US9949704B2 - Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage - Google Patents

Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage Download PDF

Info

Publication number
US9949704B2
US9949704B2 US14/401,330 US201214401330A US9949704B2 US 9949704 B2 US9949704 B2 US 9949704B2 US 201214401330 A US201214401330 A US 201214401330A US 9949704 B2 US9949704 B2 US 9949704B2
Authority
US
United States
Prior art keywords
pharmaceutical fluid
injection
phase
volume
parameter generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/401,330
Other languages
English (en)
Other versions
US20150141813A1 (en
Inventor
John F. Kalafut
Corey A. Kemper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Healthcare LLC
Original Assignee
Bayer Healthcare LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare LLC filed Critical Bayer Healthcare LLC
Assigned to MEDRAD, INC. reassignment MEDRAD, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEMPER, COREY, KALAFUT, JOHN F
Assigned to BAYER MEDICAL CARE INC. reassignment BAYER MEDICAL CARE INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MEDRAD, INC.
Assigned to MEDRAD INC. reassignment MEDRAD INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEMPER, COREY, KALAFUT, JOHN F.
Assigned to BAYER MEDICAL CARE INC. reassignment BAYER MEDICAL CARE INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MEDRAD INC.
Publication of US20150141813A1 publication Critical patent/US20150141813A1/en
Assigned to BAYER HEALTHCARE LLC reassignment BAYER HEALTHCARE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Bayer Medical Care, Inc.
Assigned to BAYER HEALTHCARE LLC reassignment BAYER HEALTHCARE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Bayer Medical Care, Inc.
Application granted granted Critical
Publication of US9949704B2 publication Critical patent/US9949704B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters

Definitions

  • the present invention is related to devices, systems and methods for fluid delivery, and, particularly, to devices, systems and methods for delivery of a pharmaceutical fluid to a patient, and, especially for delivery of a contrast medium to a patient during a medical injection procedure for diagnostic and/or therapeutic reasons.
  • contrast medium with, for example, a power injector for radiological exams typically starts with the clinician filling an empty, disposable syringe with a certain volume of contrast agent pharmaceutical. In other procedures, a syringe pre-filled with contrast agent may be used. The clinician then determines a volumetric flow-rate and a volume of contrast to be administered to the patient to enable a diagnostic image.
  • An injection of saline solution, having a volume and flow rate determined by the operator often follows the administration of contrast agent into the veins or arteries.
  • a number of currently available injectors allow for the operator to program a plurality of discrete phases of volumetric flow rates and volumes to deliver.
  • the SPECTRIS SOLARIS® and STELLANT® injectors available from MEDRAD, INC., a business of Bayer HealthCare provide for entry of up to and including six discrete pairs or phases of volumetric flow rate and volume for delivery to a patient (for example, for contrast and/or saline).
  • a patient for example, for contrast and/or saline.
  • injectors and injector control protocols for use therewith are disclosed, for example, in U.S. Pat. No. 6,643,537 and Published U.S. Patent Application Publication No. 2004/0064041, assigned to the assignee of the present invention, the disclosures of which are incorporated herein by reference.
  • the values or parameters within the fields for such phases are generally entered manually by the operator for each type of procedure and for each patient undergoing an injection/imaging procedure. Alternatively, earlier manually entered values of volume and flow rate can be stored and later recalled from the computer memory.
  • Fleischmann and coworkers treated the cardiovascular physiology and contrast kinetics as a “black box” and determined its impulse response by forcing the system with a short bolus of contrast (approximating a unit impulse). In that method, one performs a Fourier transform on the impulse response and manipulates this transfer function estimate to determine an estimate of a more optimal injection trajectory than practiced previously.
  • D. Fleischmann and K. Hittmair “Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform,” J. Comput. Assist Tomogr., vol. 23, pp. 474-84 (1999), the disclosure of which is incorporated herein by reference.
  • Contrasic administration of contrast agent results in a non-uniform enhancement curve.
  • contrast agent typically, 100 to 150 mL of contrast at one flow rate
  • K. T. Bae “Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model,” Radiology, vol. 227, pp. 809-16 (2003), the disclosures of which are incorporated herein by reference.
  • Fleischmann and Hitmair thus presented a scheme that attempted to adapt the administration of contrast agent into a biphasic injection tailored to the individual patient with the intent of optimizing imaging of the aorta.
  • a fundamental difficulty with controlling the presentation of CT contrast agent is that hyperosmolar drug diffuses quickly from the central blood compartment. Additionally, the contrast is mixed with and diluted by blood that does not contain contrast.
  • Fleischmann proscribed that a small bolus injection, a test bolus injection, of contrast agent (16 ml of contrast at 4 ml/s) be injected prior to the diagnostic scan.
  • a dynamic enhancement scan was made across a vessel of interest.
  • the resulting processed scan data (test scan) was interpreted as the impulse response of the patient/contrast medium system.
  • Fleischmann derived the Fourier transform of the patient transfer function by dividing the Fourier transform of the test scan by the Fourier transform of the test injection. Assuming the system was a linear time invariant (LTI) system and that the desired output time domain signal was known (a flat diagnostic scan at a predefined enhancement level)
  • Fleischmann derived an input time signal by dividing the frequency domain representations of the desired output by that of the patient transfer function. Because the method of Fleischmann et al. computes input signals that are not realizable in reality as a result of injection system limitations (for example, flow rate limitations), one must truncate and approximate the computed continuous time signal.
  • a powered injector In addition, to control a powered injector to provide a desired time enhancement curve, the operation of a powered injector should be carefully controlled to ensure the safety of the patient. For example, it is desirable not to exceed a certain fluid pressure during an injection procedure. In addition to potential hazards to the patient (for example, vessel damage) and potential degradation of the diagnostic and/or therapeutic utility of the injection fluid, excessive pressure can lead to equipment failure. Disposable syringes and other fluid path components (sometimes referred to collectively as a “disposable set”) are typically fabricated from plastics of various burst strengths. If the injector causes pressure in the fluid path to rise above the burst strength of a disposable fluid path element, the fluid path element will fail.
  • a system for patient imaging including an imaging system and a parameter generator to determine parameters of at least a first phase of an injection procedure, wherein the imaging system comprises a scanner comprising at least one x-ray tube and wherein the parameter generator is programmed to determine at least one of the parameters on the basis of a voltage to be applied to the at least one x-ray tube during an imaging procedure.
  • the scanner may be a CT scanner, which may be programmable to operate at different x-ray tube voltages.
  • the parameter generator of the system can be in communicative connection with the imaging system. In certain embodiments, the parameter generator can be integrated into the imaging system.
  • the system can further include an injector system, and the injector system can include at least one pressurizing mechanism, at least one fluid container operably associated with the at least one pressurizing mechanism, one of the fluid containers adapted to contain a contrast enhancing agent and one of the fluid containers adapted to contain a diluent, and a controller operably associated with the at least one pressurizing mechanism.
  • the parameter generator can be in communicative connection with at least one of the imaging system and the controller of the injector system, and in certain embodiments, the parameter generator can be integrated into the injector system.
  • the parameter generator can be programmed to determine at least one of a volume of a pharmaceutical fluid to be injected during at least the first phase and a flow rate of the pharmaceutical fluid to be injected during at least the first phase on the basis of the voltage to be applied to the at least one x-ray tube during the imaging procedure.
  • the pharmaceutical fluid may include a contrast enhancing agent.
  • the parameter generator may be programmed to determine X for a particular patient weight from a look-up table wherein X is set forth as a function of patient weight and the voltage to be applied to the at least one x-ray tube during the imaging procedure.
  • the parameter generator can be programmed to determine at least a first flow rate of the pharmaceutical fluid by dividing V 1 by an injection duration of the first phase.
  • the parameter generator may be programmed to determine the injection duration on the basis of one or more criteria inputted by an operator, which criteria can include at least an identification of a body region to be imaged during the imaging procedure.
  • the parameter generator can be further programmed to determine a volume V 2 of pharmaceutical fluid to be delivered in at least a second phase of the injection procedure in which both the pharmaceutical fluid and a diluent are to be delivered.
  • the parameter generator can be programmed to determine the volume of the pharmaceutical fluid to be injected during at least the first phase by adjusting a volume parameter of a baseline injection protocol.
  • Data representing the baseline injection protocol can exists in memory of the system or accessible to the system.
  • the parameter generator can also be programmed to determine the baseline injection protocol on the basis of one or more criteria inputted by an operator.
  • the parameter generator can be programmed to determine the volume of the pharmaceutical fluid to be injected during at least the first phase by applying a tube voltage modification factor to the volume parameter of the baseline injection protocol.
  • the parameter generator can be programmed to determine the flow rate of the pharmaceutical fluid to be injected during at least the first phase by adjusting a flow rate parameter of a baseline injection protocol.
  • Data representing the baseline injection protocol can exists in memory of the system or accessible to the system.
  • the parameter generator can also be programmed to determine the baseline injection protocol on the basis of one or more criteria inputted by an operator.
  • the parameter generator can be programmed to determine the flow rate of the pharmaceutical fluid to be injected during at least the first phase by applying a tube voltage modification factor to the flow rate parameter of the baseline injection protocol.
  • a parameter generator for use in an imaging system comprising a scanner comprising at least one x-ray tube, wherein the parameter generator is programmed to determine parameters of at least a first phase of an injection procedure including at least one parameter on the basis of a voltage to be applied to the at least one x-ray tube during an imaging procedure.
  • a method of controlling an injector system for delivering a pharmaceutical fluid to a patient as part of an imaging procedure the injector system in operative connection with an imaging system comprising a scanner comprising at least one x-ray tube.
  • the steps of the method include: determining, using a parameter generator, injection parameters of at least a first phase of an injection procedure, wherein at least one of the injection parameters is determined on the basis of a voltage to be applied to the at least one x-ray tube during the imaging procedure; and controlling the injector system at least in part on the basis of the determined injection parameters.
  • the injection parameters that are determined include at least one of a volume of the pharmaceutical fluid to be injected during at least the first phase of the injection procedure and a flow rate of the pharmaceutical fluid to be injected during at least the first phase of the injection procedure.
  • X is determined for a particular patient weight from a look-up table wherein X is set forth as a function of patient weight and the voltage to be applied to the at least one x-ray tube during the imaging procedure.
  • At least a first flow rate of the pharmaceutical fluid is determined by dividing V 1 by an injection duration of the first phase.
  • the injection duration of the first phase can be inputted by an operator using a graphical user interface.
  • the injection duration can also be determined by the parameter generator on the basis of one or more criteria inputted by an operator.
  • the volume of the pharmaceutical fluid to be injected during at least the first phase is determined by adjusting a volume parameter of a baseline injection protocol.
  • Data representing the baseline injection protocol can be recalled from memory associated with or accessible by at least one of the injector system, the imaging system, and the parameter generator.
  • the baseline injection protocol may also be determined on the basis of one or more criteria inputted by an operator.
  • the volume of the pharmaceutical fluid to be injected during at least the first phase of the injection procedure can be determined by applying a tube voltage modification factor to the volume parameter of the baseline injection protocol.
  • the flow rate of the pharmaceutical fluid to be injected during at least the first phase is determined by adjusting a flow rate parameter of a baseline injection protocol.
  • Data representing the baseline injection protocol can be recalled from memory associated with or accessible by at least one of the injector system, the imaging system, and the parameter generator.
  • the baseline injection protocol can be determined on the basis of one or more criteria inputted by an operator.
  • the flow rate of the pharmaceutical fluid to be injected during at least the first phase can be determined by applying a tube voltage modification factor to the flow rate parameter of the baseline injection protocol.
  • the method can further include the step of populating the determined injection parameters on a graphical user interface associated with at least one of the injector system and the imaging system.
  • a method of generating an injection protocol for use with an injector system in operative connection with an imaging system comprising a scanner comprising at least one x-ray tube including the step of determining, using a parameter generator, injection parameters of at least a first phase of an injection procedure, wherein at least one of the injection parameters is determined on the basis of a voltage to be applied to the at least one x-ray tube during an imaging procedure.
  • FIG. 1 illustrates an embodiment of a multi-phasic Graphical User Interface (GUI) for use in setting forth parameters for a plurality of phases for a two-syringe injector also illustrated in FIG. 1 .
  • GUI Graphical User Interface
  • FIG. 2 illustrates an embodiment of a graphical interface from which an operator can choose a vascular region of interest for imaging.
  • FIG. 3 illustrates an embodiment of a graphical interface from which an operator can enter variables related to a particular imaging procedure.
  • FIG. 4 illustrates an embodiment of a graphical interface which presents an operator with a computed injection protocol.
  • FIG. 5 illustrates a simulated histogram in the right heart compartment.
  • FIG. 6 illustrates the total contrast material delivered to simulated patients for different weight values and tube voltage values according to contrast delivery protocols generated using an embodiment of a parameter generation system.
  • FIG. 7 illustrates the mean flow rate of contrast material delivered to simulated patients for different weight values and tube voltage values according to contrast delivery protocols generated using an embodiment of a parameter generation system.
  • FIG. 8 illustrates the mean right heart (RH) enhancement value achieved in simulated patients for different weight values and tube voltage values according to contrast delivery protocols generated using an embodiment of a parameter generation system.
  • FIG. 9 illustrates the distribution of patient weight of a patient sampling.
  • FIG. 10 illustrates the distribution of patient height of the patient sampling of FIG. 9 .
  • FIG. 11 illustrates the distribution of patient age of the patient sampling of FIG. 9 .
  • FIG. 12 illustrates the average flow rate at different patient weights for the patient sampling of FIG. 9 according to contrast delivery protocols generated at different tube voltages using an embodiment of a parameter generation system.
  • FIG. 13 illustrates the mean total contrast volume delivered at different patient weights for the patient sampling of FIG. 9 according to contrast delivery protocols generated at different tube voltages using an embodiment of a parameter generation system.
  • FIG. 14 illustrates the mean enhancement value in the patient sampling of FIG. 9 for different scan durations according to contrast delivery protocols generated at different tube voltage values using an embodiment of a parameter generation system.
  • FIG. 15 illustrates the mean flow rate of contrast volume delivered at different scan durations for the patient sampling of FIG. 9 according to contrast delivery protocols generated at different tube voltage values using an embodiment of a parameter generation system.
  • FIG. 16 illustrates the mean enhancement value in the patient sampling of FIG. 9 at different injection durations according to contrast delivery protocols generated at different tube voltage values using an embodiment of a parameter generation system.
  • FIG. 17 illustrates an embodiment of a graphical interface from which an operator can choose a vascular region of interest and baseline protocol for imaging.
  • FIG. 18 illustrates another embodiment of a graphical interface from which an operator can choose a vascular region of interest and baseline protocol for imaging.
  • FIG. 19 illustrates an embodiment of a graphical interface from which an operator can choose a tube voltage value.
  • FIG. 20 illustrates an embodiment of a graphical interface from which an operator can choose a tube voltage value along with other variables of an injection procedure.
  • FIG. 21 illustrates another portion of a graphical interface for use with an embodiment of a parameter generation system.
  • FIG. 22 illustrates another portion of a graphical interface for use with an embodiment of a parameter generation system.
  • FIG. 23 illustrates an embodiment of a graphical interface which presents an operator with a computed injection protocol.
  • FIG. 24 illustrates another embodiment of a graphical interface which presents an operator with a computed injection protocol.
  • FIGS. 25-27 illustrate examples of the methodology exemplified in various embodiments of the present invention.
  • the term “protocol” refers to a group of parameters such as flow rate, volume to be injected, injection duration, etc. that define the amount of fluid(s) to be delivered to a patient during an injection procedure. Such parameters can change over the course of the injection procedure.
  • the term “phase” refers generally to a group of parameters that define the amount of fluid(s) to be delivered to a patient during a period of time (or phase duration) that can be less than the total duration of the injection procedure.
  • the parameters of a phase provide a description of the injection over a time instance corresponding to the time duration of the phase.
  • An injection protocol for a particular injection procedure can, for example, be described as uniphasic (a single phase), biphasic (two phases) or multiphasic (two or more phases, but typically more than two phases).
  • Multiphasic injections also include injections in which the parameters can change continuously over at least a portion of the injection procedure.
  • an injector system such as a dual syringe injector system 100 as illustrated in FIG. 1 and as, for example, disclosed in U.S. Pat. No. 6,643,537 and U.S. Patent Application Publication No. 2004/0064041
  • an injector system may be used to implement the concepts described in detail herein, and typically includes two fluid delivery sources (sometimes referred to as source “A” and source “B” herein, such as syringes) that are operable to introduce a first fluid and/or a second fluid (for example, contrast medium, saline/diluent, etc.) to a patient independently (for example, simultaneously, simultaneously in different volumetric flow proportion to each other, or sequentially or subsequent to each other (that is, A then B, or B then A)).
  • a first fluid and/or a second fluid for example, contrast medium, saline/diluent, etc.
  • source A is in operative connection with a pressurizing mechanism such as a drive member 110 A
  • source B is in operative connection with a pressurizing mechanism such as a drive member 110 B
  • Source A and source B can each be, for example, a fluid container.
  • the injector system 100 includes a controller 200 in operative connection with injector system 100 and drive members 110 A and 110 B that is operable to control the operation of drive members 110 A and 110 B to control injection of fluid A (for example, contrast medium) from source A and injection of fluid B (for example, saline/diluent) from source B, respectively.
  • Controller 200 can, for example, include a user interface comprising a display 210 .
  • Controller 200 can also include a processor 220 (for example, a digital microprocessor as known in the art) in operative connection with a memory 230 .
  • the system can further include an imaging system 300 .
  • Imaging system 300 can, for example, be a Computed Tomography (CT) system or another tomographic imaging system.
  • CT Computed Tomography
  • the injector system 100 can be in communicative connection with imaging system 300 , and one, a plurality or all the components of the injector system 100 and imaging system 300 can be integrated into a single device.
  • a CT system typically includes a scanner which employs x-rays to create an image utilizing the principle of attenuation. Attenuation represents a measure of the gradual loss in intensity of a flux, such as an x-ray, as it passes through a medium, such as the tissue, bone and other materials of the body.
  • CT systems generally include an x-ray source, typically an x-ray tube or tubes, and one or more x-ray sensors located opposite the x-ray source for capturing the attenuated x-rays after they pass through the body, including body structures that may be filled with a contrasting agent.
  • Tube Voltage to K-Factor Relationship Tube Voltage (kV p ) K-Factor (HU/(mgI ⁇ mL ⁇ 1 )) 80 41 100 31 120 25 140 21
  • the attenuation to contrast concentration ratio varies based on the voltage being applied to the x-ray tube, all else being equal, two scans carried out using the same contrast concentration at different x-ray tube voltages will produce different images.
  • an increased attenuation creates a brighter opacification and greater image contrast between the contrast-filled structures and the surrounding tissue.
  • the opacification can increase as the tube voltage decreases, the volume of contrast needed to achieve sufficient contrast opacification in a territory of interest can be reduced by using lower tube voltages.
  • a greater volume of contrast may be needed to achieve sufficient contrast opacification and adequate imaging where higher tube voltages are being used during the scanning procedure.
  • phase parameters predetermined as being effective for the type of imaging procedure being performed that are based, at least in part, on the tube voltage that will be applied during the imaging procedure. Tailoring the phase parameters to account for tube voltage has been found to not only lead to contrast savings, but also help to avoid less than ideal enhancement outcomes for higher tube voltages where the HU/(mgI ⁇ mL ⁇ 1 ) ratio is smaller.
  • phase parameters can be established in a variety of ways, including through the collection of patient data over time (by, for example, employing artificial intelligence techniques, statistical means, adaptive learning methodologies, etc.), through mathematical modeling, through the modification of baseline or known protocols to account for variations in the tube voltage values, or otherwise.
  • injection phase parameters as described above are populated within a phase programming mechanism, or parameter generator, which may be a computer having software installed thereon for implementing the methods described herein, based on one or more parameters of interest including, but not limited to, contrast agent concentration (for example, iodine concentration in the case of a CT procedure), a patient parameter (for example, body weight, height, gender, age, cardiac output, etc.) the type of scan being performed, the type of catheter inserted into the patient for intravascular access, and the voltage being applied when performing the imaging scan (for example, the voltage being applied to one or more x-ray tubes during a CT scan).
  • the parameter generator is typically in communicative connection with at least one of the imaging system 300 and the injector system 100 .
  • the parameter generator can also include a processor (for example, a digital microprocessor as known in the art) in operative connection with a memory.
  • the parameter generator can be integrated into the imaging system 300 and/or the injection system 100 .
  • the phase programming mechanism can, for example, allow the operator to control the injection system by entering a “protocol wizard or generation mode,” “helper mode”, or “operator assist mode.”
  • a “protocol wizard or generation mode,” “helper mode”, or “operator assist mode” Once the operator chooses to enter the operator assist mode, the operator can be presented with a graphical user interface that provides a mechanism or mode for entering the information used in populating the phase parameters.
  • the protocol parameters are automatically populated, generally in response to information input by the operator through the graphical user interface and received at the parameter generator.
  • the graphical user interface can present the operator with a series of choices, such as questions about the procedure, about the patient, or both, the answers to which can assist the software associated with the phase programming mechanism in determining the appropriate injection protocol and phase parameters.
  • FIG. 2 For instance, one embodiment of a graphical user interface from which the operator is prompted to choose a region of interest for the image, and which follows the work flow described herein, is depicted in FIG. 2 .
  • the operator can, for example, choose a region of interest by highlighting, for example, using a touch screen or a mouse controlled cursor, a region of interest on an illustration of the body set forth on the user interface or can choose a region of interest from a menu such as a pull down menu. Hierarchical groupings of regions of interest can be provided.
  • the operator may be prompted to select from among different available preset protocols, each of which may have preset parameters associated therewith, such as the contrast concentration, whether a test injection or transit bolus are used, the maximum flow rate, the limitation on pressure, the injection duration, scan duration, etc., as shown in FIG. 2 and referred to therein as the “Details” of the protocol selected.
  • the “Details” shown in FIG. 2 are exemplary only, and are not intended to be limiting.
  • Preset protocol parameters may be stored in memory on the system, such as in memory associated with one or more of the above-described components of the system or in a database accessible over a network, and recalled when a particular protocol is selected.
  • preset values may have been entered into the system memory by an operator or someone associated therewith to reflect an operator's preferences for a particular protocol. These values may also have been pre-loaded into the system during programming, and may reflect values that are commonly used in the industry. Preset parameters such as “max flow rate” and “pressure limit” may be parameters that are set out of safety concerns for the patient. Others may be set as a function of the capabilities of the particular injector or scanner hardware of the system. In some embodiments, the preset values can be overridden, such as through direct entry of new values by an operator or through generation of a protocol requiring parameters inconsistent with the preset values. In the event that the preset values are inconsistent with a generated protocol, the operator may be prompted that such an event has occurred and given an opportunity to adjust and/or authorize the generated protocol.
  • FIG. 3 shows an exemplary graphical user interface wherein the variables “Patient Weight,” “Concentration” and “Tube Voltage” are selected or entered.
  • An example of an embodiment or implementation of this is to provide a keypad on the graphical user interface into which the operator enters the patient's weight in pounds or kilograms.
  • the operator chooses a weight range from among low, mid and high ranges.
  • the tube voltage can be entered using a keypad or selected from among several preset values.
  • Such variables can also be measured by one or more sensing devices associated with the system and/or read electronically or digitally from patient records as may be kept in a hospital database accessible over a network.
  • the system can be configured to automatically populate the patient weight based on patient records or automatically populate the tube voltage based on the capabilities or current setting of the scanner of the associated imaging system.
  • One or more of these variables may also be automatically populated based on one or more criteria selected in a previous step, such as the preset protocol selected in FIG. 2 .
  • the automatically populated value can then serve as the default unless and until changes are made thereto.
  • the operator may also be queried if the operator wishes to perform a test injection or timing injection.
  • the location of the graphical user interface within the system is not intended to be limiting.
  • choices can also or alternatively be made on a graphical user interface on the imaging system or scanner and/or from a database on the imaging system or scanner.
  • the data can then be transmitted to the injector.
  • the interface can exist solely on the scanner/imaging system. In this case, the final protocol can be transmitted to the injection system.
  • the interface or database can exist on a machine or system separate from the injector and the scanner. Data, for example, protocols can be transmitted from that system to the injector.
  • a communication interface that may be used herein is disclosed in U.S. Pat. No.
  • One or more imaging systems can also be connected by way of a network with a central control location where one or more computer interfaces can exist to display and/or allow for control of the networked imaging systems.
  • multiple imaging systems can be connected to a common computer or set of computers located in a control center, wherein an operator can monitor and adjust the protocols being used on one or more of the imaging systems.
  • a radiologist wishing to specify the particular injection protocol to be used in a particular instance can take advantage of such a network to adjust the protocol from such an interface.
  • the software implementing the present invention computes an injection protocol, including parameters such as the flow rates and volumes for the phases, including the test injection, if any, for the operator's review.
  • an injection protocol including parameters such as the flow rates and volumes for the phases, including the test injection, if any, for the operator's review.
  • FIG. 4 One such example of a graphical user interface displaying an injection protocol for the operator's review is shown in FIG. 4 .
  • computation of the parameters of the injection protocol is done using a variable weight factor (mg Iodine/Body weight kg) which is used to determine the dose, or total volume, of iodine for the patient for a particular tube voltage or range thereof.
  • a variable weight factor (mg Iodine/Body weight kg) which is used to determine the dose, or total volume, of iodine for the patient for a particular tube voltage or range thereof.
  • the process software discretizes the weight ranges of subjects in, for example, 7 ranges (for example, ⁇ 40 kg, 40-59 kg, 60-74 kg, 75-94 kg, 95-109 kg, 110-125 kg, >125 kg) and the tube voltage in, for example, 4 values (80 kV p , 100 kV p , 120 kV p and 140 kV p ) for each weight range.
  • Weight factors are associated with each weight range/tube voltage combination. Exemplary weight factors, which depend upon and vary with patient weights and tube voltages, are displayed in Table 2 below.
  • the weight factors displayed in Table 2 were derived by applying a multi-objective optimization routine (Gembicki's weighted goal attainment method (Gembicki, F. W., “Vector Optimization for Control with Performance and Parameter Sensitivity Indices,” Case Western Reserve University (1974)) to simulated patients representing each of the weight ranges.
  • This process is outlined in United States Patent Application Publication Number 2010/0113887, assigned to the assignee of the present application, the entire contents of which are incorporated by reference.
  • a similar multi-objective optimization was run to determine the weight factor values for the same set of discretized weight ranges for tube voltages of 80, 100 and 140 kV p .
  • a goal was set to attain an enhancement value of at least 325 HU in the right heart while keeping the contrast volumes and flow rates as low as possible.
  • the weight factor values were calculated so as to provide the highest probability of meeting that goal.
  • Other parameters were also considered in determining the weight factors.
  • the optimal value of the weight factor generally increases as the scan duration increases. This is primarily because more contrast is needed to ensure the enhancement target is met in the entire scan window. Moreover, longer scan durations typically imply lower flow rates, which can decrease enhancement and thus require additional contrast volume to compensate.
  • the weight factors calculated can accommodate all scan duration values.
  • the weight, height, age and gender were randomly generated for 50 simulated patients.
  • the contrast dosing protocol parameters were varied during the simulation as follows:
  • Scan Duration 4, 10, 16 and 20 seconds
  • the right heart compartment enhancement was calculated as the average enhancement during the scan window.
  • a test bolus of 20 mL contrast, 40 mL saline was used to determine the appropriate timing for the scan window.
  • the minimum injection duration was not varied because it is usually set at 12 seconds when performing an injection for cardiac imaging. It is not generally necessary to vary the minimum injection duration value as long as the scan duration values are chosen so as to simulate all possible states of volume and flow rate adjustment during protocol generation.
  • a set of enhancement criteria were defined for each application.
  • the set goal was to achieve at least 325 HU of enhancement while using the least possible contrast and the lowest flow rate.
  • V cD contrast diagnostic volume (mL)
  • E RH Mean enhancement in right heart during scan window (HU)
  • FIG. 5 shows an example of the histogram distribution for a tube voltage of 100 kV p and a weight bin of 40-59 kg.
  • the simulations described above were used to determine if patient or injection protocol parameters are likely to influence the enhancement outcomes, or, in other words, to determine whether it is more likely to achieve the specified enhancement target for either a given type of patient or a specific injection protocol.
  • patient age for example, the average age of simulated patients who met the 325 HU target was compared to the average age of the entire simulated patient population. This was done for each value of the tube voltage and across all weight bins. The results are shown in Table 3, below.
  • Weight Weight Weight Range Range Bin (kg) (lbs) 80 kV p 100 kV p 120 kV p 140 kV p 1 ⁇ 40 ⁇ 88 0.36 0.44 0.5 0.59 2 40-59 88-131 0.33 0.39 0.46 0.51 3 60-74 132-163 0.28 0.33 0.38 0.44 4 75-94 164-208 0.26 0.31 0.34 0.4 5 95-109 209-241 0.24 0.29 0.33 0.39 6 110-125 242-276 0.23 0.27 0.31 0.37 7 >125 >276 0.23 0.27 0.3 0.35
  • FIG. 6 shows that contrast volumes calculated with the weight factor values of Table 8 will not yield unrealistic protocols in terms of total volume of contrast delivered.
  • the average volume increased with tube voltage and with weight bin, as expected.
  • the smallest volume of contrast calculated at 80 kV p was 29.2 mL, while the largest volume of contrast calculated at 140 kV p was 161 mL. This is the range of volumes calculated by the protocol algorithms of U.S. Patent Application Publication No. 2010/0113887 using the weight factors of Table 8.
  • the flow rates calculated by the algorithm using the weight factors of Table 8 also increased with tube voltage and weight bin.
  • the values calculated are all realistic and are all capable of being used in injection protocols in a clinical setting.
  • the slowest rate used in the sampling at 80 kV p was 2 mL/s and the fastest rate used at 140 kV p was 7 mL/s, due to flow rate limitations.
  • the mean right heart enhancement across the scan window was also calculated using the weight factors of Table 8 and the results are displayed in FIG. 8 .
  • the enhancement target of 325 HU was easily met when the tube voltage was set to either 80 kV p or 100 kV p .
  • the enhancement target was not met as often, in part because for these values, syringe capacity can be a limiting factor and cause an injection protocol to get truncated.
  • the weight factors were set at or below the original weight factor values in an effort to limit the flow rates and volumes for pulmonary angiography applications.
  • FIGS. 9, 10, and 11 represent the weight, height and age distribution of the sampling, respectively.
  • the total contrast volume used in the injection protocol was also calculated for each patient and plotted against weight, the results of which are shown in FIG. 13 .
  • the average volume stayed under 100 mL for all injection protocols. There were, however, cases where the volume exceeded 100 mL, particularly for the heavier patients.
  • FIG. 14 reflects the effect of scan duration on the right heart enhancement value in the patient sampling.
  • FIG. 14 shows that the enhancement value is lower for 16 and 20 second scan durations than for 4 and 10 second scan durations. This is believed to be due, at least in part, to the fact that the enhancement value was calculated as the average enhancement value in the scan window, thus causing longer scan windows to have lower average enhancement values.
  • shorter scan durations typically result in higher flow rates, further contributing to an increase in the enhancement value.
  • the scan duration is shorter than the minimum injection duration tested of 4 seconds, the diagnostic phase contrast volume is reduced, which explains why the enhancement tends to be lower for 4 second scan durations than for 10 second scan durations.
  • the enhancement also tended to dip below 300 HU for scan durations above 16 seconds in FIG. 14 .
  • FIG. 16 shows the effect of the minimum injection duration on the mean enhancement value.
  • the average enhancement in the right heart falls below 300 HU for tube voltage values of 120 kV p and 140 kV p , but remains above this threshold for the lower tube voltage values, regardless of the scan duration programmed.
  • injection protocols for a patient can be determined by the system according to a weight-based algorithm.
  • V 1 volume of pharmaceutical fluid to be delivered in the phase
  • the injection duration can be determined in a variety of ways.
  • the injection duration can be determined by the system based upon one or more criteria concerning the imaging procedure (e.g., the region of the body to be imaged) and/or the patient (e.g. patient weight), it can be a value that is inputted directly by the operator, or it can represent a preset parameter, as described above.
  • Parameters of additional phases can be similarly determined.
  • the system can determine parameters for a first phase in which only the pharmaceutical fluid is to be delivered and a second, diluted phase in which both the pharmaceutical fluid and a diluent, such as saline, are to be delivered.
  • the implementation software can be programmed to generate parameters of the injection protocol based on the above algorithms and weight factors, which are based, in part, on the x-ray tube voltage. Once generated, the parameters can be populated in the graphical user interface for operator review. As described previously, FIG. 4 represents an embodiment of a graphical user interface capable of presenting an injection protocol to the operator for review.
  • the weight factors can be determined by the system through an algorithmic approach whereby the weight factors are calculated using information about patient weight, tube voltage, etc., such as is described above.
  • the weight factors can alternatively, or additionally, preexist in memory, such as in a lookup table data file loaded onto the system or accessible by the system across a network, allowing the weight factors to be recalled when needed. Table 8, for example, illustrates exemplary information concerning the weight factors that could be made available in a lookup table.
  • determination of appropriate injection protocol parameters can be accomplished by modifying or adjusting protocol parameters of a baseline injection protocol using a tube voltage modification factor to account for differences between the voltage being applied to an x-ray tube during a particular scan (or phase thereof) and the tube voltage that was used or assumed in determining the parameters of the baseline protocol.
  • baseline injection protocols include protocols that have been established in the clinical literature, established through the collection of patient data over time by, for example, employing artificial intelligence techniques, statistical means, adaptive learning methodologies, etc., or established through mathematical modeling. These protocols may depend on, for example, contrast agent concentration, for example, iodine concentration in the case of a CT procedure, a patient parameter, for example, body weight, height, gender, age, cardiac output, etc., the type of scan being performed, the type of catheter inserted into the patient for intravascular access, and/or other patient specific data. In some non-limiting examples, baseline protocols have been, or can be, generated using a weight factor similar to the generation of protocols using weight factors discussed above.
  • Baseline injection protocols for use herein may be stored in memory on the system, made accessible to the system across a network, or determined by the system in response to one or more inputted values. For example, a series of baseline injection protocols, each known to provide optimal dosing parameters for a certain combination of scan region, body weight, contrast concentration, etc. at a particular tube voltage may be stored in memory. The system can then recall from memory information about the appropriate baseline protocol for use in generating an injection protocol once sufficient information about the to-be-generated injection protocol is known. For example, when an operator selects a scan region/body weight/contrast concentration combination for a new injection procedure, the system can recall a baseline protocol generated for the same, or a similar, combination of scan region/body weight/contrast concentration. Alternatively, the system may contain software which can compute baseline injection protocols based on one or more patient-specific or procedure-specific criteria inputted by the operator, including the values discussed above (e.g., patient-specific and procedure-specific parameters).
  • Baseline injection protocols generally reflect optimal contrast dosing parameters at a particular tube voltage, which is referred to herein as the baseline tube voltage.
  • the most common baseline tube voltage is 120 kV p .
  • the baseline tube voltage associated with a baseline injection protocol can be stored along with other information about the baseline injection protocol, though in some non-limiting embodiments the operator may be prompted to enter the baseline tube voltage for a particular baseline injection protocol or the baseline tube voltage may be assumed to be 120 kV p .
  • a baseline injection protocol may not provide optimal contrast dosing parameters if a tube voltage other than the baseline tube voltage is being applied when using that protocol. Accordingly, the baseline protocol parameters can be modified or adjusted in order to achieve more optimal contrast dosing at the new tube voltage value. Since the modified parameters are not readily known to the operator of the injector, the parameter generation system described herein eases the task of an operator by providing tube voltage modification factors that should be used in conjunction with a baseline injection protocol to determine more optimum injection parameters for the tube voltage of interest.
  • applying a tube voltage modification factor to one or more of the parameters of a baseline injection protocol may be used to create a new injection protocol tailored for the particular tube voltage to be used in the scan, such as by adjusting or modifying the parameters of the baseline protocol.
  • the tube voltage modification factors are determined from an analysis of the relationship between the attenuation to contrast concentration ratios (k-factor) and tube voltage.
  • the relationship between the k-factor and tube voltage can be established through a review of the clinical literature, and an art recognized relationship is shown in Table 1 above.
  • the relationship between the k-factor and the tube voltage can be determined by performing a calibration exercise at the scanner.
  • One such calibration exercise involves preparing a number of vials, each containing a mix of a known iodine concentration, typically in mgI/mL.
  • the vials are then scanned at different tube voltages, such as at 80, 100, 120, and 140 kV p , and the attenuation value for each vial at each tube voltage is recorded.
  • the tube voltages tested should at least include the baseline tube voltage used in determining the baseline protocol, which is typically 120 kV p , as well as any other tube voltages that may be used with the scanner, the reason for which will become apparent below.
  • the vial concentrations are plotted against the recorded attenuation values and a best-fit line is prepared for each tube voltage.
  • the slope of the best-fit line represents the respective k-factor for that particular tube voltage, in units of HU/mgI/mL.
  • Typical k-factor values determined according to this calibration exercise should generally correspond to those art recognized values reported in Table 1.
  • the tube voltage modification factors for different tube voltages can be determined based on the k-factors and information about the baseline tube voltage by calculating the relative increase or decrease in the k-factor between a particular tube voltage and the baseline tube voltage. For example, if the baseline tube voltage has a k-factor of 25 HU/mgI/mL, the tube voltage modification factor corresponding to a tube voltage having a k-factor of 41 HU/mgI/mL would be calculated as (25 ⁇ 41)/41, or ⁇ 39%.
  • Table 10 illustrates tube voltage modification factors for different tube voltages assuming the baseline tube voltage is 120 kV p , using the k-factors from Table 1.
  • Additional adjustment of the calculated tube voltage modification factors may be appropriate at the operator's discretion, as other aspects of the image, noise in particular, change with tube voltage modifications. Therefore, an operator may prefer that instead of a 39% decrease at 80 kV p , for example, only a 30% decrease be used. While the default computed values are suggested by the software based on the calibration experiment results, the operator would be able to modify the suggested values at his or her preference.
  • the operator may decide which parameters of the baseline injection protocol should be adjusted based on the modification factors. For example, the operator may decide that both the total volume and flow rate parameters should be adjusted based on the tube voltage modification factor in order to maintain a constant injection duration, or only the total volume may be decreased in order to maintain a constant flow rate and decrease the injection duration.
  • the flow rate of contrast is modified, the flow rates of any saline phases are adjusted by the same amount to maintain consistency between the diagnostic contrast phases, the saline patency checks, and the saline flushes.
  • the software can be set to automatically select one or more parameters of the baseline injection protocol to adjust according to the tube voltage modification factor, typically the volume and flow rate.
  • the parameter generator must also know or be able to identify the tube voltage to be applied as part of the new injection procedure in order to determine the appropriate tube voltage modification factor to apply.
  • the value of the tube voltage can be inputted by the operator directly to the parameter generator or the parameter generator can receive information about the tube voltage from the scanner or another component of the system, wherein the tube voltage is known to the component because of a particular setting or capability of the component or because an operator has input the tube voltage value to the component.
  • an injection protocol can be generated by applying the tube voltage modification factor to the baseline protocol parameters. For example, in the case of modifying the volume and flow rate of the baseline protocol, generation of new volume and flow rate parameters involves increasing or decreasing the volume and flow rate parameters of the baseline protocol by the tube voltage modification factor.
  • Generation of the injection protocols can be accomplished by the software of the system by recalling from memory and/or generating a baseline protocol, determining a tube voltage modification factor based on the details of the baseline protocol selected, including the baseline tube voltage and the intended tube voltage to be applied, and adjusting the baseline protocol parameters by the tube voltage modification factor.
  • Adjustment of the protocol parameters using the tube voltage modification factor allows for a baseline protocol to be modified in order to maintain similar enhancement characteristics despite a change in the tube voltage. For example, if a given volume and flow rate provide 300 HU of enhancement in a given region of interest scanned at 120 kV p , the iodine concentration in that region can be calculated from the k-factor in Table 1 to be 12 mgI/mL (300 HU ⁇ 25 HU/mgI/ml).
  • the volume and/or flow rate can be decreased by the tube voltage modification factor of 19% to obtain an iodine concentration of 9.7 mgI/mL.
  • an operator can be presented with a graphical user interface that provides a mechanism or mode for entering the information necessary for populating the phase parameters based on a tube voltage modification factor.
  • FIG. 17 For instance, one embodiment of a graphical user interface from which the operator chooses a region of the body of interest, and which follows a workflow described with reference to FIGS. 17, 19, 21 and 23 , is depicted in FIG. 17 .
  • the operator can, for example, choose a region of interest by highlighting, for example, using a touch screen or a mouse controlled cursor, a region of interest on an illustration of the body set forth on the user interface or can choose a region of interest from a menu such as a pull down menu. Hierarchical groupings of regions of interest can be provided.
  • FIG. 18 depicts another embodiment of a graphical user interface from which an operator can choose a region of interest, and an alternative work flow is described herein with reference to FIGS. 18, 20, 22 and 24 .
  • FIG. 17 illustrates a user interface presenting a single protocol option, labeled as “Head Protocol 1,” which, upon selection, can display a default flow rate and volume for each phase, along with the total diagnostic contrast volume and total diagnostic saline volume, as also shown in FIG. 17 .
  • FIG. 18 illustrates a user interface presenting multiple baseline protocols from among which the baseline protocol can be selected.
  • the selected baseline protocol may have additional parameters associated therewith, such as injection pressure or flow rate limits, iodine concentration, scan duration, whether a test bolus is performed, etc., which may or may not be displayed and which may or may not be capable of being adjusted.
  • FIG. 18 represents an example where additional details about the particular baseline protocol selected are displayed to the operator.
  • An indicator may also be associated with the preset protocol indicating that the particular protocol can be adjusted based on a tube voltage modification rule, such as through the use of tube voltage modification factors as discussed above.
  • the exemplary interfaces of FIG. 17 and FIG. 18 represent this by the “kV p ” icon associated with the “Head Protocol 1” and the “Cardiac w/Bolus Tracking” protocols.
  • Other available protocols may not have a tube voltage modification option associated therewith, such as the “Dr A's Cardiac” protocol in FIG. 18 .
  • FIG. 19 depicts an example of a graphical interface wherein the “Tube Voltage” can be selected or entered.
  • the tube voltage can be selected from among several preset values, though the tube voltage can also be entered using a keypad or the like. The tube voltage value may also be automatically populated based on the capabilities or setting of the associated scanner.
  • FIG. 20 depicts another example of an interface wherein “Tube Voltage” can be selected from among various choices.
  • “Patient Weight” and “Concentration” are additional parameters available for selection by the operator. The particular parameters depicted in FIGS. 19 and 20 are not intended to be limiting, and other parameters are contemplated for selection by the operator consistent with the discussion above.
  • the implementation software of the parameter generator can determine the appropriate modification of the baseline protocol, such as through the determination of a tube voltage modification factor.
  • the operator can then be presented with an interface informing the operator of the parameters selected and the associated adjustment made as a result of the selected tube voltage value.
  • An example of one such interface is shown in FIG. 21 , which confirms to the operator that the tube voltage value of 100 kV p has been selected and, under “Notice,” that the selected tube voltage value is associated with a 19% decrease in the volume of contrast from the baseline contrast volume.
  • FIG. 22 similarly depicts an example of an interface which informs the operator of the selected patient weight, iodine concentration, and tube voltage values and that a 19% decrease in contrast volume is associated with the particular tube voltage selected from the baseline value.
  • the implementation software computes an injection protocol using the tube voltage modification factor.
  • the protocol parameters such as the flow rates and volumes for the phases (including the test injection, if any), can then be presented to the operator for his or her review.
  • One such example of an interface displaying a computed injection protocol is shown in FIG. 23 .
  • Another such example is depicted in FIG. 24 .
  • the operator can initiate the injection process, which will be performed according to the particulars of the generated protocol.
  • FIG. 25 depicts one example of the methodology associated with the embodiments involving tube voltage modification.
  • the left hand side of the chart illustrates an example of this methodology applied to a standard protocol.
  • Step 1 represents selection by the operator of a standard protocol, consistent with FIG. 17 .
  • Step 2 represents selection of the tube voltage from the list of tube voltages illustrated in FIG. 19 .
  • Step 3 depicts application of the modification factor to the parameters in accordance with the particular tube voltage selected in step 2 . This step corresponds to that illustrated in connection with the graphical user interface of FIG. 21 .
  • Step 4 represents the display of the modified protocol, as shown in FIG. 23 .
  • steps 1 - 4 on the right hand side of the chart depict application of the tube voltage modification to a preset protocol of the type that can be obtained using one or more of the P3T® Technology products available from MEDRAD, INC., a business of Bayer HealthCare. These steps follow the illustrations of FIGS. 18, 20, 22 and 24 , respectively.
  • FIG. 26 depicts an example of the methodology underlying the embodiments in which the tube voltage parameter is integrated directly into the algorithm(s) of the present invention.
  • Step 2 illustrates entry of the parameters, such as the appropriate tube voltage value, into the algorithms embodied in, for example, the P3T® Cardiac or P3T® PA products, for imaging of the vasculature of the heart and lungs, respectively.
  • Embodying the adjusted dosing factors obtained from this method, the resulting protocol is generated in step 3 and then displayed in step 4 .
  • FIG. 27 illustrates an example of the methodology underlying the embodiments in which the protocol calculations are performed with at least some inputs obtained from the scanner.
  • Step 1 shows that the initial protocol may be selected from the scanner, with the scanner updating in step 2 the entered input values inclusive of tube voltage.
  • the protocol calculator determines the resulting protocol either by employing the rule-based modifications represented by steps 4 a and 4 b on the left hand side of the chart or the dosing factors represented by step 4 on the right hand side.
  • Steps 5 and 6 represent the actions of conveying the resulting protocol to the scanner (e.g., for display) and also conveying it back to the injector, respectively.
  • the embodiments of a parameter generation system described above determine the parameters of an initial protocol using information available to the operator, including information about the tube voltage to be applied during the imaging procedure.
  • the initial protocol provides information on the volume of one or more fluids to be delivered to, for example, enable preloading of one or more syringes.
  • the parameters of the generated protocol may be adjusted on the basis of characterization of the cardiovascular system.
  • the parameter generation systems of this disclosure were described in connection with an injection including an initial contrast only injection phase and a subsequent admixture phase.
  • the present parameter generation system is applicable to the injection of various pharmaceuticals, with or without injection of diluent of flushing fluids, via injection protocols that can include one, two of more phases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • X-Ray Techniques (AREA)
US14/401,330 2012-05-14 2012-05-14 Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage Active 2033-09-15 US9949704B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/037744 WO2013172811A1 (fr) 2012-05-14 2012-05-14 Systèmes et procédés pour détermination de protocoles d'injection de fluide pharmaceutique basés sur une tension de tube à rayons x

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/037744 A-371-Of-International WO2013172811A1 (fr) 2012-05-14 2012-05-14 Systèmes et procédés pour détermination de protocoles d'injection de fluide pharmaceutique basés sur une tension de tube à rayons x

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/959,695 Continuation US11191501B2 (en) 2012-05-14 2018-04-23 Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage

Publications (2)

Publication Number Publication Date
US20150141813A1 US20150141813A1 (en) 2015-05-21
US9949704B2 true US9949704B2 (en) 2018-04-24

Family

ID=49584073

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/401,330 Active 2033-09-15 US9949704B2 (en) 2012-05-14 2012-05-14 Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage
US15/959,695 Active 2034-07-25 US11191501B2 (en) 2012-05-14 2018-04-23 Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/959,695 Active 2034-07-25 US11191501B2 (en) 2012-05-14 2018-04-23 Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage

Country Status (13)

Country Link
US (2) US9949704B2 (fr)
EP (2) EP2850418B1 (fr)
JP (1) JP6193978B2 (fr)
KR (1) KR20150013580A (fr)
CN (2) CN111528872A (fr)
AU (3) AU2012380327A1 (fr)
BR (1) BR112014028442A2 (fr)
CA (1) CA2873351C (fr)
DK (2) DK3489667T3 (fr)
HK (1) HK1206814A1 (fr)
HU (2) HUE056182T2 (fr)
RU (1) RU2605272C2 (fr)
WO (1) WO2013172811A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208251A1 (en) * 2013-01-21 2014-07-24 Angiodynamics, Inc. Power injector device and method of use
US11565035B2 (en) 2017-06-16 2023-01-31 Bayer Healthcare Llc Systems and methods for split bolus protocol generation
US11717605B2 (en) 2016-11-22 2023-08-08 Bayer Healthcare Llc System and method for delivering a fluid with a consistent total volumetric flowrate
US11986621B2 (en) 2016-11-22 2024-05-21 Bayer Healthcare Llc Synthetic magnetic resonance imaging and magnetic resonance fingerprinting with a contrast agent, and determination of a contrast agent injection protocol
US12002560B2 (en) 2018-04-10 2024-06-04 Bayer Healthcare Llc System and method for testing blood vessel access using powered fluid injector systems

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205493B4 (de) * 2015-03-26 2023-12-28 Siemens Healthcare Gmbh Betrieb einer medizinischen Bildgebungsvorrichtung
EP3372992A4 (fr) * 2015-11-05 2018-12-26 Shimadzu Corporation Dispositif d'affichage et dispositif de tomodensitométrie par rayons x
US10049301B2 (en) * 2016-08-01 2018-08-14 Siemens Healthcare Gmbh Medical scanner teaches itself to optimize clinical protocols and image acquisition
TWM553128U (zh) * 2017-01-20 2017-12-21 台達電子工業股份有限公司 動物載床
JP6670509B2 (ja) * 2017-01-20 2020-03-25 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. コンピュータ断層撮像システムの造影方法
KR20180087754A (ko) * 2017-01-25 2018-08-02 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
US20180239876A1 (en) * 2017-02-17 2018-08-23 General Electric Company Optimal contrast injection protocol engine
CN107451410A (zh) * 2017-08-04 2017-12-08 上海联影医疗科技有限公司 一种协议的处理方法及装置
CN107736895B (zh) * 2017-11-15 2021-04-13 上海联影医疗科技股份有限公司 一种协议参数配置方法、装置及终端
US11344356B2 (en) 2018-02-28 2022-05-31 Medtronic Cryocath Lp Apparatus and method for targeted bronchial denervation by cryo-ablation
DE102018107080A1 (de) * 2018-03-26 2019-09-26 IMAGE Information Systems Europe GmbH Vorrichtung und System zum Erzeugen mindestens eines Injektionsparameters für einen Kontrastmittelinjektor für eine Computertomographieaufnahme sowie Verfahren damit
US20210146063A1 (en) * 2018-04-19 2021-05-20 Bayer Healthcare Llc System and method for air detection in fluid injector
US11666370B2 (en) 2020-07-27 2023-06-06 Medtronic, Inc. Apparatus and method for targeted temporary bronchial nerve modulation by cryo-ablation for prevention and treatment of acute respiratory distress syndromes

Citations (475)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201800A (en) 1922-09-18 1923-08-09 Robert Sowter Hubbard An improved toy
US3349713A (en) 1964-09-12 1967-10-31 Glanzstoff Koln G M B H Process and device for mixing liquids of differing viscosities
US3520295A (en) 1968-03-06 1970-07-14 Gen Electric Cardiac r-wave detector with automatic gain control
US3523523A (en) 1966-06-30 1970-08-11 Contraves Ag Power driven medical injector syringe with electromagnetic coupling means
US3623474A (en) 1966-07-25 1971-11-30 Medrad Inc Angiographic injection equipment
US3701345A (en) 1970-09-29 1972-10-31 Medrad Inc Angiographic injector equipment
US3755655A (en) 1971-10-26 1973-08-28 Tac Ind Inc Machine processed data card
US3793600A (en) 1971-03-16 1974-02-19 Strategic Automated Systems In Record medium with validating and cancelling feature and method
US3812843A (en) 1973-03-12 1974-05-28 Lear Siegler Inc Method and apparatus for injecting contrast media into the vascular system
US3817843A (en) 1971-04-13 1974-06-18 Electricity Council Electrodeposition of iron foil
US3839708A (en) 1972-06-28 1974-10-01 Searle Medidata Inc Input-output terminal for hospital information system
JPS5017781A (fr) 1973-06-15 1975-02-25
US3888239A (en) 1974-06-21 1975-06-10 Morton K Rubinstein Fluid injection system
US3895220A (en) 1973-09-07 1975-07-15 Docutronix Inc Selectively encodable envelope insert and related apparatus
US3898983A (en) 1973-10-03 1975-08-12 James O Elam Device and method for detecting the degree of muscle relaxation of a medical patient
US3927955A (en) 1971-08-23 1975-12-23 East West Medical Products Inc Medical cassette pump
US3941126A (en) 1974-08-08 1976-03-02 Dietrich Joseph W Apparatus for long term intravenous administration of diluted incompatible multiple medications
US3958103A (en) 1973-05-31 1976-05-18 Omron Tateisi Electronics Co. Automatic ticket vending system
US3968195A (en) 1974-06-17 1976-07-06 Marilyn Bishop Method for making sterile connections
US3995381A (en) 1975-06-27 1976-12-07 Ken Max Manfred Low visibility answer sheet and method of testing
US4001549A (en) 1971-06-10 1977-01-04 Corwin Edward J Marking document and template assembly and method of making the assembly
US4006736A (en) 1974-11-27 1977-02-08 Medrad, Inc. Angiographic injector
US4038981A (en) 1974-07-26 1977-08-02 Burron Medical Products, Inc. Electronically controlled intravenous infusion set
US4044757A (en) 1976-01-14 1977-08-30 The Kendall Company Cholangiography device and method
US4090502A (en) 1975-08-22 1978-05-23 Medical Institute Of Hoshokai Remote-controlled barium injection apparatus
US4135247A (en) 1977-08-15 1979-01-16 Siemens Aktiengesellschaft Tomography signal processing system
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
US4187057A (en) 1978-01-11 1980-02-05 Stewart-Naumann Laboratories, Inc. Peristaltic infusion pump and disposable cassette for use therewith
US4191183A (en) 1977-10-31 1980-03-04 Barry Mendelson Mixing chamber for use in plural medical liquid intravenous administration set
US4199000A (en) 1978-07-19 1980-04-22 Edstrom William E Cross-contamination isolator
US4207871A (en) 1978-06-07 1980-06-17 Imed Corporation System for controlling the flow of intravenous fluids to a patient
WO1980001754A1 (fr) 1979-02-28 1980-09-04 Abbott Lab Nouvelle soupape utilisant des membranes hydrophobes et hydrophiles
US4223675A (en) 1978-07-24 1980-09-23 Baxter Travenol Laboratories, Inc. Solution containers such as blood bags and system for preparing same
US4262824A (en) 1978-02-17 1981-04-21 Baxter Travenol Laboratories, Inc. Low-current E-frame electronic magnet with a permanent magnet armature for an I. V. valving controller
US4263916A (en) 1978-03-27 1981-04-28 University Of Southern California Image averaging for angiography by registration and combination of serial images
US4280494A (en) 1979-06-26 1981-07-28 Cosgrove Robert J Jun System for automatic feedback-controlled administration of drugs
US4284073A (en) 1977-10-11 1981-08-18 Krause Horst E Method and apparatus for pumping blood within a vessel
US4315247A (en) 1979-08-13 1982-02-09 Germanton Charles E Security systems employing an electronic lock and key apparatus
US4319568A (en) 1979-10-29 1982-03-16 Vickers Limited Liquid dispensing apparatus
FR2493708A1 (fr) 1980-11-07 1982-05-14 Mecaserto Appareil de preparation d'un produit de traitement destine a etre injecte dans l'organisme d'un patient
US4340153A (en) 1980-11-28 1982-07-20 Spivey David L Method and apparatus for medication dispensing
US4341153A (en) 1980-01-08 1982-07-27 Truswal Systems Corp. Splicing and truss assembly apparatus and methods
JPS5815842A (ja) 1981-07-20 1983-01-29 株式会社東芝 画像輪郭抽出装置
US4392847A (en) 1979-01-08 1983-07-12 Whitney Douglass G Injection and monitoring system
US4392849A (en) 1981-07-27 1983-07-12 The Cleveland Clinic Foundation Infusion pump controller
US4396385A (en) 1980-12-05 1983-08-02 Baxter Travenol Laboratories, Inc. Flow metering apparatus for a fluid infusion system
DE3203594A1 (de) 1982-02-03 1983-08-11 Siemens AG, 1000 Berlin und 8000 München Roentgendiagnostikanlage fuer angiographische roentgenaufnahmen
US4402310A (en) 1979-11-22 1983-09-06 Olympus Optical Co., Ltd. Endoscope system
US4409966A (en) 1981-05-29 1983-10-18 Lambrecht Richard M Method and apparatus for injecting a substance into the bloodstream of a subject
US4434820A (en) 1982-05-05 1984-03-06 Glass John P Syringe loader and method
US4435173A (en) 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4434822A (en) 1979-11-05 1984-03-06 Baxter Travenol Laboratories, Inc. System for the sterile mixing of materials
US4444198A (en) 1981-12-21 1984-04-24 Petre John H Circulatory monitoring system and method
US4447230A (en) 1981-08-05 1984-05-08 Quest Medical, Inc. Intravenous administration set assembly
US4448200A (en) 1978-03-27 1984-05-15 University Of Southern California System and method for dynamic background subtraction
US4474476A (en) 1982-08-05 1984-10-02 Jack Thomsen Chemical printing liquid method and system
EP0121216A1 (fr) 1983-03-31 1984-10-10 Kabushiki Kaisha Toshiba Appareil radiodiagnostic de télévision
US4479760A (en) 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479762A (en) 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479761A (en) 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
JPS59214432A (ja) 1983-05-20 1984-12-04 株式会社東芝 放射線診断装置
EP0129910A1 (fr) 1983-06-27 1985-01-02 Kabushiki Kaisha Toshiba Appareil diagnostique à rayons-X pour l'observation stéréoscopique sur des images des rayons-X d'un objet examiné
WO1985000292A1 (fr) 1983-07-11 1985-01-31 Imperial Chemical Industries Plc Dispositif de distribution de fluide
US4504908A (en) 1982-03-15 1985-03-12 General Electric Company Matched filter for X-ray temporal subtraction
US4509526A (en) 1983-02-08 1985-04-09 Lawrence Medical Systems, Inc. Method and system for non-invasive ultrasound Doppler cardiac output measurement
US4512764A (en) 1982-09-27 1985-04-23 Wunsch Richard E Manifold for controlling administration of multiple intravenous solutions and medications
US4542459A (en) 1982-11-26 1985-09-17 General Electric Company Matched filter for x-ray hybrid subtraction
US4544949A (en) 1982-03-05 1985-10-01 Tokyo Shibaura Denki Kabushiki Kaisha X-Ray diagnostic apparatus and method
JPS60194934A (ja) 1984-03-19 1985-10-03 株式会社日立メデイコ X線血管像透視撮影装置
JPS60194935A (ja) 1984-03-19 1985-10-03 株式会社日立メデイコ X線血管像透視撮影装置
FR2561949A1 (fr) 1984-03-29 1985-10-04 Arc Services Systeme de transport de colis
US4551133A (en) 1984-04-16 1985-11-05 American Hospital Supply Corporation Patient controlled medication infusion system
US4552130A (en) 1983-03-01 1985-11-12 Olympus Optical Co., Ltd. Air and liquid supplying device for endoscopes
JPS60253197A (ja) 1984-05-29 1985-12-13 Toshiba Corp X線診断装置
US4559036A (en) 1983-12-14 1985-12-17 Wunsch Richard E Apparatus for controlling administration of multiple intravenous solutions and medications
US4563175A (en) 1983-12-19 1986-01-07 Lafond Margaret Multiple syringe pump
US4585941A (en) 1983-02-28 1986-04-29 E. R. Squibb & Sons, Inc. Dosimetry system for strontium-rubidium infusion pump
EP0189491A1 (fr) 1983-08-19 1986-08-06 Intermedicat Gmbh Dispositif pour la perfusion dosée simultanée de solutions
EP0192786A2 (fr) 1985-02-18 1986-09-03 Medrad Incorporated Injecteur angiographique commandé par un processeur
US4610670A (en) 1983-06-13 1986-09-09 E. I. Du Pont De Nemours And Company Sterile connection process, apparatus and system
US4610790A (en) 1984-02-10 1986-09-09 Sterimatics Company Limited Partnership Process and system for producing sterile water and sterile aqueous solutions
US4611340A (en) 1983-05-20 1986-09-09 Kabushiki Kaisha Toshiba Apparatus for examining a biological object by using radiation
US4625494A (en) 1983-04-28 1986-12-02 Pfrimmer & Co. Pharmazeutische Werke Erlangen Method and apparatus for making mixtures of pharmaceutical liquids
US4626144A (en) 1984-03-21 1986-12-02 Urma Aktiengesellschaft Boring tool with balancing means for non-vibrating boring
US4633307A (en) 1984-09-13 1986-12-30 Kabushiki Kaisha Toshiba Digital subtraction fluorographic method and apparatus
US4634426A (en) 1984-12-11 1987-01-06 Baxter Travenol Laboratories Medical infusion controller and user interface
US4636144A (en) 1982-07-06 1987-01-13 Fujisawa Pharmaceutical Co., Ltd. Micro-feed pump for an artificial pancreas
US4655197A (en) 1982-12-01 1987-04-07 Snyder Laboratories, Inc. Lavage system with variable frequency, flow rate and pressure
US4662906A (en) 1984-04-12 1987-05-05 Pall Corporation Cardiotomy reservoir
US4672651A (en) 1985-03-28 1987-06-09 Hitachi Medical Corporation Method of and apparatus for reconstructing shape of interested part of object through irradiation with X-rays
US4676776A (en) 1985-01-18 1987-06-30 Intelligent Medicine, Inc. Device and method for effecting application of a therapeutic agent
US4682170A (en) 1983-11-25 1987-07-21 Kabushiki Kaisha Toshiba Apparatus for collecting toll
US4689670A (en) 1984-01-19 1987-08-25 Kabushiki Kaisha Toshiba Method and apparatus for measuring a biological function of a subject
JPS62216199A (ja) 1986-03-18 1987-09-22 Toshiba Corp X線ct装置
EP0245160A1 (fr) 1986-05-06 1987-11-11 General Electric Cgr S.A. Installation de radiologie à réseau de communication
US4710166A (en) 1985-11-08 1987-12-01 Quest Medical, Inc. Automated drug additive infusion system
US4723261A (en) 1983-12-22 1988-02-02 U.S. Philips Corporation X-ray examination apparatus incorporating image subtraction
JPS6340538A (ja) 1986-08-06 1988-02-20 株式会社東芝 Ct画像診断方法
WO1988003815A1 (fr) 1985-06-04 1988-06-02 Baxter Deutschland Gmbh Soupape a voies multiples pour dispositifs de production et d'administration de solutions d'infusion
US4750643A (en) 1986-08-04 1988-06-14 Sugrin Surgical Instrumentation, Inc. Sterile fluid dispensing system and method
US4754786A (en) 1986-09-05 1988-07-05 Roderick Roberts Sterile fluid storage and dispensing apparatus and method for filling same
US4781687A (en) 1986-10-16 1988-11-01 Baxter Travenol Laboratories, Inc. Irrigation system utilizing air bladder pressure regulator and method of use
US4783273A (en) 1987-01-29 1988-11-08 Gambro Ab Method and apparatus for supplying concentrate for use in medical treatments
JPS63290547A (ja) 1987-05-25 1988-11-28 Hitachi Medical Corp テレビ断層撮影装置
US4789014A (en) 1986-12-05 1988-12-06 Baxter International Inc. Automated system for adding multiple fluids to a single container
US4793357A (en) 1986-11-24 1988-12-27 Picker International, Inc. CT blood flow mapping with xenon gas enhancement
US4795429A (en) 1987-10-28 1989-01-03 Feldstein Marvin A Method and apparatus for use in the control of intravenous medication introduction
US4798590A (en) 1983-11-22 1989-01-17 Medical Technology Products, Inc. Intravenous infusion pumping system including independent pump set
GB2207749A (en) 1987-06-18 1989-02-08 Smith & Nephew Inc Detection of tissue infiltration
US4804454A (en) 1986-03-19 1989-02-14 Honda Giken Kagyo Kabushiki Kaisha Oxygen concentration sensing apparatus
DE3726452A1 (de) 1987-08-08 1989-02-16 Schael Wilfried Schlauchpumpe fuer medizinische zwecke
US4823833A (en) 1982-06-24 1989-04-25 Baxter Healthcare Corporation Fluid communication device
US4835521A (en) 1987-11-05 1989-05-30 Emhart Industries, Inc. Fluid status detector
US4836187A (en) 1986-12-27 1989-06-06 Kabushiki Kaisha Toshiba Constant pressure apparatus of an endoscope
EP0319275A1 (fr) 1987-12-04 1989-06-07 Pacesetter Infusion Limited doing business as Minimed Technologies Système de détection des occlusions, côté patient, pour un système de perfusion de médicaments
US4838856A (en) 1987-07-02 1989-06-13 Truckee Meadows Research & Development Fluid infusion flow control system
US4840620A (en) 1986-04-07 1989-06-20 Terumo Corporation Portable pump for infusing medicine into a living body
US4844052A (en) 1987-03-11 1989-07-04 Kabushiki Kaisha Toshiba Apparatus for transmitting liquid and gas in an endoscope
US4853521A (en) 1987-12-28 1989-08-01 Claeys Ronald W System for verifying and recording drug administration to a patient
US4854301A (en) 1986-11-13 1989-08-08 Olympus Optical Co., Ltd. Endoscope apparatus having a chair with a switch
US4854324A (en) 1984-01-31 1989-08-08 Medrad, Inc. Processor-controlled angiographic injector device
US4857056A (en) 1988-07-06 1989-08-15 Sherwood Medical Company Auto-flush syringe pump
JPH01207038A (ja) 1988-02-13 1989-08-21 Hitachi Medical Corp 造影剤濃度調節機能付ct装置
US4874359A (en) 1987-12-14 1989-10-17 White Frederick R Power infuser
EP0337924A2 (fr) 1988-04-13 1989-10-18 Mic Medical Instrument Corporation Dispositif de servo-contrôle des paramètres biologiques du corps
US4879880A (en) 1989-01-17 1989-11-14 Frank Harrison Air temperature regulator
US4880014A (en) 1987-08-14 1989-11-14 Zarowitz Barbara J Method for determining therapeutic drug dosage using bioelectrical resistance and reactance measurements
EP0343501A2 (fr) 1988-05-21 1989-11-29 Fresenius AG Système de perfusion multiple
US4887208A (en) 1987-12-18 1989-12-12 Schneider Bruce H Sales and inventory control system
US4887554A (en) 1987-05-27 1989-12-19 Whitford Darryl R Animal drench
US4901731A (en) 1988-04-27 1990-02-20 Millar Instruments, Inc. Single sensor pressure differential device
US4903705A (en) 1984-11-09 1990-02-27 Hitachi Medical Corporation Digital radiography apparatus
US4913154A (en) 1987-11-19 1990-04-03 Siemens Aktiengesellschaft Medical examination installation with improved image contrast
EP0365301A1 (fr) 1988-10-20 1990-04-25 Picker International, Inc. Appareils et procédés de représentation d'images
EP0364966A1 (fr) 1988-10-18 1990-04-25 Kabushiki Kaisha Toshiba Appareil diagnostique utilisant un dispositif de tomographie par ordinateur à rayons X
US4922916A (en) 1987-11-19 1990-05-08 Siemens Aktiengesellschaft Medical examination installation with improved image contrast
US4925444A (en) 1987-08-07 1990-05-15 Baxter Travenol Laboratories, Inc. Closed multi-fluid delivery system and method
US4929818A (en) 1988-11-15 1990-05-29 Rainbarrel Corporation Method and apparatus for vending a containerized product on multiple occasions following at least one refill of the container with the product
EP0372152A1 (fr) 1988-12-09 1990-06-13 Nippon Identograph Co., Ltd Observation continue d'images tridimensionnelles
US4935005A (en) 1985-06-05 1990-06-19 Nestle, S.A. Opthalmic fluid flow control system
US4936832A (en) 1986-11-24 1990-06-26 Vaillancourt Vincent L Ambulatory disposable infusion delivery system
US4943987A (en) 1987-08-07 1990-07-24 Kabushiki Kaisha Toshiba Method and system for displaying X-ray images of blood-vessel structure parts of subject
US4943279A (en) 1988-09-30 1990-07-24 C. R. Bard, Inc. Medical pump with infusion controlled by a detachable coded label
US4943779A (en) 1988-05-19 1990-07-24 Worcester Polytechnic Institute Digital sweep generator
EP0378896A2 (fr) 1988-11-23 1990-07-25 Picker International, Inc. Détecteurs de rayonnement
US4946439A (en) 1988-08-15 1990-08-07 Critikon, Inc. Dual source parenteral infusion system with secondary infusion module
US4946256A (en) 1989-01-11 1990-08-07 Nm Laser Products, Inc. Right angle shutter for laser beam
US4947412A (en) 1988-10-20 1990-08-07 Picker International, Inc. X-ray detector for CT scanners
US4950245A (en) 1988-07-08 1990-08-21 I-Flow Corporation Multiple fluid cartridge and pump
US4954129A (en) 1988-07-25 1990-09-04 Abbott Laboratories Hydrodynamic clot flushing
JPH02224647A (ja) 1989-02-28 1990-09-06 Hitachi Medical Corp X線ct造影撮影システム
JPH02234747A (ja) 1989-03-09 1990-09-17 Toshiba Corp 同期画像撮影装置
US4976687A (en) 1987-05-11 1990-12-11 James Martin Apparatus for controlling the supplying of intravenous fluids
US4978335A (en) 1989-09-29 1990-12-18 Medex, Inc. Infusion pump with bar code input to computer
US4981467A (en) 1990-02-27 1991-01-01 Baxter International Inc. Apparatus and method for the detection of air in fluid delivery systems
US4995064A (en) 1990-01-29 1991-02-19 Siemens Medical Systems, Inc. Continuously sweeping multiple-pass image acquisition system for peripheral angiography
JPH0355040A (ja) 1989-07-21 1991-03-08 Shimadzu Corp X線回転式ステレオ・ディジタル・サブトラクション装置
US5004472A (en) 1988-08-10 1991-04-02 Wallace William D Medical pressure sensing and display system
US5010473A (en) 1989-08-31 1991-04-23 Duke University Method and apparatus for model-based control of an open-loop process
US5009654A (en) 1989-03-10 1991-04-23 Baxter International Inc. Sterile product and method for sterilizing and assembling such product
US5013173A (en) 1989-04-04 1991-05-07 Katsumune Shiraishi Container for a cosmetic liquid
EP0429191A2 (fr) 1989-11-17 1991-05-29 Picker International, Inc. Méthodes et appareils de traitement d'images
US5032112A (en) 1989-11-22 1991-07-16 Baxter International Inc. Dual source intravenous administration set having an intravenous pump
US5040537A (en) 1987-11-24 1991-08-20 Hitachi, Ltd. Method and apparatus for the measurement and medical treatment using an ultrasonic wave
WO1991014233A1 (fr) 1990-03-15 1991-09-19 Mount Sinai School Of Medicine Of The City University Of New York Procede et appareil de formation d'images utilisant des polynomes orthogonaux pour la deconvolution temporelle
WO1991014232A1 (fr) 1990-03-15 1991-09-19 Mount Sinai School Of Medicine Of The City University Of New York Mise en images d'organes fonctionnels
US5053002A (en) 1988-01-11 1991-10-01 Olympus Corporation Irrigation system for angioscope
US5056568A (en) 1986-12-05 1991-10-15 Clintec Nutrition Company Automated system for adding multiple fluids to a single container
US5059173A (en) 1990-04-04 1991-10-22 Sacco John J IV apparatus
US5061243A (en) 1985-08-06 1991-10-29 Baxter International Inc. System and apparatus for the patient-controlled delivery of a beneficial agent, and set therefor
US5069662A (en) 1988-10-21 1991-12-03 Delcath Systems, Inc. Cancer treatment
US5078683A (en) 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
CA2045070A1 (fr) 1990-07-31 1992-02-01 Kazuaki Mizoguchi Systeme de controle pour l'ans et l'actp
US5088981A (en) 1985-01-18 1992-02-18 Howson David C Safety enhanced device and method for effecting application of a therapeutic agent
EP0471455A2 (fr) 1990-08-14 1992-02-19 Picker International, Inc. Appareil d'imagerie et méthodes
EP0475563A1 (fr) 1990-09-04 1992-03-18 Picker International, Inc. Appareil d'imagerie et méthode
US5100380A (en) 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US5104374A (en) 1990-01-16 1992-04-14 Bishko Jay R Electronic fluid flow rate controller for controlling the infusion of intravenous drugs into a patient
US5104387A (en) 1990-05-25 1992-04-14 St. Jude Medical, Inc. Bi-planar fluid control valve
JPH04115677A (ja) 1990-08-31 1992-04-16 Shimadzu Corp デジタルx線撮影装置
US5108365A (en) 1990-06-20 1992-04-28 Woods Jr Walter T Transluminal infusion of magnesium during coronary angioplasty
US5111492A (en) 1990-07-06 1992-05-05 General Electric Cgr S.A. X-ray diagnosis system for angiographic examination with device for the automatic tracking of a contrast medium
US5113905A (en) 1989-03-27 1992-05-19 Michael D. Hoyle Carbon dioxide fill manifold and method
US5113904A (en) 1984-07-13 1992-05-19 Aslanian Jerry L Flow control device for administration of intravenous fluids
US5123056A (en) 1990-02-02 1992-06-16 Siemens Medical Systems, Inc. Whole-leg x-ray image processing and display techniques
US5125018A (en) 1990-06-29 1992-06-23 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus
US5123121A (en) 1988-03-07 1992-06-23 Bell Helmets, Inc. Helmet retention system with adjustable buckle
US5128121A (en) 1988-04-08 1992-07-07 Nycomed As Mixture of a positive and negative contrast agent for magnetic resonance imaging
US5133336A (en) 1990-10-22 1992-07-28 Endoscopy Support Services, Inc. Disposable liquid supply system for use in an endoscope
US5135000A (en) 1990-09-19 1992-08-04 Raizot University Authority For Applied Research & Industrial Development Ltd. Method of measuring regional tissue blood flow
GB2252656A (en) 1991-02-11 1992-08-12 Keymed Endoscopy training apparatus
US5150292A (en) 1989-10-27 1992-09-22 Arch Development Corporation Method and system for determination of instantaneous and average blood flow rates from digital angiograms
DE4121568A1 (de) 1991-04-22 1992-10-29 Schering Ag Verfahren und vorrichtung zur herstellung eines kontrastmediums aus einem konzentrat
US5180895A (en) 1988-09-28 1993-01-19 Unilever Patent Holdings B.V. Microwave heating apparatus
US5180896A (en) 1990-10-11 1993-01-19 University Of Florida System and method for in-line heating of medical fluid
US5190744A (en) 1990-03-09 1993-03-02 Salutar Methods for detecting blood perfusion variations by magnetic resonance imaging
US5191878A (en) 1990-04-12 1993-03-09 Olympus Optical Co., Ltd. Endoscope device
US5196007A (en) 1991-06-07 1993-03-23 Alan Ellman Electrosurgical handpiece with activator
JPH0584296A (ja) 1991-05-14 1993-04-06 Nemoto Kiyourindou:Kk 医療用注入機器
US5199604A (en) 1990-05-04 1993-04-06 Sultan Chemists, Inc. Irrigation system and method for delivering a selected one of multiple liquid solutions to a treatment site
US5207642A (en) 1987-08-07 1993-05-04 Baxter International Inc. Closed multi-fluid delivery system and method
US5215095A (en) 1990-08-10 1993-06-01 University Technologies International Optical imaging system for neurosurgery
US5228070A (en) 1988-10-20 1993-07-13 Picker International, Inc. Constant image quality CT scanner with variable radiation flux density
US5230614A (en) 1992-06-03 1993-07-27 Allergan, Inc. Reduced pulsation tapered ramp pump head
WO1993015658A1 (fr) 1992-02-14 1993-08-19 University Of Southampton Arteriographie numerique pulsee assistee par ordinateur
US5242390A (en) 1991-05-03 1993-09-07 Goldrath Milton H Endometrium coagulating surgical method for thermal destruction of the endometrium
US5249579A (en) 1990-03-09 1993-10-05 E-Z-Em, Inc. Contrast media injector
US5267174A (en) 1989-09-29 1993-11-30 Healthtech Services Corp. Interactive medication delivery system
US5269756A (en) 1992-11-13 1993-12-14 Medicpro Inc. Irrigation apparatus and method for suction catheters
WO1993025141A1 (fr) 1992-06-08 1993-12-23 University Of Washington Procede d'imagerie de tumeurs solides, de la fonction corticale et de nerfs
US5274218A (en) 1990-09-07 1993-12-28 Mitsubishi Jukogyo Kabushiki Kaisha Magnetic recording method and circuit for toll road ticket
US5273537A (en) 1992-03-06 1993-12-28 Scimed Life Systems, Inc. Power-assisted inflation apparatus
US5276174A (en) 1990-03-09 1994-01-04 Isp Investments Inc. Alk-1-enyloxy carbonates
US5286252A (en) 1988-02-19 1994-02-15 Gensia Pharmaceuticals, Inc. Diagnosis, evaluation and treatment of coronary artery disease by exercise simulation using closed loop drug delivery of an exercise simulating agent beta agonist
US5300031A (en) 1991-06-07 1994-04-05 Liebel-Flarsheim Company Apparatus for injecting fluid into animals and disposable front loadable syringe therefor
US5301656A (en) 1991-04-19 1994-04-12 Olympus Optical Co., Ltd. Endoscope
US5301672A (en) 1991-12-09 1994-04-12 Siemens Aktiengesellschaft Radiological diagnostics system employing a contrast agent
EP0595474A2 (fr) 1992-09-29 1994-05-04 Minimed Inc., doing business as Minimed Technologies Système de transmission de données pour une pompe de perfusion
US5310997A (en) 1992-09-10 1994-05-10 Tandy Corporation Automated order and delivery system
US5311568A (en) 1992-05-01 1994-05-10 Picker International, Inc. Optical alignment means utilizing inverse projection of a test pattern/target
US5313992A (en) 1992-12-11 1994-05-24 Abbott Laboratories Transfer tubing set for compounding solutions
US5317506A (en) 1989-01-30 1994-05-31 Abbott Laboratories Infusion fluid management system
EP0600448A2 (fr) 1992-11-30 1994-06-08 Olympus Optical Co., Ltd Système de gestion d'un service de livraison
US5328463A (en) 1992-09-18 1994-07-12 Namic U.S.A. Corporation Contrast media and fluid introduction system
US5329459A (en) 1989-09-29 1994-07-12 Healthtech Services Corporation Interactive medication delivery system
WO1994015664A1 (fr) 1993-01-07 1994-07-21 Man Fai Shiu Tubulure
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5349635A (en) 1992-11-19 1994-09-20 At&T Bell Laboratories Half-duplex or full-duplex automode operation for use in data communications equipment
US5349625A (en) 1992-03-27 1994-09-20 Siemens Aktiengesellschaft X-ray diagnostics installation for peripheral angiography examinations
US5352979A (en) 1992-08-07 1994-10-04 Conturo Thomas E Magnetic resonance imaging with contrast enhanced phase angle reconstruction
US5354273A (en) 1992-12-14 1994-10-11 Mallinckrodt Medical, Inc. Delivery apparatus with pressure controlled delivery
EP0619122A1 (fr) 1993-04-08 1994-10-12 Getz Bros. Co.,Ltd. Système de contrôle de seringue pour DSA et PTCA
US5362948A (en) 1990-10-23 1994-11-08 Matsushita Electric Industrial Co., Ltd. Facsimile-use automatic order and sales management system
US5361761A (en) 1992-06-17 1994-11-08 Wisconsin Alumni Research Foundation Method and apparatus for measuring blood iodine concentration
US5368570A (en) 1991-11-12 1994-11-29 Imed Corporation Apparatus for infusing medical solutions
US5368567A (en) 1992-07-27 1994-11-29 Schneider (Usa) Inc. Dilatation balloon catheter with infusion lumen
US5368562A (en) 1993-07-30 1994-11-29 Pharmacia Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
US5373231A (en) 1993-06-10 1994-12-13 G. G. B. Industries, Inc. Integrated circuit probing apparatus including a capacitor bypass structure
US5378231A (en) 1992-11-25 1995-01-03 Abbott Laboratories Automated drug infusion system
US5383058A (en) 1992-03-11 1995-01-17 Nikon Corporation Zoom lens
US5383231A (en) 1991-06-28 1995-01-17 Kabushiki Kaisha Toshiba Method and apparatus for acquiring X-ray CT image in helical scanning mode, utilizing electrocardiogram
US5382232A (en) 1992-03-13 1995-01-17 Ivac Corporation Infusion system with air-in-line clear function
US5383858A (en) 1992-08-17 1995-01-24 Medrad, Inc. Front-loading medical injector and syringe for use therewith
US5385540A (en) 1993-05-26 1995-01-31 Quest Medical, Inc. Cardioplegia delivery system
US5388139A (en) 1989-12-07 1995-02-07 Electromed International High-voltage power supply and regulator circuit for an X-ray tube with closed-loop feedback for controlling X-ray exposure
US5392849A (en) 1990-09-28 1995-02-28 Matsushita Refrigeration Company Layer-built heat exchanger
US5400792A (en) 1990-11-20 1995-03-28 Siemens Aktiengesellschaft Medical diagnostics installation controllable from a central work station
EP0650739A1 (fr) 1993-10-28 1995-05-03 Medrad, Inc. Système pour acheminer un moyen de contraste
EP0650738A1 (fr) 1993-10-28 1995-05-03 Medrad, Inc. Système pour administrer des liquides à plusieurs malades
US5417219A (en) 1993-01-18 1995-05-23 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
US5417213A (en) 1993-06-07 1995-05-23 Prince; Martin R. Magnetic resonance arteriography with dynamic intravenous contrast agents
US5431627A (en) 1993-11-12 1995-07-11 Abbott Laboratories Cassette identification system for use with a multi-program drug infusion pump
US5433704A (en) 1991-06-25 1995-07-18 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
JPH07178169A (ja) 1993-12-24 1995-07-18 Nemoto Kyorindo:Kk Mri用注入装置
DE4426387A1 (de) 1993-07-28 1995-08-24 Manfred Linner Pumpensystem zur echtzeitregelbaren Injektion von R¦ntgenkontrastmittel und Dilatation von Blutgefäßstenosen
US5445621A (en) 1991-12-20 1995-08-29 Abbott Laboratories Drug identification and security apparatus for infusion and pumping systems
US5450847A (en) 1991-04-22 1995-09-19 Schering Aktiengesellschaft Process for making doses formulation of contrast media from concentrate
US5453639A (en) 1992-09-04 1995-09-26 International Business Machines Corporation Planarized semiconductor structure using subminimum features
US5456255A (en) 1993-07-12 1995-10-10 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus
US5459769A (en) 1994-11-09 1995-10-17 General Electric Company Procedure for monitoring contrast agent application in a CT imaging system
US5458128A (en) 1994-06-17 1995-10-17 Polanyi; Michael Method and apparatus for noninvasively measuring concentration of a dye in arterial blood
US5460609A (en) 1993-11-22 1995-10-24 Advanced Cardiovascular Systems, Inc. Electromechanical inflation/deflation system
US5464391A (en) 1994-03-03 1995-11-07 Northgate Technologies Inc. Irrigation system for a surgical site
US5468240A (en) 1992-12-03 1995-11-21 Conmed Corporation Manual control device for laparoscopic instrument
US5469769A (en) 1983-09-09 1995-11-28 Yamaha Corporation Soundboard for musical instruments
US5469849A (en) 1993-06-14 1995-11-28 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus
US5472403A (en) 1993-05-11 1995-12-05 The Regents Of The University Of California Device for automatic injection of radionuclide
US5474683A (en) 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
US5485831A (en) 1992-11-30 1996-01-23 University Hospital (London) Development Corporation Pulse-injector for quantitative angiographic blood-flow measurements
US5489265A (en) 1994-06-15 1996-02-06 Ivac Corporation Restrictor fitting for an infusion pump
US5494036A (en) 1993-11-26 1996-02-27 Medrad, Inc. Patient infusion system for use with MRI
US5494822A (en) 1992-09-21 1996-02-27 Bio-Preserve Medical Corporation Organ perfusion device
US5496273A (en) 1991-12-20 1996-03-05 Abbott Laboratories Automated drug infusion system with autopriming
EP0702966A2 (fr) 1994-09-21 1996-03-27 Medrad Inc. Systèmes de délivrance d'un produit de contraste avec dosage spécifique au patient et méthodes
US5507412A (en) 1993-06-19 1996-04-16 Dragerwerk Ag Centralized multichannel fluid delivery system
US5515851A (en) 1993-07-30 1996-05-14 Goldstein; James A. Angiographic fluid control system
US5522798A (en) 1994-10-17 1996-06-04 Abbott Laboratories Control of a multi-channel drug infusion pump using a pharmacokinetic model
US5531679A (en) 1994-03-14 1996-07-02 Schulman; Joseph H. Fluidic infusion system for catheter or probe
US5531697A (en) 1994-04-15 1996-07-02 Sims Deltec, Inc. Systems and methods for cassette identification for drug pumps
US5533978A (en) 1994-11-07 1996-07-09 Teirstein; Paul S. Method and apparatus for uninterrupted delivery of radiographic dye
US5544215A (en) 1995-01-13 1996-08-06 Picker International, Inc. Digital angiography system with automatically determined frame rates
US5552130A (en) 1994-05-02 1996-09-03 Bayer Aktiengesellschaft Process for the continuous preparation of nitrosyl chloride
US5560317A (en) 1994-10-19 1996-10-01 N J Phillips Pty Limited Mechanism to dispense medication to animals
US5566092A (en) 1993-12-30 1996-10-15 Caterpillar Inc. Machine fault diagnostics system and method
WO1996032975A1 (fr) 1995-04-20 1996-10-24 Invasatec, Inc. Injecteur autopurgeur pour angiographie
US5569181A (en) 1993-10-28 1996-10-29 Medrad, Inc. Sterility assurance for contrast delivery system
US5569208A (en) 1995-08-01 1996-10-29 Merit Medical Systems, Inc. System for managing delivery of contrast media
US5573515A (en) 1995-04-20 1996-11-12 Invasatec, Inc. Self purging angiographic injector
US5579767A (en) 1993-06-07 1996-12-03 Prince; Martin R. Method for imaging abdominal aorta and aortic aneurysms
US5583902A (en) 1995-10-06 1996-12-10 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement
US5590654A (en) 1993-06-07 1997-01-07 Prince; Martin R. Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent
US5601086A (en) 1995-05-12 1997-02-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Beat frequency ultrasonic microsphere contrast agent detection system
US5611344A (en) 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
CA2234050A1 (fr) 1995-10-06 1997-04-10 Bhb, L.C. Prevision du renforcement des contrastes en tomographie assistee par ordinateur avec retroinformation
DE19702896A1 (de) 1996-01-19 1997-07-24 Schering Ag Vorrichtung zur Optimierung der Kontrastmittelgabe und zur Differentialdiagnostik bei bildgebenden diagnostischen Verfahren
US5681285A (en) 1992-10-15 1997-10-28 Baxter International Inc. Infusion pump with an electronically loadable drug library and a user interface for loading the library
US5687708A (en) 1995-10-30 1997-11-18 Gas Research Institute Gas-fired batch booster water heater apparatus
US5713358A (en) 1996-03-26 1998-02-03 Wisconsin Alumni Research Foundation Method for producing a time-resolved series of 3D magnetic resonance angiograms during the first passage of contrast agent
US5724976A (en) 1994-12-28 1998-03-10 Kabushiki Kaisha Toshiba Ultrasound imaging preferable to ultrasound contrast echography
US5739508A (en) 1994-07-12 1998-04-14 Medrad, Inc. Closed loop information path for medical fluid delivery systems
US5743266A (en) 1995-04-25 1998-04-28 Molecular Biosystems, Inc. Method for processing real-time contrast enhanced ultrasonic images
DE19647701A1 (de) 1996-11-08 1998-05-14 Schering Ag Vorrichtung zur Erzielung von konstanten Dichten von Kontrastmitteln in Geweben und Organen
US5768405A (en) 1993-07-22 1998-06-16 U.S Philips Corporation Digital image processing method for local determination of the center and the width of objects in the form of contrasting bands on a background
JPH10211198A (ja) 1997-01-30 1998-08-11 Toshiba Corp X線ct装置
US5796862A (en) 1996-08-16 1998-08-18 Eastman Kodak Company Apparatus and method for identification of tissue regions in digital mammographic images
US5800397A (en) 1995-04-20 1998-09-01 Invasatec, Inc. Angiographic system with automatic high/low pressure switching
US5808203A (en) 1997-05-12 1998-09-15 Medrad, Inc. Fluid pressure measurement devices
US5827504A (en) 1994-12-16 1998-10-27 Bracco Research S.A. Method of echographic imaging using frozen gasbubble suspensions
US5827219A (en) 1993-10-28 1998-10-27 Medrad, Inc. Injection system and pumping system for use therein
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
US5865744A (en) 1996-09-16 1999-02-02 Lemelson; Jerome H. Method and system for delivering therapeutic agents
GB2328745A (en) 1997-08-26 1999-03-03 Hewlett Packard Co Ultrasonic echographic system
US5881124A (en) 1994-03-31 1999-03-09 Arch Development Corporation Automated method and system for the detection of lesions in medical computed tomographic scans
US5882343A (en) 1995-04-20 1999-03-16 Invasatec, Inc. Dual port syringe
US5903454A (en) 1991-12-23 1999-05-11 Hoffberg; Linda Irene Human-factored interface corporating adaptive pattern recognition based controller apparatus
US5902054A (en) 1996-01-31 1999-05-11 Canon Kabushiki Kaisha Energy saving image edging method and device
WO1999024095A2 (fr) 1997-11-07 1999-05-20 Invasatec, Inc. Systeme d'injection pour angiographie avec redondance de plusieurs processeurs
US5916165A (en) 1997-11-06 1999-06-29 Invasatec, Inc. Pneumatic controller and method
US5987347A (en) 1997-12-15 1999-11-16 General Electric Company Method for removing streak artifacts in medical images
US5988587A (en) 1997-10-10 1999-11-23 Invasatec, Inc. Control device for providing a variable control signal to a fluid-supplying machine
US6046225A (en) 1989-08-02 2000-04-04 Cobe Laboratories, Inc. Method of treatment with medical agents
US6055985A (en) 1999-04-09 2000-05-02 B.H.B., L.C. Methods for injecting a contrast medium to generate prolonged uniform vascular enhancement
US6056902A (en) 1995-06-19 2000-05-02 Hettinga; Siebolt Method and apparatus for molding a plastic article including injecting based upon a pressure-dominated control algorithm after detecting an indicia of a decrease in the surface area of the melt front
US6073042A (en) 1997-09-25 2000-06-06 Siemens Medical Systems, Inc. Display of three-dimensional MRA images in which arteries can be distinguished from veins
JP3055040B2 (ja) 1991-08-30 2000-06-19 富士通株式会社 液晶表示パネルの製造方法
JP2000175900A (ja) 1998-12-16 2000-06-27 Toshiba Iyo System Engineering Kk X線ct装置
US6099502A (en) 1995-04-20 2000-08-08 Acist Medical Systems, Inc. Dual port syringe
WO2000061216A1 (fr) 1999-04-09 2000-10-19 B.H.B., L.C. Injecteur angiographique servant a injecter une substance de contraste pour obtenir une mise en valeur vasculaire uniforme prolongee
WO2000064353A2 (fr) 1999-04-27 2000-11-02 Medrad, Inc. Commande et communication de donnees pour systemes d'imagerie medicale
US6186146B1 (en) 1996-08-30 2001-02-13 Delcath Systems Inc Cancer treatment method
US6201889B1 (en) 1996-04-24 2001-03-13 Shriners Hospital For Children Apparatus and computer program for generating a feedback code
US6221045B1 (en) 1995-04-20 2001-04-24 Acist Medical Systems, Inc. Angiographic injector system with automatic high/low pressure switching
US6236706B1 (en) 1996-12-12 2001-05-22 General Electric Company Methods and apparatus for predicting contrast agent uptake in a computed tomography system
US6248093B1 (en) 1998-10-29 2001-06-19 Minimed Inc. Compact pump drive system
US6313131B1 (en) 1999-02-16 2001-11-06 Upsher-Smith Laboratories, Inc. Method of kidney treatment
US6317623B1 (en) 1999-03-12 2001-11-13 Medrad, Inc. Apparatus and method for controlling contrast enhanced imaging procedures
US20010041964A1 (en) 1998-09-14 2001-11-15 George M. Grass Pharmacokinetic-based drug design tool and method
US6337992B1 (en) 1997-01-29 2002-01-08 Philips Medical Systems Technologies Ltd. Predictive bolus tracking
US20020010551A1 (en) 2000-02-11 2002-01-24 Ge Wang System and method of bolus-chasing angiography with adaptive real-time computed tomography (CT)
US6346229B1 (en) 1998-03-18 2002-02-12 Medi-Physics, Inc. Methods for imaging pulmonary and cardiac vasculature and evaluating blood flow using dissolved polarized 129Xe
US6381486B1 (en) 1999-01-08 2002-04-30 Wisconsin Alumni Research Foundation Magnetic resonance angiography with vessel segmentation
US6387098B1 (en) 1999-10-21 2002-05-14 Peter Alexander Cole Intramedullary catheter nail apparatus and method
US6397097B1 (en) 1998-03-16 2002-05-28 Siemens Aktiengesellschaft Method and control apparatus for tracking a contrast agent in an examination subject using a medical imaging device
US6397093B1 (en) 1996-12-05 2002-05-28 Essential Medical Devices, Inc. Non-invasive carboxyhemoglobin analyzer
US6402697B1 (en) 1999-01-21 2002-06-11 Metasensors, Inc. Non-invasive cardiac output and pulmonary function monitoring using respired gas analysis techniques and physiological modeling
US20020091349A1 (en) 2001-01-09 2002-07-11 Mount Sinal School Of Medicine Of New York Univerysity Method and device for preventing contrast associated nephropathy
US6423719B1 (en) 1999-02-16 2002-07-23 Upsher-Smith Laboratories, Inc. Method for treating benign prostate hyperplasia
US20020099254A1 (en) 2001-01-23 2002-07-25 Movahed M. Reza Method and apparatus to remove substances from vessels of the heart and other parts of the body to minimize or aviod renal or other harm or dysfunction
US20020123702A1 (en) 2001-02-26 2002-09-05 Young Cho Method & apparatus for mitigating renal failure using mechanical vibration including ultrasound and heat
US6471674B1 (en) 2000-04-21 2002-10-29 Medrad, Inc. Fluid delivery systems, injector systems and methods of fluid delivery
WO2002086821A1 (fr) 2001-04-19 2002-10-31 Kabushiki Kaisha Toshiba Procede et dispositif de traitement d'image
US6478735B1 (en) 1999-01-28 2002-11-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Physiological feedback method and system
US6503226B1 (en) 1999-08-04 2003-01-07 Grupo Grifols, S.A. Apparatus for angiography by the injection of CO2
US20030015078A1 (en) 2000-05-03 2003-01-23 Taylor Christopher L. Precision miter gauge
US6520930B2 (en) 1999-11-24 2003-02-18 Medrad, Inc. Injectors, injector systems and injector control
US20030036694A1 (en) 2001-08-16 2003-02-20 Marconi Medical Systems, Inc. System for assistance of parameter determination and diagnosis in mri dynamic uptake studies
US6527718B1 (en) 1999-08-20 2003-03-04 Brian G Connor Ultrasound system for continuous imaging and delivery of an encapsulated agent
JP2003102724A (ja) 2001-09-21 2003-04-08 Ge Medical Systems Global Technology Co Llc 造影剤量計算装置、造影剤注入装置および断層像撮影装置
JP2003116843A (ja) 2001-10-16 2003-04-22 Toshiba Corp 脳組織内毛細血管の血流動態に関するインデックス演算方法、装置及び記憶媒体
US6556695B1 (en) 1999-02-05 2003-04-29 Mayo Foundation For Medical Education And Research Method for producing high resolution real-time images, of structure and function during medical procedures
US6574496B1 (en) 1999-05-19 2003-06-03 Amersham Health As Magnetic resonance imaging
US6572851B2 (en) 1997-03-12 2003-06-03 Takashi Muramatsu Method for suppressing or treating drug-induced nephropathy
WO2003046795A2 (fr) 2001-11-21 2003-06-05 Koninklijke Philips Electronics Nv Correction de signal faible pour mesures de perfusion
US6575930B1 (en) 1999-03-12 2003-06-10 Medrad, Inc. Agitation devices and dispensing systems incorporating such agitation devices
US20030120171A1 (en) 2000-09-08 2003-06-26 Leonidas Diamantopoulos Vasular temperature measuring device and process for measuring vascular temperature
US20030135111A1 (en) 1997-10-06 2003-07-17 Meaney James F.M. Method and apparatus for magnetic resonance arteriography using contrast agents
JP2003210456A (ja) 2002-01-21 2003-07-29 Toshiba Corp 時系列画像の処理装置
JP2003225234A (ja) 2002-02-01 2003-08-12 Hitachi Medical Corp 血流動態解析装置
US6626862B1 (en) 2000-04-04 2003-09-30 Acist Medical Systems, Inc. Fluid management and component detection system
US20030195462A1 (en) 1998-08-18 2003-10-16 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US20030198691A1 (en) 1999-05-11 2003-10-23 Wing Cheung Pharmacokinetic and pharmacodynamic modeling of erythropoietin administration
US6643537B1 (en) 1999-07-30 2003-11-04 Medrad, Inc. Programmable injector control
US20030216683A1 (en) 2001-11-26 2003-11-20 Nili-Med Ltd. Drug delivery device and method
US6652489B2 (en) 2000-02-07 2003-11-25 Medrad, Inc. Front-loading medical injector and syringes, syringe interfaces, syringe adapters and syringe plungers for use therewith
US6656157B1 (en) 1995-04-20 2003-12-02 Acist Medical Systems, Inc. Infinitely refillable syringe
US6673033B1 (en) 1999-11-24 2004-01-06 Medrad, Inc. Injectors, injector systems and injector control
US20040008028A1 (en) 2002-07-09 2004-01-15 Siemens Aktiengesellschaft Method and magnetic resonance tomography apparatus for graphic planning of angiographic exposures using a contrast agent
US20040010229A1 (en) 2002-07-11 2004-01-15 Eric Houde Fluid management system for coronary intervention
US20040011740A1 (en) 2002-06-26 2004-01-22 Bernard Steven J. Method and device for removal of radiocontrast media from blood
US6685733B1 (en) 2002-04-10 2004-02-03 Radiant Medical, Inc. Methods and systems for reducing substance-induced renal damage
US6691047B1 (en) 2000-03-16 2004-02-10 Aksys, Ltd. Calibration of pumps, such as blood pumps of dialysis machine
WO2004012787A2 (fr) 2002-08-02 2004-02-12 Liebel-Flarsheim Company Injecteur
US20040025452A1 (en) 2002-08-12 2004-02-12 Mclean Frederick Bruce Baluster retaining member
US20040039530A1 (en) 2001-07-30 2004-02-26 Leesman Glen D Pharmacokinetic tool and method for predicting metabolism of a compound in a mammal
US20040044302A1 (en) 2002-06-26 2004-03-04 Chf Solutions, Inc. Method and device for removal of radiocontrast media from blood
US20040064040A1 (en) 2002-09-26 2004-04-01 Kazumasa Masuda Liquid injector for injecting contrast medium at variable rate into a subject who is to be imaged by imaging diagnostic apparatus
US20040064041A1 (en) 2002-05-30 2004-04-01 Lazzaro Frank A. Front-loading medical injector and syringes, syringe interfaces, syringe adapters and syringe plungers for use therewith
US20040074453A1 (en) 2002-10-22 2004-04-22 Roelle Matthew J. Secondary air injection diagnostic system using pressure feedback
US20040097875A1 (en) 2002-10-31 2004-05-20 Bae Kyongtae T. Method and apparatus for sequential delivery of multiple injectable substances stored in a prefilled syringe
US20040097806A1 (en) 2002-11-19 2004-05-20 Mark Hunter Navigation system for cardiac therapies
JP2004174008A (ja) 2002-11-28 2004-06-24 Olympus Corp 内視鏡情報システム、内視鏡、及びプログラム
JP2004519304A (ja) 2000-10-25 2004-07-02 ザ ジョン ピー. ロバーツ リサーチ インスティテュート 血流パラメータを算出する方法及び装置
JP2004194721A (ja) 2002-12-16 2004-07-15 Nemoto Kyorindo:Kk 薬液注入装置
US6775764B1 (en) 2001-04-24 2004-08-10 Cisco Technology, Inc Search function for data lookup
US6776764B2 (en) 2002-03-01 2004-08-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Use of aortic pulse pressure and flow in bedside hemodynamic management
US20040162484A1 (en) 2003-02-18 2004-08-19 Nemoto Kyorindo Co., Ltd. Liquid injector with appropriate operating conditions set by selecting displayed image
US20040163655A1 (en) 2003-02-24 2004-08-26 Plc Systems Inc. Method and catheter system applicable to acute renal failure
JP2004236849A (ja) 2003-02-06 2004-08-26 Ge Medical Systems Global Technology Co Llc 磁気共鳴撮影装置
JP2004298550A (ja) 2003-04-01 2004-10-28 Nemoto Kyorindo:Kk 薬液注入システム
US20040242994A1 (en) 2001-07-13 2004-12-02 Brady John Michael Dynamic contrast enhanced magnetic resonance imaging
US20050004517A1 (en) 2000-06-02 2005-01-06 Courtney Brian K. Embolization protection system for vascular procedures
WO2005004038A1 (fr) 2003-07-08 2005-01-13 Philips Intellectual Property & Standards Gmbh Reconstitution de debit dans un systeme vasculaire
WO2005016165A1 (fr) 2003-08-05 2005-02-24 Flowmedica, Inc. Systeme et methode de prevention de la nephropathie induite par les produits de contraste radiologique
US20050053551A1 (en) 2003-09-08 2005-03-10 Badiola Carlos M. Use of a combination of gadolinium-based contrast media and iodinated contrast media as a contrast agent for X-ray based medical imaging procedures
US6866654B2 (en) 2000-10-18 2005-03-15 Medrad, Inc. Pressure isolation mechanisms and fluid delivery systems including pressure isolation mechanisms
US6876720B2 (en) 2001-12-20 2005-04-05 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
US6887214B1 (en) 2000-09-12 2005-05-03 Chf Solutions, Inc. Blood pump having a disposable blood passage cartridge with integrated pressure sensors
US20050112178A1 (en) 2000-10-13 2005-05-26 E-Z-Em, Inc. Nutritional dietary kit for use in preparing an individual for a gastrointestinal procedure
US20050256441A1 (en) 2004-04-26 2005-11-17 Hadasit Medical Research Services And Development; Ltd. Device for renal protection
JP2005324007A (ja) 2004-03-02 2005-11-24 General Electric Co <Ge> 放射性医薬品の準備、供給、及びモニタのためのシステム、方法、及び装置
US20060013772A1 (en) 2004-06-30 2006-01-19 University Of Vermont And State Agricultural College Method and device to recover diagnostic and therapeutic agents
US6994700B2 (en) 2002-09-20 2006-02-07 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US20060052764A1 (en) 2004-09-09 2006-03-09 Mark Gelfand Patient hydration system and method
JP2006075600A (ja) 2004-09-09 2006-03-23 Siemens Ag 3d画像データからの解剖学的構造のセグメント化方法
US20060074294A1 (en) 2004-10-06 2006-04-06 E-Z-Em, Inc. Medical imaging system, dispensing system, method, and computer program product for assessing patient renal function prior to dispensing a contrast media as part of a medical imaging procedure
US20060079843A1 (en) 2004-10-13 2006-04-13 Liebel-Flarsheim Company Powerhead control in a power injection system
US20060096388A1 (en) 2004-11-05 2006-05-11 Gysling Daniel L System for measuring a parameter of an aerated multi-phase mixture flowing in a pipe
WO2006055813A2 (fr) 2004-11-16 2006-05-26 Medrad, Inc. Modelage de propagation pharmaceutique
WO2006058280A2 (fr) 2004-11-24 2006-06-01 Medrad, Inc. Dispositifs, systemes et methodes de distribution de liquide
US20060184099A1 (en) 2004-12-06 2006-08-17 Hong Mun K Variable lumen guiding catheter
US7108981B2 (en) 2000-07-31 2006-09-19 The United States Of America As Represented By The Department Of Health And Human Services Specific binding agents for KSHV vIL-6 that neutralize a biological activity
US20060211989A1 (en) 2005-03-04 2006-09-21 Rhinehart Edward J Fluid delivery systems, devices and methods for delivery of fluids
US20060235474A1 (en) 2002-04-08 2006-10-19 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US20060235353A1 (en) 2004-09-09 2006-10-19 Mark Gelfand Patient hydration system with abnormal condition sensing
US20060239918A1 (en) 2005-02-14 2006-10-26 Ernst Klotz Method for forecasting the contrast medium flow in a living body
US20060253064A1 (en) 2004-09-09 2006-11-09 Mark Gelfand Patient hydration system with hydration state detection
US20060253353A1 (en) 2005-05-04 2006-11-09 Citigroup Global Markets, Inc. Method and system for crossing orders
US20060271111A1 (en) 2002-04-08 2006-11-30 Ardian, Inc. Methods and apparatus for treating contrast nephropathy
US20060270971A1 (en) 2004-09-09 2006-11-30 Mark Gelfand Patient hydration system with a redundant monitoring of hydration fluid infusion
US20070016016A1 (en) 2005-05-31 2007-01-18 Gabriel Haras Interactive user assistant for imaging processes
JP2007020829A (ja) 2005-07-15 2007-02-01 Hitachi Ltd 画像データ解析方法およびシステム
US20070066892A1 (en) 2005-09-01 2007-03-22 Gabriel Haras Method and system for providing tomographic pictures of a patient by using contrast medium injections
US20070078330A1 (en) 2005-09-29 2007-04-05 Gabriel Haras Method and apparatus for checking parameters
JP2007143880A (ja) 2005-11-28 2007-06-14 Hiroshima Industrial Promotion Organization 造影剤注入プロトコル決定方法および造影剤注入プロトコル演算装置
US7266227B2 (en) 2001-11-30 2007-09-04 Brainlab Ag Device and method for administering a substance
US7267666B1 (en) 1995-04-20 2007-09-11 Acist Medical Systems, Inc. Angiographic injector system with multiple processor redundancy
US20070244389A1 (en) 2006-04-13 2007-10-18 General Electric Company Methods and apparatus for relative perfusion and/or viability
WO2007143682A2 (fr) 2006-06-06 2007-12-13 Bayer Schering Pharma Ag Systèmes et procédés d'administration de fluides de concentration variable à un patient
US20080009717A1 (en) 2006-05-05 2008-01-10 Klaus Herrmann Method for generating a medical image and a medical imaging system
WO2008011401A2 (fr) 2006-07-17 2008-01-24 Medrad, Inc. Systèmes d'imagerie médicale intégré
US7325330B2 (en) 2004-12-02 2008-02-05 Samsung Electronics Co., Ltd. Apparatus and method for eliminating wrinkles in clothes
JP2008023346A (ja) 2007-08-10 2008-02-07 Sumitomo Heavy Ind Ltd 放射性液体の分注・投与方法及び装置
US20080046286A1 (en) 2005-09-16 2008-02-21 Halsted Mark J Computer implemented healthcare monitoring, notifying and/or scheduling system
US20080097339A1 (en) 2006-08-31 2008-04-24 Medrad, Inc. Catheter with filtering and sensing elements
US20080101678A1 (en) 2006-10-25 2008-05-01 Agfa Healthcare Nv Method for Segmenting Digital Medical Image
WO2008060629A2 (fr) 2006-11-17 2008-05-22 Icad, Inc. Procédés automatiques pour la production de points de référence artériels et veineux pour l'angiographie par résonance magnétique à contraste amélioré et la tomographie informatisée
US20080119715A1 (en) 2006-11-22 2008-05-22 Marcela Gonzalez Molezzi System and method to adaptively control contrast-enhanced diagnostic imaging procedure
JP2008136786A (ja) 2006-12-05 2008-06-19 Sumitomo Heavy Ind Ltd 放射性薬剤投与装置
JP4115677B2 (ja) 2001-03-21 2008-07-09 株式会社日立製作所 内燃機関の大気圧検出装置
WO2008082937A2 (fr) 2006-12-29 2008-07-10 Medrad, Inc. Modélisation de la propagation d'un produit pharmaceutique
WO2008085421A2 (fr) 2006-12-29 2008-07-17 Medrad, Inc. Systèmes de génération de paramètres sur la base d'un patient pour des procédures médicales d'injection
US20080294035A1 (en) 2007-05-23 2008-11-27 Stefan Zwick Vessel size imaging for antiangiogenic therapy
WO2009012023A1 (fr) 2007-07-17 2009-01-22 Medrad, Inc. Dispositifs, systèmes et procédés pour déterminer des paramètres pour une procédure, pour estimer une fonction cardiopulmonaire et pour une administration de fluide
US20090028968A1 (en) 2007-03-30 2009-01-29 Yun Kau Tam Pharmaceutical Platform Technology for the Development of Natural Products
EP2042100A2 (fr) 2007-09-14 2009-04-01 Multi Magnetics Incorporated Procédé et appareil pour quantifier le comportement d'un agent de contraste administré
US7522744B2 (en) 2004-08-31 2009-04-21 University Of Iowa Research Foundation System and method for adaptive bolus chasing computed tomography (CT) angiography
US20090116711A1 (en) 2007-10-31 2009-05-07 Andrew Christian Larson Method for transcatheter intra-arterial perfusion magnetic resonance imaging
US20090226867A1 (en) 2008-03-04 2009-09-10 Medrad, Inc. Dynamic anthropomorphic cardiovascular phantom
WO2009158212A1 (fr) 2008-06-24 2009-12-30 Medrad, Inc. Identification de régions d’intérêt et extraction de courbes de valeurs dans le temps dans des procédures d'imagerie
US20100114064A1 (en) 2008-11-03 2010-05-06 Medrad, Inc. Mitigation of contrast-induced nephropathy
US7713239B2 (en) 2003-04-08 2010-05-11 Medrad, Inc. System for delivery of hazardous pharmaceuticals
WO2010115165A2 (fr) 2009-04-03 2010-10-07 New York University Système, procédé et support accessible par ordinateur pour utiliser des données cardiaques de manière à améliorer la mesure de la fonction d'entrée d'un traceur dans l'imagerie par résonance magnétique dynamique avec agent de contraste
US7864997B2 (en) 2006-04-28 2011-01-04 Pie Medical Imaging B.V. Method, apparatus and computer program product for automatic segmenting of cardiac chambers
US7996381B2 (en) 2002-05-10 2011-08-09 Medrad, Inc. System and method for automated benchmarking for the recognition of best medical practices and products and for establishing standards for medical procedures
US20110200165A1 (en) 2008-07-16 2011-08-18 Bayer Schering Pharma Aktiengesellschaft Contrast agent-reinforced radiotherapy having high-output tubes
US8011401B1 (en) 2009-08-28 2011-09-06 Utterback David K Toilet bowl protecting method and assembly
WO2011136218A1 (fr) 2010-04-27 2011-11-03 株式会社根本杏林堂 Dispositif d'injection d'agent chimique et dispositif ct
US8086001B2 (en) 2005-10-17 2011-12-27 Koninklijke Philips Electronics N.V. Utilizing physiological models to control functional acquisitions
WO2011163578A2 (fr) 2010-06-24 2011-12-29 Medrad, Inc. Modélisation de propagation pharmaceutique et de génération de paramètres pour protocoles d'injection
WO2011162578A2 (fr) 2010-06-26 2011-12-29 엘지전자 주식회사 Système réseau
US20120141005A1 (en) 2009-06-05 2012-06-07 Faycal Djeridane Method for estimating haeomodynamic parameters by joint estimation of the parameters of a global perfusion model
JP5084296B2 (ja) 2007-02-16 2012-11-28 Juki株式会社 玉縁縫いミシン
US8705819B2 (en) 2007-06-21 2014-04-22 Koninklijke Philips N.V. Adjusting acquisition protocols for dynamic medical imaging using dynamic models
US8718747B2 (en) 2010-04-16 2014-05-06 Oslo Universitetssykehus Hf Estimating and correcting for contrast agent extravasation in tissue perfusion imaging
US9271656B2 (en) 2013-01-24 2016-03-01 Siemens Aktiengesellschaft Prediction of a likely contrast medium behavior

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054519A (ja) * 1999-08-17 2001-02-27 Ge Yokogawa Medical Systems Ltd スキャンタイミング決定方法および装置並びに放射線断層撮像装置
JP4254332B2 (ja) 2003-04-28 2009-04-15 株式会社日立製作所 電動ディスクブレーキ装置
DE10358331A1 (de) 2003-12-12 2005-07-07 Dt Swiss Ag Stoßdämpfer
JP5148881B2 (ja) * 2004-02-11 2013-02-20 アシスト・メディカル・システムズ,インコーポレイテッド 医療用インジェクタおよび画像診断用装置を操作するための方法システムおよび機器
US8900187B2 (en) * 2004-10-13 2014-12-02 Mallinckrodt Llc Powerhead control in a power injection system
US20060178616A1 (en) * 2005-02-08 2006-08-10 Steven Hartman Leak detector for detecting leak of liquid injected into blood vessel using pulse signal
JP4937927B2 (ja) * 2005-12-28 2012-05-23 株式会社日立メディコ X線ct装置とx線ct装置における撮像条件決定方法
DE102010041176B4 (de) * 2010-06-24 2015-01-15 Siemens Aktiengesellschaft Verfahren zur Korrektur des Wertes einer an einer Röntgenröhre einzustellenden Spannung, Computertomographiegerät und Datenträger
DE102010027227B4 (de) * 2010-07-15 2016-10-20 Siemens Healthcare Gmbh Verfahren und Computertomographiegerät zur Durchführung einer angiographischen Untersuchung

Patent Citations (609)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201800A (en) 1922-09-18 1923-08-09 Robert Sowter Hubbard An improved toy
US3349713A (en) 1964-09-12 1967-10-31 Glanzstoff Koln G M B H Process and device for mixing liquids of differing viscosities
US3523523A (en) 1966-06-30 1970-08-11 Contraves Ag Power driven medical injector syringe with electromagnetic coupling means
US3623474A (en) 1966-07-25 1971-11-30 Medrad Inc Angiographic injection equipment
US3520295A (en) 1968-03-06 1970-07-14 Gen Electric Cardiac r-wave detector with automatic gain control
US3701345A (en) 1970-09-29 1972-10-31 Medrad Inc Angiographic injector equipment
US3793600A (en) 1971-03-16 1974-02-19 Strategic Automated Systems In Record medium with validating and cancelling feature and method
US3817843A (en) 1971-04-13 1974-06-18 Electricity Council Electrodeposition of iron foil
US4001549A (en) 1971-06-10 1977-01-04 Corwin Edward J Marking document and template assembly and method of making the assembly
US3927955A (en) 1971-08-23 1975-12-23 East West Medical Products Inc Medical cassette pump
US3755655A (en) 1971-10-26 1973-08-28 Tac Ind Inc Machine processed data card
US3839708A (en) 1972-06-28 1974-10-01 Searle Medidata Inc Input-output terminal for hospital information system
US3812843A (en) 1973-03-12 1974-05-28 Lear Siegler Inc Method and apparatus for injecting contrast media into the vascular system
US3958103A (en) 1973-05-31 1976-05-18 Omron Tateisi Electronics Co. Automatic ticket vending system
JPS5017781A (fr) 1973-06-15 1975-02-25
US3895220A (en) 1973-09-07 1975-07-15 Docutronix Inc Selectively encodable envelope insert and related apparatus
US3898983A (en) 1973-10-03 1975-08-12 James O Elam Device and method for detecting the degree of muscle relaxation of a medical patient
US3968195A (en) 1974-06-17 1976-07-06 Marilyn Bishop Method for making sterile connections
US3888239A (en) 1974-06-21 1975-06-10 Morton K Rubinstein Fluid injection system
US4038981A (en) 1974-07-26 1977-08-02 Burron Medical Products, Inc. Electronically controlled intravenous infusion set
US3941126A (en) 1974-08-08 1976-03-02 Dietrich Joseph W Apparatus for long term intravenous administration of diluted incompatible multiple medications
US4006736A (en) 1974-11-27 1977-02-08 Medrad, Inc. Angiographic injector
US3995381A (en) 1975-06-27 1976-12-07 Ken Max Manfred Low visibility answer sheet and method of testing
US4090502A (en) 1975-08-22 1978-05-23 Medical Institute Of Hoshokai Remote-controlled barium injection apparatus
US4044757A (en) 1976-01-14 1977-08-30 The Kendall Company Cholangiography device and method
US4135247A (en) 1977-08-15 1979-01-16 Siemens Aktiengesellschaft Tomography signal processing system
US4284073A (en) 1977-10-11 1981-08-18 Krause Horst E Method and apparatus for pumping blood within a vessel
US4191183A (en) 1977-10-31 1980-03-04 Barry Mendelson Mixing chamber for use in plural medical liquid intravenous administration set
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
US4187057A (en) 1978-01-11 1980-02-05 Stewart-Naumann Laboratories, Inc. Peristaltic infusion pump and disposable cassette for use therewith
US4262824A (en) 1978-02-17 1981-04-21 Baxter Travenol Laboratories, Inc. Low-current E-frame electronic magnet with a permanent magnet armature for an I. V. valving controller
US4263916A (en) 1978-03-27 1981-04-28 University Of Southern California Image averaging for angiography by registration and combination of serial images
US4448200A (en) 1978-03-27 1984-05-15 University Of Southern California System and method for dynamic background subtraction
US4207871A (en) 1978-06-07 1980-06-17 Imed Corporation System for controlling the flow of intravenous fluids to a patient
US4199000A (en) 1978-07-19 1980-04-22 Edstrom William E Cross-contamination isolator
US4223675A (en) 1978-07-24 1980-09-23 Baxter Travenol Laboratories, Inc. Solution containers such as blood bags and system for preparing same
US4392847A (en) 1979-01-08 1983-07-12 Whitney Douglass G Injection and monitoring system
WO1980001754A1 (fr) 1979-02-28 1980-09-04 Abbott Lab Nouvelle soupape utilisant des membranes hydrophobes et hydrophiles
US4280494A (en) 1979-06-26 1981-07-28 Cosgrove Robert J Jun System for automatic feedback-controlled administration of drugs
US4315247A (en) 1979-08-13 1982-02-09 Germanton Charles E Security systems employing an electronic lock and key apparatus
US4319568A (en) 1979-10-29 1982-03-16 Vickers Limited Liquid dispensing apparatus
US4434822A (en) 1979-11-05 1984-03-06 Baxter Travenol Laboratories, Inc. System for the sterile mixing of materials
US4402310A (en) 1979-11-22 1983-09-06 Olympus Optical Co., Ltd. Endoscope system
US4341153A (en) 1980-01-08 1982-07-27 Truswal Systems Corp. Splicing and truss assembly apparatus and methods
FR2493708A1 (fr) 1980-11-07 1982-05-14 Mecaserto Appareil de preparation d'un produit de traitement destine a etre injecte dans l'organisme d'un patient
US4340153A (en) 1980-11-28 1982-07-20 Spivey David L Method and apparatus for medication dispensing
US4396385A (en) 1980-12-05 1983-08-02 Baxter Travenol Laboratories, Inc. Flow metering apparatus for a fluid infusion system
US4409966A (en) 1981-05-29 1983-10-18 Lambrecht Richard M Method and apparatus for injecting a substance into the bloodstream of a subject
JPS5815842A (ja) 1981-07-20 1983-01-29 株式会社東芝 画像輪郭抽出装置
US4392849A (en) 1981-07-27 1983-07-12 The Cleveland Clinic Foundation Infusion pump controller
US4447230A (en) 1981-08-05 1984-05-08 Quest Medical, Inc. Intravenous administration set assembly
US4444198A (en) 1981-12-21 1984-04-24 Petre John H Circulatory monitoring system and method
DE3203594A1 (de) 1982-02-03 1983-08-11 Siemens AG, 1000 Berlin und 8000 München Roentgendiagnostikanlage fuer angiographische roentgenaufnahmen
US4477923A (en) 1982-02-03 1984-10-16 Siemens Aktiengesellschaft X-ray diagnostic system for angiographic radiographs
US4435173A (en) 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4544949A (en) 1982-03-05 1985-10-01 Tokyo Shibaura Denki Kabushiki Kaisha X-Ray diagnostic apparatus and method
US4504908A (en) 1982-03-15 1985-03-12 General Electric Company Matched filter for X-ray temporal subtraction
US4434820A (en) 1982-05-05 1984-03-06 Glass John P Syringe loader and method
US4823833A (en) 1982-06-24 1989-04-25 Baxter Healthcare Corporation Fluid communication device
US4636144A (en) 1982-07-06 1987-01-13 Fujisawa Pharmaceutical Co., Ltd. Micro-feed pump for an artificial pancreas
US4474476A (en) 1982-08-05 1984-10-02 Jack Thomsen Chemical printing liquid method and system
US4512764A (en) 1982-09-27 1985-04-23 Wunsch Richard E Manifold for controlling administration of multiple intravenous solutions and medications
US4542459A (en) 1982-11-26 1985-09-17 General Electric Company Matched filter for x-ray hybrid subtraction
US4655197A (en) 1982-12-01 1987-04-07 Snyder Laboratories, Inc. Lavage system with variable frequency, flow rate and pressure
US4479761A (en) 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4479762A (en) 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479760A (en) 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4509526A (en) 1983-02-08 1985-04-09 Lawrence Medical Systems, Inc. Method and system for non-invasive ultrasound Doppler cardiac output measurement
US4585009A (en) 1983-02-28 1986-04-29 E. R. Squibb & Sons, Inc. Strontium-rubidium infusion pump with in-line dosimetry
US4585941A (en) 1983-02-28 1986-04-29 E. R. Squibb & Sons, Inc. Dosimetry system for strontium-rubidium infusion pump
US4552130A (en) 1983-03-01 1985-11-12 Olympus Optical Co., Ltd. Air and liquid supplying device for endoscopes
EP0121216A1 (fr) 1983-03-31 1984-10-10 Kabushiki Kaisha Toshiba Appareil radiodiagnostic de télévision
US4612572A (en) 1983-03-31 1986-09-16 Tokyo Shibaura Denki Kabushiki Kaisha X-ray television diagnostic apparatus
US4625494A (en) 1983-04-28 1986-12-02 Pfrimmer & Co. Pharmazeutische Werke Erlangen Method and apparatus for making mixtures of pharmaceutical liquids
JPS59214432A (ja) 1983-05-20 1984-12-04 株式会社東芝 放射線診断装置
US4611340A (en) 1983-05-20 1986-09-09 Kabushiki Kaisha Toshiba Apparatus for examining a biological object by using radiation
US4610670A (en) 1983-06-13 1986-09-09 E. I. Du Pont De Nemours And Company Sterile connection process, apparatus and system
US4578802A (en) 1983-06-27 1986-03-25 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus for allowing stereoscopic visualization on X-ray images of an object under examination
EP0129910A1 (fr) 1983-06-27 1985-01-02 Kabushiki Kaisha Toshiba Appareil diagnostique à rayons-X pour l'observation stéréoscopique sur des images des rayons-X d'un objet examiné
WO1985000292A1 (fr) 1983-07-11 1985-01-31 Imperial Chemical Industries Plc Dispositif de distribution de fluide
EP0189491A1 (fr) 1983-08-19 1986-08-06 Intermedicat Gmbh Dispositif pour la perfusion dosée simultanée de solutions
US5469769A (en) 1983-09-09 1995-11-28 Yamaha Corporation Soundboard for musical instruments
US4798590A (en) 1983-11-22 1989-01-17 Medical Technology Products, Inc. Intravenous infusion pumping system including independent pump set
US4682170A (en) 1983-11-25 1987-07-21 Kabushiki Kaisha Toshiba Apparatus for collecting toll
US4559036A (en) 1983-12-14 1985-12-17 Wunsch Richard E Apparatus for controlling administration of multiple intravenous solutions and medications
US4563175A (en) 1983-12-19 1986-01-07 Lafond Margaret Multiple syringe pump
US4723261A (en) 1983-12-22 1988-02-02 U.S. Philips Corporation X-ray examination apparatus incorporating image subtraction
US4689670A (en) 1984-01-19 1987-08-25 Kabushiki Kaisha Toshiba Method and apparatus for measuring a biological function of a subject
US4854324A (en) 1984-01-31 1989-08-08 Medrad, Inc. Processor-controlled angiographic injector device
US5304126A (en) 1984-02-08 1994-04-19 Abbott Laboratories Infusion system having plural fluid flow lines
US5100380A (en) 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US4610790A (en) 1984-02-10 1986-09-09 Sterimatics Company Limited Partnership Process and system for producing sterile water and sterile aqueous solutions
JPS60194935A (ja) 1984-03-19 1985-10-03 株式会社日立メデイコ X線血管像透視撮影装置
JPS60194934A (ja) 1984-03-19 1985-10-03 株式会社日立メデイコ X線血管像透視撮影装置
US4626144A (en) 1984-03-21 1986-12-02 Urma Aktiengesellschaft Boring tool with balancing means for non-vibrating boring
FR2561949A1 (fr) 1984-03-29 1985-10-04 Arc Services Systeme de transport de colis
US4662906A (en) 1984-04-12 1987-05-05 Pall Corporation Cardiotomy reservoir
US4551133A (en) 1984-04-16 1985-11-05 American Hospital Supply Corporation Patient controlled medication infusion system
JPS60253197A (ja) 1984-05-29 1985-12-13 Toshiba Corp X線診断装置
US5113904A (en) 1984-07-13 1992-05-19 Aslanian Jerry L Flow control device for administration of intravenous fluids
US4633307A (en) 1984-09-13 1986-12-30 Kabushiki Kaisha Toshiba Digital subtraction fluorographic method and apparatus
US4903705A (en) 1984-11-09 1990-02-27 Hitachi Medical Corporation Digital radiography apparatus
US4634426A (en) 1984-12-11 1987-01-06 Baxter Travenol Laboratories Medical infusion controller and user interface
US5088981A (en) 1985-01-18 1992-02-18 Howson David C Safety enhanced device and method for effecting application of a therapeutic agent
US4676776A (en) 1985-01-18 1987-06-30 Intelligent Medicine, Inc. Device and method for effecting application of a therapeutic agent
EP0192786A2 (fr) 1985-02-18 1986-09-03 Medrad Incorporated Injecteur angiographique commandé par un processeur
US4672651A (en) 1985-03-28 1987-06-09 Hitachi Medical Corporation Method of and apparatus for reconstructing shape of interested part of object through irradiation with X-rays
WO1988003815A1 (fr) 1985-06-04 1988-06-02 Baxter Deutschland Gmbh Soupape a voies multiples pour dispositifs de production et d'administration de solutions d'infusion
US4935005A (en) 1985-06-05 1990-06-19 Nestle, S.A. Opthalmic fluid flow control system
US5061243A (en) 1985-08-06 1991-10-29 Baxter International Inc. System and apparatus for the patient-controlled delivery of a beneficial agent, and set therefor
US4710166A (en) 1985-11-08 1987-12-01 Quest Medical, Inc. Automated drug additive infusion system
JPS62216199A (ja) 1986-03-18 1987-09-22 Toshiba Corp X線ct装置
US4804454A (en) 1986-03-19 1989-02-14 Honda Giken Kagyo Kabushiki Kaisha Oxygen concentration sensing apparatus
US4840620A (en) 1986-04-07 1989-06-20 Terumo Corporation Portable pump for infusing medicine into a living body
US5054044A (en) 1986-05-06 1991-10-01 Thomson-Cgr Radiology installation with a communications network
EP0245160A1 (fr) 1986-05-06 1987-11-11 General Electric Cgr S.A. Installation de radiologie à réseau de communication
US4750643A (en) 1986-08-04 1988-06-14 Sugrin Surgical Instrumentation, Inc. Sterile fluid dispensing system and method
JPS6340538A (ja) 1986-08-06 1988-02-20 株式会社東芝 Ct画像診断方法
US4754786A (en) 1986-09-05 1988-07-05 Roderick Roberts Sterile fluid storage and dispensing apparatus and method for filling same
US4781687A (en) 1986-10-16 1988-11-01 Baxter Travenol Laboratories, Inc. Irrigation system utilizing air bladder pressure regulator and method of use
US4854301A (en) 1986-11-13 1989-08-08 Olympus Optical Co., Ltd. Endoscope apparatus having a chair with a switch
US4793357A (en) 1986-11-24 1988-12-27 Picker International, Inc. CT blood flow mapping with xenon gas enhancement
US4936832A (en) 1986-11-24 1990-06-26 Vaillancourt Vincent L Ambulatory disposable infusion delivery system
US5056568A (en) 1986-12-05 1991-10-15 Clintec Nutrition Company Automated system for adding multiple fluids to a single container
US4789014A (en) 1986-12-05 1988-12-06 Baxter International Inc. Automated system for adding multiple fluids to a single container
US4836187A (en) 1986-12-27 1989-06-06 Kabushiki Kaisha Toshiba Constant pressure apparatus of an endoscope
US4783273A (en) 1987-01-29 1988-11-08 Gambro Ab Method and apparatus for supplying concentrate for use in medical treatments
US4844052A (en) 1987-03-11 1989-07-04 Kabushiki Kaisha Toshiba Apparatus for transmitting liquid and gas in an endoscope
US4976687A (en) 1987-05-11 1990-12-11 James Martin Apparatus for controlling the supplying of intravenous fluids
JPS63290547A (ja) 1987-05-25 1988-11-28 Hitachi Medical Corp テレビ断層撮影装置
US4887554A (en) 1987-05-27 1989-12-19 Whitford Darryl R Animal drench
GB2207749A (en) 1987-06-18 1989-02-08 Smith & Nephew Inc Detection of tissue infiltration
US4838856A (en) 1987-07-02 1989-06-13 Truckee Meadows Research & Development Fluid infusion flow control system
US4943987A (en) 1987-08-07 1990-07-24 Kabushiki Kaisha Toshiba Method and system for displaying X-ray images of blood-vessel structure parts of subject
US5207642A (en) 1987-08-07 1993-05-04 Baxter International Inc. Closed multi-fluid delivery system and method
US4925444A (en) 1987-08-07 1990-05-15 Baxter Travenol Laboratories, Inc. Closed multi-fluid delivery system and method
DE3726452A1 (de) 1987-08-08 1989-02-16 Schael Wilfried Schlauchpumpe fuer medizinische zwecke
US4880014A (en) 1987-08-14 1989-11-14 Zarowitz Barbara J Method for determining therapeutic drug dosage using bioelectrical resistance and reactance measurements
US4795429A (en) 1987-10-28 1989-01-03 Feldstein Marvin A Method and apparatus for use in the control of intravenous medication introduction
US4835521A (en) 1987-11-05 1989-05-30 Emhart Industries, Inc. Fluid status detector
US4922916A (en) 1987-11-19 1990-05-08 Siemens Aktiengesellschaft Medical examination installation with improved image contrast
US4913154A (en) 1987-11-19 1990-04-03 Siemens Aktiengesellschaft Medical examination installation with improved image contrast
US5040537A (en) 1987-11-24 1991-08-20 Hitachi, Ltd. Method and apparatus for the measurement and medical treatment using an ultrasonic wave
EP0319275A1 (fr) 1987-12-04 1989-06-07 Pacesetter Infusion Limited doing business as Minimed Technologies Système de détection des occlusions, côté patient, pour un système de perfusion de médicaments
US4874359A (en) 1987-12-14 1989-10-17 White Frederick R Power infuser
US4887208A (en) 1987-12-18 1989-12-12 Schneider Bruce H Sales and inventory control system
US4853521A (en) 1987-12-28 1989-08-01 Claeys Ronald W System for verifying and recording drug administration to a patient
US5053002A (en) 1988-01-11 1991-10-01 Olympus Corporation Irrigation system for angioscope
JPH01207038A (ja) 1988-02-13 1989-08-21 Hitachi Medical Corp 造影剤濃度調節機能付ct装置
US5286252A (en) 1988-02-19 1994-02-15 Gensia Pharmaceuticals, Inc. Diagnosis, evaluation and treatment of coronary artery disease by exercise simulation using closed loop drug delivery of an exercise simulating agent beta agonist
US5123121A (en) 1988-03-07 1992-06-23 Bell Helmets, Inc. Helmet retention system with adjustable buckle
US5128121A (en) 1988-04-08 1992-07-07 Nycomed As Mixture of a positive and negative contrast agent for magnetic resonance imaging
EP0337924A2 (fr) 1988-04-13 1989-10-18 Mic Medical Instrument Corporation Dispositif de servo-contrôle des paramètres biologiques du corps
US5002055A (en) 1988-04-13 1991-03-26 Mic Medical Instruments Corporation Apparatus for the biofeedback control of body functions
US4901731A (en) 1988-04-27 1990-02-20 Millar Instruments, Inc. Single sensor pressure differential device
US4943779A (en) 1988-05-19 1990-07-24 Worcester Polytechnic Institute Digital sweep generator
US4966579A (en) 1988-05-21 1990-10-30 Fresenius Ag Apparatus for dosed continuous simultaneous infusion of a plurality of infusion solutions or medicaments
EP0343501A2 (fr) 1988-05-21 1989-11-29 Fresenius AG Système de perfusion multiple
US4857056A (en) 1988-07-06 1989-08-15 Sherwood Medical Company Auto-flush syringe pump
US4950245A (en) 1988-07-08 1990-08-21 I-Flow Corporation Multiple fluid cartridge and pump
US4954129A (en) 1988-07-25 1990-09-04 Abbott Laboratories Hydrodynamic clot flushing
US5004472A (en) 1988-08-10 1991-04-02 Wallace William D Medical pressure sensing and display system
US5004472B1 (en) 1988-08-10 1995-02-28 Utah Medical Products Inc Medical pressure sensing and display system
US4946439A (en) 1988-08-15 1990-08-07 Critikon, Inc. Dual source parenteral infusion system with secondary infusion module
US5180895A (en) 1988-09-28 1993-01-19 Unilever Patent Holdings B.V. Microwave heating apparatus
US4943279A (en) 1988-09-30 1990-07-24 C. R. Bard, Inc. Medical pump with infusion controlled by a detachable coded label
US5018173A (en) 1988-10-18 1991-05-21 Kabushiki Kaisha Toshiba Diagnosis apparatus using X-ray CT device
EP0364966A1 (fr) 1988-10-18 1990-04-25 Kabushiki Kaisha Toshiba Appareil diagnostique utilisant un dispositif de tomographie par ordinateur à rayons X
US4947412A (en) 1988-10-20 1990-08-07 Picker International, Inc. X-ray detector for CT scanners
US5166961A (en) 1988-10-20 1992-11-24 Picker International, Inc. CT scanner having multiple detector widths
US4965726A (en) 1988-10-20 1990-10-23 Picker International, Inc. CT scanner with segmented detector array
EP0365301A1 (fr) 1988-10-20 1990-04-25 Picker International, Inc. Appareils et procédés de représentation d'images
US5262946A (en) 1988-10-20 1993-11-16 Picker International, Inc. Dynamic volume scanning for CT scanners
US5228070A (en) 1988-10-20 1993-07-13 Picker International, Inc. Constant image quality CT scanner with variable radiation flux density
US5069662A (en) 1988-10-21 1991-12-03 Delcath Systems, Inc. Cancer treatment
US4929818A (en) 1988-11-15 1990-05-29 Rainbarrel Corporation Method and apparatus for vending a containerized product on multiple occasions following at least one refill of the container with the product
EP0378896A2 (fr) 1988-11-23 1990-07-25 Picker International, Inc. Détecteurs de rayonnement
EP0372152A1 (fr) 1988-12-09 1990-06-13 Nippon Identograph Co., Ltd Observation continue d'images tridimensionnelles
US5034987A (en) 1988-12-09 1991-07-23 Nippon Identograph Co., Ltd. Continuous photographing and observing of a three-dimensional image
US4946256A (en) 1989-01-11 1990-08-07 Nm Laser Products, Inc. Right angle shutter for laser beam
US4879880A (en) 1989-01-17 1989-11-14 Frank Harrison Air temperature regulator
US5317506A (en) 1989-01-30 1994-05-31 Abbott Laboratories Infusion fluid management system
JPH02224647A (ja) 1989-02-28 1990-09-06 Hitachi Medical Corp X線ct造影撮影システム
JPH02234747A (ja) 1989-03-09 1990-09-17 Toshiba Corp 同期画像撮影装置
US5009654A (en) 1989-03-10 1991-04-23 Baxter International Inc. Sterile product and method for sterilizing and assembling such product
US5009654B1 (fr) 1989-03-10 1993-07-13 Baxter Int
US5113905A (en) 1989-03-27 1992-05-19 Michael D. Hoyle Carbon dioxide fill manifold and method
US5013173A (en) 1989-04-04 1991-05-07 Katsumune Shiraishi Container for a cosmetic liquid
JPH0355040A (ja) 1989-07-21 1991-03-08 Shimadzu Corp X線回転式ステレオ・ディジタル・サブトラクション装置
US6046225A (en) 1989-08-02 2000-04-04 Cobe Laboratories, Inc. Method of treatment with medical agents
US5010473A (en) 1989-08-31 1991-04-23 Duke University Method and apparatus for model-based control of an open-loop process
US5267174A (en) 1989-09-29 1993-11-30 Healthtech Services Corp. Interactive medication delivery system
US5329459A (en) 1989-09-29 1994-07-12 Healthtech Services Corporation Interactive medication delivery system
US4978335A (en) 1989-09-29 1990-12-18 Medex, Inc. Infusion pump with bar code input to computer
US5150292A (en) 1989-10-27 1992-09-22 Arch Development Corporation Method and system for determination of instantaneous and average blood flow rates from digital angiograms
US5276614A (en) 1989-11-17 1994-01-04 Picker International, Inc. Dynamic bandwidth reconstruction
EP0429191A2 (fr) 1989-11-17 1991-05-29 Picker International, Inc. Méthodes et appareils de traitement d'images
US5032112A (en) 1989-11-22 1991-07-16 Baxter International Inc. Dual source intravenous administration set having an intravenous pump
US5388139A (en) 1989-12-07 1995-02-07 Electromed International High-voltage power supply and regulator circuit for an X-ray tube with closed-loop feedback for controlling X-ray exposure
US5104374A (en) 1990-01-16 1992-04-14 Bishko Jay R Electronic fluid flow rate controller for controlling the infusion of intravenous drugs into a patient
US4995064A (en) 1990-01-29 1991-02-19 Siemens Medical Systems, Inc. Continuously sweeping multiple-pass image acquisition system for peripheral angiography
EP0439711A2 (fr) 1990-01-29 1991-08-07 Siemens Aktiengesellschaft SystÀ¨me d'acquisition d'images par balayage multi-passe continu pour angiographie périphérique
EP0439711B1 (fr) 1990-01-29 1995-05-24 Siemens Aktiengesellschaft Système d'acquisition d'images par balayage multi-passe continu pour angiographie périphérique
US5123056A (en) 1990-02-02 1992-06-16 Siemens Medical Systems, Inc. Whole-leg x-ray image processing and display techniques
US4981467A (en) 1990-02-27 1991-01-01 Baxter International Inc. Apparatus and method for the detection of air in fluid delivery systems
US5249579A (en) 1990-03-09 1993-10-05 E-Z-Em, Inc. Contrast media injector
US5276174A (en) 1990-03-09 1994-01-04 Isp Investments Inc. Alk-1-enyloxy carbonates
US5190744A (en) 1990-03-09 1993-03-02 Salutar Methods for detecting blood perfusion variations by magnetic resonance imaging
US5249122A (en) 1990-03-15 1993-09-28 Mount Sinai School Of Medicine Of The City University Of New York Method and apparatus for forming images using orthogonal polynomials for temporal deconvolution
WO1991014232A1 (fr) 1990-03-15 1991-09-19 Mount Sinai School Of Medicine Of The City University Of New York Mise en images d'organes fonctionnels
US5287273A (en) 1990-03-15 1994-02-15 Mount Sinai School Of Medicine Functional organ images
WO1991014233A1 (fr) 1990-03-15 1991-09-19 Mount Sinai School Of Medicine Of The City University Of New York Procede et appareil de formation d'images utilisant des polynomes orthogonaux pour la deconvolution temporelle
US5059173A (en) 1990-04-04 1991-10-22 Sacco John J IV apparatus
US5191878A (en) 1990-04-12 1993-03-09 Olympus Optical Co., Ltd. Endoscope device
US5199604A (en) 1990-05-04 1993-04-06 Sultan Chemists, Inc. Irrigation system and method for delivering a selected one of multiple liquid solutions to a treatment site
US5078683A (en) 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
US5104387A (en) 1990-05-25 1992-04-14 St. Jude Medical, Inc. Bi-planar fluid control valve
US5108365A (en) 1990-06-20 1992-04-28 Woods Jr Walter T Transluminal infusion of magnesium during coronary angioplasty
US5125018A (en) 1990-06-29 1992-06-23 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus
US5111492A (en) 1990-07-06 1992-05-05 General Electric Cgr S.A. X-ray diagnosis system for angiographic examination with device for the automatic tracking of a contrast medium
CA2045070A1 (fr) 1990-07-31 1992-02-01 Kazuaki Mizoguchi Systeme de controle pour l'ans et l'actp
US5215095A (en) 1990-08-10 1993-06-01 University Technologies International Optical imaging system for neurosurgery
EP0471455A2 (fr) 1990-08-14 1992-02-19 Picker International, Inc. Appareil d'imagerie et méthodes
JPH04115677A (ja) 1990-08-31 1992-04-16 Shimadzu Corp デジタルx線撮影装置
EP0475563A1 (fr) 1990-09-04 1992-03-18 Picker International, Inc. Appareil d'imagerie et méthode
US5274218A (en) 1990-09-07 1993-12-28 Mitsubishi Jukogyo Kabushiki Kaisha Magnetic recording method and circuit for toll road ticket
US5135000A (en) 1990-09-19 1992-08-04 Raizot University Authority For Applied Research & Industrial Development Ltd. Method of measuring regional tissue blood flow
US5392849A (en) 1990-09-28 1995-02-28 Matsushita Refrigeration Company Layer-built heat exchanger
US5180896A (en) 1990-10-11 1993-01-19 University Of Florida System and method for in-line heating of medical fluid
US5133336A (en) 1990-10-22 1992-07-28 Endoscopy Support Services, Inc. Disposable liquid supply system for use in an endoscope
US5362948A (en) 1990-10-23 1994-11-08 Matsushita Electric Industrial Co., Ltd. Facsimile-use automatic order and sales management system
US5400792A (en) 1990-11-20 1995-03-28 Siemens Aktiengesellschaft Medical diagnostics installation controllable from a central work station
GB2252656A (en) 1991-02-11 1992-08-12 Keymed Endoscopy training apparatus
US5301656A (en) 1991-04-19 1994-04-12 Olympus Optical Co., Ltd. Endoscope
DE4121568A1 (de) 1991-04-22 1992-10-29 Schering Ag Verfahren und vorrichtung zur herstellung eines kontrastmediums aus einem konzentrat
US5592940A (en) 1991-04-22 1997-01-14 Schering Aktiengesellschaft Process for making doses formulation of contrast media from concentrate
US5450847A (en) 1991-04-22 1995-09-19 Schering Aktiengesellschaft Process for making doses formulation of contrast media from concentrate
CA2077712A1 (fr) 1991-04-22 1993-12-30 Michael Kampfe Methode et dispositif de fabrication d'agents de contraste a partir d'un concentre
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5242390A (en) 1991-05-03 1993-09-07 Goldrath Milton H Endometrium coagulating surgical method for thermal destruction of the endometrium
JPH0584296A (ja) 1991-05-14 1993-04-06 Nemoto Kiyourindou:Kk 医療用注入機器
US5196007A (en) 1991-06-07 1993-03-23 Alan Ellman Electrosurgical handpiece with activator
US5300031A (en) 1991-06-07 1994-04-05 Liebel-Flarsheim Company Apparatus for injecting fluid into animals and disposable front loadable syringe therefor
US5433704A (en) 1991-06-25 1995-07-18 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
US5383231A (en) 1991-06-28 1995-01-17 Kabushiki Kaisha Toshiba Method and apparatus for acquiring X-ray CT image in helical scanning mode, utilizing electrocardiogram
JP3055040B2 (ja) 1991-08-30 2000-06-19 富士通株式会社 液晶表示パネルの製造方法
US5368570A (en) 1991-11-12 1994-11-29 Imed Corporation Apparatus for infusing medical solutions
US5301672A (en) 1991-12-09 1994-04-12 Siemens Aktiengesellschaft Radiological diagnostics system employing a contrast agent
US5445621A (en) 1991-12-20 1995-08-29 Abbott Laboratories Drug identification and security apparatus for infusion and pumping systems
US5496273A (en) 1991-12-20 1996-03-05 Abbott Laboratories Automated drug infusion system with autopriming
US5903454A (en) 1991-12-23 1999-05-11 Hoffberg; Linda Irene Human-factored interface corporating adaptive pattern recognition based controller apparatus
WO1993015658A1 (fr) 1992-02-14 1993-08-19 University Of Southampton Arteriographie numerique pulsee assistee par ordinateur
US5273537A (en) 1992-03-06 1993-12-28 Scimed Life Systems, Inc. Power-assisted inflation apparatus
US5383058A (en) 1992-03-11 1995-01-17 Nikon Corporation Zoom lens
US5616124A (en) 1992-03-13 1997-04-01 Ivac Medical Systems, Inc. Infusion system with air-in-line clear function
US5382232A (en) 1992-03-13 1995-01-17 Ivac Corporation Infusion system with air-in-line clear function
US5349625A (en) 1992-03-27 1994-09-20 Siemens Aktiengesellschaft X-ray diagnostics installation for peripheral angiography examinations
US5311568A (en) 1992-05-01 1994-05-10 Picker International, Inc. Optical alignment means utilizing inverse projection of a test pattern/target
US5230614A (en) 1992-06-03 1993-07-27 Allergan, Inc. Reduced pulsation tapered ramp pump head
WO1993025141A1 (fr) 1992-06-08 1993-12-23 University Of Washington Procede d'imagerie de tumeurs solides, de la fonction corticale et de nerfs
US5361761A (en) 1992-06-17 1994-11-08 Wisconsin Alumni Research Foundation Method and apparatus for measuring blood iodine concentration
US5368567A (en) 1992-07-27 1994-11-29 Schneider (Usa) Inc. Dilatation balloon catheter with infusion lumen
US5352979A (en) 1992-08-07 1994-10-04 Conturo Thomas E Magnetic resonance imaging with contrast enhanced phase angle reconstruction
US5383858B1 (en) 1992-08-17 1996-10-29 Medrad Inc Front-loading medical injector and syringe for use therewith
US5383858A (en) 1992-08-17 1995-01-24 Medrad, Inc. Front-loading medical injector and syringe for use therewith
US5453639A (en) 1992-09-04 1995-09-26 International Business Machines Corporation Planarized semiconductor structure using subminimum features
US5310997A (en) 1992-09-10 1994-05-10 Tandy Corporation Automated order and delivery system
US5328463A (en) 1992-09-18 1994-07-12 Namic U.S.A. Corporation Contrast media and fluid introduction system
US5494822A (en) 1992-09-21 1996-02-27 Bio-Preserve Medical Corporation Organ perfusion device
US5376070A (en) 1992-09-29 1994-12-27 Minimed Inc. Data transfer system for an infusion pump
EP0595474A2 (fr) 1992-09-29 1994-05-04 Minimed Inc., doing business as Minimed Technologies Système de transmission de données pour une pompe de perfusion
US5681285A (en) 1992-10-15 1997-10-28 Baxter International Inc. Infusion pump with an electronically loadable drug library and a user interface for loading the library
US5269756A (en) 1992-11-13 1993-12-14 Medicpro Inc. Irrigation apparatus and method for suction catheters
US5349635A (en) 1992-11-19 1994-09-20 At&T Bell Laboratories Half-duplex or full-duplex automode operation for use in data communications equipment
US5547470A (en) 1992-11-25 1996-08-20 Abbott Laboratories Automated drug infusion system
US5378231A (en) 1992-11-25 1995-01-03 Abbott Laboratories Automated drug infusion system
EP0600448A2 (fr) 1992-11-30 1994-06-08 Olympus Optical Co., Ltd Système de gestion d'un service de livraison
US5485831A (en) 1992-11-30 1996-01-23 University Hospital (London) Development Corporation Pulse-injector for quantitative angiographic blood-flow measurements
US5468240A (en) 1992-12-03 1995-11-21 Conmed Corporation Manual control device for laparoscopic instrument
US5313992A (en) 1992-12-11 1994-05-24 Abbott Laboratories Transfer tubing set for compounding solutions
US5354273A (en) 1992-12-14 1994-10-11 Mallinckrodt Medical, Inc. Delivery apparatus with pressure controlled delivery
WO1994015664A1 (fr) 1993-01-07 1994-07-21 Man Fai Shiu Tubulure
US5417219A (en) 1993-01-18 1995-05-23 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
US5474683A (en) 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
EP0619122A1 (fr) 1993-04-08 1994-10-12 Getz Bros. Co.,Ltd. Système de contrôle de seringue pour DSA et PTCA
US5472403A (en) 1993-05-11 1995-12-05 The Regents Of The University Of California Device for automatic injection of radionuclide
US5385540A (en) 1993-05-26 1995-01-31 Quest Medical, Inc. Cardioplegia delivery system
US5553619A (en) 1993-06-07 1996-09-10 Prince; Martin R. Method and apparatus for administration of contrast agents for use in magnetic resonance arteriography
US6754521B2 (en) 1993-06-07 2004-06-22 Martin R. Prince Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent
US5799649A (en) 1993-06-07 1998-09-01 Prince; Martin R. Method for imaging abdominal aorta and aortic aneurysms
US20010027265A1 (en) 1993-06-07 2001-10-04 Prince Martin R. Method and apparatus for imaging abdominal aorta and aortic aneurysms
US5417213A (en) 1993-06-07 1995-05-23 Prince; Martin R. Magnetic resonance arteriography with dynamic intravenous contrast agents
US5590654A (en) 1993-06-07 1997-01-07 Prince; Martin R. Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent
US5579767A (en) 1993-06-07 1996-12-03 Prince; Martin R. Method for imaging abdominal aorta and aortic aneurysms
US5373231A (en) 1993-06-10 1994-12-13 G. G. B. Industries, Inc. Integrated circuit probing apparatus including a capacitor bypass structure
US5469849A (en) 1993-06-14 1995-11-28 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus
US5507412A (en) 1993-06-19 1996-04-16 Dragerwerk Ag Centralized multichannel fluid delivery system
US5456255A (en) 1993-07-12 1995-10-10 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus
US5768405A (en) 1993-07-22 1998-06-16 U.S Philips Corporation Digital image processing method for local determination of the center and the width of objects in the form of contrasting bands on a background
DE4426387A1 (de) 1993-07-28 1995-08-24 Manfred Linner Pumpensystem zur echtzeitregelbaren Injektion von R¦ntgenkontrastmittel und Dilatation von Blutgefäßstenosen
US5515851A (en) 1993-07-30 1996-05-14 Goldstein; James A. Angiographic fluid control system
US5368562A (en) 1993-07-30 1994-11-29 Pharmacia Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
US20020026148A1 (en) 1993-10-28 2002-02-28 Medrad, Inc. Multi-patient fluid dispensing
EP0650739A1 (fr) 1993-10-28 1995-05-03 Medrad, Inc. Système pour acheminer un moyen de contraste
US20040015078A1 (en) 1993-10-28 2004-01-22 Evans Russell Morrison Total system for contrast delivery
US5806519A (en) 1993-10-28 1998-09-15 Medrad, Inc. Total system for contrast delivery
US6063052A (en) 1993-10-28 2000-05-16 Medrad, Inc. Injection system and pumping system for use therein
EP0650738A1 (fr) 1993-10-28 1995-05-03 Medrad, Inc. Système pour administrer des liquides à plusieurs malades
US6731971B2 (en) 1993-10-28 2004-05-04 Medrad, Inc. Fluid delivery system including a reusable flow path and a per-patient disposable fluid path
US5569181A (en) 1993-10-28 1996-10-29 Medrad, Inc. Sterility assurance for contrast delivery system
US6306117B1 (en) 1993-10-28 2001-10-23 Medrad, Inc. Multi-patient fluid dispensing
US5827219A (en) 1993-10-28 1998-10-27 Medrad, Inc. Injection system and pumping system for use therein
US5843037A (en) 1993-10-28 1998-12-01 Medrad Inc. Multipatient fluid dispensing
US6442418B1 (en) 1993-10-28 2002-08-27 Medrad, Inc. Total system for contrast delivery
US6901283B2 (en) 1993-10-28 2005-05-31 Medrad, Inc. Adjusting a condition of a fluid medium to produce an image of a patient
US5885216A (en) 1993-10-28 1999-03-23 Medrad, Inc. Total system for contrast delivery
US6149627A (en) 1993-10-28 2000-11-21 Medrad, Inc. Multi-patient fluid dispensing
US5431627A (en) 1993-11-12 1995-07-11 Abbott Laboratories Cassette identification system for use with a multi-program drug infusion pump
US5460609A (en) 1993-11-22 1995-10-24 Advanced Cardiovascular Systems, Inc. Electromechanical inflation/deflation system
US5494036A (en) 1993-11-26 1996-02-27 Medrad, Inc. Patient infusion system for use with MRI
JPH07178169A (ja) 1993-12-24 1995-07-18 Nemoto Kyorindo:Kk Mri用注入装置
US5566092A (en) 1993-12-30 1996-10-15 Caterpillar Inc. Machine fault diagnostics system and method
US5464391A (en) 1994-03-03 1995-11-07 Northgate Technologies Inc. Irrigation system for a surgical site
US5531679A (en) 1994-03-14 1996-07-02 Schulman; Joseph H. Fluidic infusion system for catheter or probe
US5881124A (en) 1994-03-31 1999-03-09 Arch Development Corporation Automated method and system for the detection of lesions in medical computed tomographic scans
US5531697A (en) 1994-04-15 1996-07-02 Sims Deltec, Inc. Systems and methods for cassette identification for drug pumps
US5552130A (en) 1994-05-02 1996-09-03 Bayer Aktiengesellschaft Process for the continuous preparation of nitrosyl chloride
US5489265A (en) 1994-06-15 1996-02-06 Ivac Corporation Restrictor fitting for an infusion pump
US5458128A (en) 1994-06-17 1995-10-17 Polanyi; Michael Method and apparatus for noninvasively measuring concentration of a dye in arterial blood
US5920054A (en) 1994-07-12 1999-07-06 Medrad, Inc. Closed loop information path for medical fluid delivery systems
US5739508A (en) 1994-07-12 1998-04-14 Medrad, Inc. Closed loop information path for medical fluid delivery systems
US20030050556A1 (en) 1994-09-21 2003-03-13 Uber Arthur E. Patient specific dosing contrast delivery systems and methods
US7937134B2 (en) 1994-09-21 2011-05-03 Medrad, Inc. Systems for controlling injection and/or imaging procedures
US6385483B1 (en) 1994-09-21 2002-05-07 Medrad, Inc. Patient specific dosing contrast delivery systems and methods
US6397098B1 (en) 1994-09-21 2002-05-28 Medrad, Inc. Data communication and control for medical imaging systems
US20010056233A1 (en) 1994-09-21 2001-12-27 Medrad, Inc. Patient specific dosing contrast delivery systems and methods
US8160679B2 (en) 1994-09-21 2012-04-17 Medrad, Inc. Methods of coordinating an imaging procedure and an injection procedure
US20070282199A1 (en) 1994-09-21 2007-12-06 Medrad, Inc. Methods of injecting fluids for use in imaging and therapeutic procedures where feedback enables adjustment of injection parameters
US8055328B2 (en) 1994-09-21 2011-11-08 Medrad, Inc. Interface unit for use with injectors and imaging systems and related devices
US6970735B2 (en) 1994-09-21 2005-11-29 Medrad, Inc. Data communication and control for medical imaging systems
EP0702966A2 (fr) 1994-09-21 1996-03-27 Medrad Inc. Systèmes de délivrance d'un produit de contraste avec dosage spécifique au patient et méthodes
US6889074B2 (en) 1994-09-21 2005-05-03 Medrad, Inc. Patient specific dosing contrast delivery systems and methods
US7313431B2 (en) 1994-09-21 2007-12-25 Medrad, Inc. System and method for inflating a balloon catheter and delivering fluid media to a patient
US5840026A (en) 1994-09-21 1998-11-24 Medrad, Inc. Patient specific dosing contrast delivery systems and methods
US20070225601A1 (en) 1994-09-21 2007-09-27 Medrad, Inc. Injection systems capable of using feedback for adjustment of injection parameters
DE69530035T2 (de) 1994-09-21 2003-09-25 Medrad, Inc. Kontrastmittelabgabesysteme mit patientenspezifischer Dosierung sowie entsprechendes Verfahren
US7672710B2 (en) 1994-09-21 2010-03-02 Medrad, Inc. Data communication and control for medical imaging systems
US20020165445A1 (en) 1994-09-21 2002-11-07 Uber Arthur E. Data communication and control for medical imaging systems
US20080045834A1 (en) 1994-09-21 2008-02-21 Medrad, Inc. System and method for delivering fluids to a balloon catheter
EP1262206A2 (fr) 1994-09-21 2002-12-04 Medrad, Inc. Système de délivrance d'un produit contraste avec dosage spécifique au patient
US5522798A (en) 1994-10-17 1996-06-04 Abbott Laboratories Control of a multi-channel drug infusion pump using a pharmacokinetic model
US5560317A (en) 1994-10-19 1996-10-01 N J Phillips Pty Limited Mechanism to dispense medication to animals
US5533978A (en) 1994-11-07 1996-07-09 Teirstein; Paul S. Method and apparatus for uninterrupted delivery of radiographic dye
US5459769A (en) 1994-11-09 1995-10-17 General Electric Company Procedure for monitoring contrast agent application in a CT imaging system
US5827504A (en) 1994-12-16 1998-10-27 Bracco Research S.A. Method of echographic imaging using frozen gasbubble suspensions
US5724976A (en) 1994-12-28 1998-03-10 Kabushiki Kaisha Toshiba Ultrasound imaging preferable to ultrasound contrast echography
US5544215A (en) 1995-01-13 1996-08-06 Picker International, Inc. Digital angiography system with automatically determined frame rates
US20040215144A1 (en) 1995-04-20 2004-10-28 Doug Duchon System for detecting air
US6656157B1 (en) 1995-04-20 2003-12-02 Acist Medical Systems, Inc. Infinitely refillable syringe
WO1996032975A1 (fr) 1995-04-20 1996-10-24 Invasatec, Inc. Injecteur autopurgeur pour angiographie
US20020151854A1 (en) 1995-04-20 2002-10-17 Doug Duchon System for detecting air
US7267666B1 (en) 1995-04-20 2007-09-11 Acist Medical Systems, Inc. Angiographic injector system with multiple processor redundancy
US6344030B1 (en) 1995-04-20 2002-02-05 Acist Medical Systems, Inc. Random speed change injector
US5573515A (en) 1995-04-20 1996-11-12 Invasatec, Inc. Self purging angiographic injector
US5800397A (en) 1995-04-20 1998-09-01 Invasatec, Inc. Angiographic system with automatic high/low pressure switching
US5882343A (en) 1995-04-20 1999-03-16 Invasatec, Inc. Dual port syringe
US6099502A (en) 1995-04-20 2000-08-08 Acist Medical Systems, Inc. Dual port syringe
US6221045B1 (en) 1995-04-20 2001-04-24 Acist Medical Systems, Inc. Angiographic injector system with automatic high/low pressure switching
US5743266A (en) 1995-04-25 1998-04-28 Molecular Biosystems, Inc. Method for processing real-time contrast enhanced ultrasonic images
US5601086A (en) 1995-05-12 1997-02-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Beat frequency ultrasonic microsphere contrast agent detection system
US6056902A (en) 1995-06-19 2000-05-02 Hettinga; Siebolt Method and apparatus for molding a plastic article including injecting based upon a pressure-dominated control algorithm after detecting an indicia of a decrease in the surface area of the melt front
US5569208A (en) 1995-08-01 1996-10-29 Merit Medical Systems, Inc. System for managing delivery of contrast media
DE69631607T2 (de) 1995-10-06 2004-12-23 Bhb, L.C. Voreinstellung der kontrastastanhebung bei computer-gestützter tomographie mittels rückkopplung
DK0869738T3 (da) 1995-10-06 2004-06-21 Bhb L C Forudsigelse af CT-kontrastforbedring med feedback
WO1997012550A1 (fr) 1995-10-06 1997-04-10 Bhb, L.C. Prevision du renforcement des contrastes en tomographie assistee par ordinateur avec retroinformation
AU7381796A (en) 1995-10-06 1997-04-28 Bhb, L.C. Predicting ct contrast enhancement with feedback
EP0869738A1 (fr) 1995-10-06 1998-10-14 Bhb, L.C. Prevision du renforcement des contrastes en tomographie assistee par ordinateur avec retroinformation
ES2216068T3 (es) 1995-10-06 2004-10-16 Bhb, L.C. Prevision del refuerzo de los contrastes en tomografia asistida por ordenador con retroinformacion.
US5687208A (en) 1995-10-06 1997-11-11 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement with feedback
CA2234050A1 (fr) 1995-10-06 1997-04-10 Bhb, L.C. Prevision du renforcement des contrastes en tomographie assistee par ordinateur avec retroinformation
ATE259621T1 (de) 1995-10-06 2004-03-15 Bhb L C Voreinstellung der kontrastastanhebung bei computer-gestützter tomographie mittels rückkopplung
JP3553968B2 (ja) 1995-10-06 2004-08-11 ビー エイチ ビー エル シー フィードバックによるctコントラスト増強の予測方法および装置
US5583902A (en) 1995-10-06 1996-12-10 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement
JP2000506398A (ja) 1995-10-06 2000-05-30 ビー エイチ ビー エル シー フィードバックによるctコントラスト増強の予測方法および装置
US5687708A (en) 1995-10-30 1997-11-18 Gas Research Institute Gas-fired batch booster water heater apparatus
DE19702896A1 (de) 1996-01-19 1997-07-24 Schering Ag Vorrichtung zur Optimierung der Kontrastmittelgabe und zur Differentialdiagnostik bei bildgebenden diagnostischen Verfahren
US5902054A (en) 1996-01-31 1999-05-11 Canon Kabushiki Kaisha Energy saving image edging method and device
US5611344A (en) 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
US5713358A (en) 1996-03-26 1998-02-03 Wisconsin Alumni Research Foundation Method for producing a time-resolved series of 3D magnetic resonance angiograms during the first passage of contrast agent
US6201889B1 (en) 1996-04-24 2001-03-13 Shriners Hospital For Children Apparatus and computer program for generating a feedback code
US5796862A (en) 1996-08-16 1998-08-18 Eastman Kodak Company Apparatus and method for identification of tissue regions in digital mammographic images
US6186146B1 (en) 1996-08-30 2001-02-13 Delcath Systems Inc Cancer treatment method
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
US5865744A (en) 1996-09-16 1999-02-02 Lemelson; Jerome H. Method and system for delivering therapeutic agents
WO1998020919A1 (fr) 1996-11-08 1998-05-22 Schering Ag Dispositif pour l'obtention de densites constantes d'agents de contraste dans des tissus et organes
DE19647701A1 (de) 1996-11-08 1998-05-14 Schering Ag Vorrichtung zur Erzielung von konstanten Dichten von Kontrastmitteln in Geweben und Organen
US6397093B1 (en) 1996-12-05 2002-05-28 Essential Medical Devices, Inc. Non-invasive carboxyhemoglobin analyzer
US6236706B1 (en) 1996-12-12 2001-05-22 General Electric Company Methods and apparatus for predicting contrast agent uptake in a computed tomography system
US6337992B1 (en) 1997-01-29 2002-01-08 Philips Medical Systems Technologies Ltd. Predictive bolus tracking
JPH10211198A (ja) 1997-01-30 1998-08-11 Toshiba Corp X線ct装置
US6572851B2 (en) 1997-03-12 2003-06-03 Takashi Muramatsu Method for suppressing or treating drug-induced nephropathy
US5808203A (en) 1997-05-12 1998-09-15 Medrad, Inc. Fluid pressure measurement devices
GB2328745A (en) 1997-08-26 1999-03-03 Hewlett Packard Co Ultrasonic echographic system
US6073042A (en) 1997-09-25 2000-06-06 Siemens Medical Systems, Inc. Display of three-dimensional MRA images in which arteries can be distinguished from veins
US6879853B2 (en) 1997-10-06 2005-04-12 James F. M. Meaney Method and apparatus for magnetic resonance arteriography using contrast agents
US20030135111A1 (en) 1997-10-06 2003-07-17 Meaney James F.M. Method and apparatus for magnetic resonance arteriography using contrast agents
US5988587A (en) 1997-10-10 1999-11-23 Invasatec, Inc. Control device for providing a variable control signal to a fluid-supplying machine
US5916165A (en) 1997-11-06 1999-06-29 Invasatec, Inc. Pneumatic controller and method
WO1999024095A2 (fr) 1997-11-07 1999-05-20 Invasatec, Inc. Systeme d'injection pour angiographie avec redondance de plusieurs processeurs
US5987347A (en) 1997-12-15 1999-11-16 General Electric Company Method for removing streak artifacts in medical images
US6397097B1 (en) 1998-03-16 2002-05-28 Siemens Aktiengesellschaft Method and control apparatus for tracking a contrast agent in an examination subject using a medical imaging device
JP2002507438A (ja) 1998-03-18 2002-03-12 メディ−フィジックス・インコーポレイテッド 溶解化した極性化129Xeを用いる肺および心臓脈管構造の映像化および血流を上昇するMR方法
US6346229B1 (en) 1998-03-18 2002-02-12 Medi-Physics, Inc. Methods for imaging pulmonary and cardiac vasculature and evaluating blood flow using dissolved polarized 129Xe
US20030195462A1 (en) 1998-08-18 2003-10-16 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US20030212364A1 (en) 1998-08-18 2003-11-13 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US20010041964A1 (en) 1998-09-14 2001-11-15 George M. Grass Pharmacokinetic-based drug design tool and method
US6248093B1 (en) 1998-10-29 2001-06-19 Minimed Inc. Compact pump drive system
JP2000175900A (ja) 1998-12-16 2000-06-27 Toshiba Iyo System Engineering Kk X線ct装置
US6381486B1 (en) 1999-01-08 2002-04-30 Wisconsin Alumni Research Foundation Magnetic resonance angiography with vessel segmentation
US6402697B1 (en) 1999-01-21 2002-06-11 Metasensors, Inc. Non-invasive cardiac output and pulmonary function monitoring using respired gas analysis techniques and physiological modeling
US6478735B1 (en) 1999-01-28 2002-11-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Physiological feedback method and system
US6556695B1 (en) 1999-02-05 2003-04-29 Mayo Foundation For Medical Education And Research Method for producing high resolution real-time images, of structure and function during medical procedures
US6423719B1 (en) 1999-02-16 2002-07-23 Upsher-Smith Laboratories, Inc. Method for treating benign prostate hyperplasia
US6313131B1 (en) 1999-02-16 2001-11-06 Upsher-Smith Laboratories, Inc. Method of kidney treatment
CN1343107A (zh) 1999-03-12 2002-04-03 梅德拉股份有限公司 控制对比度增强的成象过程
US6575930B1 (en) 1999-03-12 2003-06-10 Medrad, Inc. Agitation devices and dispensing systems incorporating such agitation devices
US6317623B1 (en) 1999-03-12 2001-11-13 Medrad, Inc. Apparatus and method for controlling contrast enhanced imaging procedures
WO2000061216A1 (fr) 1999-04-09 2000-10-19 B.H.B., L.C. Injecteur angiographique servant a injecter une substance de contraste pour obtenir une mise en valeur vasculaire uniforme prolongee
US6055985A (en) 1999-04-09 2000-05-02 B.H.B., L.C. Methods for injecting a contrast medium to generate prolonged uniform vascular enhancement
JP4392470B2 (ja) 1999-04-09 2010-01-06 ビー・エイチ・ビー,エル・シー 持続性の均一な血管の強調を生じる造影剤を注入する造影注入装置
US6635030B1 (en) 1999-04-09 2003-10-21 B.H.B. Llc Contrast injector for injecting a contrast medium to generate prolonged uniform vascular enhancement
US6470889B1 (en) 1999-04-09 2002-10-29 B.H.B., L.C. Method for injecting a contrast medium to generate prolonged uniform vascular enhancement
WO2000064353A2 (fr) 1999-04-27 2000-11-02 Medrad, Inc. Commande et communication de donnees pour systemes d'imagerie medicale
US20030198691A1 (en) 1999-05-11 2003-10-23 Wing Cheung Pharmacokinetic and pharmacodynamic modeling of erythropoietin administration
US6574496B1 (en) 1999-05-19 2003-06-03 Amersham Health As Magnetic resonance imaging
US6643537B1 (en) 1999-07-30 2003-11-04 Medrad, Inc. Programmable injector control
US6503226B1 (en) 1999-08-04 2003-01-07 Grupo Grifols, S.A. Apparatus for angiography by the injection of CO2
US6527718B1 (en) 1999-08-20 2003-03-04 Brian G Connor Ultrasound system for continuous imaging and delivery of an encapsulated agent
US6387098B1 (en) 1999-10-21 2002-05-14 Peter Alexander Cole Intramedullary catheter nail apparatus and method
US6673033B1 (en) 1999-11-24 2004-01-06 Medrad, Inc. Injectors, injector systems and injector control
US6520930B2 (en) 1999-11-24 2003-02-18 Medrad, Inc. Injectors, injector systems and injector control
US6652489B2 (en) 2000-02-07 2003-11-25 Medrad, Inc. Front-loading medical injector and syringes, syringe interfaces, syringe adapters and syringe plungers for use therewith
US20020010551A1 (en) 2000-02-11 2002-01-24 Ge Wang System and method of bolus-chasing angiography with adaptive real-time computed tomography (CT)
US6691047B1 (en) 2000-03-16 2004-02-10 Aksys, Ltd. Calibration of pumps, such as blood pumps of dialysis machine
US6626862B1 (en) 2000-04-04 2003-09-30 Acist Medical Systems, Inc. Fluid management and component detection system
US6699219B2 (en) 2000-04-21 2004-03-02 Medrad, Inc. Fluid delivery systems, injector systems and methods of fluid delivery
US6471674B1 (en) 2000-04-21 2002-10-29 Medrad, Inc. Fluid delivery systems, injector systems and methods of fluid delivery
US6972001B2 (en) 2000-04-21 2005-12-06 Medrad, Inc. Fluid delivery system having pump systems, check valves and a removable patient interface
US20030015078A1 (en) 2000-05-03 2003-01-23 Taylor Christopher L. Precision miter gauge
US20050004517A1 (en) 2000-06-02 2005-01-06 Courtney Brian K. Embolization protection system for vascular procedures
US7108981B2 (en) 2000-07-31 2006-09-19 The United States Of America As Represented By The Department Of Health And Human Services Specific binding agents for KSHV vIL-6 that neutralize a biological activity
US20030120171A1 (en) 2000-09-08 2003-06-26 Leonidas Diamantopoulos Vasular temperature measuring device and process for measuring vascular temperature
US6887214B1 (en) 2000-09-12 2005-05-03 Chf Solutions, Inc. Blood pump having a disposable blood passage cartridge with integrated pressure sensors
US20050112178A1 (en) 2000-10-13 2005-05-26 E-Z-Em, Inc. Nutritional dietary kit for use in preparing an individual for a gastrointestinal procedure
US7326186B2 (en) 2000-10-18 2008-02-05 Medrad, Inc. Injector system and fluid control device providing sharp bolus injection
US7094216B2 (en) 2000-10-18 2006-08-22 Medrad, Inc. Injection system having a pressure isolation mechanism and/or a handheld controller
US6866654B2 (en) 2000-10-18 2005-03-15 Medrad, Inc. Pressure isolation mechanisms and fluid delivery systems including pressure isolation mechanisms
US6898453B2 (en) 2000-10-25 2005-05-24 The John P. Robarts Research Institute Method and apparatus for calculating blood flow parameters
JP2004519304A (ja) 2000-10-25 2004-07-02 ザ ジョン ピー. ロバーツ リサーチ インスティテュート 血流パラメータを算出する方法及び装置
US6554819B2 (en) 2001-01-09 2003-04-29 Mount Sinai School Of Medicine Of New York University Method and device for preventing contrast associated nephropathy
US20020091349A1 (en) 2001-01-09 2002-07-11 Mount Sinal School Of Medicine Of New York Univerysity Method and device for preventing contrast associated nephropathy
US20020099254A1 (en) 2001-01-23 2002-07-25 Movahed M. Reza Method and apparatus to remove substances from vessels of the heart and other parts of the body to minimize or aviod renal or other harm or dysfunction
US7363072B2 (en) 2001-01-23 2008-04-22 Catharos Medical Systems, Inc. Method and apparatus to remove substances from vessels of the heart and other parts of the body to minimize or avoid renal or other harm or dysfunction
US20020123702A1 (en) 2001-02-26 2002-09-05 Young Cho Method & apparatus for mitigating renal failure using mechanical vibration including ultrasound and heat
JP4115677B2 (ja) 2001-03-21 2008-07-09 株式会社日立製作所 内燃機関の大気圧検出装置
WO2002086821A1 (fr) 2001-04-19 2002-10-31 Kabushiki Kaisha Toshiba Procede et dispositif de traitement d'image
US7492947B2 (en) 2001-04-19 2009-02-17 Kabushiki Kaisha Toshiba Image processing method and image processing apparatus
US6775764B1 (en) 2001-04-24 2004-08-10 Cisco Technology, Inc Search function for data lookup
US20040242994A1 (en) 2001-07-13 2004-12-02 Brady John Michael Dynamic contrast enhanced magnetic resonance imaging
US20040039530A1 (en) 2001-07-30 2004-02-26 Leesman Glen D Pharmacokinetic tool and method for predicting metabolism of a compound in a mammal
US20030036694A1 (en) 2001-08-16 2003-02-20 Marconi Medical Systems, Inc. System for assistance of parameter determination and diagnosis in mri dynamic uptake studies
WO2003015633A1 (fr) 2001-08-16 2003-02-27 Koninklijke Philips Electronics Nv Systeme facilitant la determination de parametres et le diagnostic en irm et dans des etudes de tdm a absorption dynamique
US6597938B2 (en) 2001-08-16 2003-07-22 Koninklijke Philips Electronics, N.V. System for assistance of parameter determination and diagnosis in MRI dynamic uptake studies
JP2003102724A (ja) 2001-09-21 2003-04-08 Ge Medical Systems Global Technology Co Llc 造影剤量計算装置、造影剤注入装置および断層像撮影装置
JP2003116843A (ja) 2001-10-16 2003-04-22 Toshiba Corp 脳組織内毛細血管の血流動態に関するインデックス演算方法、装置及び記憶媒体
JP2005511128A (ja) 2001-11-21 2005-04-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 灌流測定のための低レベル信号の補正
WO2003046795A2 (fr) 2001-11-21 2003-06-05 Koninklijke Philips Electronics Nv Correction de signal faible pour mesures de perfusion
US20030216683A1 (en) 2001-11-26 2003-11-20 Nili-Med Ltd. Drug delivery device and method
US7266227B2 (en) 2001-11-30 2007-09-04 Brainlab Ag Device and method for administering a substance
US6876720B2 (en) 2001-12-20 2005-04-05 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
JP2003210456A (ja) 2002-01-21 2003-07-29 Toshiba Corp 時系列画像の処理装置
JP2003225234A (ja) 2002-02-01 2003-08-12 Hitachi Medical Corp 血流動態解析装置
US6776764B2 (en) 2002-03-01 2004-08-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Use of aortic pulse pressure and flow in bedside hemodynamic management
US20060271111A1 (en) 2002-04-08 2006-11-30 Ardian, Inc. Methods and apparatus for treating contrast nephropathy
US20060235474A1 (en) 2002-04-08 2006-10-19 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US6685733B1 (en) 2002-04-10 2004-02-03 Radiant Medical, Inc. Methods and systems for reducing substance-induced renal damage
US7996381B2 (en) 2002-05-10 2011-08-09 Medrad, Inc. System and method for automated benchmarking for the recognition of best medical practices and products and for establishing standards for medical procedures
US20040064041A1 (en) 2002-05-30 2004-04-01 Lazzaro Frank A. Front-loading medical injector and syringes, syringe interfaces, syringe adapters and syringe plungers for use therewith
US20040011740A1 (en) 2002-06-26 2004-01-22 Bernard Steven J. Method and device for removal of radiocontrast media from blood
US7163520B2 (en) 2002-06-26 2007-01-16 Chf Solutions, Inc. Method and device for removal of radiocontrast media from blood
US20040044302A1 (en) 2002-06-26 2004-03-04 Chf Solutions, Inc. Method and device for removal of radiocontrast media from blood
US7292720B2 (en) 2002-07-09 2007-11-06 Siemens Aktiengesellschaft Method and magnetic resonance tomography apparatus for graphic planning of angiographic exposures using a contrast agent
US20040008028A1 (en) 2002-07-09 2004-01-15 Siemens Aktiengesellschaft Method and magnetic resonance tomography apparatus for graphic planning of angiographic exposures using a contrast agent
US20040010229A1 (en) 2002-07-11 2004-01-15 Eric Houde Fluid management system for coronary intervention
US7267667B2 (en) 2002-07-11 2007-09-11 Boston Scientific Scimed, Inc. Fluid management system for coronary intervention
WO2004012787A2 (fr) 2002-08-02 2004-02-12 Liebel-Flarsheim Company Injecteur
US20040025452A1 (en) 2002-08-12 2004-02-12 Mclean Frederick Bruce Baluster retaining member
US6994700B2 (en) 2002-09-20 2006-02-07 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
US7104981B2 (en) 2002-09-20 2006-09-12 Flowmedica, Inc. Apparatus and method for inserting an intra-aorta catheter through a delivery sheath
JP4620929B2 (ja) 2002-09-26 2011-01-26 株式会社根本杏林堂 薬液注入装置
US8486017B2 (en) 2002-09-26 2013-07-16 Nemoto Kyorindo Co., Ltd. Liquid injector for injecting contrast medium at variable rate into a subject who is to be imaged by imaging diagnostic apparatus
US20040064040A1 (en) 2002-09-26 2004-04-01 Kazumasa Masuda Liquid injector for injecting contrast medium at variable rate into a subject who is to be imaged by imaging diagnostic apparatus
US20040074453A1 (en) 2002-10-22 2004-04-22 Roelle Matthew J. Secondary air injection diagnostic system using pressure feedback
US6983590B2 (en) 2002-10-22 2006-01-10 General Motors Corporation Secondary air injection diagnostic system using pressure feedback
US20040097875A1 (en) 2002-10-31 2004-05-20 Bae Kyongtae T. Method and apparatus for sequential delivery of multiple injectable substances stored in a prefilled syringe
US6866653B2 (en) 2002-10-31 2005-03-15 Kyongtae T. Bae Method and apparatus for sequential delivery of multiple injectable substances stored in a prefilled syringe
US20040097806A1 (en) 2002-11-19 2004-05-20 Mark Hunter Navigation system for cardiac therapies
JP2004174008A (ja) 2002-11-28 2004-06-24 Olympus Corp 内視鏡情報システム、内視鏡、及びプログラム
JP2004194721A (ja) 2002-12-16 2004-07-15 Nemoto Kyorindo:Kk 薬液注入装置
JP2004236849A (ja) 2003-02-06 2004-08-26 Ge Medical Systems Global Technology Co Llc 磁気共鳴撮影装置
US20040162484A1 (en) 2003-02-18 2004-08-19 Nemoto Kyorindo Co., Ltd. Liquid injector with appropriate operating conditions set by selecting displayed image
US20040167415A1 (en) 2003-02-24 2004-08-26 Plc Systems Inc. Method and system for prevention of radiocontrast nephropathy
US20040163655A1 (en) 2003-02-24 2004-08-26 Plc Systems Inc. Method and catheter system applicable to acute renal failure
JP4481582B2 (ja) 2003-04-01 2010-06-16 株式会社根本杏林堂 薬液注入システム
JP2004298550A (ja) 2003-04-01 2004-10-28 Nemoto Kyorindo:Kk 薬液注入システム
US7713239B2 (en) 2003-04-08 2010-05-11 Medrad, Inc. System for delivery of hazardous pharmaceuticals
WO2005004038A1 (fr) 2003-07-08 2005-01-13 Philips Intellectual Property & Standards Gmbh Reconstitution de debit dans un systeme vasculaire
WO2005016165A1 (fr) 2003-08-05 2005-02-24 Flowmedica, Inc. Systeme et methode de prevention de la nephropathie induite par les produits de contraste radiologique
US20050053551A1 (en) 2003-09-08 2005-03-10 Badiola Carlos M. Use of a combination of gadolinium-based contrast media and iodinated contrast media as a contrast agent for X-ray based medical imaging procedures
JP2005324007A (ja) 2004-03-02 2005-11-24 General Electric Co <Ge> 放射性医薬品の準備、供給、及びモニタのためのシステム、方法、及び装置
US7734331B2 (en) 2004-03-02 2010-06-08 General Electric Company Systems, methods and apparatus for preparation, delivery and monitoring of radioisotopes in positron emission tomography
US20050256441A1 (en) 2004-04-26 2005-11-17 Hadasit Medical Research Services And Development; Ltd. Device for renal protection
US20060013772A1 (en) 2004-06-30 2006-01-19 University Of Vermont And State Agricultural College Method and device to recover diagnostic and therapeutic agents
US7522744B2 (en) 2004-08-31 2009-04-21 University Of Iowa Research Foundation System and method for adaptive bolus chasing computed tomography (CT) angiography
US20060253064A1 (en) 2004-09-09 2006-11-09 Mark Gelfand Patient hydration system with hydration state detection
US20060235353A1 (en) 2004-09-09 2006-10-19 Mark Gelfand Patient hydration system with abnormal condition sensing
US7783091B2 (en) 2004-09-09 2010-08-24 Siemens Aktiengesellschaft Method for segmenting anatomical structures from 3D image data by using topological information
US20060270971A1 (en) 2004-09-09 2006-11-30 Mark Gelfand Patient hydration system with a redundant monitoring of hydration fluid infusion
US20060052764A1 (en) 2004-09-09 2006-03-09 Mark Gelfand Patient hydration system and method
JP2006075600A (ja) 2004-09-09 2006-03-23 Siemens Ag 3d画像データからの解剖学的構造のセグメント化方法
WO2006042093A1 (fr) 2004-10-06 2006-04-20 E-Z-Em, Inc. Systeme d'imagerie medicale, systeme d'administration, methode et produit-programme informatique pour l'evaluation d'une fonction renale d'un patient avant l'administration d'un milieu de contraste dans le cadre d'une operation d'imagerie medicale
US20060074294A1 (en) 2004-10-06 2006-04-06 E-Z-Em, Inc. Medical imaging system, dispensing system, method, and computer program product for assessing patient renal function prior to dispensing a contrast media as part of a medical imaging procedure
US20060079843A1 (en) 2004-10-13 2006-04-13 Liebel-Flarsheim Company Powerhead control in a power injection system
US20060096388A1 (en) 2004-11-05 2006-05-11 Gysling Daniel L System for measuring a parameter of an aerated multi-phase mixture flowing in a pipe
US8197437B2 (en) 2004-11-16 2012-06-12 Medrad, Inc. Systems and methods of modeling pharmaceutical propagation in a patient
WO2006055813A2 (fr) 2004-11-16 2006-05-26 Medrad, Inc. Modelage de propagation pharmaceutique
CN101084036A (zh) 2004-11-16 2007-12-05 梅德拉股份有限公司 药物传播建模
US8295914B2 (en) 2004-11-16 2012-10-23 Medrad, Inc. Systems and methods of determining patient transfer functions and modeling patient response to a pharmaceutical injection
EP1812101A2 (fr) 2004-11-16 2007-08-01 Medrad, Inc. Modelage de propagation pharmaceutique
US20070255135A1 (en) 2004-11-16 2007-11-01 Medrad, Inc. Systems and methods of modeling pharmaceutical propagation in a patient
JP2008520287A (ja) 2004-11-16 2008-06-19 メドラッド インコーポレーテッド 薬剤注入に対する患者搬送関数を決定し、患者反応をモデル化するシステム及び方法
US8346342B2 (en) 2004-11-16 2013-01-01 Medrad, Inc. Systems and methods of determining patient physiological parameters from an imaging procedure
US20080097197A1 (en) 2004-11-16 2008-04-24 Kalafut John F Modeling of Pharmaceutical Propagation
EP1835959A2 (fr) 2004-11-24 2007-09-26 Medrad, Inc. Dispositifs, systemes et methodes de distribution de liquide
WO2006058280A2 (fr) 2004-11-24 2006-06-01 Medrad, Inc. Dispositifs, systemes et methodes de distribution de liquide
US20070282263A1 (en) 2004-11-24 2007-12-06 Medrad, Inc. Devices, systems and methods for determining parameters of one or more phases of an injection procedure
US20070213662A1 (en) 2004-11-24 2007-09-13 Medrad, Inc. System And Apparatus For Modeling Pressures Generated During An Injection Procedure
US20120016233A1 (en) 2004-11-24 2012-01-19 Kalafut John F Systems and methods for managing workflow for injection procedures
US7925330B2 (en) 2004-11-24 2011-04-12 Medrad, Inc. Devices, systems and methods for determining parameters of one or more phases of an injection procedure
JP2008521506A (ja) 2004-11-24 2008-06-26 メドラッド インコーポレーテッド 流体を送達する装置、システム及び方法
US7325330B2 (en) 2004-12-02 2008-02-05 Samsung Electronics Co., Ltd. Apparatus and method for eliminating wrinkles in clothes
US20060184099A1 (en) 2004-12-06 2006-08-17 Hong Mun K Variable lumen guiding catheter
US20060239918A1 (en) 2005-02-14 2006-10-26 Ernst Klotz Method for forecasting the contrast medium flow in a living body
US20060211989A1 (en) 2005-03-04 2006-09-21 Rhinehart Edward J Fluid delivery systems, devices and methods for delivery of fluids
US20060253353A1 (en) 2005-05-04 2006-11-09 Citigroup Global Markets, Inc. Method and system for crossing orders
US20070016016A1 (en) 2005-05-31 2007-01-18 Gabriel Haras Interactive user assistant for imaging processes
JP2007020829A (ja) 2005-07-15 2007-02-01 Hitachi Ltd 画像データ解析方法およびシステム
US20070066892A1 (en) 2005-09-01 2007-03-22 Gabriel Haras Method and system for providing tomographic pictures of a patient by using contrast medium injections
US7672711B2 (en) 2005-09-01 2010-03-02 Siemens Aktiengesellschaft Method and system for providing tomographic pictures of a patient by using contrast medium injections
US20080046286A1 (en) 2005-09-16 2008-02-21 Halsted Mark J Computer implemented healthcare monitoring, notifying and/or scheduling system
US20070078330A1 (en) 2005-09-29 2007-04-05 Gabriel Haras Method and apparatus for checking parameters
US8086001B2 (en) 2005-10-17 2011-12-27 Koninklijke Philips Electronics N.V. Utilizing physiological models to control functional acquisitions
JP2007143880A (ja) 2005-11-28 2007-06-14 Hiroshima Industrial Promotion Organization 造影剤注入プロトコル決定方法および造影剤注入プロトコル演算装置
JP2007283103A (ja) 2006-04-13 2007-11-01 General Electric Co <Ge> 相対的な灌流及び/又は生存性を求める方法及び装置
US20070244389A1 (en) 2006-04-13 2007-10-18 General Electric Company Methods and apparatus for relative perfusion and/or viability
US7864997B2 (en) 2006-04-28 2011-01-04 Pie Medical Imaging B.V. Method, apparatus and computer program product for automatic segmenting of cardiac chambers
US20080009717A1 (en) 2006-05-05 2008-01-10 Klaus Herrmann Method for generating a medical image and a medical imaging system
WO2007143682A2 (fr) 2006-06-06 2007-12-13 Bayer Schering Pharma Ag Systèmes et procédés d'administration de fluides de concentration variable à un patient
US20090177050A1 (en) 2006-07-17 2009-07-09 Medrad, Inc. Integrated medical imaging systems
WO2008011401A2 (fr) 2006-07-17 2008-01-24 Medrad, Inc. Systèmes d'imagerie médicale intégré
US20080097339A1 (en) 2006-08-31 2008-04-24 Medrad, Inc. Catheter with filtering and sensing elements
US20080101678A1 (en) 2006-10-25 2008-05-01 Agfa Healthcare Nv Method for Segmenting Digital Medical Image
WO2008060629A2 (fr) 2006-11-17 2008-05-22 Icad, Inc. Procédés automatiques pour la production de points de référence artériels et veineux pour l'angiographie par résonance magnétique à contraste amélioré et la tomographie informatisée
US20080119715A1 (en) 2006-11-22 2008-05-22 Marcela Gonzalez Molezzi System and method to adaptively control contrast-enhanced diagnostic imaging procedure
JP2008136786A (ja) 2006-12-05 2008-06-19 Sumitomo Heavy Ind Ltd 放射性薬剤投与装置
WO2008085421A2 (fr) 2006-12-29 2008-07-17 Medrad, Inc. Systèmes de génération de paramètres sur la base d'un patient pour des procédures médicales d'injection
JP2010514506A (ja) 2006-12-29 2010-05-06 メドラッド インコーポレーテッド 薬剤伝搬のモデリング
US20100113887A1 (en) * 2006-12-29 2010-05-06 Medrad, Inc. Patient-based parameter generation systems for medical injection procedures
US20100030073A1 (en) 2006-12-29 2010-02-04 Medrad, Inc. Modeling of pharmaceutical propagation
EP2097004A2 (fr) 2006-12-29 2009-09-09 Medrad, Inc. Modélisation de la propagation d'un produit pharmaceutique
EP2097835A2 (fr) 2006-12-29 2009-09-09 Medrad, Inc. Systèmes de génération de paramètres sur la base d'un patient pour des procédures médicales d'injection
WO2008082937A2 (fr) 2006-12-29 2008-07-10 Medrad, Inc. Modélisation de la propagation d'un produit pharmaceutique
JP5084296B2 (ja) 2007-02-16 2012-11-28 Juki株式会社 玉縁縫いミシン
US20090028968A1 (en) 2007-03-30 2009-01-29 Yun Kau Tam Pharmaceutical Platform Technology for the Development of Natural Products
US20080294035A1 (en) 2007-05-23 2008-11-27 Stefan Zwick Vessel size imaging for antiangiogenic therapy
US8705819B2 (en) 2007-06-21 2014-04-22 Koninklijke Philips N.V. Adjusting acquisition protocols for dynamic medical imaging using dynamic models
US8428694B2 (en) 2007-07-17 2013-04-23 Medrad, Inc. Methods for determination of parameters for a procedure, for estimation of cardiopulmonary function and for fluid delivery
CN101742967A (zh) 2007-07-17 2010-06-16 梅德拉股份有限公司 确定心肺功能评估和输液过程的参数的设备、系统和方法
EP2170165A1 (fr) 2007-07-17 2010-04-07 Medrad, Inc. Dispositifs, systèmes et procédés pour déterminer des paramètres pour une procédure, pour estimer une fonction cardiopulmonaire et pour une administration de fluide
WO2009012023A1 (fr) 2007-07-17 2009-01-22 Medrad, Inc. Dispositifs, systèmes et procédés pour déterminer des paramètres pour une procédure, pour estimer une fonction cardiopulmonaire et pour une administration de fluide
JP2008023346A (ja) 2007-08-10 2008-02-07 Sumitomo Heavy Ind Ltd 放射性液体の分注・投与方法及び装置
EP2042100A2 (fr) 2007-09-14 2009-04-01 Multi Magnetics Incorporated Procédé et appareil pour quantifier le comportement d'un agent de contraste administré
US20090116711A1 (en) 2007-10-31 2009-05-07 Andrew Christian Larson Method for transcatheter intra-arterial perfusion magnetic resonance imaging
US20090226867A1 (en) 2008-03-04 2009-09-10 Medrad, Inc. Dynamic anthropomorphic cardiovascular phantom
US8315449B2 (en) 2008-06-24 2012-11-20 Medrad, Inc. Identification of regions of interest and extraction of time value curves in imaging procedures
WO2009158212A1 (fr) 2008-06-24 2009-12-30 Medrad, Inc. Identification de régions d’intérêt et extraction de courbes de valeurs dans le temps dans des procédures d'imagerie
US20130044926A1 (en) 2008-06-24 2013-02-21 Medrad, Inc. Identification of Regions of Interest and Extraction of Time Value Curves In Imaging Procedures
US20110200165A1 (en) 2008-07-16 2011-08-18 Bayer Schering Pharma Aktiengesellschaft Contrast agent-reinforced radiotherapy having high-output tubes
US20100114064A1 (en) 2008-11-03 2010-05-06 Medrad, Inc. Mitigation of contrast-induced nephropathy
WO2010115165A2 (fr) 2009-04-03 2010-10-07 New York University Système, procédé et support accessible par ordinateur pour utiliser des données cardiaques de manière à améliorer la mesure de la fonction d'entrée d'un traceur dans l'imagerie par résonance magnétique dynamique avec agent de contraste
US20120141005A1 (en) 2009-06-05 2012-06-07 Faycal Djeridane Method for estimating haeomodynamic parameters by joint estimation of the parameters of a global perfusion model
US8011401B1 (en) 2009-08-28 2011-09-06 Utterback David K Toilet bowl protecting method and assembly
US8718747B2 (en) 2010-04-16 2014-05-06 Oslo Universitetssykehus Hf Estimating and correcting for contrast agent extravasation in tissue perfusion imaging
US20130041257A1 (en) 2010-04-27 2013-02-14 Nemoto Kyorindo Co., Ltd. Chemical liquid injector and ct apparatus
WO2011136218A1 (fr) 2010-04-27 2011-11-03 株式会社根本杏林堂 Dispositif d'injection d'agent chimique et dispositif ct
US20130211247A1 (en) 2010-06-24 2013-08-15 Medrad, Inc. Modeling of pharmaceutical propagation and parameter generation for injection protocols
WO2011163578A2 (fr) 2010-06-24 2011-12-29 Medrad, Inc. Modélisation de propagation pharmaceutique et de génération de paramètres pour protocoles d'injection
WO2011162578A2 (fr) 2010-06-26 2011-12-29 엘지전자 주식회사 Système réseau
US9271656B2 (en) 2013-01-24 2016-03-01 Siemens Aktiengesellschaft Prediction of a likely contrast medium behavior

Non-Patent Citations (185)

* Cited by examiner, † Cited by third party
Title
"Digital Injector for Angiography," Sias (Sep. 7, 1993).
"Disposable Low-Cost Catheter Tip Sensor Measures Blood Pressure during Surgery," Sensor (Jul. 1989).
"Extended European Search Report from EP Application No. 11798986", dated Feb. 24, 2017.
"Infus O.R. Multi-Drug Syringe Pump with Smart Labels," Bard MedSystems Division Inc., pp. 2693-2696 (2005).
"iSTAT 1 System Manual," Abbott Laboratories, Rev. (Aug. 14, 2006).
"Renalguard," PLC Medical Systems, Inc. News Release, pp. 1-3 (May 12, 2008).
"Supplementary Partial European Search Report", dated Nov. 10, 2016.
"The Solution for Your IV Formulas," Valley Lab. Inc., E-39-15, 3399, 3400, 2646.
Alessio et al., US Weight-Based, Low-Dose Pediatric Whole-Body PET/CT Protocols, J Nucl Med 2009; 50:1570-1578. *
Angelini, P., "Use of mechanical injectors during percutaneous transluminal coronary angioplasty (PTCA)," Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 193-194 (Mar. 1989).
Angiography, Catheterization and Cardiovascular Diagnosis, vol. 19, pp. 123-128, 1990.
Awai, K., et al., "Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT.," Radiology, vol. 224, Issue 3, pp. 757-763 (Sep. 2002).
Awai, K., et al., "Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight," Radiology, vol. 230, Issue 1, pp. 142-150 (Jan. 2004).
Bae, K.T., et al., "Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model," Radiology, vol. 207, Issue 3, pp. 647-655 (Jun. 1998).
Bae, K.T., et al., "Multiphasic Injection Method for Uniform Prolonged Vascular Enhancement at CT Angiography: Pharmacokinetic Analysis and Experimental Porcine Model," Radiology, vol. 216, Issue 3, pp. 872-880 (Sep. 2000).
Bae, K.T., et al., "Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model," Radiology, vol. 227, No. 3, pp. 809-816 (Jun. 2003).
Bae, K.T., et al., "Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method," Radiology, vol. 231, Issue 3, pp. 732-736 (Jun. 2004).
Baker, A.B., and Sanders, J.E., "Fluid Mechanics Analysis of a Spring-Loaded Jet Injector," IEEE Transactions on Biomedical Engineering, vol. 46, No. 2, pp. 235-242 (Feb. 1999).
Baker, Aaron; et al. "Fluid Mechanics Analysis of a Spring-Loaded Jet Injector." IEEE Transactions on Biomedical Engineering, vol. 46, No. 2, Feb. 1899.
Becker, C.R., et al., "Optimal contrast application for cardiac 4-detector-row computed tomography," Investigative Radiology, vol. 38, Issue 11, pp. 690-694 (Nov. 2003).
Beitzke, Dietrich, et al., Computed tomography angiography of the carotid arteries at low kV settings: a prospective randomised trial assessing radiation dose and diagnostic confidence, Eur Radiol, 2011.
Bischoff, Bernhard, et al., Impact of a Reduced Tube Voltage on CT Angiography and RAdiation Dose: Results of the Protection I Study, JACC Cardiovascular Imaging, 2009, pp. 940-948, vol. 2 No. 8.
Blankstein, Ron, et al., Use of 100 kV versus 120 kV in cardiac dual source computed tomography: effect on radiation dose and image quality, Int J Cardiovasc Imaging, 2011, pp. 579-586, vol. 27.
Blomley, M.J.K. and Dawson, P., "Bolus Dynamics: Theoretical and Experimental Aspects," The Brit. J. of Radiology, vol. 70, No. 832, pp. 351-359 (Apr. 1997).
Buckley, D.L., et al., "Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects," Journal of Magnetic Resonance Imaging, vol. 24, Issue 5, pp. 1117-1123 (Nov. 2006).
Buckley, D.L., et al., "Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects," Journal of Magnetic Resonance Imaging, vol. 24, Issue 5, pp. 117-123, Nov. 2006.
Cademartiri, F., et al. "Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications," Seminars in Ultrasound, CT and MRI, vol. 25, Issue 1, pp. 2-16 (Feb. 2004).
Cademartiri, F., et al., "Intravenous contrasts material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique," Radiology, vol. 233, Issue 3, pp. 817-823 (Dec. 2004).
Coleman, T. and Branch, M.A., "Optimization Toolbox for Use with MATLAB, User's Guide," The Mathworks Inc., Editor (2007).
Dardik, H. et al., "Remote Hydraulic Syringe Actuator," Arch. Surg., vol. 115, Issue 1, Jan. 1980.
Dardik, H. et al., "Remote hydraulic syringe actuator: its use to avoid radiation exposure during intraoperative arteriography," Arch. Surg., vol. 115, Issue 1, pp. 105 (Jan. 1980).
Dawson, P. and Blomley, M., "The value of mathematical modelling in understanding contrast enhancement in CT with particular reference to the detection of hypovascular liver metastases," European Journal of Radiology, vol. 41, Issue 3, pp. 222-236 (Mar. 2002).
European Search Report and Opinion dated Nov. 21, 2013 from EP No. 13004902.6.
European Search Report and Supplemental European Search Report from EP05849688 dated Mar. 21, 2014.
European Search Report dated Feb. 1, 2016 from EP15157102.
European Search Report dated Feb. 21, 2012 in European Patent Application No. 11001045.1.
European Search Report dated Jan. 30, 2003 in European Patent Application No. 02020247.9.
European Search Report dated Jun. 17, 1996 in European Patent Application No. 95202547.6.
EZ Chem Blood Analyzer System, E-Z-EM, Inc., product data from corporate website (www.ezem.com).
EZ Chem Brochure, E-Z-EM, Inc. (Jul. 2007).
Farrelly, Cormac, et al., Low dose dual-source CT angiography of the thoracic aorta, Int J Cardiovasc Imaging, 2010. DOI 10.1007/s10554-010-9742-9.
Final Office Action dated Jun. 17, 2013, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009.
Final Office Action dated Jun. 19, 2013, in U.S. Appl. No. 13/186,983, John F. Kalafut et al., filed Jul. 20, 2011.
Final Office Action dated Mar. 5, 2013, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009.
Final Office Action dated May 10, 2013, in U.S. Appl. No. 12/611,172, John F. Kalafut et al., filed Nov. 3, 2009.
Final Office Action dated Oct. 1, 2009, in U.S. Appl. No. 11/691,823, John F. Kalafut et al., filed Mar. 27, 2007.
Final Office Action dated Oct. 2, 2012, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009.
Final Office Actions dated Jun. 17 2013 and Mar. 5 2013, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009.
Fisher, M.E. and Teo, K.L., "Optimal insulin infusion resulting from a mathematical model of blood glucose dynamics," IEEE Transactions on Biomedical Engineering, vol. 36, Issue 4, pp. 479-486 (Apr. 1989).
Flegal, K.M., et al., "Prevalence and trends in obesity among US adults," JAMA, 2002, vol. 288, Issue 14, pp. 1-4, (1999-2000).
Fleischmann, D. and Hittmair, K., "Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform," Journal of Computer Assisted Tomography, vol. 23, Issue 3, pp. 474-484 (May/Jun. 1999).
Fleischmann, D., "Contrast Medium Injection Technique," In: U. Joseph Schoepf: "Multidetector—Row CT of the Thorax," pp. 47-59 (Jan. 22, 2004).
Fleischmann, D., "Present and Future Trends in Multiple Detector-Row CT Applications; CT Angiography," European Radiology, vol. 12, Issue 2 Supplement, pp. s11-s15 (Jul. 2002).
Fraioli, Francesco, et al., Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA, Eur Radiol. 2006, pp. 137-146. vol. 16.
Funama, Yoshinori, et al., Radiation Dose Reduction without Degradation of Low-Contrast Detectability at Abdominal Multisection CT with a Low-Tube Voltage Technique: Phantom Study. Radiology, Dec. 2005, pp. 905-910, vol. 237, No. 3.
Gardiner, G. A., et al., "Selective Coronary Angiography Using a Power Injector," AJR Am J Roentgenol., vol. 146, Issue 4, pp. 831-833 (Apr. 1986).
Garrett, J. S., et al., "Measurement of cardiac output by cine computed tomography," The American Journal of Cardiology, vol. 56, Issue 10, pp. 657-661 (Oct. 1985).
Gembicki, F.W., "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," PhD Thesis, Case Western Reserve University (1974).
Gembicki, Florian W., "Performance and Sensitivity Optimization: A Vector Index Approach", Department of Systems Engineering, Case Western Reserve University, Jan. 1974.
Gentilini A., et al., "A new paradigm for the closed-loop intraoperative administration of analgesics in humans," IEEE Transactions on Biomedical Engineering, vol. 49, Issue 4, pp. 289-299 (Apr. 2002).
Gerlowski L. et al., Physiologically Based Pharmacokinetic Modeling: Principles and Applications, Journal of Pharmaceutical Sciences, pp. 1103-1106, 1124, vol. 72, No. 10.
Gerlowski L.E. and Jain R.K., "Physiologically Based Pharmacokinetic Modeling: Principles and Applications," Journal of Pharmaceutical Sciences, vol. 72, No. 10, pp. 1103-1127 (Oct. 1983).
Goldfarb, S., "Contrast-induced nephropathy: Risk factors, pathophysiology, and prevention," Applied Radiology (online supplement), pp. 5-16 (Aug. 2005).
Goss, J. E., et al., "Power injection of contrast media during percutaneous transluminal coronary artery angioplasty," Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 195-198 (Mar. 1989).
Gramovish V.V., et al. Quantitative estimation of myocardial perfusion in patients with chronic ischaemic heart disease using magnetic resonance imaging, Cardiology, 2004, p. 4-12, No. 89.
Grant, Katherine, et al., Automated Dose-Optimized Selection of X-ray Tube Voltage White Paper, CARE kV Siemens, 2011.
Grant, S.C.D. et al., "Reduction of Radiation Exposure to the Cardiologist during Coronary Angiography by the Use of a Remotely Controlled Mechanical Pump for Injection of Contrast Medium," Catheterization and Cardiovascular Diagnosis, vol. 25, Issue 2, pp. 107-109 (Feb. 1992).
Guytan, A.C., "Circuitry Physiology: cardiac output and regulation", Saunders, Philadelphia, p. 173, ISBN: 07216436004, 1973.
Guyton, A.C., "Circulatory Physiology: cardiac output and regulation," Saunders, Philadelphia, pp. 173, ISBN: 07216436004 (1985).
Hackstein, N., et al., "Glomerular Filtration Rate Measured by Using Triphasic Helical CT with a Two-Point Patlak Plot Technique," Radiology, vol. 230, Issue 1, pp. 221-226 (Jan. 2004).
Hansen, P.C, "Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems," Numerical Algorithms, vol. 6, Issue 1, pp. 35 (1994).
Hansen, P.C., "The truncated SVD as a method for regularization," BIT Numerical Mathematics, vol. 27, Issue 4, pp. 534-553 (1987).
Hansen, P.C., "The truncated SVD as a method for regularization," BIT Numerical Mathematics, vol. 27, Issue 4, pp. 534-555, 1987.
Hansen, P.C., et al., "An adaptive pruning algorithm for the discrete L-curve criterion," Journal of Computational and Applied Mathematics, vol. 198, Issue 2, pp. 9 (Jan. 2007).
Harris P., H. D. "The Human Pulmonary Circulation," Edinburgh, Churchill Livingstone, (Appendix I), 1986.
Harris, P. and Heath, D. "The Human Pulmonary Circulation: Its form and function in Health and Disease," 3rd Edition, Edinburgh, Churchill Livingstone, Appendix I (1986).
Hausleiter, Jorg, et al., Radiation Dose Estimates From Cardiac Multislice Computed Tomography in Daily Practice: Impact of Different Scanning Protocols on Effective Dose Estimates, Circulation Journal of the American Heart Association, Mar. 14, 2006, pp. 1304-1310, vol. 113.
Hayes, M.H., "Statistical Digital Signal Processing and Modeling," New York, Wiley and Sons, pp. 154-177 (1996).
Heiken, J.P., et al., "Dynamic Contrast-Enhanced CT of the Liver: Comparison of Contrast Medium Injection Rates and Uniphasic and Biphasic Injection Protocols," Radiology, vol. 187, No. 2, pp. 327-331 (May 1993).
International Preliminary Examination Report and International Search Report for International Patent Application No. PCT/US00/10842 dated May 22, 2001.
International Preliminary Report on Patentability and Written Opinion and International Search Report for International Patent Application No. PCT/US2008/067982 dated Jan. 19, 2010.
International Preliminary Report on Patentability and Written Opinion and International Search Report for International Patent Application No. PCT/US2011/041802 dated Dec. 28, 2012.
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US00/10842 dated May 22, 2001.
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US2005/042891 dated May 30, 2007.
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US2007/087765 dated Jun. 30, 2009.
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US2009/047168 dated Jan. 5, 2011.
International Preliminary Report on Patentability for International Application No. PCT/EP2005/007791, International Bureau of WIPO, Geneva, Switzerland, dated May 22, 2007.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2005/041913 dated May 22, 2007.
International Preliminary Report on Patentability from corresponding PCT Application No. PCT/US2012/037744 filed May 14, 2012.
International Preliminary Report on Patentability International Search Report, and Written Opinion for International Patent Application No. PCT/US2007/026194 dated Jun. 30, 2009.
International Preliminary Report on Patentability, International Search Report and Written Opinion for International Patent Application No. PCT/US2007/026194 dated Jun. 30, 2009.
International Preliminary Report on Patentability, International Search Report and Written Opinion for International Patent Application No. PCT/US2007/087765 dated Jun. 30, 2009.
International Preliminary Report on Patentability, International Search Report and Written Opinion for International Patent Application No. PCT/US2008/067982 dated Jan. 19, 2010.
International Preliminary Report on Patentability, International Search Report and Written Opinion for International Patent Application No. PCT/US2009/047168 dated Jan. 5, 2011.
International Preliminary Report on Patentability, International Search Report and Written Opinion for International Patent Application No. PCT/US2011/041802 dated Dec. 28, 2012.
International Preliminary Report on Patentability, International Search Report, and Wrtitten Opinion for International Patent Application No. PCT/US2005/042891 dated May 30, 2007.
International Search Report and the Written Opinion of the International Searching Authority for application No. PCT/US2007/26194 dated Jun. 26, 2008.
International Search Report and Written Opinion for International Application No. PCT/US05/42891, ISA/US dated Sep. 25, 2006.
International Search Report and Written Opinion for International Patent Application No. PCT/US2005/041913 dated May 24, 2006.
International Search Report and Written Opinion from counterpart PCT Application PCT/2008/67982 filed Jun. 24, 2008.
International Search Report for International Patent Application No. PCT/US00/10842 dated Jan. 23, 2001.
International Search Report for International Patent Application No. PCT/US2000/010842 dated Apr. 5, 2001.
International Search Report for International Patent Application No. PCT/US2007/026194 dated Jun. 26, 2008.
International Search Report for International Patent Application No. PCT/US2007/087765 dated Jun. 12, 2008.
International Search Report for International Patent Application No. PCT/US2011/041802 dated Jan. 5, 2012.
International Search Report for International Patent Application No. PCT/US96/15680 dated Jan. 28, 1997.
International Search Report for International Patent Application No. PCT1US20081067982 dated Oct. 8, 2008.
International Search Report for International Patent Application No. PCT1US2009/047168 dated Aug. 4, 2009.
Ireland, M.A., et al., "Safety and Convenience of a Mechanical Injector Pump for Coronary Angiography," Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 199-201 (1989).
i-STAT Analyzer System, Abbott Laboratories, product data from corporate website (www.abbottpointofcoare.com).
Jacobs, J.R., "Algorithm for optimal linear model-based control with application to pharmacokinetic model-driven drug delivery," IEEE Transactions on Biomedical Engineering, vol. 37, Issue 1, pp. 107-109 (Jan. 1990).
Jo, S.H., et al., "Renal Toxicity Evaluation and Comparison Between Visipaque (Iodixanol) and Hexabrix (Ioxaglate) in Patients with Renal Insufficiency Undergoing Coronary Angiography : the RECOVER study: a randomized controlled trial," Journal of the American College of Cardiology, vol. 48, Issue 5, pp. 924-930 (Sep. 2006).
Kai; Gao, "Study on the Correlation between X-ray Image Quality and Radiation Dose and Contrast Agent Concentration", May 1, 2005.
Kalafut, J.S., "A New Paradigm for the Personalized Delivery of Iodinated Contrast Material at Cardiothoracic, Computed Tomography Angiography," Doctoral Dissertation, University of Pittsburgh (2010).
Kalra, Mannudeep, et al., Clinical Comparison of Standard Dose and 50% Reduced-Dose Abdominal CT: Effect on Image Quality, American Journal of Radiology, Nov. 2002, pp. 1101-1106. vol. 179.
Kayan, Mustafa, et al., Carotid CT-angiography: Low versus standard volume contrast media and low kV protocol for 128-slice MDCT, European Journal of Radiology, 2012, pp. 2144-2147, vol. 81.
Koh, T.S., et al., "Assessment of Perfusion by Dynamic Contrast-Enhanced Imaging Using a Deconvolution Approach Based on Regression and Singular Value Decomposition," IEEE Transactions on Medical Imaging, vol. 23, Issue 12, pp. 1532-1542 (Dec. 2004).
Korosec, F.R., "Basic Principles of Phase-contrast, Time-of-flight, and Contrast-enhanced MR Angiography," Principles of MR Angiography, pp. 1-10 (1999).
Korosec, F.R., "Physical Principles of Phase-Contrast, Time-of-Flight, and Contrast-Enhanced MR Angiography," 41st Annual Meeting of American Association of Physicists in Medicine, Jul. 25-29, 1999.
Korosec, Frank, "Basic Principles of Phase-contrast, Time-of-flight, and Contrast-enhanced MR Angiography", 1999.
Krause, W., "Application of pharmacokinetics to computed tomography: injection rates and schemes: mono-, bi-, or multiphasic?," Investigative Radiology, vol. 31, Issue 2, pp. 91-100 (Feb. 1996).
Krieger, R. A., "CO2-Power-Assisted Hand-Held Syringe: Better Visualization during Diagnostic and Interventional Angiography," Cathet Cardiovasc Diagn., vol. 19, Issue 2, pp. 123-128 (Feb. 1990).
Leschka, Sebastian, et al., Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose, Eur Radiol. 2008, pp. 1809-1817, vol. 18.
Liebel-Flarsheim Company, "Angiomat 6000 Digital Injection System—Operator's Manual," Document No. 600950, Rev. 1, pp. 3-6 to 3-8, 4-52 to 4-56 (1990).
Liebel-Flarsheim Company, "Angiomat 6000 Digital Injection System—Operator's Manual", Document No. 600950, Rev. 1, Jan. 1990.
Liebel-Flarsheim company,Angiomat 6000 Digital Injection System Operator's Manual, 600950 Rev 1 (1990); pp. 1-1 to 9-6.
Mahnken, A. H., et al., "Determination of cardiac output with multislice spiral computed tomography: a validation study," Investigative Radiology, vol. 39, Issue 8, pp. 451-454 (Aug. 2004).
Mahnken, A. H., et al., "Measurement of cardiac output from a test-bolus injection in multislice computed tomography," European Radiology, vol. 13, Issue 11, pp. 2498-2504 (Nov. 2003).
Marin, Daniele, et al., Low-Tube-Voltage, High-Tube-Current Multidetector Abdominal CT: Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm—Initial Clincal Experience, Radiology. Jan. 2010, pp. 145-153, vol. 254, No. 1.
Mark V/Mark V Plus Injector Operation Manual KMP 805P Rev. B. MEDRAD, Inc, 1990.
McClellan, J.H., "Parametric Signal Modeling," Chapter 1 in Advanced Topics in Signal Processing, Pentice-Hall, Englewood Cliffs, NJ (1988).
McCullough, P.A., et al., "Contrast-Induced Nephropathy (CIN) Consensus Working Panel: Executive Summary," Reviews in Cardiovascular Medicine, vol. 7, Issue 4, pp. 177-197 (2006).
Medrad, Inc., "Mark V/Mark V Plus Injector Operation Manual KMP 805P Rev. B.," pp. 1-18 to 1-28, 3-7 to 3-13, 14-1 to 14-4 (1990).
Medrad, Inc., "MCT and MCT Plus Injection Systems Operation Manual KMP 810P," (1991).
Nakayama, Yoshiharu, et al., Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise, Radiology, Dec. 2005, pp. 945-951, vol. 237, No. 3.
Neatpisarnvanit, C. and Boston, J.R., "Estimation of plasma insulin from plasma glucose," IEEE Transactions on Biomedical Engineering, vol. 49, Issue 11, pp. 1253-1259 (Nov. 2002).
Newton, Texas A&M University lecture slides, Statistics 626, 1999.
Non-Final Office Action dated Apr. 23, 2014, in U.S. Appl. No. 12/519,040, John F. Kalafut etal., filed Jun. 12, 2009.
Non-Final Office Action dated Apr. 26, 2013, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009.
Non-Final Office Action dated Dec. 12, 2014, in U.S. Appl. No. 13/186,983.
Non-Final Office Action dated Dec. 17, 2008, in U.S. Appl. No. 11/691,823, John F. Kalafut et al., filed Mar. 27, 2007.
Non-Final Office Action dated Feb. 15, 2012, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009.
Non-Final Office Action dated Feb. 2, 2015, in U.S. Appl. No. 12/611,172.
Non-Final Office Action dated Jan. 3, 2014, in U.S. Appl. No. 11/691,823.
Non-Final Office Action dated Jul. 14, 2014, in U.S. Appl. No. 12/519,213.
Non-Final Office Action dated Jul. 15, 2014, in U.S. Appl. No. 11/691,823.
Non-Final office Action dated Mar. 12, 2013, in U.S. Appl. No. 13/655,525, John F. Kalafut et al., filed Oct. 19, 2012.
Non-Final Office Action dated Nov. 5, 2012, in U.S. Appl. No. 13/186,983, John F. Kalafut al., filed Jul. 20, 2011.
Non-Final Office Action dated Oct. 18, 2012, in U.S. Appl. No. 12/519,213, John F. Kalafut et al., filed Jun. 15, 2009.
Non-Final Office Action dated Sep. 17, 2012, in U.S. Appl. No. 12/611,172, John F. Kalafut et al., filed Nov. 3, 2009.
Non-Final Office Actions dated Apr. 26, 2013 and Feb. 15, 2012, in U.S. Appl. No. 12/519,040, John F. Kalafut, filed Jun. 12, 2009.
O'Connor, Owen, et al., Development of Low-Dose Protocols for Thin-Section CT Assessment of Cystic Fibrosis in Pediatric Patients, Radiology, Dec. 2010, pp. 820-829, vol. 257, No. 3.
Office Action dated Apr. 23, 2014, in U.S. Appl. No. 12/519,040, John Kalafut, et al., filed Jun. 12, 2009.
Office Action dated Jan. 3, 2014 in U.S. Appl. No. 11/691,823.
Østergaard, L., et al., "High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part 1: Mathematical approach and statistical analysis," Magnetic Resonance in Medicine, vol. 36, Issue 5, pp. 715-725 (Nov. 1996).
Østergaard, L., et al., "High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results," Magn Reson Med, vol. 36, Issue 5, pp. 726-736 (Nov. 1996).
Parker, K.J., et al., "A Particulate Contrast Agent with Potential for Ultrasound Imaging of Liver," Ultrasound in Medicine & Biology, vol. 13, Issue 9, pp. 555-566 (Sep. 1987).
PHYSBE a classic model of the human circulatory system available from The Math Works, Inc. of Natick, Massachusetts, accessed at www.mathworks.com/products/demos/simulink/physbe, May 31, 2005, pp. 11.
Regression Analysis Tutorial, Econometrics Laboratory, University of California at Berkeley, Mar. 22-26, 1999, pp. 183-201.
Renalguard, PLC Medical Systems, Inc. News Release. (May 12, 2008).
Renalguard, PLC Medical Systems, Inc., product data from corporate website (www.plcmed.com).
Rosen, B.R., et al., "Perfusion Imaging with NMR Contrast Agents," Magentic Resonance in Medicine, vol. 14, No. 2, pp. 249-265 (May 1, 1990).
Sablayrolles, J-L, "Cardiac CT: Experience from Daily Practice," Advance CT, A GE Healthcare Publication, pp. 1-10 (Aug. 2004).
Sablayrolles, J-L, "Cardiac CT: Experience from Daily Practice", Advance CT, A GE Healthcare Publication. Aug. 2004.
Stevens, M.A., et al., "A Prospective Randomized Trial of Prevention Measures in Patients at High Risk for Contrast Nephropathy," Journal American College of Cardiology, vol. 33, Issue 2, pp. 403-411 (Feb. 1999).
Suess, Christoph, et al., Dose optimization in pediatric CT: current technology and future innovations. Pediatric Radiology, 2002, pp. 729-734. vol. 32.
Sung, C.K., et al., "Urine Attenuation Ratio: A Mew CT Indicator or Renal Artery Stenosis," AJR Am J Roentgenol, vol. 187, Issue 2, pp. 532-540 (Aug. 2006).
Supplementary European Search Report dated Apr. 15, 2011 in European Patent Application No. 07867951.1.
Supplementary European Search Report dated Aug. 19, 2010 in European Patent Application No. 05852259.0.
Supplementary European Search Report dated Dec. 9, 1998 in European Patent Application No. EP 96936079.0.
Supplementary European Search Report dated Jul. 23, 2013 in European Patent Application No. 08771789.8.
Supplementary European Search Report from dated Jul. 24, 2015 related EP Application No. EP12876629.
The European Search Report from EP14174725.3 dated May 8, 2015.
Tyco Healthcare Group LP v. MEDRAD. Inc. Complaint, Case No. 1:06-cv-00763 (Nov. 8, 2006).
Tyco's Complaint and Jury Demand, Civil Case No. 06-763, U.S.D.C. (S.D.Ohio), Tyco Healthcare Group LP, Mallinckrodt Inc. and Liebel-Flarsheim Company v. MEDRAD, Inc. (Nov. 7, 2006).
US 5,840,021, 12/1997 (withdrawn)
US 5,840,021, 12/1997, (withdrawn)
Van Der Wall, E.E., et al., 100 kV versus 120 kV: effective reduction in radiation dose?, Int J Cardiovasc Imaging, 2011, pp. 587-591, vol. 27.
Van Der Wall, E.E., et al., Reduction of radiation dose using 80 kV tube voltage: a feasible strategy?, Int J Cardiovasc Imaging, 2011.
Waaijer, Annet, et al., Circle of Willis at CT Angiography: Dose Reduction and Image Quality—Reducing Tube Voltage and Increasing Tube Current Settings, Radiology, Mar. 2007, pp. 832-839, vol. 242, No. 3.
Wada, D.R. and Ward, D.S., "Open loop control of multiple drug effects in anesthesia," IEEE Transactions on Biomedical Engineering, vol. 42, Issue 7, pp. 666-677 (Jul. 1995).
Wada, D.R. and Ward, D.S., "The hybrid model: a new pharmacokinetic model for computer-controlled infusion pumps," IEEE Transactions on Biomedical Engineering, vol. 41, Issue 2, pp. 134-142 (Feb. 1994).
Wang, Dan, et al., Image quality and dose performance of 80 kV low dose scan protocol in high-pitch spiral coronary CT angiography: feasibility study, Int J Cardiovasc Imaging, 2011.
Wintersperger, B., et al., Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose, Eur Radiol, 2005, pp. 334-341, vol. 15.
Yamashita, Y. et al., "Abdominal Helical CT: Evaluation of Optimal Doses of Intravenous Contrast Material—A Prospective Randomized Study," Radiology, vol. 216, Issue 3, pp. 718-723 (Sep. 1, 2000).

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208251A1 (en) * 2013-01-21 2014-07-24 Angiodynamics, Inc. Power injector device and method of use
US11369739B2 (en) * 2013-01-21 2022-06-28 Medline Industries, Lp Method to provide injection system parameters for injecting fluid into patient
US11717605B2 (en) 2016-11-22 2023-08-08 Bayer Healthcare Llc System and method for delivering a fluid with a consistent total volumetric flowrate
US11986621B2 (en) 2016-11-22 2024-05-21 Bayer Healthcare Llc Synthetic magnetic resonance imaging and magnetic resonance fingerprinting with a contrast agent, and determination of a contrast agent injection protocol
US11565035B2 (en) 2017-06-16 2023-01-31 Bayer Healthcare Llc Systems and methods for split bolus protocol generation
US12002560B2 (en) 2018-04-10 2024-06-04 Bayer Healthcare Llc System and method for testing blood vessel access using powered fluid injector systems

Also Published As

Publication number Publication date
AU2016273840A1 (en) 2017-01-05
EP2850418A1 (fr) 2015-03-25
HK1206814A1 (en) 2016-01-15
AU2018204199A1 (en) 2018-07-05
AU2018204199B2 (en) 2020-06-18
CA2873351C (fr) 2022-07-26
US11191501B2 (en) 2021-12-07
US20180242940A1 (en) 2018-08-30
CN104428660A (zh) 2015-03-18
DK2850418T3 (da) 2019-05-20
EP2850418B1 (fr) 2019-02-20
RU2605272C2 (ru) 2016-12-20
BR112014028442A2 (pt) 2018-04-24
AU2012380327A1 (en) 2014-11-27
AU2016273840B2 (en) 2018-04-26
KR20150013580A (ko) 2015-02-05
JP6193978B2 (ja) 2017-09-06
EP3489667B1 (fr) 2021-05-05
CN111528872A (zh) 2020-08-14
EP2850418A4 (fr) 2015-08-05
HUE043383T2 (hu) 2019-08-28
US20150141813A1 (en) 2015-05-21
CA2873351A1 (fr) 2013-11-21
JP2015523112A (ja) 2015-08-13
HUE056182T2 (hu) 2022-01-28
WO2013172811A1 (fr) 2013-11-21
DK3489667T3 (da) 2021-08-02
RU2014150404A (ru) 2016-07-10
EP3489667A1 (fr) 2019-05-29

Similar Documents

Publication Publication Date Title
US11191501B2 (en) Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage
US10463782B2 (en) Patient-based parameter generation systems for medical injection procedures
Fursevich et al. Bariatric CT imaging: challenges and solutions
JP2020523164A (ja) 分割ボーラスプロトコルの生成のためのシステムおよび方法
RU2722547C2 (ru) Системы и способы определения протоколов инъекции фармацевтической жидкости исходя из напряжения на рентгеновской трубке
WO2024054586A1 (fr) Systèmes et procédés de génération de protocoles mettant en œuvre des techniques de gestion de contraste et de dose de rayonnement

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER MEDICAL CARE INC., PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:MEDRAD, INC.;REEL/FRAME:034176/0941

Effective date: 20131031

Owner name: MEDRAD, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALAFUT, JOHN F;KEMPER, COREY;SIGNING DATES FROM 20120830 TO 20120831;REEL/FRAME:034114/0796

AS Assignment

Owner name: MEDRAD INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALAFUT, JOHN F.;KEMPER, COREY;SIGNING DATES FROM 20120830 TO 20120831;REEL/FRAME:034175/0374

Owner name: BAYER MEDICAL CARE INC., PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:MEDRAD INC.;REEL/FRAME:034246/0103

Effective date: 20131031

AS Assignment

Owner name: BAYER HEALTHCARE LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER MEDICAL CARE, INC.;REEL/FRAME:036965/0244

Effective date: 20151019

AS Assignment

Owner name: BAYER HEALTHCARE LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER MEDICAL CARE, INC.;REEL/FRAME:039455/0570

Effective date: 20151019

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4