromium cannot be effectively deposited. In addition, if C is increased, the amount of manganese and cum precipitates is reduced, and the amount of precipitates is also increased.
  • the effect of preventing grain boundary migration is significantly reduced.
  • the blunt temperature depends on the silicon content of the belt-shaped plate. 3 ⁇ 4?? ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the annealing temperature is preferably ⁇ ⁇ 2-C, and when the silicon content is. ⁇ 0 to J "30, especially ⁇ 90- ⁇ 5 / C is preferred.
  • the annealed strip is then cold rolled without hot rolling. This makes it possible to maintain the ⁇ # 33 ⁇ 4 precipitation state of the added element obtained by the annealing treatment, and to produce an alloy having excellent superplasticity recommendation. I can do it. If annealed and then cold rolled, it would be impossible to maintain the fine precipitation of this added element], but the superplastic properties of the resulting alloy sheet would be impaired. Will be
  • the cold court is performed in two stages, a former stage and a latter stage.
  • Intermediate annealing is applied to Court 3 ⁇ 4 between the second and third stages.
  • the intermediate layer is used to soften the work-hardened rolled sheet by the cold rolling at the first stage and to facilitate the cold rolling at the second stage. At the same time, softening progresses remarkably at 200 ° C. Stimulation
  • the cooling is performed in two stages, the former stage and the latter stage.
  • the cold rolling in the latter stage requires that the E elongation is 0 or more. 43 c This is the latter stage of rolling.]) If 1, however, it is possible to obtain a prolonged rolling exhibiting excellent superplastic properties.
  • the preferred rolling reduction in the latter stage is above, and the higher the rolling depth, the better the superplasticity of the rolled sheet is ⁇ o.However, the rolling reduction is ⁇ ⁇ 0 and the TT and work hardening M ⁇ ⁇ ⁇ m ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ S
  • the I-stage rolling room is set to s0 or more. This is the tr-rolling plan.]) is small, the medium is small.
  • Good 3 ⁇ 4 Pre-rolling rate is ⁇ 0. When the pre-rolling ratio is large, this means that the additional intermediate ⁇ is inserted in the middle of the 3 ⁇ 4 rolling, and the machining ⁇ is removed. It is preferable to perform the first step.
  • Aluminum alloys with the composition shown in Table 1 (including iron / bruble 1o, copper / or less as impurities, and less than 0.2% in total for other impurities). It was melted in a gas furnace and degassed sufficiently with the molten metal temperature set to 7. An aluminum alloy containing titanium J "and boron / ⁇ was added to the molten metal so as to have a titanium content of .J. The above molten metal was intermittently forged at a forming speed of 730/0 on / min to a thickness by using a driven mold composed of two water-cooled rollers. 0, which manufactures a strip-shaped plate of ⁇
  • This strip was annealed at S / 0 to S20 ⁇ for a time (Example / ⁇ 2) or at 7 to 0 / «2 hours (Example J ⁇ ) and then rolled Yo]?
  • An alloy plate with a thickness of 3 (rolled 1o) o This alloy plate was
  • Total rolling ratio ⁇ f S, post-stage pressing ratio 70 ⁇ Rolled from the rolled plate manufactured in this way, based on ⁇ ⁇ 110 I ⁇ metallic material tensile test piece '' Cut out the test piece (parallel length 2 and parallel portion r3 ⁇ 4 / ⁇ ).
  • the gauge length Sz2 ⁇ , test temperature and initial strain rate according to J isz 22 f / “tensile test method” are shown in Table 1.
  • the aluminum alloy sheet produced by the method of the present invention is

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

発明の名称
超塑性ア ル ミ - ゥ ム 合金板の製造方法
技 術 分 野
本発明は超塑性ア ル ミ 二 ゥ ム合金板の製造方法に関 する も のであ る。 詳 し く は、 本癸明は、 超塑性ア ル ミ 二 ゥ ム合金板を工業的 容易に製造する方法に 関する も のであ る。 -
牙、 fe i'i'j
外部か ら材料に檨 ¾的力を加え る と 、 材料に局部的 変形 ( く びれ ) が癸生する こ と る く 、 数百 カゝ ら千 に達する異常 ¾伸び;^得 られる金属や合金は、 超塑性 金属ま たは超塑性合金 と して ^ られている。 ア ル ミ 二 ゥ ム の超塑性合金には、 結晶徵細粒超塑性合金 と 共 晶微細組籙超塑性合金の ·2 種類が知 られてい る 。 再結 晶微細粒超塑性合金は、 冷間圧延された合金板を焼鈍 する こ と に よ ]? 新たに生ずる再結晶粒を、 微細に ¾ る よ う に ^ ¾ した も のである 。 ま た、 共晶微細組織超塑 性合金は、 錡造時に に έ る よ う に制御 した共晶 ( 混合相 ) 組籙を、 圧 杈ま で持ち来た した も のであ る。 これ らいずれの 望性合金において も 、 その組綾. 2 00292
— 2 —
は直径 . ミ ク ロ ン い しはそれ以下力ゝ ら最大 / 0 ミ ク 口 ン の微細 結晶粒か ら 、 円滑な粒界移動ま た はすべ が起る こ と に よ 、 材料の塑性変形が容易に 行なわれる。 再转晶 ^: ^粒超塑性合金では、 ^晶 ¾の
S大化を阻止する ために特珠 元素を添加する こ と が 必要で あ る。 多 く の場合、 この よ う 効杲を示す添加 元素 と しては、 遷移元素が用い られている。 ま た、 超 塑性合金に引続き 変形を生 じさせる と 、 結晶粒内で加 ェ硬化が起 、 ついには塑性変形が困難 と な る。 こ の よ う ¾ 加工硬化を ';!:渎させるため、 上記元素に加えて 更に銅、 マ グ ネ シ ウ ム 、 亞经等を加える こ と も 知 られ ている 。 これ らの元素は、 動的再結晶、 する わち材料 の変形 と 同時に再桂晶 を起 こ し、 営に変形前の材 の 組織を再生する作 sを有する。
本発明者 らは、 先に、 マ グ ネ シ ウ ム 、 マ ン ガ ン よ びク ロ ム を含むア ル ミ ニ ゥ ム合金溶湯を連続的に^造 圧延 して製造 したア ル ミ ニ ウ ム合金板を、 焼^ したの ち冷間圧延する こ とか ら ¾ る、 超塑性の著 し く 向上 し たア ル ミ ニ ウ ム合会板の製造法を提案 した ( 特 u
一 3 《2 f 号参^ ) 。 こ の方法は超塑倥ア ル ミ ニ ゥ ム合金板の製造 fe と して優れた方法であ るが、 冷間圧 延中に ア ル ミ ニ ウ ム合会板が ¾ェ硬化を起す 0で、 圧 延率が高 く る と三廷が 次困難に る 。
本発明は こ 〇 ェ ¾化の も た らす g iを除去する 方
-、 法を提供する も のであ る 癸明の開示
本発明の要 旨は、 V- .0 ~ 6.0 ( 貢量 ) の マ グ ネ シ ゥ 厶 、 0 ,屮 〜 ! , S 、 重量 ) の マ ン ガ ン 、 0 , 0 S〜 0 , ( 亩 I ) のク π 厶及び り. 0 ( 重量 ) ^ 未漪の ケ ィ 素を含有する ア ル ミ 二 ゥ ム 合金溶湯を、 違使的に禁造 圧延 して厚さ 3 〜 I の帚状板 と し、 これに ^ 2 0 〜 S 3 0 Cの蓥度で燒鈍処理を ¾ したのち、 前段冷間 圧延及び中間燒飩を行 ¾ い、 次いで 0 多 以上の圧延 室に違する ま で後段冷間圧延を行 ¾ う こ と を荐漦 と す る超塑性ア ル ミ ユ ウ ム合金板の製造方法に存 じ、 得 ら れたア ル ミ ニ ウ ム 合金板は J C以上 ^ K ^ 0 0 C以上の温度で優れた超塑性卷性を示す 癸明を実施する ための最良の形態
以下、 本発明につ き 更に詳 ^に I 明する。
本癸明で用いる ア ル ミ 二 ゥ ム合会は、 屮. Q 〜 に 0
( 重量 ) の マ グ ネ シ ウ ム 、 0 ·屮 〜 ! .5 ( 重量 ) ^ の マ ン ガ ン よ び <?.0 5 — 0.2 ( 重量 ) のク ロ ム を含 んでいる こ と が必要であ る 。
マ グ ネ シ ウ ム は、 前述の如 く 、 的再結晶 い し回 復を生 じさせる のに有 ¾る 元素であ る。 マ グ ネ シ ウ ム は多いほ ど効長的であ D 、 少 く と も ^ 0 は必旻であ
、 V/TPO る。 しか し、 .0 よ ]? も 多 く る る と 、 粗大化 した ^ 相 ( Mg— A 化合物 ) が粒界に晶 岀 し、 冷間圧廷を困 H にする。 マ ン ガン と ク π ム と は再^晶粒の粗大化を阻 止する作用 を有する。 マ ン ガ ン は た 以下、 す わ ち篛造時にほぽ固溶 し得る範 で ^加する。 しか し 未清ではその添加効杲は少 ¾ い。 篛造時に固溶 し得る以上のマ ン ガ ンを添加する と 、 鍀造時に租大 晶出 ¾を生ずる。 こ o晶 出物は再^晶粒の徵 化に寄 与 し いばか ]3 で く 、 冷間圧 に惡影響を及ぼす。 同様にク コ ム も 、 そ O添加量が り.《2 % よ 多 く る る と, マ ン ガ ン と ¾大 ¾化合 をつ く 易 く ]? 、 マ ン ガ ン よ びク ロ ム の ¾g化効杲を失 わせる。 ま た、 その 添加量が .り J- ^ 未滂では添方::効杲が少 い。
本癸 ¾で い る ア ル ミ ニ ウ ム合会には、 さ らに上記 の添加元素 と 作月 してそ O劫杲を S浅させる こ と のる い他の遷移元素、 ::えばジル コ ニ ウ ム 、 を加えて も よ い。 ま た営法に よ ] チ タ ン お よ びホ ウ 素を微量添 し て結晶の ^: ¾化を 12つて も よ い。 さ ら に一投 Οアル ミ 二 ゥ ム合会中に含有される鉄、 ^等 ©不純物について は、 通営の合会中に許容される i?g、 す わち鉄
.^ り 以下、 に り.2 り 以下、 —. 0 , 1 以下で あれば、 存在 していて も 差 しっ ^え ¾ い。
鉄 と並んでアル ミ 二 ゥ ム合会中 O通常の不^物であ る ケ ィ 素について ク. J" 0 未ミ 〇含有量で存在 して い て も よ い 。 本発明 で用いる ア ル ミ ニ ウ ム 合金に おい ては、 あ る程度以上のケ ィ 素が存在する と 、 ケ ィ 素は マ グ ネ シ ウ ム と 同様に動的再結晶、 すな わち超塑性合 金板の塑性変形に際 し変形 と 同時に再結晶 を起 し常に 変形前の組綾を再生する作用 を有する。 ま た ケ ィ 素は マ グ ネ シ ウ ム とィヒ合物 ( Mg 2 S i ) を形成するが、 こ の
'化合物 自 体が锾 ¾稆 と ? ¾ つて超塑性特性の発現に寄与 する。 さ ら に ケ ィ 素は鐃造時の溶湯に流動性を与え、 篛塊の中央部に起 やすい成分の偈析を防止 し、 超塑 性性能を安定化させる劫果を有する。 通常の一次ア ル ミ ニ ゥ ム地金中 O ケ ィ 素の含有量は . 2 S 以下であ る ので、 上記の よ う 効果を発現させる ためには、 ケ ィ 素を積極的に添加する のが好ま しい。 ただ しケ ィ 素 の含有量が多過 ぎる と鐃塊の表面部に成分の偏析が生 じゃすいので、 その上限は 0 ^未満でる ければる ら る い。 ケ ィ 素 O好違な含有量は . ·2 5 〜 0 J- で ある 。
本発明方法では、 上述の 成の ア ル ミ ニ ウ ム 合金溶 湯を、 違続的に箅造圧延 して、 直接に J 〜 - 2 ^、 好 ま し く は ^ 〜 / ^の厚さ の帯状衩を製造する 。 違続 銬造圧延法は公 ^であ ]) 、 ハ ン タ ー法、 法、 ハ ザ レー法 どい く つか の方法が矢コ られてい る。 これ ら の 連続铸造圧延法に よ れば、 《2 1 の回転する篛造用 ロ ー ルま たは走行する箬造用ベル ト どで構成さ れる厘動
OMPI 铸型間に ノ ズルを配置 し、 こ のノ ズルを経て合金溶湯 を該篛型内に導入 し、 铸型で冷却 し ¾が ら 同時に圧延 する こ と に よ ]? 帯状板が製造される。 この方法に よ れ ば、 篛造時に マ ン ガ ン およ びク 口 ム の 固溶量が増加す るため、 前記 したマ ン ガ ン よ びク 口 ム の添加量範 S 内ではマ ン ガ ン 、 ク ロ ム を含む金属間化合物 どは殆 ど晶出せず、 後続の &理 と 組合せる こ と に よ 再結 晶微細化 ¾杲を著 し く 向上させる こ と がで き る。 連続 篛造圧延の鏡造速度 ( ^ ^板の進行速度 ) は . 〜 / m Z分、 溶湯温度は S- 。 〜つ 3 C が適当であ る。
- この よ う に して得 られた帯状板は、 Ψ 1 0 〜 S 3 0 C の間の温度で焼 S笾洹を;^す。 鈍時間は 〜 《2 屮 時間が適当 であ る。 ¾度が低い場合には時間を長 く し、 温度が高い場合には時間を短 く する こ と は、 一投の熱 処理と 同様であ る。 こ の 鈍に よ ]? 、 鎊造時に晶 出 し たマ グ ネ シ ウ ム を均一に溶体化させ、 動的 再結晶 に 及ぼすマ グ ネ シ ウ ム の カ杲を高める こ と がで き る。 ま た、 過飽和に固溶 したマ ン ガ ン お よびク ロ ム を、 再結 晶粒界の移動の阻止に有効る均一 ¾細 析出 と して 析岀させる こ とがで き る 。 燒鈍 度力 ·2 C ょ も 低い と 、 マ グ ネ シ ウ ム を十分に溶 ^化させ、 しか も マ ン ガ ン お よ びク ロ ム を有効に析出 させる こ と はで き い。 ま た、 C を ¾え る と 、 マ ン ガ ン お よ びク c ム の析出量が滅少 し、 つ析出物 も 租大化するの で、
-——
、ヽ 粒界移動阻止の効杲が著,し く 低下する。 好違 ¾垸鈍温 度は帯状板の ケ ィ 素含有量に よ ]? 異 ¾ ]? 、 ー設に ケ ィ 素の含有量が多いほ ど^鈍温度を低 く する のが好ま し い。 例えばケ ィ 素を .《2 J " 〜 . 含む場合には焼 鈍温度は ^ ·2 〜 Cが好ま し く 、 ま たケ ィ 素の 含有量が .《2 以下の場合には焼鈍温度は ^ つ 0 〜 J" 3 0 、 特に ^ 9 0 -^ 5 / り Cが好ま しい。
焼鈍 した帯状裉は、 次いで熱間圧延を行 う こ と く 、 冷間圧延する。 これに よ 瘥鈍処理に よ って得 ら れた添加元素の ¾#3 ¾析出状態を.^持す る こ と がで き、 優れた超塑性荐牲を示す合会 ¾を製造する こ とがで き る。 も し焼鈍処理 したの ち爇間圧延を行 ¾ う と、 こ の 添加元素の徴細 析出拔態を ^持する こ と は不可能で あ ]? 、 得 られる合金板の超塑性特性が損 われる。
本発明方法では冷間圧廷は前段 と 後段 と の ·2 段階に わけて行 ¾ われる。 ^段 と 後段 と の間で圧廷 ¾に 中間 焼鈍が施さ れ る。 中間铙 ^は、 前段の冷間圧延に よ 加工硬化 した圧延板を軟化させて、 後段の冷間圧延を 容易にする ための も のであ る 宁間 '莞 5に いては、 焼鈍温度の上昇 と共に軟化が違行する が、 特に ·2 0 0 t: 〜 2 り C に いて軟化が著 し く 進行する。 戟化は
•2 J " c でほぽ H ;]に達 し、 それ以上の高、;!に加熱 し て も 軟化度の向上は比較的小さ い。 ま た、 f 度に高温 にする と 、 合金杈中の析出 ¾大化 して ¾品の超塑 铨特性が損 われる。 ¾つて中間 mは通営、 2 5 0
〜 屮 0 0 "C 行 ¾ う のが好ま しい も 短い方 が好ま し く 、 通常 / 〜 ^ 時間であ o
玄発明方法に いては、 上述〇如 く 、 前段 と後段 と の ·2 段階に分けて冷 が行 ¾ われるが、 後段の冷 間圧延は E延塞が 0 以上であ る こ と が必 で 43 c 後段の圧延 ¾が これ よ ]) も 1、さ い と 、 優れた超塑性特 性を示す压延棂を得る oが mで ¾>る。 後段の好ま し い圧延率は 以上であ 、 一 ¾に圧延塞が高いほ ど圧延板の超塑性善性は良好 と ¾ o しか し圧延率が 问 \ 0 と TTび加工硬化に よ 圧延が困 mと ¾ るので、 圧延板に要求される ¾s性考性を ¾ し 当 後段 圧延率を決定 ^ c ― ^ 廷車は ε ο 以下が
¾ ¾ "L ¾> > 0
全体の圧延塞を K 、 後段 O圧廷率を :':2 とする と 、 前段の圧延率 κα は下記式で与え られる。
Κ一 - ゥ
通常は I 段圧延室を s 0 以上 とする 。 tr段圧延案 が これ よ ]) も 小さ い と 、 中 ¾ ' ¾杲が小さ い。 好 適 ¾前段圧延率は 〜 0 で ある。 前段圧延率が これ よ ]? も 大 き く る る と き ;こは、 ¾段圧延の途中で付 加的 中間 鋅を ¾ して ζ工 ^ を [:佘去 した〇 ち、 さ らに前段 Ε を行 ¾ う つ 好ま しい。 段、 後段 と も
CMPI に圧延自 体は常法に よ ]) 行る われる。
次に実施例に よ j? 本発明 を更に具体的に説明する が、 本発明はその要旨 を超え ない限 ]? 、 以下の実施例に よ つて限定される も のでは ¾い。
実施例 / 〜
表一 / に示す組成のア ル ミ ニ ゥ ム合金 ( 不純物 と し て鉄 り./ 屮 1o 、 銅 . / 以下を含み、 その他の不純 物は合計で . 2 % 以下であ る。 ) を ガ ス炉で溶解 し、 溶湯温度を 7 と して十分に脱ガス した。 こ の溶 湯にチ タ ン J" 、 ホ ウ 素 / ^ を含むア ル ミ ニ ウ ム母合 金を、 チ タ ン含有量が . J と ¾ る よ う に添カ卩 した。 直径 J onの 2 個の水冷 c ー ル で構成された駆動篛型 を用い、 上記の溶湯を 7 3 0 で / 0 on /分の篛造 速度で違続的に篛造圧 ¾ して厚さ に 丽 の帯状板を製 造 した 0
こ の帯状板を、 S / 0 〜 S 2 0 Ό で 時間 ( 実施例 / 〜 2 ) 又は 7 〜 0 で で / «2 時間 ( 実施例 J 〜 ) 、 燒鈍 したの ち、 ^間圧延に よ ]? 厚さ 3 の 合金板 と した ( 圧延军 1o ) o こ の合金板を S 0
X で 《2 時間中間焼鈣 した o 実施例 / 及び ·2 において、 中間焼鈍前の合金板の抗張力は . Κ? Ζ であ 、 中間焼鈍を経た後の合会板の抗張力は J / . J" K?z で あった o
こ れを更に後段冷間圧延にかけ、 厚さ / . ( 全圧
O FI 1 c—
延率 7 ? 1o 、 後段圧延直 ? ° ) お よ び厚さ 1.0
( 全圧延率 <f S 、 後段圧廷率 7 0 ^ ) ま で圧延 した: この よ う に して製造 した圧延板か ら、 η τ 110 I 「金属材 引張試験片」 に 拠 して引張 試験片 ( 平 行部長さ 2 、 平行部 r¾ / り 丽 ) を切 出 ' しえ。 こ の試験片につ き 、 J i s z 22 f / 「引張 試験法」 に 準拠 して標点間 S犛 ·2 ^:、 試験温度及び初期の歪速 度を表一 《2 に示す逼 ]? と して引張 試 を行 い、 試 験片の伸び及び最大応力を '定 した。 結杲を表一 ·2 に す 一 / 組 成 ( ^ )
Α ム
g Cr ύ 1
0.73 0. J f o .o ε ¾
2¾ 口 μ
Ε .s o.s / 0. / - 0.0 έ 残 部 o.s / 0. / V- 0.30 残 部 s.s o.s / 0. J V- 0 ,屮 i 残 部 Co ヽ
>
3
S ? 1
4 1 J.
\ ) (.
Is ©
Co
X X X X X X X X
05 」
へ " r
•f;
v3
•ft
3
66000/08 f/IDd 0IS00/S80Ά ,
産業上の利 ¾可能性
本発明方法に よ 製造されたァル ミ ニ ゥ ム合金板は
3 0 C以上、 特に ^ C以上の温度で優れた莛塑 性特性を示す。 従って、 こ の荐性を利用 して、 一投の 超塑性材料に適用 される各種のお工法に よ 成形加工 する こ と がで き る。 そ〇代表的 ¾ も のは、 膛型を使用 し、 流侔圧に よ 料を ϋ型に密着させる真空戌 ¾ よ びパルヂ方::ェであ る。 加工時の ひずみ速度は通営
/ X /り-3 〜 / X / — i /秒の 1?匿 で、 ま た単毂伸びは / 0 り 〜 0 0 の f| で行な う のが好ま しい。

Claims

— 13
求 の
/ .0 〜 に。 ( 重量 ) ^ のマ グ ネ シ ウ ム 、 0.屮〜し s
( 重量 ) の マ ン ガ ン 、 0.0 S 〜 0 ( 重量 ) の ク ロ ム 及び . ( 重量 ) 未満の ケ ィ 素を含有す る ア ル ミ - ゥ ム 合会溶湯を、 連続的に铸造圧延 して 厚さ 3 〜 : ί の带状板 と し、 これに ^ 2 (? 〜
Cの温度で焼 ^処理を ¾ したのち、 前段冷間圧延及 び中間焼鈍を行 ¾ い、 次いで 以上の圧延率に 達す る ま で後段冷間圧 を行 う こ と を特徵 と する 超塑性ア ル ミ 二 ゥ ム合会 ¾の製造方法。
2 請求の範圏第 / 項に記載の方法に いて、 前段泠
間圧延を圧延室 J ク 〜 0 で行 う こ と を特徵 と する方法。
3 請求の範 S第 ん項又は第 ·2 項に記載の方法に おい
て、 中間燒鈍 を 《2 〜 ク ク C で行 う こ と を特 徵 と する方法 =_ .
請求の範匿第 / 項又は第 J 項に記載の方法に い て 、 ァ ノレ ミ ニ ゥ ム合金溶湯力 S 。.2 S 〜 0 J" ( 重量)
の ケ ィ 素を含有 して 、 篛造圧廷後の烧鈍処理
0 〜 S 0 り Cの ϋ度で行 われる こ と を特徵 と-する方法。
請求の範 g ¾ / 項又は第 ·2 項に ≡载の方法に おい て 、 ア ル ミ ニ ウ ム合金溶 ¾が . ·2 ·5 " ( 重量 ) 以下
OMFI
WIPO 、 のケ ィ 素を含有 してぉ 、 造圧延後の琮鈍処理が f 7 0 〜 S 3 C の 度で行 ¾ われる こ と を特徵 と する方法。
PCT/JP1982/000292 1981-07-30 1982-07-28 Process for producing superplastic aluminum alloy plate WO1983000510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU87391/82A AU8739182A (en) 1981-07-30 1982-07-28 Process for producing superplastic aluminum alloy plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56/119900810730 1981-07-30
JP56119900A JPS5822363A (ja) 1981-07-30 1981-07-30 超塑性アルミニウム合金板の製造方法

Publications (1)

Publication Number Publication Date
WO1983000510A1 true WO1983000510A1 (en) 1983-02-17

Family

ID=14772995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1982/000292 WO1983000510A1 (en) 1981-07-30 1982-07-28 Process for producing superplastic aluminum alloy plate

Country Status (5)

Country Link
US (1) US4531977A (ja)
EP (1) EP0084571B1 (ja)
JP (1) JPS5822363A (ja)
CA (1) CA1206074A (ja)
WO (1) WO1983000510A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047900B2 (ja) * 1981-11-10 1985-10-24 株式会社化成直江津 超塑性アルミニウム合金およびその製造法
FR2553013B1 (fr) * 1983-10-10 1986-09-05 Cegedur Procede et dispositif pour la realisation de bandes metalliques renforcees
FR2599049B1 (fr) * 1986-05-21 1988-07-01 Cezus Co Europ Zirconium Procede de fabrication d'un feuillard en zircaloy 2 ou zircaloy 4 partiellement recristallise et feuillard obtenu
US4969593A (en) * 1988-07-20 1990-11-13 Grumman Aerospace Corporation Method for diffusion bonding of metals and alloys using mechanical deformation
GB8906468D0 (en) * 1989-03-21 1989-05-04 Alcan Int Ltd Metal treatment
JPH089759B2 (ja) * 1989-08-25 1996-01-31 住友軽金属工業株式会社 耐食性に優れたアルミニウム合金硬質板の製造方法
CH682326A5 (ja) * 1990-06-11 1993-08-31 Alusuisse Lonza Services Ag
JP2640993B2 (ja) * 1990-06-11 1997-08-13 スカイアルミニウム株式会社 超塑性成形用アルミニウム合金圧延板
US5240522A (en) * 1991-03-29 1993-08-31 Sumitomo Light Metal Industries, Ltd. Method of producing hardened aluminum alloy sheets having superior thermal stability
FR2703072B1 (fr) * 1993-03-26 1995-04-28 Pechiney Rhenalu Tôles ou bandes en alliages d'Al (série 5000) à faible anisotropie mécanique et leur procédé d'obtention.
EP0799900A1 (en) 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH High strength aluminium-magnesium alloy material for large welded structures
US6322646B1 (en) 1997-08-28 2001-11-27 Alcoa Inc. Method for making a superplastically-formable AL-Mg product
US6063210A (en) * 1997-08-28 2000-05-16 Aluminum Company Of America Superplastically-formable Al-Mg-Si product and method
DE10231437B4 (de) * 2001-08-10 2019-08-22 Corus Aluminium N.V. Verfahren zur Herstellung eines Aluminiumknetlegierungsprodukts
DE10231422A1 (de) * 2001-08-13 2003-02-27 Corus Aluminium Nv Aluminium-Magnesium-Legierungserzeugnis
US20040256079A1 (en) * 2001-09-25 2004-12-23 Akkurt Soner A Process of producing 5xxx series aluminum alloys with high mechanical, properties through twin-roll casting
US6811625B2 (en) * 2002-10-17 2004-11-02 General Motors Corporation Method for processing of continuously cast aluminum sheet
JP2004250760A (ja) * 2003-02-21 2004-09-09 Ykk Corp 装飾性に優れたアルミニウム合金
JP4534573B2 (ja) * 2004-04-23 2010-09-01 日本軽金属株式会社 高温高速成形性に優れたAl‐Mg合金板およびその製造方法
EP2113576B1 (en) * 2007-01-24 2018-11-28 Advanced Alloys GmbH Method for producing a structural material made of magnesium-containing aluminium-based alloy
CN103157656A (zh) * 2011-12-11 2013-06-19 浙江远景铝业有限公司 扭断型防盗瓶盖铸轧薄板的加工方法
CN103882351B (zh) * 2014-03-05 2016-01-13 中南大学 一种制备铝锂合金超塑性板材的方法
DE112015006386B4 (de) * 2015-03-27 2022-12-29 Ykk Corporation Kuppelglied für reissverschluss
US20200232071A1 (en) * 2019-01-18 2020-07-23 Divergent Technologies, Inc. Aluminum alloys
CN113174500B (zh) * 2021-04-29 2022-11-11 河南明晟新材料科技有限公司 一种提高5083合金o态折弯性能的方法
CN113981282A (zh) * 2021-10-28 2022-01-28 中铝西南铝板带有限公司 一种液晶背光模组背板用铝合金带材及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828310A (ja) * 1971-07-20 1973-04-14
JPS5263111A (en) * 1975-10-29 1977-05-25 Ti Group Services Ltd Super ductile aluminium base alloy and prodction of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445181A (en) * 1973-01-19 1976-08-04 British Aluminium Co Ltd Aluminium base alloys
US4139400A (en) * 1974-06-27 1979-02-13 Comalco Aluminium (Bell Bay) Limited Superplastic aluminium base alloys
FR2314260A1 (fr) * 1975-06-13 1977-01-07 Armines Nouveaux alliages d'aluminium superplastiques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828310A (ja) * 1971-07-20 1973-04-14
JPS5263111A (en) * 1975-10-29 1977-05-25 Ti Group Services Ltd Super ductile aluminium base alloy and prodction of the same

Also Published As

Publication number Publication date
EP0084571A1 (en) 1983-08-03
CA1206074A (en) 1986-06-17
EP0084571B1 (en) 1986-10-15
JPS5822363A (ja) 1983-02-09
JPS6410588B2 (ja) 1989-02-22
US4531977A (en) 1985-07-30
EP0084571A4 (en) 1985-04-23

Similar Documents

Publication Publication Date Title
WO1983000510A1 (en) Process for producing superplastic aluminum alloy plate
WO1994019503A1 (fr) Piece mince moule en acier au carbone ordinaire contenant des quantites importantes de cuivre et d&#39;etain, tole mince en acier et procede de fabrication
JP2798842B2 (ja) 高強度アルミニウム合金圧延板の製造方法
WO1991009697A1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
JPS6047900B2 (ja) 超塑性アルミニウム合金およびその製造法
US4092178A (en) Process for producing a steel having excellent strength and toughness
JPS6365402B2 (ja)
JPH0461057B2 (ja)
JPH06256916A (ja) アルミニウム合金薄板の製造方法
JPS6141742A (ja) 高強度アルミニウム合金箔及びその製造方法
JPS6357491B2 (ja)
JPH0387329A (ja) 焼付塗装用アルミニウム合金材の製造方法
JPS61288036A (ja) リードフレーム材用銅合金
JPH0428837A (ja) 高冷却能を有する高強度Cu合金製連続鋳造鋳型材およびその製造法
JPS5928554A (ja) 超塑性アルミニウム合金およびその製法
JPS6362836A (ja) 高強度耐熱性アルミニウム合金圧延板およびその製造方法
JPH032320A (ja) Fe―Al―Cr系合金鋼の圧延方法
JPS6147210B2 (ja)
JPH02254143A (ja) 成形加工用アルミニウム合金硬質板の製造方法
JPH03229824A (ja) 磁気特性の優れたFe―Al合金軟磁性薄板の製造方法
JPH0582461B2 (ja)
JPH07173585A (ja) 表面処理特性にすぐれた成形用アルミニウム合金板材の製造方法
JPH04173941A (ja) アルミニウム箔の製造方法
JPS5945729B2 (ja) 温間加工用熱間圧延鋼材の製造法
JPH02232317A (ja) 薄肉鋳造法を用いたCr系ステンレス鋼薄板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU NO US

AL Designated countries for regional patents

Designated state(s): CH DE FR GB NL

WWE Wipo information: entry into national phase

Ref document number: 1982902256

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1982902256

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1982902256

Country of ref document: EP