USRE30635E - Method of producing internally coated glass tubes for the drawing of fibre optic light conductors - Google Patents
Method of producing internally coated glass tubes for the drawing of fibre optic light conductors Download PDFInfo
- Publication number
- USRE30635E USRE30635E US06/079,847 US7984779A USRE30635E US RE30635 E USRE30635 E US RE30635E US 7984779 A US7984779 A US 7984779A US RE30635 E USRE30635 E US RE30635E
- Authority
- US
- United States
- Prior art keywords
- tube
- iadd
- iaddend
- gas mixture
- internally coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 33
- 239000011521 glass Substances 0.000 title claims description 29
- 239000004020 conductor Substances 0.000 title claims description 11
- 239000000835 fiber Substances 0.000 title claims description 8
- 239000007789 gas Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 12
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 229910003910 SiCl4 Inorganic materials 0.000 claims description 10
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 229910052681 coesite Inorganic materials 0.000 claims description 6
- 229910052906 cristobalite Inorganic materials 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229910052682 stishovite Inorganic materials 0.000 claims description 6
- 229910052905 tridymite Inorganic materials 0.000 claims description 6
- 238000007496 glass forming Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 claims 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 230000003213 activating effect Effects 0.000 claims 1
- ZMKAVICCBWPNSR-UHFFFAOYSA-G aluminum;tetrachlorotitanium;trichloride Chemical compound [Al+3].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Ti+4] ZMKAVICCBWPNSR-UHFFFAOYSA-G 0.000 claims 1
- 239000011247 coating layer Substances 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 15
- 238000001556 precipitation Methods 0.000 abstract description 2
- 239000011162 core material Substances 0.000 abstract 2
- 239000010453 quartz Substances 0.000 description 6
- 229910006113 GeCl4 Inorganic materials 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 229910018404 Al2 O3 Inorganic materials 0.000 description 2
- 229910003074 TiCl4 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
- C03B37/01815—Reactant deposition burners or deposition heating means
- C03B37/01823—Plasma deposition burners or heating means
- C03B37/0183—Plasma deposition burners or heating means for plasma within a tube substrate
Definitions
- the invention relates to a method for producing internally coated glass tubes, consisting of a core and a jacket of glasses which have a mutually different refractive index, by means of a reactive deposition of the coating from a gas mixture which is passed through the tube and which is brought to reaction in the tube.
- the tubes produced in this manner are heated to a temperature which is suitable for drawing and thereafter drawn to such an extent that the diameter is reduced until the coating is brought to coincidence and a light conductor of the required diameter is obtained.
- Light conductors consist of a light-conducting core which is embedded in a jacket of a lower refractive index.
- the core may, for example, consist of quartz glass which has been doped with a few percent of a metal oxide which increases the refractive index and the jacket of undoped quartz glass.
- the tube may consist of non-doped quartz glass.
- a uniform relative motion in .Iadd.an .Iaddend.axial direction may be caused between the tube and a high frequency pulse which envelopes the tube .[.a.]..Iadd..
- a .Iaddend.uniform distribution of the deposit is enhanced by the fact that the tube is rotated during the coating procedure.
- this object is realized by means of a method which is characterized in that in the tube a non-isothermal plasma zone is produced for the activation of the reactive deposition while a relative motion is caused between the tube and the equipment which produces the plasma, and a temperature zone in which the tube is heated to such a temperature that the deposited coatings are stress-free is superimposed on the plasma zone and that deposition takes place at a pressure of between 1 and 100 Torr.
- non-isothermal plasma is understood to mean a zone in which the kinetic energy of the gas particles is small compared with the energy of the excited electronic states.
- dissociated and ionised particles are available, which are favourable for the reaction and promote it.
- the method according to the invention also enables the direct reactive deposition on a quartz wire or quartz rod which is arranged inside the tube.
- deposition rates of from 2500 ⁇ m/hour can be attained.
- the method according to the invention makes it .[.therefore.]. possible .Iadd.therefore, .Iaddend.to obtain in an economic way a uniform deposition over long tube lengths.
- a heating up of the tube (temperature zone) of greater length is superimposed on the plasma zone.
- the temperature shall then not be chosen that high that a homogeneous gas reaction could take place, but it must at least be chosen that high that the deposited coatings are stress-free.
- Heating of the tube to a temperature of between 800° C. and 1200° C., for example in the GeCl 4 /oxygen system, does not or to only a small extent affect the deposition rate.
- the consistency of the deposited coating is favourably influenced on the one hand because, at the chosen temperatures the mobility of the deposited matter is still sufficient to obtain a stress-free coat and on the other hand because the embedding of gaseous reaction products is avoided.
- the plasma may be produced in any way, known in the art, for example by the inductive or capacitive coupling of a high frequency field or in a microwave resonator.
- FIG. 1 is a diagrammatic representation of a device for performing the method according to the invention
- FIG. 2 shows the attenuation of a fibre optic light conductor drawn from a tube produced according to the invention.
- a tube 1, for example made of quartz is moved to a heating device 2, for example an electric heating coil in the direction indicated by arrows.
- the heating device 2 is enveloped by a resonator 3 by means of which a plasma 4 can be produced in the gas mixture passed through the quartz tube 1.
- a coating 5 is directly formed on the inner wall of the tube 1.
- the deposition of non-doped SiO 2 The deposition of non-doped SiO 2 .
- the mixture consisted of 7 volume % SiCl 4 and 93 volume % oxygen.
- the pressure in tube 1 was 12 Torr.
- the wall temperature was kept at 1000° C.
- the tube 1 was passed at a speed of 0.17 cm per minute through the device, formed by heating device 2 having a length of 500 mm and resonator 3 having a length of 30 mm, while a plasma 4 was produced by a 2.45 GHz generator.
- a mixture of 0.4 volume % AlCl 3 , 4 volume % SiCl 4 and .Badd.95.6 volume % oxygen was passed through the quartz tube at a throughput of 42 scm 3 per minute (length and diameter as in Example I).
- the pressure in the tube 1 was 15 Torr.
- the wall temperature of the tube 1 was kept at 950° C.
- a plasma 4 as in Example I was produced. (Power 180 W, frequency 2.45 GHz).
- the reaction efficiency was approximately 100%.
- the tube was passed through the device 2-3 at a speed of 60 cm per minute while the resonator 3 was moved forward and backward along the tube 1.
- a homogeneous, adhering coat 5 was obtained.
- the total thickness of the coating was 150 ⁇ m.
- FIG. 2 shows the total attenuation in dB per km as a function of the wavelength in micrometer of a fiber optic light conductor which was obtained by drawing at 1900° C. of an internally coated tube according to Example II.
- the core diameter was 25 ⁇ m and the fiber diameter was 100 ⁇ m.
- the difference in the refractive indexes were approximately 5 o/oo.
- a coating profile which has a certain refractive index in proportion to the doping can be obtained as shown above at a progressive change of the doping share.
- a suitable profile is chosen the tube forms in an ideal manner a basic product for the production of monomode, multimode and self-focussing fiber optics.
- Dopant-forming compounds which may be used in the method according to the invention are, for example, GeCl 4 , TiCl 4 , and AlCl 3 which oxidize to form the dopants GeO 2 , TiO 2 , and Al 2 O 3 , respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2444100A DE2444100C3 (de) | 1974-09-14 | 1974-09-14 | Verfahren zur Herstellung von innenbeschichteten Glasrohren zum Ziehen von Lichtleitfasern |
DE2444100 | 1974-09-14 |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US61057075A Continuation | 1974-09-14 | 1975-09-05 | |
US05/852,068 Reissue US4145456A (en) | 1974-09-14 | 1977-11-16 | Method of producing internally coated glass tubes for the drawing of fibre optic light conductors |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE30635E true USRE30635E (en) | 1981-06-02 |
Family
ID=5925814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/079,847 Expired - Lifetime USRE30635E (en) | 1974-09-14 | 1979-09-28 | Method of producing internally coated glass tubes for the drawing of fibre optic light conductors |
Country Status (5)
Country | Link |
---|---|
US (1) | USRE30635E (enrdf_load_stackoverflow) |
JP (1) | JPS5651138B2 (enrdf_load_stackoverflow) |
DE (1) | DE2444100C3 (enrdf_load_stackoverflow) |
FR (1) | FR2284572A1 (enrdf_load_stackoverflow) |
GB (1) | GB1519994A (enrdf_load_stackoverflow) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384038A (en) | 1980-11-25 | 1983-05-17 | U.S. Philips Corporation | Method of producing integrated optical waveguide circuits and circuits obtained by this method |
US4405655A (en) | 1981-05-01 | 1983-09-20 | U.S. Philips Corporation | Method and arrangement for internally coating a tube by reactive deposition from a gas mixture activated by a plasma |
US4422915A (en) | 1979-09-04 | 1983-12-27 | Battelle Memorial Institute | Preparation of colored polymeric film-like coating |
US4468413A (en) | 1982-02-15 | 1984-08-28 | U.S. Philips Corporation | Method of manufacturing fluorine-doped optical fibers |
EP0117009A1 (de) | 1983-02-22 | 1984-08-29 | Koninklijke Philips Electronics N.V. | Verfahren zum Herstellen einer massiven Vorform zum Ziehen optischer Fasern |
EP0129291A1 (en) * | 1983-06-15 | 1984-12-27 | Koninklijke Philips Electronics N.V. | Method of and device for manufacturing optical fibres |
US4536640A (en) | 1981-07-14 | 1985-08-20 | The Standard Oil Company (Ohio) | High pressure, non-logical thermal equilibrium arc plasma generating apparatus for deposition of coatings upon substrates |
FR2584101A1 (fr) * | 1985-06-26 | 1987-01-02 | Comp Generale Electricite | Dispositif pour fabriquer un composant optique a gradient d'indice de refraction |
EP0132011A3 (en) * | 1983-07-16 | 1987-08-19 | Philips Patentverwaltung Gmbh | Process for producing fibre light guides |
US4741747A (en) | 1984-12-12 | 1988-05-03 | U.S. Philips Corporation | Method of fabricating optical fibers |
EP0270157A1 (de) * | 1986-11-17 | 1988-06-08 | Koninklijke Philips Electronics N.V. | Vorrichtung zum Anbringen von Glasschichten auf der Innenseite eines Rohres |
US4761170A (en) | 1985-06-20 | 1988-08-02 | Polaroid Corporation | Method for employing plasma in dehydration and consolidation of preforms |
DE3720029A1 (de) * | 1987-06-16 | 1988-12-29 | Philips Patentverwaltung | Verfahren zur herstellung von lichtleitfasern |
US4871383A (en) | 1987-06-16 | 1989-10-03 | U.S. Philips Corp. | Method of manufacturing optical fibres |
EP0295745A3 (en) * | 1987-06-16 | 1989-11-29 | Philips Patentverwaltung Gmbh | Method for making optical fibers |
US5188648A (en) * | 1985-07-20 | 1993-02-23 | U.S. Philips Corp. | Method of manufacturing optical fibres |
US6138478A (en) | 1992-09-21 | 2000-10-31 | Ceramoptec Industries, Inc. | Method of forming an optical fiber preform using an E020 plasma field configuration |
NL1018951C2 (nl) * | 2001-09-13 | 2003-03-14 | Draka Fibre Technology Bv | Werkwijze voor het vervaardigen van een staafvormig vormdeel alsmede een werkwijze voor het uit een dergelijk staafvormig vormdeel vervaardigen van optische vezels. |
US6574994B2 (en) * | 2001-06-18 | 2003-06-10 | Corning Incorporated | Method of manufacturing multi-segmented optical fiber and preform |
US20030118305A1 (en) * | 2001-02-17 | 2003-06-26 | Reed William Alfred | Grin fiber lenses |
US20040115377A1 (en) * | 2002-06-11 | 2004-06-17 | Ronghua Wei | Tubular structures with coated interior surfaces |
US6764714B2 (en) | 2002-06-11 | 2004-07-20 | Southwest Research Institute | Method for depositing coatings on the interior surfaces of tubular walls |
US7052736B2 (en) | 2002-06-11 | 2006-05-30 | Southwest Research Institute | Method for depositing coatings on the interior surfaces of tubular structures |
US20070003197A1 (en) * | 2002-04-10 | 2007-01-04 | Pieter Matthijsse | Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith |
US20070127878A1 (en) * | 2005-11-10 | 2007-06-07 | Draka Comteq B.V. | Single mode optical fiber |
US20070280615A1 (en) * | 2006-04-10 | 2007-12-06 | Draka Comteq B.V. | Single-mode Optical Fiber |
US20080138021A1 (en) * | 2006-07-04 | 2008-06-12 | Draka Comteq B.V. | Fluorine-Doped Optical Fiber |
US20080274300A1 (en) * | 2007-05-01 | 2008-11-06 | Mattheus Jacobus Nicolaas Van Stralen | Apparatus for carrying out plasma chemical vapour deposition and method of manufacturing an optical preform |
WO2009062131A1 (en) | 2007-11-09 | 2009-05-14 | Draka Comteq, B.V. | Microbend- resistant optical fiber |
US20090148613A1 (en) * | 2007-12-10 | 2009-06-11 | Furukawa Electric North America, Inc. | Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique |
US20090279836A1 (en) * | 2008-05-06 | 2009-11-12 | Draka Comteq B.V. | Bend-Insensitive Single-Mode Optical Fiber |
US20100092139A1 (en) * | 2007-11-09 | 2010-04-15 | Draka Comteq, B.V. | Reduced-Diameter, Easy-Access Loose Tube Cable |
US20100092140A1 (en) * | 2007-11-09 | 2010-04-15 | Draka Comteq, B.V. | Optical-Fiber Loose Tube Cables |
US20100092138A1 (en) * | 2007-11-09 | 2010-04-15 | Draka Comteq, B.V. | ADSS Cables with High-Performance Optical Fiber |
US20100119202A1 (en) * | 2008-11-07 | 2010-05-13 | Draka Comteq, B.V. | Reduced-Diameter Optical Fiber |
US20100135624A1 (en) * | 2007-11-09 | 2010-06-03 | Draka Comteq, B.V. | Reduced-Size Flat Drop Cable |
US20100135625A1 (en) * | 2007-11-09 | 2010-06-03 | Draka Comteq, B.V. | Reduced-Diameter Ribbon Cables with High-Performance Optical Fiber |
US20100135623A1 (en) * | 2007-11-09 | 2010-06-03 | Draka Comteq, B.V. | Single-Fiber Drop Cables for MDU Deployments |
US20110069932A1 (en) * | 2007-11-09 | 2011-03-24 | Draka Comteq, B.V. | High-Fiber-Density Optical-Fiber Cable |
US20110308461A1 (en) * | 2004-06-22 | 2011-12-22 | Walton Scott G | Electron Beam Enhanced Nitriding System (EBENS) |
EP2527893A1 (en) | 2011-05-27 | 2012-11-28 | Draka Comteq BV | Single mode optical fiber |
EP2533082A1 (en) | 2011-06-09 | 2012-12-12 | Draka Comteq BV | Single mode optical fiber |
EP2541292A1 (en) | 2011-07-01 | 2013-01-02 | Draka Comteq BV | Multimode optical fibre |
WO2015092464A1 (en) | 2013-12-20 | 2015-06-25 | Draka Comteq Bv | Single mode fibre with a trapezoid core, showing reduced losses |
US9405062B2 (en) | 2011-04-27 | 2016-08-02 | Draka Comteq B.V. | High-bandwidth, radiation-resistant multimode optical fiber |
WO2019122943A1 (en) | 2017-12-21 | 2019-06-27 | Draka Comteq France | Bending-loss insensitve single mode fibre, with a shallow trench, and corresponding optical system |
US10767264B2 (en) | 2016-04-10 | 2020-09-08 | Draka Comteq B.V. | Method and an apparatus for performing a plasma chemical vapour deposition process and a method |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51119237A (en) * | 1975-04-11 | 1976-10-19 | Sumitomo Electric Ind Ltd | Manufacturing method of glass fiber for optical communication |
JPS599490B2 (ja) * | 1975-04-16 | 1984-03-02 | 日本電信電話株式会社 | 光学的繊維の製造方法 |
DE2642949C3 (de) * | 1976-09-24 | 1980-11-20 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Verfahren zur Herstellung von innenbeschichteten Glasrohren zum Ziehen von Lichtleitfasern |
CA1080562A (en) * | 1977-02-10 | 1980-07-01 | Frederick D. King | Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube |
GB1603949A (en) * | 1978-05-30 | 1981-12-02 | Standard Telephones Cables Ltd | Plasma deposit |
DE2950446A1 (en) * | 1978-08-18 | 1980-12-04 | Western Electric Co | The fabrication of optical fibers utilizing thermophoretic deposition of glass precursor particulates |
DE2929166A1 (de) * | 1979-07-19 | 1981-01-29 | Philips Patentverwaltung | Verfahren zur herstellung von lichtleitfasern |
DE3027450C2 (de) * | 1980-07-19 | 1982-06-03 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Verfahren zur Innenbeschichtung eines Glas-Substratrohres für die Herstellung eines Glasfaser-Lichtleiters |
NL8103648A (nl) * | 1981-08-03 | 1983-03-01 | Philips Nv | Werkwijze voor de vervaardiging van voorvormen voor het trekken van optische vezels en voorvormen volgens deze werkwijze verkregen en inrichting voor het continu vervaardigen van optische vezels. |
NL8201453A (nl) * | 1982-04-06 | 1983-11-01 | Philips Nv | Werkwijze voor de vervaardiging van optische vezels. |
DE3222189A1 (de) * | 1982-06-12 | 1984-01-26 | Hans Dr.Rer.Nat. 5370 Kall Beerwald | Plasmaverfahren zur innenbeschichtung von rohren mit dielektrischem material |
DE3330910A1 (de) * | 1983-08-27 | 1985-03-07 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Verfahren zum herstellen eines reaktionsgefaesses fuer kristallzuchtzwecke |
US4718929A (en) * | 1983-10-21 | 1988-01-12 | Corning Glass Works | Vapor phase method for making metal halide glasses |
GB8414878D0 (en) * | 1984-06-11 | 1984-07-18 | Gen Electric Co Plc | Integrated optical waveguides |
DE3626276A1 (de) * | 1986-08-02 | 1988-02-18 | Rheydt Kabelwerk Ag | Verfahren zur herstellung von vorformen fuer lichtleitfasern |
DE4203369C2 (de) * | 1992-02-06 | 1994-08-11 | Ceramoptec Gmbh | Verfahren und Vorrichtung zur Herstellung von Vorformen für Lichtwellenleiter |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA622011A (en) * | 1961-06-13 | G. J. Gunther Gunnar | Producing oxide coatings on glass surfaces | |
US3484276A (en) * | 1965-07-31 | 1969-12-16 | Philips Corp | Apparatus for and method of providing a melted insulating coating on the inner surface of a tubular article |
US3711262A (en) * | 1970-05-11 | 1973-01-16 | Corning Glass Works | Method of producing optical waveguide fibers |
US3932162A (en) * | 1974-06-21 | 1976-01-13 | Corning Glass Works | Method of making glass optical waveguide |
US3934061A (en) * | 1972-03-30 | 1976-01-20 | Corning Glass Works | Method of forming planar optical waveguides |
US3938974A (en) * | 1973-04-27 | 1976-02-17 | Macedo Pedro B | Method of producing optical wave guide fibers |
US3957474A (en) * | 1974-04-24 | 1976-05-18 | Nippon Telegraph And Telephone Public Corporation | Method for manufacturing an optical fibre |
US3961926A (en) * | 1974-12-27 | 1976-06-08 | International Telephone And Telegraph Corporation | Preparation of germania cores in optical fibers |
US4011006A (en) * | 1974-09-26 | 1977-03-08 | Bell Telephone Laboratories, Incorporated | GeO2 -B2 O3 -SiO2 Optical glass and lightguides |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1427327A (en) * | 1972-06-08 | 1976-03-10 | Standard Telephones Cables Ltd | Glass optical fibres |
JPS4983453A (enrdf_load_stackoverflow) * | 1972-12-14 | 1974-08-10 |
-
1974
- 1974-09-14 DE DE2444100A patent/DE2444100C3/de not_active Expired
-
1975
- 1975-09-11 JP JP10954675A patent/JPS5651138B2/ja not_active Expired
- 1975-09-11 GB GB37392/75A patent/GB1519994A/en not_active Expired
- 1975-09-12 FR FR7528025A patent/FR2284572A1/fr active Granted
-
1979
- 1979-09-28 US US06/079,847 patent/USRE30635E/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA622011A (en) * | 1961-06-13 | G. J. Gunther Gunnar | Producing oxide coatings on glass surfaces | |
US3484276A (en) * | 1965-07-31 | 1969-12-16 | Philips Corp | Apparatus for and method of providing a melted insulating coating on the inner surface of a tubular article |
US3711262A (en) * | 1970-05-11 | 1973-01-16 | Corning Glass Works | Method of producing optical waveguide fibers |
US3934061A (en) * | 1972-03-30 | 1976-01-20 | Corning Glass Works | Method of forming planar optical waveguides |
US3938974A (en) * | 1973-04-27 | 1976-02-17 | Macedo Pedro B | Method of producing optical wave guide fibers |
US3957474A (en) * | 1974-04-24 | 1976-05-18 | Nippon Telegraph And Telephone Public Corporation | Method for manufacturing an optical fibre |
US3932162A (en) * | 1974-06-21 | 1976-01-13 | Corning Glass Works | Method of making glass optical waveguide |
US4011006A (en) * | 1974-09-26 | 1977-03-08 | Bell Telephone Laboratories, Incorporated | GeO2 -B2 O3 -SiO2 Optical glass and lightguides |
US3961926A (en) * | 1974-12-27 | 1976-06-08 | International Telephone And Telegraph Corporation | Preparation of germania cores in optical fibers |
Non-Patent Citations (1)
Title |
---|
Powell, C. F., et al., Vapor Deposition The Electrochemical Society, John Wiley and Son, Inc., New York (1966), p. 424. |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4422915A (en) | 1979-09-04 | 1983-12-27 | Battelle Memorial Institute | Preparation of colored polymeric film-like coating |
US4384038A (en) | 1980-11-25 | 1983-05-17 | U.S. Philips Corporation | Method of producing integrated optical waveguide circuits and circuits obtained by this method |
US4405655A (en) | 1981-05-01 | 1983-09-20 | U.S. Philips Corporation | Method and arrangement for internally coating a tube by reactive deposition from a gas mixture activated by a plasma |
US4536640A (en) | 1981-07-14 | 1985-08-20 | The Standard Oil Company (Ohio) | High pressure, non-logical thermal equilibrium arc plasma generating apparatus for deposition of coatings upon substrates |
US4468413A (en) | 1982-02-15 | 1984-08-28 | U.S. Philips Corporation | Method of manufacturing fluorine-doped optical fibers |
EP0117009A1 (de) | 1983-02-22 | 1984-08-29 | Koninklijke Philips Electronics N.V. | Verfahren zum Herstellen einer massiven Vorform zum Ziehen optischer Fasern |
EP0129291A1 (en) * | 1983-06-15 | 1984-12-27 | Koninklijke Philips Electronics N.V. | Method of and device for manufacturing optical fibres |
US4966614A (en) * | 1983-06-15 | 1990-10-30 | U.S. Philips Corp. | Method of and device for manufacturing optical fibers |
EP0132011A3 (en) * | 1983-07-16 | 1987-08-19 | Philips Patentverwaltung Gmbh | Process for producing fibre light guides |
US4741747A (en) | 1984-12-12 | 1988-05-03 | U.S. Philips Corporation | Method of fabricating optical fibers |
US4761170A (en) | 1985-06-20 | 1988-08-02 | Polaroid Corporation | Method for employing plasma in dehydration and consolidation of preforms |
FR2584101A1 (fr) * | 1985-06-26 | 1987-01-02 | Comp Generale Electricite | Dispositif pour fabriquer un composant optique a gradient d'indice de refraction |
US5188648A (en) * | 1985-07-20 | 1993-02-23 | U.S. Philips Corp. | Method of manufacturing optical fibres |
EP0270157A1 (de) * | 1986-11-17 | 1988-06-08 | Koninklijke Philips Electronics N.V. | Vorrichtung zum Anbringen von Glasschichten auf der Innenseite eines Rohres |
DE3720029A1 (de) * | 1987-06-16 | 1988-12-29 | Philips Patentverwaltung | Verfahren zur herstellung von lichtleitfasern |
US4871383A (en) | 1987-06-16 | 1989-10-03 | U.S. Philips Corp. | Method of manufacturing optical fibres |
EP0295745A3 (en) * | 1987-06-16 | 1989-11-29 | Philips Patentverwaltung Gmbh | Method for making optical fibers |
US5133794A (en) * | 1987-06-16 | 1992-07-28 | U.S. Philips Corp. | Method of manufacturing optical fibres |
US6138478A (en) | 1992-09-21 | 2000-10-31 | Ceramoptec Industries, Inc. | Method of forming an optical fiber preform using an E020 plasma field configuration |
US6802190B2 (en) * | 2001-02-17 | 2004-10-12 | Lucent Technologies Inc. | Method of fabricating a GRIN fiber |
US20030118305A1 (en) * | 2001-02-17 | 2003-06-26 | Reed William Alfred | Grin fiber lenses |
US6574994B2 (en) * | 2001-06-18 | 2003-06-10 | Corning Incorporated | Method of manufacturing multi-segmented optical fiber and preform |
US7092611B2 (en) | 2001-09-13 | 2006-08-15 | Draka Fibre Technology B.V. | Method for manufacturing a bar-shaped preform as well as a method for manufacturing optical fibres from such a bar-shaped preform |
NL1018951C2 (nl) * | 2001-09-13 | 2003-03-14 | Draka Fibre Technology Bv | Werkwijze voor het vervaardigen van een staafvormig vormdeel alsmede een werkwijze voor het uit een dergelijk staafvormig vormdeel vervaardigen van optische vezels. |
US7734135B2 (en) | 2002-04-10 | 2010-06-08 | Draka Comteq B.V. | Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith |
US20070003197A1 (en) * | 2002-04-10 | 2007-01-04 | Pieter Matthijsse | Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith |
US20040115377A1 (en) * | 2002-06-11 | 2004-06-17 | Ronghua Wei | Tubular structures with coated interior surfaces |
US6764714B2 (en) | 2002-06-11 | 2004-07-20 | Southwest Research Institute | Method for depositing coatings on the interior surfaces of tubular walls |
US7052736B2 (en) | 2002-06-11 | 2006-05-30 | Southwest Research Institute | Method for depositing coatings on the interior surfaces of tubular structures |
US7351480B2 (en) | 2002-06-11 | 2008-04-01 | Southwest Research Institute | Tubular structures with coated interior surfaces |
US20110308461A1 (en) * | 2004-06-22 | 2011-12-22 | Walton Scott G | Electron Beam Enhanced Nitriding System (EBENS) |
US8837889B2 (en) | 2005-11-10 | 2014-09-16 | Draka Comteq, B.V. | Single mode optical fiber |
US7995889B2 (en) | 2005-11-10 | 2011-08-09 | Draka Comteq, B.V. | Single mode optical fiber |
US20070127878A1 (en) * | 2005-11-10 | 2007-06-07 | Draka Comteq B.V. | Single mode optical fiber |
US20100067859A1 (en) * | 2005-11-10 | 2010-03-18 | Draka Comteq B.V. | Single Mode Optical Fiber |
US7623747B2 (en) | 2005-11-10 | 2009-11-24 | Draka Comteq B.V. | Single mode optical fiber |
US8103143B2 (en) | 2006-04-10 | 2012-01-24 | Draka Comteq, B.V. | Single-mode optical fiber |
US7587111B2 (en) | 2006-04-10 | 2009-09-08 | Draka Comteq B.V. | Single-mode optical fiber |
US20070280615A1 (en) * | 2006-04-10 | 2007-12-06 | Draka Comteq B.V. | Single-mode Optical Fiber |
US20100021117A1 (en) * | 2006-04-10 | 2010-01-28 | Draka Comteq B.V. | Single-Mode Optical Fiber |
US20110164852A1 (en) * | 2006-04-10 | 2011-07-07 | Draka Comteq B.V. | Single-Mode Optical Fiber |
US7899293B2 (en) | 2006-04-10 | 2011-03-01 | Draka Comteq, B.V. | Single-mode optical fiber |
US20090185780A1 (en) * | 2006-07-04 | 2009-07-23 | Draka Comteq B.V. | Fluorine-Doped Optical Fiber |
US20080138021A1 (en) * | 2006-07-04 | 2008-06-12 | Draka Comteq B.V. | Fluorine-Doped Optical Fiber |
US7689093B2 (en) | 2006-07-04 | 2010-03-30 | Draka Comteq B.V. | Fluorine-doped optical fiber |
US7526177B2 (en) | 2006-07-04 | 2009-04-28 | Draka Comteq B.V. | Fluorine-doped optical fiber |
US8662011B2 (en) * | 2007-05-01 | 2014-03-04 | Draka Comteq B.V. | Apparatus for carrying out plasma chemical vapour deposition and method of manufacturing an optical preform |
US20080274300A1 (en) * | 2007-05-01 | 2008-11-06 | Mattheus Jacobus Nicolaas Van Stralen | Apparatus for carrying out plasma chemical vapour deposition and method of manufacturing an optical preform |
US20100092138A1 (en) * | 2007-11-09 | 2010-04-15 | Draka Comteq, B.V. | ADSS Cables with High-Performance Optical Fiber |
US8165439B2 (en) | 2007-11-09 | 2012-04-24 | Draka Comteq, B.V. | ADSS cables with high-performance optical fiber |
US20100135623A1 (en) * | 2007-11-09 | 2010-06-03 | Draka Comteq, B.V. | Single-Fiber Drop Cables for MDU Deployments |
US20100135624A1 (en) * | 2007-11-09 | 2010-06-03 | Draka Comteq, B.V. | Reduced-Size Flat Drop Cable |
US20100290781A1 (en) * | 2007-11-09 | 2010-11-18 | Draka Comteq B.V. | Microbend-Resistant Optical Fiber |
WO2009062131A1 (en) | 2007-11-09 | 2009-05-14 | Draka Comteq, B.V. | Microbend- resistant optical fiber |
US8467650B2 (en) | 2007-11-09 | 2013-06-18 | Draka Comteq, B.V. | High-fiber-density optical-fiber cable |
US20110069932A1 (en) * | 2007-11-09 | 2011-03-24 | Draka Comteq, B.V. | High-Fiber-Density Optical-Fiber Cable |
US8385705B2 (en) | 2007-11-09 | 2013-02-26 | Draka Comteq, B.V. | Microbend-resistant optical fiber |
US20100092140A1 (en) * | 2007-11-09 | 2010-04-15 | Draka Comteq, B.V. | Optical-Fiber Loose Tube Cables |
US20100092139A1 (en) * | 2007-11-09 | 2010-04-15 | Draka Comteq, B.V. | Reduced-Diameter, Easy-Access Loose Tube Cable |
US8031997B2 (en) | 2007-11-09 | 2011-10-04 | Draka Comteq, B.V. | Reduced-diameter, easy-access loose tube cable |
US8041167B2 (en) | 2007-11-09 | 2011-10-18 | Draka Comteq, B.V. | Optical-fiber loose tube cables |
US8041168B2 (en) | 2007-11-09 | 2011-10-18 | Draka Comteq, B.V. | Reduced-diameter ribbon cables with high-performance optical fiber |
US8081853B2 (en) | 2007-11-09 | 2011-12-20 | Draka Comteq, B.V. | Single-fiber drop cables for MDU deployments |
US8265442B2 (en) | 2007-11-09 | 2012-09-11 | Draka Comteq, B.V. | Microbend-resistant optical fiber |
US20090175583A1 (en) * | 2007-11-09 | 2009-07-09 | Overton Bob J | Microbend-Resistant Optical Fiber |
US20100135625A1 (en) * | 2007-11-09 | 2010-06-03 | Draka Comteq, B.V. | Reduced-Diameter Ribbon Cables with High-Performance Optical Fiber |
US8145026B2 (en) | 2007-11-09 | 2012-03-27 | Draka Comteq, B.V. | Reduced-size flat drop cable |
US8145027B2 (en) | 2007-11-09 | 2012-03-27 | Draka Comteq, B.V. | Microbend-resistant optical fiber |
US8252387B2 (en) * | 2007-12-10 | 2012-08-28 | Ofs Fitel, Llc | Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique |
US20090148613A1 (en) * | 2007-12-10 | 2009-06-11 | Furukawa Electric North America, Inc. | Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique |
US8145025B2 (en) | 2008-05-06 | 2012-03-27 | Draka Comteq, B.V. | Single-mode optical fiber having reduced bending losses |
US8131125B2 (en) | 2008-05-06 | 2012-03-06 | Draka Comteq, B.V. | Bend-insensitive single-mode optical fiber |
US20090279836A1 (en) * | 2008-05-06 | 2009-11-12 | Draka Comteq B.V. | Bend-Insensitive Single-Mode Optical Fiber |
US7889960B2 (en) | 2008-05-06 | 2011-02-15 | Draka Comteq B.V. | Bend-insensitive single-mode optical fiber |
US20110135264A1 (en) * | 2008-05-06 | 2011-06-09 | Draka Comteq B.V. | Bend-Insensitive Single-Mode Optical Fiber |
US8428414B2 (en) | 2008-05-06 | 2013-04-23 | Draka Comteq, B.V. | Single-mode optical fiber having reduced bending losses |
US9244220B2 (en) | 2008-11-07 | 2016-01-26 | Drake Comteq, B.V. | Reduced-diameter optical fiber |
US20100119202A1 (en) * | 2008-11-07 | 2010-05-13 | Draka Comteq, B.V. | Reduced-Diameter Optical Fiber |
US8600206B2 (en) | 2008-11-07 | 2013-12-03 | Draka Comteq, B.V. | Reduced-diameter optical fiber |
US9405062B2 (en) | 2011-04-27 | 2016-08-02 | Draka Comteq B.V. | High-bandwidth, radiation-resistant multimode optical fiber |
US8798423B2 (en) | 2011-05-27 | 2014-08-05 | Draka Comteq, B.V. | Single-mode optical fiber |
EP2527893A1 (en) | 2011-05-27 | 2012-11-28 | Draka Comteq BV | Single mode optical fiber |
US8798424B2 (en) | 2011-06-09 | 2014-08-05 | Draka Comteq B.V. | Single-mode optical fiber |
EP2533082A1 (en) | 2011-06-09 | 2012-12-12 | Draka Comteq BV | Single mode optical fiber |
EP2541292A1 (en) | 2011-07-01 | 2013-01-02 | Draka Comteq BV | Multimode optical fibre |
US8879878B2 (en) | 2011-07-01 | 2014-11-04 | Draka Comteq, B.V. | Multimode optical fiber |
WO2015092464A1 (en) | 2013-12-20 | 2015-06-25 | Draka Comteq Bv | Single mode fibre with a trapezoid core, showing reduced losses |
US20170031089A1 (en) * | 2013-12-20 | 2017-02-02 | Draka Comteq B.V. | Single Mode Fibre with a Trapezoid Core, Showing Reduced Losses |
US10295733B2 (en) * | 2013-12-20 | 2019-05-21 | Draka Comteq B.V. | Single mode fibre with a trapezoid core, showing reduced losses |
US10767264B2 (en) | 2016-04-10 | 2020-09-08 | Draka Comteq B.V. | Method and an apparatus for performing a plasma chemical vapour deposition process and a method |
WO2019122943A1 (en) | 2017-12-21 | 2019-06-27 | Draka Comteq France | Bending-loss insensitve single mode fibre, with a shallow trench, and corresponding optical system |
US10962708B2 (en) | 2017-12-21 | 2021-03-30 | Draka Comteq France | Bending-loss insensitive single mode fibre, with a shallow trench, and corresponding optical system |
Also Published As
Publication number | Publication date |
---|---|
FR2284572A1 (fr) | 1976-04-09 |
JPS5651138B2 (enrdf_load_stackoverflow) | 1981-12-03 |
JPS5154446A (enrdf_load_stackoverflow) | 1976-05-13 |
GB1519994A (en) | 1978-08-02 |
FR2284572B1 (enrdf_load_stackoverflow) | 1979-04-13 |
DE2444100B2 (de) | 1978-08-10 |
DE2444100A1 (de) | 1976-03-25 |
DE2444100C3 (de) | 1979-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE30635E (en) | Method of producing internally coated glass tubes for the drawing of fibre optic light conductors | |
US4145456A (en) | Method of producing internally coated glass tubes for the drawing of fibre optic light conductors | |
US3966446A (en) | Axial fabrication of optical fibers | |
CA1080562A (en) | Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube | |
US4230396A (en) | High bandwidth optical waveguides and method of fabrication | |
US4145458A (en) | Method of producing internally coated glass tubes for the drawing of fiber-optic light conductors | |
US4229070A (en) | High bandwidth optical waveguide having B2 O3 free core and method of fabrication | |
CA1151456A (en) | High bandwidth optical waveguide | |
CA1157654A (en) | Method of producing optical fibers | |
US3932162A (en) | Method of making glass optical waveguide | |
US4249925A (en) | Method of manufacturing an optical fiber | |
US4331462A (en) | Optical fiber fabrication by a plasma generator | |
EP0149645B1 (en) | Method of fabricating high birefringence fibers | |
CA1135571A (en) | Method of forming a substantially continuous optical waveguide and article | |
US4125389A (en) | Method for manufacturing an optical fibre with plasma activated deposition in a tube | |
JPH055774B2 (enrdf_load_stackoverflow) | ||
US4206968A (en) | Optical fiber and method for producing the same | |
US3932160A (en) | Method for forming low loss optical waveguide fibers | |
US5188648A (en) | Method of manufacturing optical fibres | |
EP0064785A1 (en) | Method and arrangement for internally coating a tube by reactive deposition from a gas mixture activated by a plasma | |
CN102149648B (zh) | 光纤母材的制造方法 | |
US4932990A (en) | Methods of making optical fiber and products produced thereby | |
JPH0624782A (ja) | 光ファイバー製造用の外面被覆ガラス体を製造する方法と装置 | |
Hünlich et al. | Fiber-preform fabrication using plasma technology: a review | |
Niizeki | Recent progress in glass fibers for optical communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PLASMA OPTICAL FIBRE B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:U.S. PHILIPS CORPORATION;REEL/FRAME:009207/0784 Effective date: 19980430 |